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“I fear the animals regard man as a being like themselves, seriously
endangered by the loss of sound animal understanding; they regard
him perhaps as the absurd animal, the laughing animal, the crying

animal, the unfortunate animal.”

Friedrich Wilhelm Nietzsche
“The Gay Science : Third Book, 224. Animal Criticism”, 1882
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ABSTRACT

Understanding any phenomenon at the most fundamental level is essential for the
later comprehension of more complex phenomena, because they are nothing more
than a set of elementary phenomena, influencing each other. Diffusion flame es-
tablished around a cylindrical burner is inherently two-dimensional. Tsuji and his
partners worked for more than 20 years on cylindrical burners. Theirs experiments
aimed, notably, to determine the influence of the strain rate on the flame stability.
Recently, Tsuji flame has received more attention, but examining the entire flame
and not only the region near the point of stagnation, under forced and natural con-
vection. The present work endeavors to analyze a similar problem but considering
a cylindrical burner in impinging flows. The objective is to determine the influence
of burner, flow field and stoichiometry on the flame, developing and implementing
numerically a mathematical model and determining analytical solutions. Making the
model simple and without loss of generality, potential flow is assumed. According to
the hypotheses considered, the mixture fraction and the excess of enthalpy describe
the evolution of fuel mass fraction, oxidant mass fraction and temperature. The
flame spends most of its lifetime in a region of the flow field scaled with the recip-
rocal of square root of strain rate and velocities are scaled with the square root of
strain rate. The results demonstrate that the initial flame displacement is controlled
by radial transport of fuel into the region nearby the burner, in which the impinging
flows have a negligible influence. After that period, the flame is strongly influenced
by the impinging flows, when its acceleration is observed. The flame length is pro-
portional to the stoichiometric coefficient, ejecting velocity and reciprocal to square
root of strain rate. Meanwhile, the flame width is only dependent on the reciprocal
of square root of strain rate. Moreover, the proposed asymptotic solution underlines
the most significant transport mechanisms for the flame in different conditions and
allows the deduction of important properties such as stagnation points, strain rate,
approximate solutions and gradients.

Keywords: Double Tsuji diffusion flame. Cylindrical burner in impinging flows.
Transition from transient to stationary regime. Asymptotic analysis. Characteris-
tic scales. Continuous change flame.
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CHAMAS DIFUSIVAS COM MUDANÇA CONTÍNUA NAS
PROPRIEDADES: DO REGIME DE CONTRAFLUXO (CHAMA DE

TSUJI) AO REGIME DE CO-FLUXO (CHAMA DE
BURKE-SCHUMANN)

RESUMO

A compreensão de qualquer fenômeno no nível mais fundamental é essencial para o
entendimento posterior de fenômenos mais complexos, pois eles não passam de um
conjunto de fenômenos elementares, influenciando-se mutuamente. A chama difusiva
estabelecida em torno de um queimador cilíndrico é inerentemente bidimensional.
Tsuji e parceiros trabalharam por mais de 20 anos em queimadores cilíndricos. Eles
objetivaram, nomeadamente, determinar a influência da taxa de estiramento na es-
tabilidade da chama. Recentemente, a chama Tsuji voltou à análise, examinando-se
toda a chama e não apenas a região próxima ao ponto de estagnação, sob convecção
forçada e natural. O presente trabalho procura analisar um problema semelhante,
mas considerando um queimador cilíndrico em escoamentos impingentes. O objetivo
é determinar a influência do queimador, escoamento e estequiometria na chama,
desenvolvendo e implementando numericamente um modelo matemático e determi-
nando soluções analíticas. Por simplifidade e sem perda de generalidade, assume-se
um escoamento potencial. De acordo com as hipóteses consideradas, a fração de
mistura e o excesso de entalpia descrevem a evolução da fração de massa do com-
bustível, fração de massa do oxidante e temperatura. A chama passa a maior parte
do tempo em uma região do escoamento escalonada com a recíproca da raiz qua-
drada da taxa de estiramento e as velocidades são escalonadas com a raiz quadrada
da taxa de estiramento. Os resultados demonstram que o deslocamento inicial da
chama é controlado pelo transporte radial do combustível para a região próxima ao
queimador, na qual os escoamentos impingentes têm uma influência insignificante.
Após esse período, a chama é fortemente influenciada pelos escoamentos impingen-
tes, quando a sua aceleração é observada. O comprimento da chama é proporcional
ao coeficiente estequiométrico, à velocidade de ejeção e à recíproca da raiz quadrada
da taxa de estiramento. Entretanto, a largura da chama depende apenas da recí-
proca da raiz quadrada da taxa de estiramento. Além disso, a solução assintótica
proposta destaca os mecanismos de transporte mais significativos para a chama em
diferentes condições e permite a dedução de propriedades importantes, como pontos
de estagnação, taxa de estiramento, soluções aproximadas e gradientes.

Palavras-chave: Chama duplo-Tsuji difusiva. Queimador cilíndrico em escoamentos
impingentes. Transição do regime transiente ao estacionário. Análise assintótica.
Escalas características. Chama com mudança contínua.
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1 PREFACE

1.1 Introduction

Understanding any phenomenon at the most fundamental level is essential for the
later comprehension of more complex phenomena, because they are nothing more
than a set of elementary phenomena, influencing each other. With a solid knowledge
gained from this approach, it is possible to develop technology, and not the opposite.
The objective of the present work is to study at the most fundamental level diffusion
flames established in a flow field composed by cylindrically radial flow and impinging
flows.

Considering the configuration with a horizontal porous cylindrical burner ejecting
fuel, radially and uniformly, to the ambient atmosphere and the oxidant carried
toward the burner surface by impinging flows. This burner is known as Tsuji burner
and the established flame, as Tsuji flame. The objective of the studies headed by
Tsuji were, notably, the influence of the strain rate1 on the flame stability. Hence
the interest region was close to the stagnation point and the backward part of the
burner could be covered to avoid unnecessary fuel ejection. (TSUJI; YAMAOKA, 1967;
TSUJI; YAMAOKA, 1969; TSUJI; YAMAOKA, 1971; YAMAOKA; TSUJI, 1975; YAMAOKA;

TSUJI, 1979; ISHIZUKA; TSUJI, 1981; TSUJI, 1982; YAMAOKA; TSUJI, 1982; YAMAOKA;

TSUJI, 1985; YAMAOKA et al., 1988; YAMAOKA; TSUJI, 1989)

The diffusion flame established around a cylindrical burner is inherently two-
dimensional: either one spatial and one temporal dimensions or two spatial dimen-
sions. In the transient case, the diffusive transport of oxidant solely is not sufficient
to provide the necessary steady state conditions for the stoichiometric combustion
with the fuel, transferred to the flame by diffusion but conveyed to it also by con-
vection. Ergo, the flame is transient one-dimensional (BUCKMASTER; LUDFORD,
1982). The flame moves toward the oxidant direction, seeking for the appropriate
oxidant flux to provide the stoichiometric ratio (QIAN; LAW, 1997). In the stationary
case, on the other hand, the oxidant must be transported not only by the diffusive
transport but also by the convective, which generates a second spatial dependence,
establishing a stationary flame. This case was extensively explored by Tsuji and his
collaborators, as already mentioned.

1Strain rate is referenced as stagnation velocity gradient in the Tsuji’s papers.

1



Figure 1.1 - Tsuji problem ilustration

Burner

Fuel ejection

Forced convection - Ox

Flame

x

y

Schematic representation of the established diffusion flame in the flow field imposed by
forced convection and radial flow - Tsuji burner.

Tsuji problem and derivated problems have been re-analyzed recently. One of the
works investigated the diffusion flame established around a cylindrical burner, under
forced convection in just one direction, essentially the Tsuji problem but analyzing
whole flame, not only the stagnation region part (BIANCHIN et al., 2019), as illus-
trated by the Figure 1.1. Another work examined the same problem, but under
natural convection (DONINI et al., 2018), according to the Figure 1.2. One striking
difference between the two problems is that, under natural convection, more oxidant
is taken to the flame by the buoyancy effect and, therefore, the flame is narrower
and shorter. The next step is to further increase the oxidant availability, which is
obtained here adding another forced flow but in the opposite direction of the first
one (impinging flows).

2



Figure 1.2 - Tsuji problem under natural convection

Burner
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Schematic representation of the established diffusion flame in the flow field imposed by
natural convection and radial flow.

The present work endeavors to analyze the established laminar diffusion flame in
the flow field imposed by the combination of impinging rectangular flows and the
flow coming out a porous cylindrical burner. The fuel is ejected, radially and evenly,
and the oxidant is carried towards the flame, from the ambient atmosphere, by
impinging flows, as depicted in Figure 1.3. This configuration consists in a modified
Tsuji burner, however, unlike it (in which there is a single stagnation point), the
flow field presents a couple of stagnation points. It is worth to mention that, like
original Tsuji problem, one of the most important parameters is the strain rate, since
it determines the stability conditions. Additionally, this configuration provides the
behavior of the diffusion flames in a wide spectrum of conditions - with a continuous
transition among them - from counterflow diffusion flame (Tsuji flame) in the vertical
symmetry axis to coflow diffusion flame (Burke-Schumann Flame) in the horizontal
symmetry axis.
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Figure 1.3 - Proposed configuration
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Schematic representation of the established diffusion flame in the flow field imposed by
impinging flows and radial flow.

1.2 Objectives

The objetive of this work is the theoretical study of laminar diffusion flames around
modified Tsuji burner or, more precisely, the theoretical study of the flame estab-
lished in a flow imposed by the combination of a burner, ejecting fuel radially and
evenly, and impinging flows. Aiming at understanding of the physics involved in
such reactive flow.

1.2.1 Specific aims

The thesis specific aims are:

a) Developing the mathematical model and its numerical implementation;

b) Developing and implementing the necessary tools for the post-processing
of data;

4



c) Determining analytical solutions, even if they are simplified or particular;

d) Estimating the length and width of the flame, relating them to the flow,
burner and chemical parameters;

e) Determining the appropriate scales for the problem, in which the flame
length and width have the same order of magnitude when rescaled by
them;

f) Investigating the transition from transient, one-dimensional regime to sta-
tionary, two-dimensional regime;

The study contribution is to provide an innovative configuration, in which a diffu-
sion flame spatially changes continuously, from counterflow (Tsuji) to parallel flow
(Burke-Schumann). In addition, its change is also in time and, during the evolution,
the flame is accelerated. Studies of this flame can provide more information about
the flow field effect on it, which could be added into the flamelet model other than
strain rate of impinging flows.

1.3 Structure

Chapter 2 (LITERATURE REVIEW) presents a brief review of literature on diffu-
sion flames, in general, up to the Tsuji flames. Chapter 3 (METHODOLOGY) in-
troduces the methodology used in this study, including the mathematical model and
numerical implementation. In Chapter 4 (THEORETICAL ANALYSIS) analytical
results are presented. Chapter 5 (NUMERICAL VALIDATION) analyses numerical
aspects, such as grid convergence and code validation. Chapter 6 (DISCUSSION)
proposes some final discussions, with the conclusions of the study provided by Chap-
ter 7 (CONCLUSION).
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2 LITERATURE REVIEW

In this chapter a brief bibliographical review is performed, in order to obtain a solid
base to develop this master’s thesis satisfactorily, in addiction to contribute with
the advancement of diffusion flames knowledge.

2.1 Combustion

Despite growing efforts in the opposite direction, the world is extremely combustion
dependent: responsible for about 90% of the world’s energy production and almost
70% of the world’s electric energy generation in 2016 (INTERNATIONAL ENERGY

AGENCY (IEA), 2016). The basis of transportation systems are basically combus-
tion: an airplane generates electric and propulsive energy by burning fuel. Moreover,
most cars, ships and a significant portion of trains use combustion to generate trac-
tion. The industrial systems also depends crucially on combustion: furnaces, boilers,
incinerators for production, heat treatment, drying, among others. Beyond that,
combustion has an important use in waste processing (TURNS, 2013).

Given the combustion strategic importance, a solid foundation in this science be-
comes imperative for further technological development and advancement, which
should be obtained from the knowledge of the sciences that make up the combus-
tion: Fluid Mechanics, Transport Phenomena and Chemistry. Notwithstanding its
vital importance, combustion generates pollutants that can affect people’s quality
of life, which reinforces the need for scientific research in the Combustion Science
with the goal of mitigating the harmful effects. (TURNS, 2013).

There are basically two combustion classes, relativelly to the initial spatial distribu-
tion of the reactants: the one in which fuel and oxidant were previously mixed and
the one in which they are initially separated. The first kind is known as pre-mixture
combustion and the second, as diffusional combustion (ZELDOVICH et al., 1985). By
extension, premixed flame, such as that inherent in pre-mixture combustion, and
diffusion (or non-premixed) flame, such as that inherent in diffusional combustion,
are defined.

2.1.1 Diffusion flames

Diffusion flames are present and influencing people’s daily lives: the use of a lamp
or a candle in the blackout, forest fires, turbo-propelled planes, cars with direct
injection engines, fuel droplets burning in rocket engines, and many others. As a
consequence of the fuel and oxidant initial separation, combustion occurs only after

7



mixing due to molecular diffusion, which justifies the name. Therefore, the molecular
mixing process is the prime limiting factor for diffusional combustion (unlike the
pre-mixture combustion, in which external factors, such as the burner geometry
and the flow field characteristics, are preponderant). At first glance, it would be
possible to infer that the chemical reaction rate is generally negligible, since the
reaction is limited by difusive mixture rate (much smaller than reaction rate in
the most cases) (ZELDOVICH et al., 1985; WILLIAMS, 1965). However, it is not true,
because the lenght in which the reaction takes place is so small that the gradients
of reactants are so large that the reaction rate is high enough to be used as heat
source in combustion devices.

2.1.1.1 Burke-Schumann limit

The work entitled "Diffusion flames", by Burke and Schumann, ushered in an im-
portant milestone in diffusion flames theory: the first theoretical foundation. In the
preceding literature, there was just purely descriptive research on this subject while
the premixed flame theory had already undergone significant advances (BURKE;

SCHUMANN, 1948). They proposed the combustion (flame) surface approximation,
by supposing that the reaction zone is infinitely thin. This corresponds to the limit
of very fast reactions (relativelly to the diffusive transport), i.e., when Damköh-
ler number (the characteristic reaction and diffusion times ratio) tends to infinity
(Da → +∞). In this limit, the reactants can not coexist (without leakage), either
there is not fuel concentration or there is not oxidant concentration for each domain
point (YFYO → 0). Otherwise, the reaction term tends to infinity. (ZELDOVICH et

al., 1985; LIÑÁN, 1991).

2.1.1.2 Schvab-Zeldovich formulation

Taking advantage of the infinitely thin combustion zone idea, introduced by Burke
and Schuamann, Russian scientists Schvab and Zeldovich formalized an approach
in which it is possible to eliminate the chemical reactions from the conservation
equations. This is achieved performing algebraic operations in the mass balance of
the chemical species and heat balance equations. At the end, two transport equa-
tions for two new scalars are obtained. One of them represents the mixture fraction
(difference between oxidant and fuel concentration, divided by the respectives sto-
ichiometric coefficients) (ZELDOVICH et al., 1985). The other scalar is the modified
enthalphy which envolves the reactants and temperature field. The following advan-
tages of this approach stand out: the solution of the equation is smooth in whole
domain (unlike the discontinuity - a peak - presented in the solution of equations
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that include the chemical reaction); Reduction in the number of conservation equa-
tions, from three to two, since the concentration of fuel and oxidant is represented
by a single scalar transport equation, as presented.

2.1.1.3 Liñán analysis

Under the flame surface approximation, it is not possible to determine whether
the flame is not burning. This fact occurs due to loss of information about the
chemical reaction provided by this procedure. In order to avoid this problem, it is
required an asymptotic analysis of the flame internal structure, like the one proposed
by Liñán (1974). The latter allows to calculate the extinction conditions and, thus,
to determine a combustion under specific conditions.

Liñán analysis formulation can be simplified with convenient transformations (PE-

TERS, 1984; PETERS, 1988).

2.2 Tsuji flame

In order to establish a non-premixed flame, the oxidant diffusion, alone, is not able
to supply the steady state conditions for the stoichiometric reaction with the fuel,
carried towards the flame not only by diffusive transport but also by convection. Con-
sequently, a 1-D stationary diffusion flame can not be established (BUCKMASTER;

LUDFORD, 1982). The flame seeks for the appropriate oxidant flux to provide the
stoichiometric ratio, moving towards the oxidant direction (QIAN; LAW, 1997). On
the other hand, it is possible to add, to the oxidant, the convective transport besides
the diffusive, which generates a second spatial dependence, establishing stationary
flame. Thus, diffusion flame established around a cylindrical burner is inherently
2-D: either one spatial and one temporal dimensions or two spatial dimensions.

Hiroshi Tsuji1 and his partners worked for more than 20 years in counterflow flame
experiments, in both, diffusional and pre-mixture combustion. The terms Tsuji
burner and Tsuji flame were originated in Tsuji honor by the relevance of his work.
Tsuji burner is a porous cylindrical burner ejecting fuel, radially and uniformly, im-
mersed in a parallel flow that takes oxidant from the ambient atmosphere towards
the burner surface. Tsuji flame is any flame established under these conditions. The
region of interest was close to the stagnation point (counterflow region), therefore
the backward part of the burner could be coated to avoid unnecessary fuel ejec-
tion (TSUJI; YAMAOKA, 1967).

1See http://www.combustionsociety.jp/etc/Hiroshi_Tsuji.pdf
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The first experiments were on diffusion flames (TSUJI; YAMAOKA, 1967; TSUJI; YA-

MAOKA, 1969; TSUJI; YAMAOKA, 1971), while the later ones focused on premixed
and double flames2 (YAMAOKA; TSUJI, 1975; TSUJI, 1982; YAMAOKA; TSUJI, 1982;
YAMAOKA; TSUJI, 1985; YAMAOKA et al., 1988; YAMAOKA; TSUJI, 1989). Besides,
flammability limit study was proposed using counterflow flames (YAMAOKA; TSUJI,
1979) and the inert gases effect on extinction of laminar diffusion flames was exam-
ined (ISHIZUKA; TSUJI, 1981).

Focusing on diffusion flames, the results showed that the flames established are very
stable, completely two-dimensional and that flow and thermal structure of the flame
is, in general, simple. Therewithal, there is a critical strain rate beyond which the
flame could not be established independently of the fuel ejection velocity. In relation
to extinction, it was determined that there are two distinct mechanisms, namely
extinction by chemical limitation (related with the critical strain rate) and thermal
extinction (related to heat loss to the burner surface). Furthermore, it has been noted
that the critical strain rate depends on the fuel composition and can be used as an
estimate of the overall reaction rate. The flame always stays on the oxidant side (in
relation to the stagnation point) and its separation of burner surface is correlated
with the fuel ejection velocity. The conclusion is that the analyzed flame extend
flame-kinetics studies by structure analysis (TSUJI; YAMAOKA, 1967). It should be
noted that the experiments aimed to determine the influence of the strain rate on
the flame stability.

2.2.1 Research Group

Grupo de Mecânica de Fluidos Reativos has been working, since 2017, on Tsuji
flames:

Bianchin et al. (2019) investigated the Tsuji burner problem, but ejecting fuel also by
the backward part of the burner and analyzing whole flame, not only the stagnation
region part. Some simplifications are imposed, like constant thermodynamic and
transport coefficients and it is also considered potential flow and incompressible
Navier-Stokes models. In spite of the simplicity of the models, results reaveal the
properties of the whole Tsuji flame. In addiction, an asymptotic analysis, far from
the burner, makes it possible to determine the flame shape and shows the dependecy
of the characteristic length scales on the problem parameters: Peclet number (burner
properties), free stream velocity and stoichiometry. The results show that the flame

2A combination of rich premixed and diffusion flames influencing each other.
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length is proportional to a power of each parameters, as well as the flame width. An
asymptotic stability analysis exposes that low-stretch flame extinction is occasioned
by reactants leakage and provides the stable regime interval.

Donini et al. (2018) examined the same problem, but with natural convection, gener-
ated by low buoyancy, in place of forced convection. Their work considered a steady
Navier-Stokes flow. The low buoyancy is gained equalizing difference between the
flame and ambient-atmosphere densities, which is performed increasing the ambient-
atmosphere temperature. Using this strategy, it is possible to control the flow strain
rate, since changing the buoyancy varies the velocity field. Moreover switches on sto-
ichiometric coefficient are imposed to adjust the forward burner flame into intended
strain rate regions.

In the backward region of the burner, in the forced convection case, the oxidant is
only transported towards the flame by diffusion, because the streamlines is approx-
imately parallel to the flame in this region. Under natural convection, the buoyancy
effect generates a velocity component, perpendicular to the flame surface, which im-
plies that more oxidant is taken to the flame. Therefore, the flame is narrower and
shorter.
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3 METHODOLOGY

This chapter defines the methods to be used to achieve the stated objectives.

3.1 Model

Using the formulation described in Appendix B, under the hypothesis:

(i) Reactants and products behave like perfect gases;

(ii) Constant thermodynamic and transport coefficients;

(iii) One-step irreversible reaction;

(iv) Equivalent thermal and mass diffusivity of both species;

(v) Negligible body forces;

(vi) Incompressibility and irrotationality (potential flow);

(vii) Burke-Schumann Limit;

(viii) Schvab-Zeldovich formulation.

In this work, a simplified model is adopted in which the thermal field is decoupled
from the flow field, that is, the temperature change generated by the flame does not
impact on the flow field. The flow field is given by potential theory and permits the
estimation of relevant properties such as stagnation points, strain rate, approximate
solutions, normal and tangential flame velocities, gradients, scalar dissipation coef-
ficient, among others. Those hypotheses permit to highlight only the effects of the
species and heat transfer on the flame.

3.1.1 Potential flow

The model has the aim of revealing, with low computational cost, some aspects of
the problem. In the first analysis, it is formulated using potential flow theory. This
hypothesis allows the achievement of various analytical results, as mentioned, de-
sirable for analysis of an unexplored configuration. The cylindrical burner ejecting
fuel, in the middle of impinging flows, is represented by the superposition of imping-
ing flows (Figure 3.1a), quadrupoles (Figure 3.1b) and a linear source (Figure 3.1c)
(CURRIE, 2003; HOUGHTON et al., 2013):
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Figure 3.1 - Separate visualization of the three potential flows that, superposed, constitute
the flow field adopted

(a)

(b)

(c)

Potential flow for (a) impinging flows, (b) quadrupoles and (c) linear source.
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u = x

(
Pec − Pec(x2 − 3y2)

(x2 + y2)3 + Peb

x2 + y2

)
(3.1)

v = −y
(
Pec + Pec(3x2 − y2)

(x2 + y2)3 − Peb

x2 + y2

)
(3.2)

in which the dimensionless independent variables and velocities components are
defined as x := x̂/R̂, y := ŷ/R̂, u := û/(α̂/R̂) and v := v̂/(α̂/R̂); with R̂ being the
burner radius and α̂ := k̂/(ρ̂ĉp), the thermal diffusivity.

This problem presents two Péclet numbers: one of them is based on the burner
conditions (Peb) and, another, on the flow field around the burner (Pec):

Peb := ûbR̂/α̂, Pec := âR̂2/α̂ (3.3)

The burner Péclet number (Peb) is the ratio of the diffusion time in a distance of
order of the burner radius, t̂d = R̂2/α̂, to the residence time of the fuel flow in a
distance of order of the burner radius, t̂b = R̂/ûb, in which ub is the fuel ejection
velocity. The impinging flows field Péclet number (Pec) is the ratio of the diffusion
time in a distance of order of the burner radius, t̂d = R̂2/α̂, to the characteristic
time for changing the velocity field t̂c = 1/â (a is the strain rate).

The flow field described by Equations (3.1) and (3.2) is visualized in Figure 3.2,
check Appendix A for additional background information.

3.1.2 Energy and species conservation equations

The Burke-Schumann limit (see 2.1.1.1), ŶF ŶO = 0, permits the combination of the
energy and species conservation equations in order to eliminate the chemical term
(see 2.1.1.2). The result is two conservation equations (more details in Appendix B):

∂Z

∂t
+ u

∂Z

∂x
+ v

∂Z

∂y
= ∂2Z

∂x2 + ∂2Z

∂y2 (3.4)

∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
= ∂2H

∂x2 + ∂2H

∂y2 (3.5)
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Figure 3.2 - Potential flow field

x

y

Burner

The thinner and more dense streamlines are the fuel flow. Peb = 1 and Pec = 1, only the
first quadrant is shown.

in which t, x and y are, respectively, the time and the first and second spatial co-
ordinates, u and v, the first and second velocity coordinates, in this order. Besides,
Z := SYF − YO + 1 is the mixture fraction and H := (S + 1)T/Q + YF + YO is the
excess enthalpy, with YF and YO denoting, respectively, the mass fraction of the fuel
and oxidant, and T stands for temperature. The dimensionless variables are defined
as t := t̂/(R̂2/α̂), x := x̂/R̂, y := ŷ/R̂, u := û/(α̂/R̂), v := v̂/(α̂/R̂) and T := T̂ /T̂∞,
with the subscript “b” indicating the average conditions inside the burner, while the
“∞”, in the ambient atmosphere. The fuel and oxidant mass fractions are normal-
ized by their representative values, YF := ŶF/ŶF,b and YO := ŶO/ŶO,∞, ŶF,b is the
average fuel mass fraction inside the burner and ŶO,∞ is the oxidant mass fraction in
the ambient atmosphere. The characteristic properties used to non-dimensionalize
the variables are: the radius of the burner (R̂), the diffusion speed (α̂/R̂), the period
of time for the heat propagation over a burner radius distance with the diffusion
speed (R̂2/α̂), the fuel concentration in the burner surface (ŶF,b), the oxidant con-
centration in the ambient atmosphere (ŶO,∞) and the ambient-atmosphere tempera-
ture (T̂∞). The parameters are stoichiometricity, S := ŝŶF,b/ŶO,∞, and heat release,
Q := Q̂ŶF,b/(ĉp∞T̂∞), in which ŝ is the mass stoichiometric coefficient and Q̂ is the
combustion heat release.

The boundary conditions are, at x2 + y2 → 1+,
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Zs − Zb = Pe−1
b ||∇Z||s, Hs −Hb = Pe−1

b ||∇H||s (3.6)

and, for x2 + y2 → +∞,

Z − Z∞ = H −H∞ = 0 (3.7)

The initial conditions are, for x2 + y2 > 1,

Z − Z∞ = H −H∞ = 0 (3.8)

in which Zs := SYF,s+1, Hs := (S+1)Ts/Q+YF,s, Z∞ := 0 and H∞ := (S+1)/Q+1,
with subscript “s” indicating the conditions at the burner surface. Moreover, the
terms Zb := S + 1 and Hb := (S + 1)Tb/Q + 1 are considered known, based on the
average properties within the burner.

3.1.3 Axial symmetry

The problem presents axial symmetry in relation to x and y axes, provided by the
flow field. Therefore, it is entirely represented by the solution of only one quadrant.
The symmetry boundary conditions are, on the axis x = 0,

∂Z

∂x
= ∂H

∂x
= 0 (3.9)

on the axis y = 0,

∂Z

∂y
= ∂H

∂y
= 0 (3.10)

3.1.4 Transition (r, t;Pec) → (x, y;Pec)

To investigate the transition from transient, one-dimensional regime to stationary,
two-dimensional regime, the condition of very small flow field Péclet number must
be imposed, Pec ≪ 1, i.e. Pec = εPec

(1), with ε ≪ 1 and Pec
(1) ∼ 1. This hypothesis

puts in evidence the (r, t) problem, that is, decreasing ε, the (x, y) problem takes
more time to be attained. Decreasing the value of Pec, the stationary flame condition
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is found for a longer period. A straightforward analysis leads to the following re-
scaling of the coordinates: x̃ := xε1/2 and ỹ := yε1/2; and of the velocities: ũ := uε−1/2

and ṽ := vε−1/2. The region of the flow field analyzed has a size of order of ε−1/2 ≫ 1
and velocities very small, of order of ε1/2 ≪ 1. Therefore, the flow field is described
by

ũ = Pec
(1)x̃+ Pebx̃

x̃2 + ỹ2 +O(ε2) (3.11)

ṽ = −Pec
(1)ỹ + Pebỹ

x̃2 + ỹ2 +O(ε2) (3.12)

From the region in the domain characterized by (x, y) ∼ (ε−1/2, ε−1/2), the burner
is seen as a linear source of fuel and sink of heat. The reason for the burner geom-
etry contribution disappears from the above expressions. An observer in the region
(1, 1) < (x, y) ≪ (ε−1/2, ε−1/2) sees the diffusion flame displacement as transient,
one-dimensional problem. But, an observer in the region (x, y) ∼ (ε−1/2, ε−1/2) sees
the diffusion flame as a stationary, two-dimensional problem.

Not only the spatial variables must be rescaled but also the temporal variable. In
this case, the re-scaling is τ = εt. Note that the Strouhal number, defined as the
residence and characteristic times ratio, is very large St := ε−1, which corresponds
to a long period to achieve the stationary regime.

From this discussion, it is possible to evaluate the influence of the flow field on the
stationary, two-dimensional flame, in which the fuel is supplied from a cylindrical
burner.

Equations (3.4) and (3.5) can be rewritten as

∂Z

∂τ
+ ũ

∂Z

∂x̃
+ ṽ

∂Z

∂ỹ
= ∂2Z

∂x̃2 + ∂2Z

∂ỹ2 (3.13)

∂H

∂τ
+ ũ

∂H

∂x̃
+ ṽ

∂H

∂ỹ
= ∂2H

∂x̃2 + ∂2H

∂ỹ2 (3.14)

Refer to Appendix C for detailed formulation.
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3.2 Numerical implementation

Denoting lx and ly two lengths not necessarily equal. A numerical domain such
that 0 ≤ x ≤ lx and 0 ≤ y ≤ ly is selected to represent the physical domain under
scrutiny, the first quadrant of a rectangular region of space where the diffusion flame
is established. The discretization consists of a rectangular mesh, evenly spaced in
both directions and with the same resolution (∆x = ∆y). The FTCS (Forward-Time
Central-Space) method is implemented, which consists of central finite differences
in space and forward Euler method in time. Thus, the following finite difference
equation is obtained, generic representation of Equations (3.4), (3.5), (3.13) and
(3.14)

fn+1
i,j − fn

i,j

∆t
+ ui,j

fn
i+1,j − fn

i−1,j

2∆x
+ vi,j

fn
i,j+1 − fn

i,j−1

2∆y
=

=
fn

i+1,j − 2fn
i,j + fn

i−1,j

(∆x)2 +
fn

i,j+1 − 2fn
i,j + fn

i,j−1

(∆y)2 (3.15)

with n, i and j being partition indexes respectively of t, x and y. It is an explicit
method of first order in time and second order in space, conditionally stable. Von
Neumann Stability Theorem provides a necessary and sufficient condition for the sta-
bility (HINDMARSH et al., 1984), which can be summarized in the sufficient condition
applied

∆t ≤ min
[

1
2

(∆x∆y)2

(∆x)2 + (∆y)2 ,
2

u2
max + v2

max

]
(3.16)

in which umax and vmax are the maximum velocities in the x and y directions,
respectively. By defining ∆ := ∆x = ∆y, it provides

∆t ≤ min
[

∆2

4
,

2
u2

max + v2
max

]
(3.17)

The convergence criterion for the stationary solution is provided by the root-mean-
square deviation (RMSD) of the interest function (f) between future (n + 1) and
present (n) times, relatively to time variation (∆t). This can be interpreted as an
approximation for temporal derivative at any point and denoted by β. Namely

19



βn+1 :=
(
RMSD

∆t

)n+1
(3.18)

with

RMSDn+1 :=

√√√√√ 1
MxMy

Mx∑
i=1

My∑
j=1

(fn+1
i,j − fn

i,j)2 (3.19)

in which Mx := lx/∆x and My := ly/∆y are the cardinalities of the discrete parti-
tions of x and y, respectively, i.e., the number of grid points in each direction.

When βn+1 ≤ βstop (βstop ≪ 1) convergence was achieved.

The Equations (3.4) and (3.5) can be rewritten as:

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
= ∂2F

∂x2 + ∂2F

∂y2 (3.20)

in which F := (Z − Z∞)/(Zs − Z∞) = (H − H∞)/(Hs − H∞), with Fs = 1 and
F∞ = 0.

Thus, solving any of the equations, for Z, H or F , the others are determined by:

Z = F (Zs − Z∞) + Z∞ (3.21)

H = F (Hs −H∞) +H∞ (3.22)
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4 THEORETICAL ANALYSIS

In this chapter an order of magnitude analysis is performed, an asymptotic solution
is determined and, from it, several results are obtained.

4.1 Order of magnitude analysis

The conditions imposed by the burner affect the properties along the entire flame.
That is why the adjustment coefficient of burner influence (η) is introduced. The
burner influence is maximum when η ≪ 1 and minimum when η ∼ 1.

To estimate length and width of the flame established in the proposed configuration,
it is necessary to consider some approximations. The first one is the residence time
of a center-line fuel fluid particle,

t̂res =
∫ L̂x

R̂

dx̂

û
= 1
â

ln(Lx) (4.1)

to be of the same order as the diffusion time of an oxidant fluid particle at a distance
L̂y,

t̂dif = L̂2
y/α̂ (4.2)

in which Lx := (L̂x/R̂) with L̂x is the estimate flame length and L̂y is the estimate
flame width. The x-direction velocity û is approximated by the x̂-component of the
impinging flows velocity, û ∼ âx̂, with x̂ being the first spatial coordinate (length).
Thus, from Equations (4.1) and (4.2), one finds

ln(Lx) = L̃2
y (4.3)

in which L̃y :=
√
PecLy with Ly := (L̂y/R̂).

The second approximation is that the fuel stream coming out the burner,
2πR̂ρ̂ûbŶF,b, is redirected by the impinging flows from the cylindrical geometry to a
stream parallel to the x̂-axis, in both sides of burner. Finally, the third one is that
the fuel mass flux coming out from one quadrant of the burner, 2πR̂ρ̂ûbŶF,b/4, is
redirected to the base width (L̂y) of a rectangular triangle with height L̂x, and it is
burned in the diffusion flame established on the hypotenuse. From the mass balance,
considering that each unit of fuel mass is burned stoichiometrically with s mass of
oxidant, one finds the relation: s(πR̂ρ̂ûbŶF,b)/2 = η

(√
L̂2

x + L̂2
y

)
ρ̂α̂∇ŶO, which can
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Figure 4.1 - Model schematic illustration

Flame

Burner

Only the first quadrant is shown.

be rewritten as (
Lx

L̃y

)2

=
[

1
η

(
π

2
SPeb√
Pec

)]2

(4.4)

in which the following hypotheses are used: L̂x ≫ L̂y, ∇ŶO ∼ ∆ŶO/∆ŷ = ηŶO,∞/L̂y.
L̃y is the rescaled flame width and defined by L̃y := Ly

√
Pec and S := sŶF,b/ŶO,∞

is the stoichiometric coefficient for mass of oxidant to burn stiochiometrically unity
mass of a mixture of fuel and inert.

Figure 4.1 presents a schematic illustration of the proposed model.

Taking Equation (4.4) into (4.3), an estimation for the length of the flame is deter-
mined by:

ln
(
ÑL̃x

)
= L̃2

x (4.5)

with L̃x := Lx/Ñ , Ñ := N/η and

N := πSPeb

2Pe1/2
c

(4.6)

Then, using the rescaled width and length of the flame, Equation (4.4) can be
rewritten as L̃x = L̃y.

Looking for the position L̃x,T in which the two curves ln(ÑL̃x) and L̃2
x have the

same inclination (tangency point), one finds

L̃x,T = 2−1/2 (4.7)

In addition, for the two curves meet themselves at that point, the value of the Ñ ,
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called Ñmin, must be
Ñmin = (2e)1/2 (4.8)

From Equations (4.7) and (4.8), the minimum flame length is determined Lx,min =
e1/2.

For Ñ < Ñmin, the analysis has no solution. For Ñ > Ñmin, Equation (4.5) has two
solutions, the smallest one is defined in the interval 0 < L̃x ≤ L̃x,T and the largest
one is defined in L̃x > L̃x,T .

As will be seen ahead, the parameter N rescales very well the flame length for the
cases in which the problem properties lead to N > S.

4.2 Asymptotic solution

Despite the double convective transport, based on previous work (BIANCHIN et al.,
2019; DONINI et al., 2018) and estimates from the former section, it is still possible
to expect long flames, in this case in x-direction. Thus, away from the burner,
it is possible to neglect the small diffusive process in x-direction (boundary layer
approximation) in the equation for Z:

Pecx
∂Z

∂x
− Pecy

∂Z

∂y
= ∂2Z

∂y2 (4.9)

Performing the spatial coordinate transformation ỹ = y
√
Pec, one finds

x
∂Z

∂x
− ỹ

∂Z

∂ỹ
= ∂2Z

∂ỹ2 (4.10)

Proposing a solution by separating variables Z = F (x)G(ỹ), functions F and G

satisfy xF ′/F = (G′′ + ỹG′)/G = −c whose solution in (x, y) is

Z = A

x
exp

[
−
(
y
√
Pec/2

)2
]

(4.11)

The flame is determined by the level curve Z(x, y) = 1. Applying the boundary
condition Z(xf , 0) = 1, A = xf is obtained, in which xf = xf (S, Peb, P ec) is the
total length of the flame, which transmits the conditions near the burner to the
asymptotic solution, such as fuel flow. Thus, the expression

x

xf

= exp
[
−
(
y
√
Pec/2

)2
]

(4.12)
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Figure 4.2 - Asymptotic solution for Z
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The contours Z = 0.7, Z = 1 and Z = 3 are shown, with Pec = 1 and xf = 17.

determines the flame position far from the burner as a function of the flame length
(xf ). An illustration of the asymptotic solution for Z is provided by Figure 4.2 which
already evidences the low concentration at the flame tip.

It is worth to mention that the analysis of order of magnitude is able to capture
the relation between the flame length and flame width, Equation (4.3), given by the
asymptotic solution, Equation (4.12).

Rewriting conveniently Equation (4.12), the following relation is found

y = ±
[ 2
Pec

ln
( 1
Z

xf

x

)]1/2
(4.13)

Note that xf > 0 in the first and fourth quadrants and xf < 0 in the second and
third quadrants. This curve, in the first quadrant, is plotted in Figure 4.3 for three
distinct Pec.
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Figure 4.3 - Asymptotic flame shape
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The cases Pec = 0.1, Pec = 1 and Pec = 10 are shown, with Pec = 1 and xf = 17.

In the first quadrant, the inclination of the curve describing the flame is

y′ = 1√
2Pec

{
−1
x

[
ln
(
xf

x

)]−1/2
}

(4.14)

and the curvature of that is

y′′ = 1
2
√

2Pec

1
x2

[
ln
(
xf

x

)]−1/2
{

2 −
[
ln
(
xf

x

)]−1
}

(4.15)

Note that there is a point (x = xfe
−1/2) where y′′ = 0.
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Figure 4.4 - Asymptotic gradient norm (||∇Z||)
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The cases Pec = 0.1, Pec = 1 and Pec = 10 are shown, with Pec = 1 and xf = 17.

4.2.1 Mixture fraction gradient

The results of the asymptotic analysis permit a good analytical estimate for the
mixture fraction gradient (∇Z) far from the burner:

∇Z = −Z
(

1
x
,±

[
2Pec ln

( 1
Z

xf

x

)]1/2)
(4.16)

in which Equation (4.11) was used. The term in y-direction is positive in the second
and third quadrants and, negative in the first and fourth. Knowing the gradient of
mixture fraction on the flame (Z = 1), the scalar dissipation coefficient χ is found,

χ/2 = (∇Z · ∇Z)|Z=1 = 1
x2 + 2Pec ln

(
xf

x

)
(4.17)
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Figure 4.5 - Scalar dissipation coefficient (χ)
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The cases Pec = 0.1, Pec = 1 and Pec = 10 are shown, with Pec = 1 and xf = 17.

Illustrations for the gradient norm (||∇Z||) and the scalar dissipation coefficient (χ)
are given in Figure 4.4 and 4.5, respectively, showing that dissipation grows with
the increase of Pec.

4.2.2 Point of tangency

Since the gradient of the curve Z(x, y) = 1 (on the flame) is a normal vector to the
flame surface, then u⃗ · ∇Z = 0 determines where the velocity vector is parallel to
the flame. From Equation (4.16) and its associated flow field (u, v) = Pec(x,−y),

u⃗ · ∇Z = −Pec + y2Pe2
c = −Pec + 2Pec ln

(
xf

x

)
= 0 (4.18)

leads to
(x, y)T = (xfe

−1/2, P e−1/2
c ) (4.19)
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The subscript T represents the tangency of flow field to the flame. Equation (4.19)
shows the position of separation between counterflow regime and coflow regime. For
all cases it is at the boarder of the molecular transport zone, yT = Pec

−1/2, and
at about 60% of the flame length, xT ≈ 0.607xf . It is worth to mention that for
xT < x < xf the streamlines are practically parallel to the flame, except in the
region very close to the tip x ∼ xf , where the streamlines cross the flame with high
angle. The convective transport close to the tip creates a very narrow molecular
transport zone, that imposes high enough fuel flux to the flame in spite of very low
fuel concentration.

From Equations (4.14) and (4.15), at the tangency point the inclination of the flame
is

y′ = − 1√
Pec

e1/2

xf

(4.20)

and the curvature is zero, y′′ = 0. The curvature for the flame before the tangent
point is positive and after that is negative.

4.2.3 Normal and tangential velocities

It is possible to decompose the velocity u⃗ into normal (uN) and tangential (uT )
components. The normal component is given by the projection of u⃗ in the direction
of unit vector, normal to the flame. The normalized gradient has this property (AR-

FKEN; WEBER, 2005), ie. uN = u⃗ · (∇Z / ||∇Z||Z=1). The velocity and the gradient
tends asymptotically to u⃗ = (xPec,−yPec) and ∇Z = − (1/x, Pecy). Furthermore,
considering Equation (4.13), limited to the first quadrant,

uN = Pec
1 − 2 {ln (xf/x) ln [(1/Z)(xf/x)]}1/2√

1/x2 + 2Pec ln (xf/x)
(4.21)

or, on the curve Z = 1 (on the flame):

uN = Pec
1 − 2 ln (xf/x)√

1/x2 + 2Pec ln (xf/x)
(4.22)

The tangential component is given by the relation u2
T = ||u⃗||2 − u2

N , then
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uT = Pec

x2 + 2
Pec

ln
( 1
Z

xf

x

)
−

1 − 2 {ln (xf/x) ln [(1/Z)(xf/x)]}1/2√
1/x2 + 2Pec ln (xf/x)

2


1/2

(4.23)

or, on the flame:

uT = Pec

x2 + 2
Pec

ln
(
xf

x

)
−

 1 − 2 ln (xf/x)√
1/x2 + 2Pec ln (xf/x)

2


1/2

(4.24)

Perceive that at the point of tangency (x = xT ), one finds uN = 0 and uT = ||u⃗||. On
the other hand, at the top of the flame (x = xf ), one finds uN = ||u⃗|| and uT = 0.
Although, as x decreases, it is necessary to use the numerical solution, since the
influence of the burner becomes relevant, which is not included in the assumptions
employed in the asymptotic solution.

4.3 Stagnation points

According to the geometry of the problem, there are two stagnation points, one
in each side of the burner on x = 0. Imposing the condition v = 0 into Equation
(3.2) and solving the resulting quadratic equation for y2

st, the stagnation points
y = ±yst ̸= 0 are determined by

y2
st = Peb

2Pec

+

√√√√( Peb

2Pec

)2
+ 1 (4.25)

For the conditions leading to the distinguished limit Peb/(2Pec) ≪ 1, the stag-
nation points are at the burner surface yst → ±1. For the other distinguished
limit Peb/(2Pec) ≫ 1, the stagnation points are far from the burner, yst →
±(Peb/Pec)1/2.

Figure 4.6 shows the behavior prescribed by Equation (4.25). Note that yst quickly
tends to its asymptotic behavior for Peb/(2Pec) ≫ 1, just over Peb/(2Pec) = 0.5.
Moreover, yst tends to its asymptotic behavior for Peb/(2Pec) ≪ 1, just below
Peb/(2Pec) = 0.5.
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Figure 4.6 - Stagnation points (yst)
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The stagnation points (yst) are shown as a function of Peb / (2Pec). The asymptotic
behavior is also displayed.

4.3.1 Strain rate

Similarly, on x = 0, the velocity derivative is given by:

dv

dy
= −

(
1 + 3

y4 + Peb

Pec

1
y2

)
Pec (4.26)

At y = yst:

dv

dy

∣∣∣∣∣
y=yst

= −

1 + 3(2Pec/Peb)2(
1 +

√
1 + (2Pec/Peb)2

)2 + 2
1 +

√
1 + (2Pec/Peb)2

Pec

(4.27)
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For the extreme condition Peb / (2Pec) ≫ 1:

dv

dy

∣∣∣∣∣
y=b

≈ −
[
2 + 3

(
Pec

Peb

)2]
Pec (4.28)

For the other extreme condition, Peb / (2Pec) ≪ 1:

dv

dy

∣∣∣∣∣
y=b

≈ −
[
4 + Peb

Pec

]
Pec (4.29)

Thus, this configuration provides strain rates from two to four times higher than
the counterflow flames. Which have, in comparison, a strain rate of order of Pec.
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5 NUMERICAL VALIDATION

This chapter is dedicated to examine the grid convergence and the code validation.

5.1 Grid convergence

This section examines the grid convergence as proposed by Roache (1998) and sum-
marized in Slater (2008), which is based on Richardson’s extrapolation.

Three different grids with constant refinement ratio (r = 2), with normalized spacing
h3 = 4 (∆3 = 0.04), h2 = 2 (∆2 = 0.02) and h1 = 1 (∆1 = 0.01), are used to solve
the same problem (S, Peb, P ec) = (10, 1, 1), obtaining the flame length for each of
them (fi), parameter of relevance for the simulations, according to Table 5.1. Note
that the grid spacing is normalized by most refined grid spacing, i.e., hi := ∆i/∆min.
Besides, the flame shape is shown in Figure 5.1, for each grid.

Table 5.1 - Flame length as a function of grid refinement.

Grid (i) Normalized grid spacing (hi) Flame lenght (fi)
Fine (1) 1 23.0224

Medium (2) 2 22.8761
Coarse (3) 4 22.5457

The convergence order (p) can be obtained from solutions, according to

p = ln
(
f3 − f2

f2 − f1

)
1

ln(r)
(5.1)

=⇒ p = 1.1753 (5.2)

The grid convergence index (GCI) is calculated in accordance with

GCIi,j = Fs|εi,j|
rp − 1

(5.3)

in which εi,j := (fj − fi)/fi is the relative error and Fs := 1.25, a factor of safety.
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Figure 5.1 - Comparison of the flame shape using three distinct grids.
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The solutions are for the same problem (S, Peb, P ec) = (10, 1, 1) and the normalized
resolutions are h1 = 1, h2 = 2, h3 = 4.

Between grids 1 and 2:

GCI1,2 = 0.6312% (5.4)

Between grids 2 and 3:

GCI2,3 = 1.4347% (5.5)

The refinement is adequate when the solution is in the asymptotic range of conver-
gence. This is verified through the relationship:

GCI2,3 ≈ rpGCI1,2 (5.6)
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Figure 5.2 - Richardson’s extrapolation for zero spacing grid (h = 0) based on the two
finest grids.
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In addition to the extrapolated value (h = 0), the values obtained from the simulations,
h = 1, h = 2 and h = 4, are displayed.

or

GCI2,3

rpGCI1,2
≈ 1 (5.7)

Which in fact occurs, since

GCI2,3

rpGCI1,2
= 1.0065 (5.8)

Richardson’s extrapolation can be applied between the two finest grids to obtain an
estimate of the flame length with a zero spacing grid (h = 0).
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fh=0 ≈ f1 + f1 − f2

rp − 1
(5.9)

=⇒ fh=0 ≈ 23.1387 (5.10)

Namely, the estimated flame length is 23.1387 with an uncertainty of 0.6312%, which
is depicted in Figure 5.2.

5.2 Code validation

Since this is an unexplored problem, there are no data in the literature for com-
parison. Ergo, validation is based on the asymptotic solution obtained in Section
4.2.

The numerical results represent very well the asymptotic solution in the part of
domain where it is valid, which is ratified by Figure 5.3.
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Figure 5.3 - Comparison of the asymptotic solution with numerical results
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The cases (S, Peb, P ec) = (1, 5, 5), (17, 5, 5), (7, 0.1, 5), (7, 10, 5) are compared with the
asymptotic solution. For better observation, the results are normalized.
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6 DISCUSSION

In this chapter is performed a final discussion.

First, the transient problem is examined in Section 6.1. This requires the imposition
of a low strain rate and re-scaling of temporal and spatial variables, in accordance
with Subsection 3.1.4. After that, in Section 6.2, the general stationary problem is
reinstated and the original scales are also re-established, concluding the discussion
in Section 6.3.

6.1 Transition (Pec = εPe(1)
c , ε ≪ 1)

Looking at the Equations (3.13) and (3.14) in polar coordinates, x̃ := r̃ cos θ and
ỹ := r̃ sin θ, helps to visualize the deformation of the flame from its initial geometry
to the final geometry.

∂Z

∂τ
+ Pec

(1)
[
r̃ cos (2θ)∂Z

∂r̃
− sin (2θ)∂Z

∂θ

]
+

Peb

r̃

∂Z

∂r̃
= 1
r̃

∂Z

∂r̃

(
r̃
∂Z

∂r̃

)
+ 1
r̃2
∂2Z

∂θ2 (6.1)

∂H

∂τ
+ Pec

(1)
[
r̃ cos (2θ)∂H

∂r̃
− sin (2θ)∂H

∂θ

]
+

Peb

r̃

∂H

∂r̃
= 1
r̃

∂H

∂r̃

(
r̃
∂H

∂r̃

)
+ 1
r̃2
∂2H

∂θ2 (6.2)

For initial conditions such that Z = Z(r̃) and H = H(r̃), the second term in the left
hand side, both terms inside the bracket, and the second one in right hand side are
zero. However, the first term inside the bracket, which is very small while r̃ ≪ 1, is
responsible for distorting the cylindrical geometry of the flame. The flame distortion
does not occur indefinitely because the flame finds its stationary form. The flow field
Péclet number (Pec) can be interpreted as a stationarity indicator: as Pec increases,
the steady state is reached more quickly, since the Strouhal number (St) decreases.
Just for Pec = 0 (radial fuel ejection into inert oxidant ambient atmosphere), the
flame is always in transient regime (QIAN; LAW, 1997).
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Figure 6.1 - Temporal evolution of the flame
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(a) (S, Peb) = (10, 1) and (b) (S, Peb) = (1, 10). The flow field of the impinging flows is
for Pe

(1)
c = 1. The flame shapes correspond to (a) τ = 0.001, 0.158, 0.496, 1.187, 1.772,

2.309, 2.884, 9.856 and (b) τ = 0.001, 0.051, 0.182, 0.523, 0.850, 1.139, 1.395, 1.629,
1.857, 2.092, 2.363, 2.758, 7.265. The curve represented by square dots determines the
position x̃2

0 + ỹ2
0 = Peb/Pe

(1)
c where ṽ(x̃0, ỹ0) = 0.

In the formulation of transition from transient, one-dimensional regime to stationary,
two-dimensional regime (see Subsection 3.1.4), there is no reason for taking Pe(1)

c ̸=
1, because the value of Pe(1)

c different from unity could be included in the value of
ε. Therefore, in all cases presented for discussions, Pe(1)

c = 1 is assumed.

The cases were selected in such a way that the fuel flux remains the same or, in
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other words, the product SPeb is constant. Thus, in any cases in which SPeb = 10,
the same amount of fuel is provided to the ambient, but with different fuel ejection
momentum.

The discrete evolution of the flame for the cases (a) (S, Peb) = (10, 1) and (b)
(S, Peb) = (1, 10) are exhibited in Figure 6.1. Due to no unique behavior of the flame
velocity, the flame shapes are not displaced in regular time interval, but they are
chosen to represent properly the flame evolution. Thus the flame shapes correspond
to the times τ = 0.001, 0.158, 0.496, 1.187, 1.772, 2.309, 2.884, 9.856 for
(S, Peb) = (10, 1) and τ = 0.001, 0.051, 0.182, 0.523, 0.850, 1.139, 1.395,
1.629, 1.857, 2.092, 2.363, 2.758, 7.265 for (S, Peb) = (1, 10). Clearly, the initial
displacement of the flame is controlled by radial transport of fuel into the region
close to the burner, where the impinging flows has a negligible influence.

In addition, considering in this figure the position (x̃0, ỹ0) defined by r̃2
0 = x̃2

0 + ỹ2
0 =

Peb/Pe
(1)
c , the velocity in the y-direction (ṽ) is zero. In particular, there are two

stagnation points at the positions ỹst := (0,±|ỹ0|). The convective transport is only
in the x-direction over the curve specified by the points (x̃0, ỹ0). For r̃ < r̃0, the flow
field is practically radial. Nevertheless, for r̃ > r̃0, the convective term in y-direction
deflects the streamlines from the burner to parallel to the x-axis, as seen in Figure
6.1. Once the flame passes by the radius r̃ = r̃0, it enters in the flow field region
influenced by the impinging flows and starts to distort in x-direction, because its
displacement in y-direction - against y-direction convection transport of oxidant - is
at a velocity that decreases with time.

The thick-line streamlines describe the region of influence of the impinging flows.
Moreover, the thin-line streamlines, from the cylindrical burner, describe the region
of influence of fuel ejection, as shown in Figure 6.1. Observing the flame position
relatively to the flow field in Figure 6.1a, it is observed that the location of flame
is in the region where the flow field is imposed mainly by the impinging flows. This
fact indicates the influence of the diffusion. The fuel species is diffusively transported
into the impinging flows region. Consequently, the fuel consumption is larger than
the other case, (S, Peb) = (1, 10), and the flame length is smaller, as seen in Figure
6.1b.

The most significant result depicted by Figure 6.1b is the flame to be very close
to the frontier from the flow field imposed by the burner fuel ejection and the flow
field imposed by the impinging flows. The diffusive transport is limited to a layer
around that frontier. As consequence, the flame must be very long to permit the
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fuel consumption.

Denoting x̃f as the flame position on the x-axis (length), ỹf as the flame position on
the y-axis (width), from Figure 6.1, it can be seen the final position (ỹf ) with respect
to the stagnation point (ỹst) on both sides of the burner. For the case (S, Peb) =
(1, 10), the stationary flame width (ỹf ) is at the stagnation point, ỹst = 101/2. This
result shows that the molecular transport layer is very thin: the diffusion does not
transport fuel beyond the stagnation point (ỹst), i.e. ỹf − ỹst ≪ 1. This result would
be expected for Peb ≫ 1 because the thickness of the molecular transport layer is
of order Pe−1/2

b . Then, for Peb = 10, the diffusion could transport fuel to a distance
of 10−1/2 beyond the stagnation point. However, fuel penetration is not observed
because the fuel concentration is very low in the case S = 1, YF,b = YO,∞/s ≪ 1.

Besides, the circular behavior in the beginning of the flame displacement is observed
clearly, which was expected because the radial transport of the fuel controls the
flame dynamics. To demonstrate this behavior, the aspect ratio (x̃f/ỹf ) of the flame
is quantified and exhibited in Figure 6.2. In the time interval τ < 0.1, the flame is
circular. Therefore, depending on the chosen spatial and temporal scales, r̃c ≪ 1
and τc ≪ 1 (rc ≪ ε−1/2 and tc ≪ ε−1), the flame can be considered circular and
transient (QIAN; LAW, 1997).

The dynamics of the flame is basically separated into three periods: initial (0 < τ <

0.1), intermediate (0.1 ≤ τ < τs) and final (τ ≥ τs), in which τs is the time to
attain stationary regime. The flame aspect ratio for (S, Peb) = (1, 10) is larger than
that for (S, Peb) = (10, 1). Additionally, time τs is shorter for (S, Peb) = (1, 10),
τs = 4.198, than that for (S, Peb) = (10, 1), τs = 6.800, with τs considered the time
when the major component of velocity is approximately 10−2. The initial period is
predominantly governed by molecular transport while the intermediate period is also
influenced by convection. The final period is also governed by molecular transport,
but the small spatial scale close to the flame, wherein that transport is important,
is imposed by the convective transport.

Denoting ũf as the velocity of x̃f and ṽf as the velocity of ỹf . Thus, in the ini-
tial period, x̃f and ỹf are proportional to τ 1/2, as well as ũf and ṽf are inversely
proportional to the same temporal power, τ−1/2. Figures 6.3 and 6.4 show this be-
havior for both, position and velocity, of flame length and flame width, in cases
(S, Peb) = (10, 1) (continuous line) and (S, Peb) = (1, 10) (dashed line).
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Figure 6.2 - Temporal evolution of aspect ratio (x̃f /ỹf )
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For both cases, (S, Peb) = (10, 1), (1, 10).

Since (S, Peb) = (10, 1), (1, 10) are the extreme cases, for any other values of (S, Peb)
that lead to SPeb = 10, the results are between the two curves exhibited in Figures
6.3 and 6.4. Therefore, the difference of results is imposed by the momentum of the
fuel stream dictated by the ejection velocity.

As mentioned before, the flame aspect ratio evolution, Figure 6.2, shows that the
case (S, Peb) = (1, 10) has a shorter transient period than the case (S, Peb) = (10, 1).
Figure 6.3 reveals the same behavior for the evolution of both, flame width (ỹf ) and
flame length (x̃f ). However, the flame width (ỹf ) reaches the stationary condition
earlier for both cases than the flame length (x̃f ).
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Figure 6.3 - Temporal evolution of flame length (x̃f ) and width (ỹf )
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Indexes 1 and 2 stand for the cases (S, Peb) = (10, 1) and (S, Peb) = (1, 10), respectively.
The stagnation points for each case are also displayed for referencing, ỹst = (Peb/Pe

(1)
c )1/2

.

In Figure 6.3, the stagnation positions (ỹst) are determined by the horizontal lines.
For the case (S, Peb) = (10, 1), the stagnation point is at ỹst = 1 and the molecular
transport layer is of order unity, namely the diffusive process takes fuel into a dis-
tance of order unity beyond the stagnation point, ỹf − ỹst = 1.003, as seen in the
figure. For the case (S, Peb) = (1, 10), the stagnation point is at ỹst = 101/2 and the
stationary flame width (ỹf ) is practically on the stagnation point (ỹf −ỹst = −0.001),
as explained before.

Figure 6.4 exhibits the velocity of the flame on the axes, ũf (x̃, 0, τ) and ṽf (0, ỹ, τ).
These results confirm that the velocities, ũf and ṽf , decrease according to τ−1/2 in
the period τ < 0.1. About τ ∼ 0.5, the velocity ṽf is reduced and the velocity ũf is
found constant. Approximately, in the time interval 0.5 < τ < 2, the flame length
x̃f first accelerates and then decelerates. The accelerating period occurs when the
velocity ṽf is reduced, indicating that the stationary regime for ỹf is close.
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Figure 6.4 - Temporal evolution of flame length (ũf ) and width (ṽf ) velocities
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Indexes 1 and 2 stand for the cases (S, Peb) = (10, 1) and (S, Peb) = (1, 10), respectively.

Figure 6.5 shows the acceleration of the flame on the x-axis, defined as ãf . In order
to facilitate the elucidation of the flame acceleration behavior, two additional lines
are displayed, namely, the evolution of the flame on the y-axis (ỹf ) and of the
flame velocity on the x-axis (ũf ). As seen more clearly in the two plots, the flame
accelerates in x-direction in the time interval 0.5 < τ < 2, practically for the two
cases. However, the acceleration in the case (S, Peb) = (1, 10) is larger than the
other case, (S, Peb) = (10, 1). The case in which the fuel diffusion has an important
contribution on the flame displacement, the acceleration is smaller than the case in
which the convection dominates the flame displacement since the earlier period.
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Figure 6.5 - Dynamics of the flame
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The evolution of the flame position (ỹf ), of the flame velocity (ũf ) and of the flame
acceleration (ãf ) on the x-axis for (a) (S, Peb) = (10, 1) and (b) (S, Peb) = (1, 10).

In both cases, it is seen that the acceleration of the flame starts after the flame
decreases significantly the growth in y-direction, then the flame is close to the sta-
tionary regime in y-axis. Quantitatively, for (S, Peb) = (10, 1), xf acceleration (ãf )
becomes positive in the time interval 0.545 ≤ τ ≤ 2.117 and, for (S, Peb) = (1, 10),
ãf becomes positive in the time interval 0.414 ≤ τ ≤ 1.769.
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Accordingly, these results underline the influence of the fuel ejection momentum,
measured by Peb. Increasing Peb, the acceleration period starts earlier and is shorter,
but its magnitude is higher.

6.1.1 Asymptotic analysis

The region where the streamlines coming out of the burner are located is very narrow
and is around the x-axis. This feature justifies the application of the boundary layer
approximation. Imposing the latter condition and using results from Section 4.2, the
solution for the mixture fraction Z is

Z = xf

x̃
exp

[
−
(
ỹ
√
Pe(1)

c /2
)2
]

(6.3)

The flame length (x̃f ) depends on the problem parameters, namely x̃f =
x̃f (S, Peb, P e

(1)
c ), then the asymptotic problem shows only the behavior of the solu-

tion.

Imposing Z(x̃, ỹ) = 1, the flame position in the first (positive) and fourth (negative)
quadrant is evidenced

ỹ = ±
[

2
Pe(1)

c

ln
(
x̃f

x̃

)]1/2

(6.4)

Figure 6.6 shows a comparison between the asymptotic and the numerical solutions
for the cases (S, Peb) = (10, 1), (1, 10), for which the fuel flux is SPeb = 10, and for
(S, Peb) = (10, 0.1), (1, 1), for which SPeb = 1. To promote a compact comparative
analysis, the x-coordinate is normalized by the flames length, respectively given by
x̃f = 13.286, 22.081, 2.942, 1.634. The asymptotic solution may fail for two reasons:
the evolution of the flame depends on fuel ejection and on the diffusive transport in
x-direction.

For the case (S, Peb) = (10, 1), due to the high fuel concentration, the molecular
transport is predominant and, as the fuel flow is relatively large, the flame is es-
tablished away from the burner, making the diffusion in y-direction preponderant.
In this case, the asymptotic solution quickly tends to the numerical solution, right
after the region where the diffusion in x-direction is of the same magnitude order as
the diffusion in y-direction (cylindrical symmetry region).
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Figure 6.6 - Comparison of the asymptotic solution with numerical results
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(S, Peb) = (10, 1), (1, 10), (10, 0.1), (1, 1). For the sake of comparison, the results are
normalized.

For (S, Peb) = (1, 10), the influence of fuel ejection is significant and, as S = 1,
the flame is established at the interface between the impinging flows and the fuel
ejection flow. Thus, the numerical solution only tends to the asymptotic solution for
x̃ ≫ 1, since, in this region, the impinging flows are dominant.

For the cases (S, Peb) = (10, 0.1) and (S, Peb) = (1, 1), because of the low fuel flow,
the flame is established in the burner proximity, where the two avoided transport
mechanisms are of the same order of the other transport mechanisms. However, the
case (S, Peb) = (1, 1) is the most critical, because the flame is even deeper into the
region where the fuel ejection effects are not negligible.
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6.2 Flame characteristics

Figure 6.7 - Diffusion flame with continuous proprieties change
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Diffusion flame continuos change from counterflow diffusion flame (Tsuji flame) in the
vertical symmetric axis (x = 0) to coflow diffusion flame (Burke-Schumann flame) in the
proximity of the tangency point (xT ). It corresponds to the base case (S, Peb, P ec) =
(17, 1, 1) and, for the sake of comparison, the results are normalized by its maximum
values (umax ≈ xf = 37.779).

The innovative configuration proposed in this work offers the opportunity to observe
continuously the behavior of diffusion flames in a complete spectrum of conditions,
from counterflow diffusion flame (Tsuji flame) in the vertical symmetric axis (x = 0)
to coflow diffusion flame (Burke-Schumann flame) from the tangency point (xT ) up
to the flame tip - refer to Subsection 4.2.2 - as highlighted by Figure 6.7. In this figure
it is possible to observe that at the point x = 0 (on the axis of vertical symmetry),
the normal velocity in the flame is present and the tangential velocity, is absent,
characterizing a Tsuji (counterflow) flame. As one progresses forward in x-direction,
the intensity of the normal component decreases and the tangential component
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increases. The normal velocity is almost zero around the point of tangency (exactly
zero at this point), characterizing the beginning of the Burke-Schumann (coflow)
flame. As it continues to advance in x-direction, the normal component remains
continuously advancing, until it reaches its apex at the top of the flame, while the
tangential component always grows (proportionally to x), until very close to the
flame top, when it decreases to zero abruptly on the axis of horizontal symmetry
(y = 0). A parallel with the Subsection 4.2.3 can help to clarify this.

6.3 Flame properties estimation

To examine some characteristics of the flame, the case (S, Peb, P ec) = (17, 1, 1)
(Figure 6.8) is chosen to represent the problem generically and should act as a
reference for the discussion that ensues. The flame established near to the burner
consumes a significant portion of fuel and generates a reasonable amount of products,
which influence the concentration of oxidant in the flame region downstream. The
flame can be divided into two parts and the property used to distinguish one from
another is the position where a streamline is tangent to the flame, in the Figure 6.8
this point is located at (x, y)T = (22.81, 1.01). Note the large penetration of the flame
in the oxidant stream occasioned by diffusion, because of the high concentration
(S = 17).

Between the burner and the point of tangency, the streamlines cross the flame from
outside to inside. It is an indication of oxidant transport from the ambient at-
mosphere to the flame by the convective process. However, between the point of
tangency and the tip of the flame, the streamlines cross the flame from inside to
outside. In this part of the flame, the convective process takes fuel to the flame. The
convective transport is the responsible to create small length scale for the diffusive
transport to be high enough to sustain the flame even with very low concentration
of fuel. Furthermore, the convective transport between the burner and the point
of tangency carries the heat generated by the flame in this region towards the top
of the flame, which generates a vast hot zone, in agreement with Figure 6.9. The
presence of a high temperature zone prevents heat loss in one direction, acting as an
important flame stabilizer, avoiding its extinction by heat loss. On the other hand,
it favors the formation of soot which must be investigated with a proper model.

It is emphasized that the point of tangency can be considered a transition demarcator
between the diffusion flame in counterflow regime (part of the convective transport
of oxidant is perpendicular to the flame surface) and diffusion flame in coflow regime
(convective transport of oxidant is parallel to the flame surface).
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Figure 6.8 - Flow field and flame shape
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Flame established in the original configuration suggested. Case (S, Peb, P ec) = (17, 1, 1)
is taken as a generic representation. The dotted line is the flame position and the thinner
and more dense streamlines are the fuel flow.
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Figure 6.9 - Temperature distribution (T )
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A large hot region is formed between the point of tangency and the top of the flame caused
by the heat transport from the region between the burner and the point of tangency. Case
(S, Peb, P ec) = (17, 1, 1) is taken as a generic representation. The location of the flame is
indicated in red (dotted line).

6.3.1 Flame sensitivity

Regardless of N value, the the characteristic width in y-direction (see Section 4.1)
is always of order of L̃y ∼ 1 (Ly ∼ Pe−1/2

c ), that is corroborated by Figures 6.10
and 6.11. Then the flame is established in a flow field practically parallel, accord-
ing to (u, v) = (x,O(Pe−1/2

c )). Consequently, the width of the flame (yf ∼ Ly) is
conditioned only by the impinging flows, evidenced through the dependency on Pec.

Similarly for flame width (yf ), but around the point of stagnation, the appropriate
scale is in the order of yst + Pe−1/2

c . Figure 6.12 displays both the original and the
rescaled quantities.
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Figure 6.10 - Flame width (yf ∼ Ly) - varying Pec
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Flame width (yf ∼ Ly) for the cases Pec = 0.5, Pec = 5 and Pec = 50, is taken as yT , in
which this parameter denotes the width of the flame at the point of tangency, i.e., at the
point (x, y) = (xT , yT ) where the influence of the burner is irrelevant. Peb ∈ [0.1, 50] and
S = 17.

Depending on the flow conditions imposed by the burner geometry or fuel ejection,
the shape of the flame changes in burner surroundings, including the flame width
(yf ). Ergo, even ejecting the same fuel mass (SPeb), a considerably different length
(xf ) can be obtained, as function of S and Peb, although the asymptotic behavior
(far from the burner) to be the same.
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Figure 6.11 - Flame width (yf ∼ Ly) - varying Peb
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Flame width (yf ∼ Ly) for the cases Peb = 0.1, Peb = 1 and Peb = 10, is taken as yT , in
which this parameter denotes the width of the flame at the point of tangency, i.e., at the
point (x, y) = (xT , yT ) where the influence of the burner is irrelevant. Pec ∈ [0.1, 100] and
S = 17.

The numerical results indicate that N = S is a demarcator between the flame
highly influenced by the conditions near the burner (N ≤ S) and the flame weakly
influenced by them (N > S). This behavior can be clearly seen in Figures 6.13 and
6.14, whose results will be extensively discussed ahead. In order to help the data
interpretation, Figures 6.13 and 6.14 gather findings of two analyses. The first one
shows the dependence of the flame length (xf ) with S. In addition, the second one
exhibits the dependence of the flame length (xf ) on the parameters S, Peb and Pec,
grouped in N . In these figures, the dependence of xf with S and N is clarified by re-
scaling xf with these two parameters. For this reason, there are two curve patterns
in each graph.
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Figure 6.12 - Flame width (yf )
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For the cases Pec = 0.5, Pec = 5 and Pec = 50, with Peb ∈ [0.1, 50] and S = 17.
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6.3.2 For Nmin ≤ N ≤ S

As seen in the numerical results, the flame length Lx is not rescaled with N for the
conditions that lead to N ≤ S, i.e., the flow field with high strain rate or very little
fuel ejection. In such conditions, the flame follows the burner shape and, because of
that, the burner influence is strong. This fact justifies η < 1 in the diffusive transport
of Equation (4.4).

Considering L̃y ∼ 1, the flame length is rescaled by N/η and, accordingly, the flame
length is rescaled by S - as illustrated by Figures 6.13 and 6.14 - demonstrating that
it depends only on the fuel concentration at the burner surface, i.e., the flame under
these conditions is governed predominantly by diffusion. Furthermore the value of η
is determined as πPeb/(2Pe1/2

c ) based on the numerical results.

6.3.3 For N > S

In the cases that lead to the flow field with low strain rate or high fuel ejection
(N > S), the flame is located far from the burner and, thereby, the burner influence
is minimal, which justifies η = 1.

As confirmed by Figures 6.13 and 6.14, the flame length (xf ) is rescaled very well
with N .

Therefore, the flame dependency - in the flow parameters (Peb and Pec) and in
the chemical parameter (S) - already suggested in the physical analysis of order of
magnitude is ratified is this Section.
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Figure 6.13 - Flame length influence demarcator - varying S
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The length of the flame for the same cases, S = 1, S = 7 and S = 17, is normalized by S
(gray) and N (black). In both situations, Peb ∈ [0.1, 50] and Pec = 5.
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Figure 6.14 - Flame length influence demarcator - varying Pec
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The length of the flame (xf ) for the same cases, Pec = 0.5, Pec = 5 and Pec = 50, is
normalized by S (gray) and N (black). In both situations, Peb ∈ [0.1, 50] and S = 17.
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7 CONCLUSION

Employing a horizontal, cylindrical burner inside a very low strained flow, the estab-
lished diffusion flame presents a continuous change from transient, circular behavior
to stationary, two-dimensional behavior. In the stationary state, two local counter-
flows in y-axis are found and the flames established there are of Tsuji type, a system
of double Tsuji flame. In the early stage of displacement, the diffusion flame is con-
trolled by diffusion and fuel ejection, then the flame geometry is circular and tran-
sient. After the flame crosses the surface determined by the radius (Peb/Pe

(1)
c )1/2,

where the vertical velocity (v) is zero, the flame displacement in y-direction becomes
slow down and the flame starts distorting mainly in the x-direction, influenced by
the impinging flows. When the flame is very close to the region of domain controlled
by the impinging flows, the distortion velocity in the x-direction increases, the flame
accelerates due to the restriction of the fuel flow. The period to reach the stationary
regime depends on stoichiometric parameter (S) and burner Péclet number (Peb).
For large S, the diffusion transport takes fuel deep into the region controlled by
the impinging flows. In the other hand, for large Peb, the diffusion transport is not
able to take fuel further from the interface between the region under the influence
of the fuel ejection and that one under the influence of the impinging flows. The
asymptotic solution emphasizes the relevant transport mechanisms for the flame in
different (S, Peb) conditions and permits to know analytically relevant properties
like, for example, stagnation points, strain rate, approximate solutions, normal and
tangential flame velocities, gradients, scalar dissipation coefficient, among others.

The contribution of this master’s thesis is to provide an innovative configuration,
in which a diffusion flame spatially changes continuously, from counterflow (Tsuji)
flame to parallel flow (Burke-Schumann) flame. In addition, its change is also in
time and, during the evolution, the flame is accelerated. There are two regions in
the flame, delimited by the point of tangency between the streamlines and the flame.
One of them is the region between the burner and that point where the convective
transport favors the oxidant flux to the flame. The other one is the region where the
convective transport supports the fuel flux to the flame. Specifically, even with low
fuel concentration, the convective transport generates an appropriated spatial scale
close to the flame where the molecular transport of fuel sustains the stoichiometric
burning. It is worth noting that the convective heat transfer creates a large hot
zone in the second region, which stabilizes the flame. The width of the flame (where
there is no more burner influence), yf ∼ Ly, is proportional to the thickness of the
molecular transport layer, i.e. yf ∝ Pe−1/2

c . The condition N = S was established as
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the transition demarcator of flame length (xf ) behavior. For N ≤ S, the flame length
is directly proportional to the stoichiometric parameter (xf ∝ S). For N > S, the
flame length is proportional to the stoichiometric parameter (xf ∝ S) and the flow
parameter based on the burner conditions (xf ∝ Peb) and inversely proportional to
the square root of the flow parameter based on the conditions imposed by impinging
flows (xf ∝ Pe−1/2

c ), which is described grouped in proportionality to the parameter
N = πSPeb/(2Pe−1/2

c ), namely xf ∝ N .

7.1 Suggestions for future work

The first suggestion is to determine the flow field by solving the Navier-Stokes equa-
tions.

As widely discussed, the proposed model ignores the interaction between the flame
and the flow field, i.e., between the temperature field and the velocity field. It is
recommended for subsequent work to add this effect by implementing a method that
takes into account compressibility at low Mach number (thermal compressibility).

It is also suggested the elaboration of a model that considers heat loss by radiation.

In addition, it is recommended to include chemical kinetics in order to study triple
flame problems (when a part of the flame is extinguished and then a premixed flame
is established interacting with the diffusive flame, with rich and lean areas) and the
formation of soot due to the vast hot zone observed.

In conclusion, the flame tip should be studied in detail.
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APPENDIX A - POTENTIAL FLOW

In this appendix the potential flow field is deducted.

The cylindrical burner in the middle of impinging flows, ejecting fuel, is represented
by the superposition of a linear source, quadrupoles and impinging flows. The com-
plex function that describes those flows is w = Pec(z2 + z−2)/2 +Peb ln z, in which:

Peb := t̂c3

t̂c1

= R̂2/α̂

R̂/Û
= ÛR̂

α̂
= Û

α̂/R̂
(A.1)

Pec := t̂c3

t̂c2

= R̂2/α̂

1/α̂
= âR̂2

α̂
= âR̂

α̂/R̂
(A.2)

with â being the strain rate, Û , the fuel ejection speed, t̂c3 , the diffusion time, t̂c1 ,
the fuel residence time, t̂c2 , the counter-flow time, R̂, the radius of the burner and
α̂, the thermal diffusivity. The Péclet number Peb is based on the burner conditions
and the Péclet number Pec, on the flow field around the burner.

Therefore, the velocity potential and the streamline function for the combination of
three velocity field are defined as

w = Pe∗
c

(
r2ei2θ + r−2e−i2θ

)
+ Peb ln

(
reiθ

)

with Pe∗
c := Pec/2.

w = Pe∗
c

[
r2(cos2θ + isin2θ) + r−2(cos2θ − isin2θ)

]
+ Peb (ln r + iθ)

The velocity potential is the real part of w,

ϕ =Pe∗
c(r2 + r−2)cos2θ + Peb ln r

=Pe∗
c(r2 + r−2)(cos2θ − sin2θ) + Peb ln r
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The streamline function is the imaginary part of w,

ψ =Pe∗
c(r2 − r−2)sin2θ + Pebθ

=2Pe∗
c(r2 − r−2)sinθ cosθ + Pebθ

The components of the velocity in polar coordiante are

ur =∂ϕ
∂r

= ∂

∂r

[
Pe∗

c(r2 + r−2)(cos2θ − sin2θ) + Peb ln r
]

=Pe∗
c(2r − 2r−3)(cos2θ − sin2θ) + Peb

r

=2Pe∗
c(r − r−3)(cos2θ − sin2θ) + Peb

r

uθ =1
r

∂ϕ

∂θ
= 1
r

∂

∂θ

[
Pe∗

c(r2 + r−2)(cos2θ − sin2θ) + Peb ln r
]

=Pe
∗
c

r
(r2 + r−2)(−2cosθsinθ − 2sinθcosθ)

= − 4Pe∗
c(r + r−3)cosθ sinθ

Also, the velocity components can be determined from the streamline function,

ur =1
r

∂ψ

∂θ
= 1
r

∂

∂θ

[
2Pe∗

c(r2 − r−2)sinθ cosθ + Pebθ
]

=1
r

[
2Pe∗

c(r2 − r−2)(cos2θ − sin2θ) + Peb

]
=2Pe∗

c(r − r−3)(cos2θ − sin2θ) + Peb

r

uθ = − ∂ϕ

∂r
= − ∂

∂r

[
2Pe∗

c(r2 − r−2)sinθ cosθ + Pebθ
]

= − 2Pe∗
c(2r + 2r−3)sinθ cosθ

= − 4Pe∗
c(r + r−3)cosθ sinθ

The components of the velocity in x and y directions are

u =urcosθ − uθcos(π/2 − θ) = urcosθ − uθsinθ

v =ursinθ + uθsin(π/2 − θ) = ursinθ + uθcosθ
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u =urcosθ − uθsinθ

=
[
2Pe∗

c(r − r−3)(cos2θ − sin2θ) + Peb

r

]
cosθ−[

−4Pe∗
c(r + r−3)cosθ sinθ

]
sinϑ

=2Pe∗
c(r − r−3)(cos3θ − sin2θcosθ) + Pebcosθ

r
+

4Pe∗
c(r + r−3)sin2θ cosθ

=2Pe∗
c(r − r−3)cos3θ + Pebcosθ

r
+

2Pe∗
c [2(r + r−3) − (r − r−3)]sin2θ cosθ

=2Pe∗
c(r − r−3)cos3θ + Pebcosθ

r
+ 2Pe∗

c(r + 3r−3)sin2θ cosθ

=2Pe∗
cr(cos2θ + sin2θ)cosθ + 2Pe∗

cr
−3(−cos2θ + 3sin2θ)cosθ + Pebcosθ

r

=2Pe∗
crcosθ − 2Pe∗

cr
−3(cos2θ − 3sin2θ)cosθ + Pebcosθ

r

=2Pe∗
cx− 2Pe∗

c

(x2 + y2)3/2

(
x2

x2 + y2 − 3y2

x2 + y2

)
x√

x2 + y2 + Pebx

x2 + y2

=2Pe∗
cx− 2Pe∗

c

(
x2 − 3y2

x2 + y2

)
x

(x2 + y2)2 + Pebx

x2 + y2

=2Pe∗
cx− 2Pe∗

c

x(x2 − 3y2)
(x2 + y2)3 + Pebx

x2 + y2

By definition, Pe∗
c = Pec/2

u = Pec

[
x− x(x2 − 3y2)

(x2 + y2)3

]
+ Peb

x

x2 + y2
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v =ursinθ + uθcosθ

=
[
2Pe∗

c(r − r−3)(cos2θ − sin2θ) + Peb

r

]
sinθ+[

−4Pe∗
c(r + r−3)cosθ sinθ

]
cosϑ

=2Pe∗
c(r − r−3)(cos2θsinθ − sin3θ) + Pebsinθ

r
−

4Pe∗
c(r + r−3)cos2θ sinθ

= − 2Pe∗
c(r − r−3)sin3θ + Pebsinθ

r
+

2Pe∗
c [−2(r + r−3) + (r − r−3)]cos2θ sinθ

= − 2Pe∗
c(r − r−3)sin3θ + Pebsinθ

r
− 2Pe∗

c(r + 3r−3)cos2θsinθ

= − 2Pe∗
cr(sin2θ + cos2θ)sinθ + 2Pe∗

cr
−3(sin2θ − 3cos2θ)sinθ + Pebsinθ

r

= − 2Pe∗
crsinθ + 2Pe∗

cr
−3(sin2θ − 3cos2θ)sinθ + Pebsinθ

r

= − 2Pe∗
cy + 2Pe∗

c

(x2 + y2)3/2
y2 − 3x2

(x2 + y2)
y

(x2 + y2)1/2 + Peby

(x2 + y2)

= − 2Pe∗
cy − 2Pe∗

c

3x2 − y2

(x2 + y2)3/2
y

(x2 + y2)3/2 + Peby

(x2 + y2)

= − 2Pe∗
cy − 2Pe∗

c

y(3x2 − y2)
(x2 + y2)3 + Peby

(x2 + y2)

v = Pec

[
−y − y(3x2 − y2)

(x2 + y2)3

]
+ Peb

y

(x2 + y2)

u = Pecx− Pecx(x2 − 3y2)
(x2 + y2)3 + Pebx

x2 + y2 (A.3)

v = − Pecy − Pecy(3x2 − y2)
(x2 + y2)3 + Peby

x2 + y2 (A.4)

in which the flow field is given by the superposition of a potential counterflow (⃗̂v =
â⃗̂r, in which a is the strain rate), quadrupoles and a line source (⃗̂v = ubR⃗̂r/|⃗̂r|2,
in which ûb is the velocity of the fluid leaving the burner and R̂ is its radius)
representing the cylinder, i.e.,
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û = âx̂− âR̂4x̂(x̂2 − 3ŷ2)
(x̂2 + ŷ2)3 + ûbR̂x̂

x̂2 + ŷ2 (A.5)

v̂ = − âŷ − âR̂4ŷ(3x̂2 − ŷ2)
(x̂2 + ŷ2)3 + ûbR̂ŷ

x̂2 + ŷ2 (A.6)
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APPENDIX B - DETAILED FORMULATION

In this appendix the formulation is detailed.

B.1 Dimensionless Equations

The hat variables indicates the dimensional form of them or, in case of inherent
dimensionaless variables, it indicates non-normalized form, like for mass fraction of
the species.

The fundamental equations are:

∂t̂ρ̂+ ∇̂ · ρ̂v̂ = 0 (B.1.1)

∂t̂ρ̂v̂ + ∇̂ · ρ̂v̂v̂ = −∇̂P̂ + ∇̂ · Γ̂ +
∑

k

ρ̂f̂k (B.1.2)

∂t̂ρ̂Ŷn + ∇̂ · ρ̂v̂Ŷn = ∇̂ · ρ̂D̂n∇̂Ŷn − ŝnρ̂ω̂ (B.1.3)

∂t̂ρ̂ĥ+ ∇̂ · ρ̂v̂ĥ = ∂t̂P̂ + v̂ · ∇̂P̂ + ∇̂v̂ : Γ̂ + ∇̂ · Q̂T + Q̂ρ̂ω̂ (B.1.4)

in which
Q̂T := k̂∇̂T̂ +

∑
n

ρ̂D̂n∇̂Ŷnĥn

Considering the dimensionless independent variables:

t = t̂

t̂c
, xi = x̂i

l̂c
,

In which t is time and xi is the ith spatial coordinate and he subscript "c" indicates
characteristics scales.

In addition, considering the dimensionless dependent variables:

ρ = ρ̂

ρ̂c

, Yn = Ŷn

Ŷnc

, T = T̂

T̂c

, P = P̂

P̂c

, v = v̂
v̂c

, h = ĥ

ĥc
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In which ρ is density, Yn, specie n mass fraction, T , temperature, P , pressure, v,
velocity, h, enthalpy.

And, even, considering the dimensionless parameters:

Dn = D̂n

D̂nc

, µ = µ̂

µ̂c

, α = α̂

α̂c

, k = k̂

k̂c

In which Dn is mass diffusivity, µ, viscosity, α, thermal diffusivity and k is thermal
conductivity.

Thus the relations between dimensional and dimensionless operators are:

∂t̂ = ∂

∂t̂
= ∂

∂t

∂t

∂t̂
= 1
t̂c

∂

∂t
= 1
t̂c
∂t

∇̂ = ∂

∂x̂i

ei = ∂

∂xi

∂xi

∂x̂i

ei = 1
l̂c

∂

∂xi

ei = 1
l̂c

∇

Γ̂ = µ̂∇̂v̂ = µ̂
∂v̂j

∂x̂i

eiej = µ̂c
µ̂

µ̂c

∂

∂xi

∂xi

∂x̂i

(v̂cvj)eiej = µ̂cv̂c

l̂c
µ
∂vj

∂xi

eiej = µ̂cv̂c

l̂c
µ∇v = µ̂cv̂c

l̂c
Γ

Using these definitions and their consequences in the dimensional equations:

For the mass balance equation (Equation B.1.1):

ρ̂c

t̂c
∂tρ+ ρ̂cv̂c

l̂c
∇ · ρv = 0

=⇒ l̂c/v̂c

t̂c
∂tρ+ ∇ · ρv = 0

The Strouhal number is the residence and characteristic times ratio, defined by
St := (l̂c/v̂c)/t̂c = t̂res/t̂c, then:

St∂tρ+ ∇ · ρv = 0 (B.1.5)

For the momentum balance equation (Equation B.1.2):

ρ̂cv̂c

t̂c
∂tρv + ρ̂cv̂

2
c

l̂c
∇ · ρvv = − P̂c

l̂c
∇P + µ̂cv̂c

l̂2c
∇ · Γ + ρ̂c

∑
k

ρf̂k
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=⇒ l̂c/v̂c

t̂c
∂tρv + ∇ · ρvv = − P̂c

ρ̂cv̂2
c

∇P + µ̂c/ρ̂c

l̂cv̂c

∇ · Γ + l̂cρ̂c

ρ̂cv̂2
c

∑
k

ρf̂k

Considering the constitutive equation (P̂c = ρ̂cr̂0T̂c) and, since the Mach number
Ma := v̂c/

√
γr̂0T̂c, note that: P̂c/(ρ̂cv̂

2
c ) = ρ̂cr̂0T̂c/(ρ̂cv̂

2
c ) = γr̂0T̂c/(γv̂2

c ) = 1/(γM2),
in which r̂0 is the universal gas constant and γ is the ratio of specific heat of a gas at a
constant pressure to heat at a constant volume. Furthermore the Reynolds number,
the inertial and viscous forces ratio, is defined by Re := l̂cv̂c/(µ̂c/ρ̂c) = l̂cv̂c/ν̂c, in
which ν is kinematic viscosity (ν := µ/ρ). Then,

St∂tρv + ∇ · ρvv = − 1
γM2 ∇P + 1

Re
∇ · Γ +

∑
k

ρfk (B.1.6)

with fk = (l̂c/v̂2
c )f̂k.

For the mass balance equation of the chemical species (Equation B.1.3):

ρ̂cŶnc

t̂c
∂tρYn + ρ̂cv̂cŶnc

l̂c
∇ · ρvYn = ρ̂cD̂ncŶnc

l̂2c
∇ · ρDn∇Yn − l̂cρ̂c

ρ̂cv̂cŶnc

ŝnρω̂

=⇒ l̂c/v̂c

T̂c

∂tρYn + ∇ · ρvYn = α̂c

α̂c

D̂nc

l̂cv̂c

∇ · ρDn∇Yn − ŶFc

Ŷnc

ŝnρω̂
l̂c

v̂cŶFc

Peclet number and the Lewis number are defined by Pe := l̂cv̂c/α̂c and Len :=
α̂c/D̂nc , respectively, thus:

St∂tρYn + ∇ · ρvYn = 1
PeLen

∇ · ρDn∇Yn − snρω (B.1.7)

with sn := (ŶFc/Ŷnc)ŝn and

ω := l̂c

v̂cŶFc

ω̂ = l̂cBŶFcŶOc

v̂cŶFc

YFYOe
−β/T = l̂cBŶOc

v̂c

YFYOe
−β/T = DaYFYOe

−β/T

In which B is a pre-exponential factor. Ergo,

ω := DaYFYOe
−β/T
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with Da being Damköhler number:

Da := (l̂cBYOc)/v̂c

For the thermal enthalpy balance equation (Equation B.1.4):

ρ̂cĥc

t̂c
∂tρh+ ρ̂cv̂cĥc

l̂c
∇ · ρvh = P̂c

t̂c
∂tP + v̂cP̂c

l̂c
v · ∇P + µ̂cv̂

2
c

l̂2c
∇v : Γ+

k̂cT̂c

l̂2c
∇ · k∇T + ρ̂c

l̂2c

∑
n

(D̂ncŶncĥc)∇ · ρDn∇Ynh+ ρ̂cQ̂ρω̂

=⇒ l̂c

ρ̂cv̂cĥc

ρ̂cĥc

t̂c
∂tρh+ l̂c

ρ̂cv̂cĥc

ρ̂cv̂cĥc

l̂c
∇ · ρvh = l̂c

ρ̂cv̂cĥc

P̂c

t̂c
∂tP + l̂c

ρ̂cv̂cĥc

v̂cP̂c

l̂c
v · ∇P

+ l̂c

ρ̂cv̂cĥc

µ̂cv̂
2
c

l̂2c
∇v : Γ + l̂c

ρ̂cv̂cĥc

k̂cT̂c

l̂2c
∇ · k∇T + l̂c

ρ̂cv̂cĥc

ρ̂c

l̂2c

∑
n

(D̂ncŶncĥc)∇ · ρDn∇Ynh

+ l̂c

ρ̂cv̂cĥc

Q̂ρω̂
ρ̂cŶFc

ŶFc

=⇒ l̂c/v̂c

t̂c
∂tρh+ ∇ · ρvh = l̂cP̂c

ρ̂cv̂cĥct̂c
∂tP + P̂c

ρ̂cĥc

v · ∇P + µ̂cv̂
2
c

ρ̂cv̂cĥcl̂c
∇v : Γ+

+ k̂cT̂c

l̂cρ̂cv̂cĥc

∇ · k∇T + 1
l̂cv̂cĥc

∑
n

(D̂ncŶncĥc)∇ · ρDn∇Ynh+ ŶFc

ĥc

Q̂ρω̂
l̂c

v̂cŶFc

Considering ĥc = ĉpT̂c, r̂0 = ĉp−ĉv, γ := ĉp/ĉv, in which cp is specific heat at constant
pressure and ĉv, specific heat at constant volume . Moreover, using the constitutive
equation for an ideal gas:

P̂c

ρ̂cĥc

= ρ̂cr̂0T̂c

ρ̂cĉpT̂c

= r̂0

ĉp

= ĉp − ĉv

ĉp

= 1 − ĉv

ĉp

= 1 − 1
γ

= γ − 1
γ

l̂cP̂c

ρ̂cv̂cĥct̂c
= P̂c

ρ̂cĥc

l̂c/v̂c

t̂c
= γ − 1

γ
St
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µ̂cv̂
2
c

ρ̂cv̂cĥcl̂c
= µ̂c

ρ̂cv̂cl̂c

v̂2
c

ĥc

= νc

v̂cl̂c

v̂2
c

ĉpT̂c

= 1
Re

v̂2
c

ĉpT̂c

γr̂0

γr̂0
= 1
Re

v̂2
c

γr̂0T̂c

γr̂0

ĉp

= 1
Re

M2γ
γ − 1
γ

= 1
Re

M2(γ−1)

k̂cT̂c

l̂cρ̂cv̂cĥc

= k̂cT̂c

l̂cρ̂cv̂cĉpT̂c

= k̂c

ρ̂cĉp

1
l̂cv̂c

= α̂c

l̂cv̂c

= 1
Pe

1
l̂cv̂cĥc

∑
n

(D̂ncŶncĥc) = α̂c

α̂c

1
l̂cv̂cĥc

∑
n

(D̂ncŶncĥc) = α̂c

l̂cv̂c

ĥc

ĥc

∑
n

D̂nc

α̂c

= 1
Pe

∑
n

1
Len

Thus

St∂tρh+ ∇ · ρvh = γ − 1
γ

St∂tP + γ − 1
γ

v · ∇P + 1
Re

(γ − 1)M2∇v : Γ

+ 1
Pe

∇ · k∇T + 1
Pe

∑
n

1
Len

∇ · ρDn∇Ynhn +Qρω
(B.1.8)

with Q := ŶFc

ĥc

Q̂ and ω already defined.
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B.2 Mixture Fraction (Z) and Excess Enthalpy (H)

In the possession of these results, the equations for the mixture fraction and the
excess enthalpy can be deduced.

It is worth to mention that the dependency of DF , DO, α on temperature is assumed
to be the same (DF = DO = α).

Considering only the one-step irreversible, infinitely fast reaction:

F + ŝO2 → (ŝ+ 1)P

In which ŝ is the mass stoichiometric coefficient.

The chemical reactants species are only fuel, F, and oxidant, O, and the dimension-
less mass balance equation of the chemical species are given by Equation (B.1.7):

St∂tρYF + ∇ · ρvYF = 1
PeLeF

∇ · ρα∇YF − sFρω

St∂tρYO + ∇ · ρvYO = 1
PeLeO

∇ · ρα∇YO − sOρω

But, sn := ŶFc

Ŷnc

ŝn, then

• For fuel: sF := ŶFc

ŶFc

= 1

• For oxidant: sO := ŶFc

YOc

ŝ

Defining sO := S,

St∂tρYF + ∇ · ρvYF = 1
PeLeF

∇ · ρα∇YF − ρω (B.2.1)

St∂tρYO + ∇ · ρvYO = 1
PeLeO

∇ · ρα∇YO − Sρω (B.2.2)
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Multiplying Equation (B.2.1) by S and Equation (B.2.2) by (−1):

St∂tρ(SYF ) + ∇ · ρv(SYF ) = 1
PeLeF

∇ · ρα∇(SYF ) − Sρω

St∂tρ(−YO) + ∇ · ρv(−YO) = 1
PeLeO

∇ · ρα∇(−YO) + Sρω

Adding the last two equations:

St∂tρ(SYF − YO) + ∇ · ρv(SYF − YO) = 1
Pe

∇ · ρα∇
[
SYF

LeF

− YO

LeO

]

Which is the same that, using Equation (B.1.5):

St∂tρ(SYF − YO + 1) + ∇ · ρv(SYF − YO + 1) = 1
Pe

∇ · ρα∇
[
SYF

LeF

− YO

LeO

]

Or,

St∂tρ(SYF − YO + 1) + ∇ · ρv(SYF − YO + 1) = 1
Pe

∇ · ρα∇
(
SYF

LeF

− YO

LeO

+ 1
)

The new variable, SYF − YO + 1, is set as the mixture fraction Z, that is Z :=
SYF − YO + 1. It is also defined the modified mixture fraction Z̃ := (SYF/LeF ) −
(YO/LeO) + 1.

St∂tρZ + ∇ · ρvZ = 1
Pe

∇ · ρα∇Z̃ (B.2.3)

In the particular case that LeF = LeO = 1, one has Z̃ = Z.
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The simplify dimensionless thermal enthalpy balance equation is given by Equa-
tion (B.1.8), disregarding the pressure and concentration contributions and by con-
sideration that k = k̂/k̂c = (α̂ĉpρ̂)/(α̂cĉpρ̂c) = ρα:

St∂tρh+ ∇ · ρvh = 1
Pe

∇ · ρα∇T +Qρω (B.2.4)

Multiplying Equation (B.2.4) by (S + 1)
Q

:

(S + 1)
Q

St∂tρh+ (S + 1)
Q

∇ · ρvh = (S + 1)
Q

1
Pe

∇ · ρα∇T + (S + 1)
Q

Qρω

Since h = ĥ/ĥc = (ĉpT̂ )/(ĉpT̂c) = T̂ /T̂c = T , then:

(S + 1)
Q

St∂tρT + (S + 1)
Q

∇ · ρvT = (S + 1)
Q

1
Pe

∇ · ρα∇T + (S + 1)ρω

Or,

St∂tρSHT + ∇ · ρvSHT = 1
Pe

∇ · ρα∇SHT + (S + 1)ρω (B.2.5)

in which
SH := S + 1

Q

Adding Equation (B.2.1) and Equation (B.2.2) to Equation (B.2.5):

St∂tρ (SHT + YF + YO)+∇·ρv (SHT + YF + YO) = 1
Pe

∇·ρα∇
[
SHT + YF

LeF

+ YO

LeO

]
(B.2.6)

The new variable, SHT + YF + YO, is set as the enthalpy excess H, that is

H := SHT + YF + YO

It also is set the modified enthalpy excess (H̃) as
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H̃ := SHT + YF

LeF

+ YO

LeO

From these definitions, Equation (B.2.6) becomes:

St∂tρH + ∇ · ρvH = 1
Pe

∇ · ρα∇H̃ (B.2.7)

In the particular case that LeF = LeO = 1, one has H̃ = H.

Therefore, the set of equations that describe the dynamics of diffusion flame is given
by Equation (B.1.5), Equation (B.1.6) Equation (B.2.3) and Equation (B.2.7):

St∂tρ+ ∇ · ρv = 0

St∂tρv + ∇ · ρvv = − 1
γM2 ∇P + 1

Re
∇ · Γ +

∑
k

ρfk

St∂tρZ + ∇ · ρvZ = 1
Pe

∇ · ρα∇Z̃

St∂tρH + ∇ · ρvH = 1
Pe

∇ · ρα∇H̃
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APPENDIX C - DETAILED FORMULATION OF TRANSITION
PROBLEM

In this appendix the transition from transient, one-dimensional regime to sta-
tionary, two-dimensional regime formulation is detailed.

Description when injection and counter-flow velocities have the same magnitude
order, for small Pec. It can be interpreted as the threshold between steady-state
2-D and transient 1-D states.

For small ε:

Pec = εPe(1)
c (C.1)

Considering velocity expression given by (3.4.3):

u = Pecx− Pecx(x2 − 3y2)
(x2 + y2)3 + Pebx

x2 + y2

v = − Pecy − Pecy(3x2 − y2)
(x2 + y2)3 + Peby

x2 + y2

The analysis studies the behavior of the flame far from the burner in which the
flow field imposed by the counterflow is of the same order of magnitude of flow
field imposed by the fuel injection. The condition of the counterflow is such that
Pec ≪ 1, i.e. Pec = εPe(1)

c , with ε ≪ 1 and Pe(1)
c = O(1). The region of the space

determined by x2 + y2 = 1/ε is chosen. Then the proper variables to analyze the
proposed problem are x̃ =

√
εx and ỹ =

√
εy and the flow field is described by

u = εPe(1)
c x̃/

√
ε− εPe(1)

c x̃(x̃2 − 3ỹ2)/ε3/2

(x̃2 + ỹ2)3/ε3 + Pebx̃/
√
ε

(x̃2 + ỹ2)/ε

v = − εPe(1)
c ỹ/

√
ε− εPe(1)

c ỹ(3x̃2 − ỹ2)/ε3/2

(x̃2 + ỹ2)3/ε3 + Peby/
√
ε

(x̃2 + ỹ2)/ε

Or,
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u =
√
εPe(1)

c x̃− ε5/2Pe(1)
c x̃(x̃2 − 3ỹ2)

(x̃2 + ỹ2)3 + Peb

√
εx̃

x̃2 + ỹ2

v = −
√
εPe(1)

c ỹ − ε5/2Pe(1)
c ỹ(3x̃2 − ỹ2)

(x̃2 + ỹ2)3 + Peb

√
εy

x̃2 + ỹ2

In addition, the condition Peb = O(1) must be satisfied, in order to achieve the same
magnitude order for the flow imposed by the counter-flow and the flow imposed by
the fuel ejection.

u =
√
εPe(1)

c x̃− ε5/2Pe(1)
c x̃(x̃2 − 3ỹ2)

(x̃2 + ỹ2)3 + Peb

√
εx̃

x̃2 + ỹ2

v = −
√
εPe(1)

c ỹ − ε5/2Pe(1)
c ỹ(3x̃2 − ỹ2)

(x̃2 + ỹ2)3 + Peb

√
εy

x̃2 + ỹ2

Defining ũ := u/
√
ε and ṽ := v/

√
ε:

ũ = Pe(1)
c x̃− ε2Pe(1)

c x̃(x̃2 − 3ỹ2)
(x̃2 + ỹ2)3 + Pebx̃

x̃2 + ỹ2

ṽ = − Pe(1)
c ỹ − ε2Pe(1)

c ỹ(3x̃2 − ỹ2)
(x̃2 + ỹ2)3 + Peby

x̃2 + ỹ2

The second terms are two order smaller than the others and shall be neglected:

ũ = Pe(1)
c x̃+ Pebx̃

x̃2 + ỹ2 +O(ε2)

ṽ = − Pe(1)
c ỹ + Pebỹ

x̃2 + ỹ2 +O(ε2)

The Z equation is described by

u
∂Z

∂x
+ v

∂Z

∂y
=
(
∂2Z

∂x2 + ∂2Z

∂y2

)
(C.2)

Which rewrite in the new coordinate system, is:

82



√
εũ
∂x̃

∂x

∂Z

∂x̃
+

√
εṽ
∂ỹ

∂y

∂Z

∂ỹ
=

(∂x̃
∂x

)2
∂2Z

∂x̃2 +
(
∂ỹ

∂y

)2
∂2Z

∂ỹ2

 (C.3)

Since
∂x̃

∂x
=

√
ε , ∂ỹ

∂y
=

√
ε,

then,
√
εũ

√
ε
∂Z

∂x̃
+

√
εṽ

√
ε
∂Z

∂ỹ
=
[(√

ε
)2 ∂2Z

∂x̃2 +
(√

ε
)2 ∂2Z

∂ỹ2

]

=⇒ εũ
∂Z

∂x̃
+ εṽ

∂Z

∂ỹ
= ε

(
∂2Z

∂x̃2 + ∂2Z

∂ỹ2

)
(C.4)

Dividing by ε:

ũ
∂Z

∂x̃
+ ṽ

∂Z

∂ỹ
=
(
∂2Z

∂x̃2 + ∂2Z

∂ỹ2

)
(C.5)

A further change of coordinates system shall take place, this time for polar coordi-
nates:

x̃ = r cos θ (C.6)

ỹ = r sin θ (C.7)

Which implies:

r =
√
x̃2 + ỹ2 and θ = arctan(ỹ/x̃)

Thus,

∂r

∂x̃
= x̃√

x̃2 + ỹ2 = r cos θ
r

= cos θ (C.8)

∂r

∂ỹ
= ỹ√

x̃2 + ỹ2 = r sin θ
r

= sin θ (C.9)
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Derivating Equation (C.6) in relation to x̃:

∂x̃

∂x̃
= ∂

∂x̃
(r cos θ)

=⇒ 1 = cos θ ∂r
∂x̃

+ r
∂

∂x̃
(cos θ)

=⇒ 1 = (cos θ)∂r
∂x̃

− r(sin θ)∂θ
∂x̃

Using Equation (C.8):

1 = cos2 θ − r(sin θ)∂θ
∂x̃

=⇒ ∂θ

∂x̃
= cos2 θ − 1

r sin θ

=⇒ ∂θ

∂x̃
= − sin2 θ

r sin θ

Or, finally:

∂θ

∂x̃
= −sin θ

r
(C.10)

The procedure is the same for ỹ, derivating Equation (C.7) and using Equation
(C.9):

∂θ

∂ỹ
= cos θ

r
(C.11)

Now it is time to calculate the r and θ second derivatives:

The r-derivative in relation to x̃:

From Equation (C.8):
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∂2r

∂x̃2 = ∂

∂x̃
(cos θ) = − sin θ ∂θ

∂x̃

Using Equation (C.10):

∂2r

∂x̃2 = − sin θ (− sin θ)
r

Or,

∂2r

∂x̃2 = sin2 θ

r
(C.12)

Analogously for ỹ, using Equation (C.9) and Equation (C.11):

∂2r

∂x̃2 = cos2 θ

r
(C.13)

The θ-derivative in relation to x̃:

From Equation (C.10):

∂2θ

∂x̃2 = ∂θ

∂x̃

(
−sin θ

r

)

=⇒ ∂2θ

∂x̃2 = −

r cos θ ∂θ
∂x̃

− ∂r

∂x̃
sin θ

r2



Using Equation (C.8) and Equation (C.10):

=⇒ ∂2θ

∂x̃2 = −


r cos θ

(
−sin θ

r

)
− cos θ sin θ

r2



=⇒ ∂2θ

∂x̃2 = −
(

− cos θ sin θ − cos θ sin θ
r2

)
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=⇒ ∂2θ

∂x̃2 = −
(

−2 cos θ sin θ
r2

)

Or, finally:

∂2θ

∂x̃2 = 2 cos θ sin θ
r2 (C.14)

By adopting analogous reasoning for ỹ, from Equation (C.11) and using Equation
(C.9) and Equation (C.11), one deduces:

∂2θ

∂ỹ2 = −2 cos θ sin θ
r2 (C.15)

Z-equation in terms of the new polar variables is

For an arbitrary variable w:

For the first derivatives:

∂Z

∂w
= ∂Z

∂r

∂r

∂w
+ ∂Z

∂θ

∂θ

∂w
(C.16)

For the second derivatives:

∂2Z

∂w2 = ∂

∂w

(
∂Z

∂w

)

Using Equation (C.16):

∂2Z

∂w2 = ∂

∂w

(
∂Z

∂r

∂r

∂w
+ ∂Z

∂θ

∂θ

∂w

)

=⇒ ∂2Z

∂w2 = ∂r

∂w

(
∂

∂w

∂Z

∂r

)
+ ∂2r

∂w2
∂Z

∂r
+ ∂θ

∂w

(
∂

∂w

∂Z

∂θ

)
+ ∂2θ

∂w2
∂Z

∂θ

=⇒ ∂2Z

∂w2 = ∂r

∂w

(
∂

∂r

∂Z

∂w

)
+ ∂θ

∂w

(
∂

∂θ

∂Z

∂w

)
+ ∂2r

∂w2
∂Z

∂r
+ ∂2θ

∂w2
∂Z

∂θ
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Using Equation (C.16) again:

=⇒ ∂2Z

∂w2 = ∂r

∂w

[
∂

∂r

(
∂Z

∂r

∂r

∂w
+ ∂Z

∂θ

∂θ

∂w

)]
+

+ ∂θ

∂w

[
∂

∂θ

(
∂Z

∂r

∂r

∂w
+ ∂Z

∂θ

∂θ

∂w

)]
+ ∂2r

∂w2
∂Z

∂r
+ ∂2θ

∂w2
∂Z

∂θ

=⇒ ∂2Z

∂w2 =
(
∂r

∂w

)2
∂2Z

∂r2 +
(
∂r

∂w

∂θ

∂w

)
∂2Z

∂r∂θ
+

+
(
∂θ

∂w

∂r

∂w

)
∂2Z

∂θ∂r
+
(
∂θ

∂w

)2
∂2Z

∂θ2 + ∂2r

∂w2
∂Z

∂r
+ ∂2θ

∂w2
∂Z

∂θ

Finally:

∂2Z

∂w2 =
(
∂r

∂w

)2
∂2Z

∂r2 +
(
∂θ

∂w

)2
∂2Z

∂θ2 +2
(
∂r

∂w

∂θ

∂w

)
∂2Z

∂r∂θ
+ ∂2r

∂w2
∂Z

∂r
+ ∂2θ

∂w2
∂Z

∂θ
(C.17)

Since the deduction is for arbitrary w, from Equation (C.16) for the first derivatives
and Equation (C.17) for the second, it is possible to write:

∂Z

∂x̃
= ∂Z

∂r

∂r

∂x̃
+ ∂Z

∂θ

∂θ

∂x̃
(C.18)

∂Z

∂ỹ
= ∂Z

∂r

∂r

∂ỹ
+ ∂Z

∂θ

∂θ

∂ỹ
(C.19)

∂2Z

∂x̃2 =
(
∂r

∂x̃

)2
∂2Z

∂r2 +
(
∂θ

∂x̃

)2
∂2Z

∂θ2 + 2
(
∂r

∂x̃

∂θ

∂x̃

)
∂2Z

∂r∂θ
+ ∂2r

∂x̃2
∂Z

∂r
+ ∂2θ

∂x̃2
∂Z

∂θ
(C.20)
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∂2Z

∂ỹ2 =
(
∂r

∂ỹ

)2
∂2Z

∂r2 +
(
∂θ

∂ỹ

)2
∂2Z

∂θ2 + 2
(
∂r

∂ỹ

∂θ

∂ỹ

)
∂2Z

∂r∂θ
+ ∂2r

∂ỹ2
∂Z

∂r
+ ∂2θ

∂ỹ2
∂Z

∂θ
(C.21)

From Equation (C.18) and Equation (C.19), using Equation (C.8), Equation (C.10)
and Equation (C.9), Equation (C.11), respectively:

∂Z

∂x̃
= cos θ∂Z

∂r
− sin θ

r

∂Z

∂θ
(C.22)

∂Z

∂ỹ
= sin θ∂Z

∂r
+ cos θ

r

∂Z

∂θ
(C.23)

From Equation (C.20) and Equation (C.21), using Equation (C.8), Equation (C.10),
Equation (C.12), Equation (C.14) and Equation (C.9), Equation (C.11), Equation
(C.13), Equation (C.15), respectively:

∂2Z

∂x̃2 = (cos2 θ)∂
2Z

∂r2 +
(

sin2 θ

r2

)
∂2Z

∂θ2 −
(

2 sin θ cos θ
r

)
∂2Z

∂r∂θ
+

+
(

cos2 θ

r

)
∂Z

∂r
+
(

2 cos θ sin θ
r2

)
∂Z

∂θ
(C.24)

∂2Z

∂ỹ2 = (sin2 θ)∂
2Z

∂r2 +
(

cos2 θ

r2

)
∂2Z

∂θ2 +
(

2 sin θ cos θ
r

)
∂2Z

∂r∂θ
+

+
(

sin2 θ

r

)
∂Z

∂r
−
(

2 cos θ sin θ
r2

)
∂Z

∂θ
(C.25)

The velocity in polar terms is given by:

ũ = Pe(1)
c r cos θ + Peb cos θ

r
(C.26)

ṽ = − Pe(1)
c r sin θ + Peb sin θ

r

Multiplying Equation (C.22) by ũ:
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ũ
∂Z

∂x̃
= ũ

(
cos θ∂Z

∂r
− sin θ

r

∂Z

∂θ

)

=⇒ ũ
∂Z

∂x̃
=
(
Pe(1)

c r cos θ + Peb cos θ
r

)(
cos θ∂Z

∂r
− sin θ

r

∂Z

∂θ

)

=⇒ ũ
∂Z

∂x̃
=
(
Pe(1)

c r cos2 θ
) ∂Z
∂r

−
(
Pe(1)

c cos θ sin θ
) ∂Z
∂θ

+

+
(
Peb cos2 θ

r

)
∂Z

∂r
−
(
Peb cos θ sin θ

r2

)
∂Z

∂θ
(C.27)

Multiplying Equation (C.23) by ṽ:

ṽ
∂Z

∂ỹ
= ṽ

(
sin θ∂Z

∂r
+ cos θ

r

∂Z

∂θ

)

=⇒ ṽ
∂Z

∂ỹ
=
(

−Pe(1)
c r sin θ + Peb sin θ

r

)(
cos θ∂Z

∂r
− sin θ

r

∂Z

∂θ

)

=⇒ ṽ
∂Z

∂ỹ
= −

(
Pe(1)

c r sin2 θ
) ∂Z
∂r

−
(
Pe(1)

c cos θ sin θ
) ∂Z
∂θ

+

+
(
Peb sin2 θ

r

)
∂Z

∂r
+
(
Peb cos θ sin θ

r2

)
∂Z

∂θ
(C.28)

Adding Equation (C.28) and Equation (C.27):

ũ
∂Z

∂x̃
+ ṽ

∂Z

∂ỹ
=
[
Pe(1)

c r(cos2 θ − sin2 θ)
] ∂Z
∂r

− 2
(
Pe(1)

c cos θ sin θ
) ∂Z
∂θ

+ Peb

r

∂Z

∂r

Noting that cos2 θ − sin2 θ = cos (2θ) and 2 cos θ sin θ = sin (2θ):

ũ
∂Z

∂x̃
+ ṽ

∂Z

∂ỹ
= Pe(1)

c r cos (2θ)∂Z
∂r

− Pe(1)
c sin (2θ)∂Z

∂θ
+ Peb

r

∂Z

∂r
(C.29)
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Adding Equation (C.24) and Equation (C.25):

∂2Z

∂x̃2 + ∂2Z

∂ỹ2 = ∂2Z

∂r2 + 1
r2
∂2Z

∂θ2 + 1
r

∂Z

∂r
(C.30)

That is nothing more than the Laplacian in polar coordinates, as expected.

Finally, it is possible to rewrite the Z equation in polar coordinates, from
Equation(C.29) = 1/Pe Equation(C.30):

Pe(1)
c r cos (2θ)∂Z

∂r
−Pe(1)

c sin (2θ)∂Z
∂θ

+ Peb

r

∂Z

∂r
=
(
∂2Z

∂r2 + 1
r2
∂2Z

∂θ2 + 1
r

∂Z

∂r

)
(C.31)

Or,

Pe(1)
c r cos (2θ)∂Z

∂r
− Pe(1)

c sin (2θ)∂Z
∂θ

=
[
∂2Z

∂r2 + 1
r2
∂2Z

∂θ2 + (1 − Peb)
1
r

∂Z

∂r

]
(C.32)

Dividing by Pe(1)
c (Pe(1)

c ̸= 0):

r cos (2θ)∂Z
∂r

− sin (2θ)∂Z
∂θ

= 1
Pe

(1)
c

[
∂2Z

∂r2 + 1
r2
∂2Z

∂θ2 + (1 − Peb)
1
r

∂Z

∂r

]
(C.33)

Pe(1)
c

[
r cos (2θ)∂Z

∂r
− sin (2θ)∂Z

∂θ

]
+ Peb

r

∂Z

∂r
= 1
r

∂

∂r

(
r
∂Z

∂r

)
+ 1
r2
∂2Z

∂θ2 (C.34)

To search the transient period for each set of conditions (Pe(1)
c , P eb), the above

equation, Equation (C.28), is written in transient form,

∂Z

∂τ
+ Pe(1)

c

[
r cos (2θ)∂Z

∂r
− sin (2θ)∂Z

∂θ

]
+ Peb

r

∂Z

∂r
=

1
r

∂

∂r

(
r
∂Z

∂r

)
+ 1
r2
∂2Z

∂θ2 (C.35)
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in which τ = εt from Equation (C.4) and t = t̂/(R̂2/α̂), from the definition of t
given in Section (3.1).
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