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ABSTRACT

Morphological classification is a key piece of information to define samples of galax-
ies aiming to study the large-scale structure of the universe. In essence, the challenge
is to build up a robust methodology to perform a reliable morphological estimate
from galaxy images. Here, I investigate how to substantially improve the galaxy
classification within large datasets by mimicking human classification. I combine
accurate visual classifications from the Galaxy Zoo project with machine and deep
learning methodologies. I propose two distinct approaches for galaxy morphology:
one based on non-parametric morphology and traditional machine learning algo-
rithms; and another based on deep learning. To measure the input features for the
traditional machine learning methodology, I and my collaborators have developed
a system called CyMorph, with a novel non-parametric approach to study galaxy
morphology. The main datasets employed comes from the Sloan Digital Sky Survey
Data Release 7 (SDSS-DR7). I also discuss the class imbalance problem considering
three classes. Performance of each model is mainly measured by overall accuracy
(OA). A spectroscopic validation with astrophysical parameters is also provided for
Decision Tree models to assess the quality of our morphological classification. In
all of our samples, both Deep and Traditional Machine Learning approaches have
over 94.5% OA to classify galaxies in two classes (elliptical and spiral). I compare
our classification with state-of-the-art morphological classification from literature.
Considering only two classes separation, I achieve 99% OA in average when using
our deep learning models, and 82% when using three classes. I provide a catalog
with 670,560 galaxies containing our best results, including morphological metrics
and classification.

Keywords: Computational Astrophysics. Galaxy Morphology. Machine Learning.
Deep Learning.
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APRENDIZADO DE MÁQUINA TRADICIONAL E PROFUNDO
APLICADO A MORFOLOGIA DE GALÁXIAS

RESUMO

Classificação morfológica é peça chave de informação para definir amostras de galá-
xias com objetivo de estudar a estrutura do Universo em larga-escala. Em essência,
o desafio é construir uma metodologia robusta para produzir uma estimativa mor-
fológica confiável a partir de imagens de galáxias. Aqui, investigo como melhorar
substancialmente a classificação automática de galáxias em grandes conjuntos de da-
dos ao imitar a classificação fornecida por humanos. Combino classificações visuais
do projeto Galaxy Zoo com metodologias de aprendizado de máquina tradicional e
profundo. Proponho duas abordagens distintas para morfologias de galáxias: uma
baseada em morfologia não-paramétrica e algoritmos de aprendizado de máquina
tradicional; e outra baseada em aprendizado profundo. Para medir as caracterís-
ticas morfológicas de entrada para algoritmos de aprendizado de máquina tradi-
cional, desenvolvi com meus colaboradores um sistema chamado CyMorph, com
uma nova abordagem não-paramétrica para estudar morfologia de galáxias. O prin-
cipal conjunto de dados explorado provém do Sloan Digital Sky Survey Data Release
7 (SDSS-DR7). Também discuto o problema de desbalanceamento de classes con-
siderando o problema com três classes. A performance de cada modelo é medida
principalmente por acurácia global. A validação espectroscópica com parâmetros
astrofísicos também é fornecida para os modelos de Árvore de Decisão para avaliar
a qualidade de nossa classificação morfológica. Em todas as nossas amostras, tanto
com aprendizado de máquina profundo como tradicional, obtenho mais de 94.5% de
acurácia global para classificar galáxias em duas classes (elíptica e espiral). Comparo
minha classificação com classificações morfológicas do estado-da-arte da literatura.
Considerando apenas duas classes, atingi 99% de acurácia global e média usando
modelos de aprendizado profundo, e 82% usando três classes. Forneço uma catál-
ogo com 670.560 galáxias contendo nossos melhores resultados, incluindo métricas
morfológicas e classificações.

Palavras-chave: Astrofísica Computacional. Morfologia de Galáxias. Aprendizado de
Máquina. Aprendizado de Máquina Profundo.
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1 INTRODUCTION

1Astronomy has become extremely data-rich with the advancement of new technolo-
gies in recent decades. New observation instruments such as satellites and telescopes
provide massive datasets. Such datasets are not only voluminous but also complex,
since these data often have spatial and temporal components, and are collected at
different frequencies and resolutions (WAY et al., 2012; IVEZIĆ et al., 2014; FEIGEL-

SON; BABU, 2006; TAN et al., 2005). In observational astronomy, one of the main data
resources is photometric: each image corresponds to a field of view of specific area
in the sky, in a determined frequency-band (or multi-band), which admits noise and
can contain multiple (tens, hundreds or millions of) objects. Concurrently, hardware
and software technologies related to Machine and Deep Learning have been con-
stantly improving for handling and generating more value from such huge datasets
in different research and industry contexts (AL-JARRAH et al., 2015).

One of the key aspects of any extragalactic investigation is the definition of an
unbiased sample that includes reliable morphological types. Galaxy morphological
properties result from not only the internal formation and evolution processes but
also from interaction with the environment. Galaxies in groups or clusters may have
diverse evolutionary paths compared to isolated ones, which is clearly reflected in
their morphology. Therefore, classification of galaxies into a meaningful taxonomy
system is of paramount importance for galaxy formation and evolution studies. The
main differentiation of galaxies is between Early-Type Galaxies (ETGs), which are
elliptical galaxies with basically one single structural feature, and Late-Type Galax-
ies (LTGs) which have a prominent disk (HUBBLE, 1926; HUBBLE, 1936; MO et al.,
2010) — see Chapter 2 and 4 for more details on this subject.

Computational Astrophysics and applied Machine Learning (ML) provide two of the
most used approaches for automatically classifying galaxies by their morphology:

a) To extract non-parametric morphology features with a system especially
developed for this task, and, use such features as input for a Traditional
Machine Learning (TML) algorithm, which generates the classification out-
put — a few examples with regard to this approach: Rosa et al. (2018),
Barchi et al. (2016), Ferrari et al. (2015), Conselice (2003), Lotz et al.
(2004), Abraham et al. (1996).

1Since this thesis is in the alternative format, with separated chapters for Literature Review,
Material and Methodology, and Chapter 4 has an adpated version of the main publication of this
research, this introduction chapter is brief to avoid being repetitive.
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b) To apply Deep Learning (DL) algorithms directly upon the images. Here,
thousands of features are internally extracted by the network, and it pro-
duces the classification output as its last processing step — examples:
Khalifa et al. (2017), Sánchez et al. (2018).

This PhD project is part of the FAPESP thematic project entitled “What Drives the
Stellar Mass Growth of Early-Type Galaxies? Born or made: the saga continues...”.
One of the main goals here is to develop a highly accurate and robust methodology
for automatically identifying Early-Type Galaxies, so that our research group can
perform the main study around the mass growth of such galaxies. This thesis is
written around the main publication by its author (BARCHI et al., 2020) — see
Chapter 4 for an adapted version — which compares the application of the two
methodologies enumerated above. The main hypotheses explored here are:

a) Hypothesis 1: It is hypothesized that TML and DL approaches can reli-
ably perform galaxy morphology classification, considering the separation
between ETGs and LTGs. Although one can say this is a safe statement,
it had not being shown previously in literature the application and com-
parison of both methodologies. We develop a specialized system to extract
non-parametric morphology features, apply different TML methods and
test different configurations for DL experiments. We use labeling provided
by humans as supervision to all learning processes (more details in Subsec-
tion 2.1.1). So, by reliably, we mean a high degree of agreement between
the machines and their supervision. We explain performance metrics in
Subsections 2.2.1 and 4.4.3 and show results in Section 4.4.

b) Hypothesis 2: DL achieves higher standards of performance than TML
for visual classification, however, TML has a similar performance (con-
sidering two classes) while preserving meaningful features. By hand-
engineering a system to extract features in the TML flow, it is much more
understandable how galaxies are classified in this approach than using DL.
This hypothesis states that although DL certainly obtain higher perfor-
mance than TML, TML still has its value for further classification analysis.

Both hypotheses (and derivatives) are explored further throughout this document.
Chapters 2 and 3 complement the theoretical foundations and the methodology
presented in the main publication of this research, respectively. Chapter 4 presents
an adapted version of the main publication from this research. Chapter 5 provides

2



a further discussion of Section 4.4 and presents a computational analysis of the
developed systems. Chapter 6 concludes this document. Annex chapters present a
parallel project and publications in the course of this PhD.
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2 THEORETICAL FOUNDATIONS

This chapter complements the theoretical foundations for the paper presented in
Chapter 4. Here, we cover topics of Galaxy Morphology and Machine Learning
which are not covered in details in the full paper, and related works as well.

2.1 Galaxy morphology

In observational research, the most basic process is the classification of objects into
a taxonomy system. The challenge is to build a robust methodology to perform
a reliable classification. The first classification of galaxies by Hubble (1926), Hub-
ble (1936) — Figure 2.1 — distinguishes galaxies with dominant bulge component
— also known as Early-Type Galaxies (ETGs) — from galaxies with a prominent
disk — called Late-Type Galaxies (LTGs). LTGs are commonly referred to as spiral
galaxies because of their prominent spiral arms,while ETGs are commonly referred
to as elliptical galaxies as they have a more simple elliptical structure, with less
structural differentiations. A more refined classification divides ETGs by their el-
lipticities (with prefix E), while LTGs fork into two groups: barred (with a barred
shaped central structure — SB) and non-barred (S)galaxies. These two groups can
be also more refined by their spiral arms strength.

Figure 2.1 - Hubble sequence of galaxy morphologies.

Source: Mo et al. (2010).

2.1.1 Galaxy zoo

Even with a fully automated process, in a given moment we would need some kind
of human supervision to guide the machine and give proper names to the patterns

5



it has been finding. Galaxy Zoo is a citizen science project for classifying galaxies
by their morphologies. In its first phase — Galaxy Zoo 1 (GZ1) — the user had six
options in three main categories (see Figure 2.2):

a) Spiral galaxy (LTG):

• clockwise arms;

• counterclockwise arms;

• edge-on / unclear.

b) Elliptical galaxy (ETG).

c) Undefined:

• Star / unrecognizable object;

• Mergers.

In its second phase, Galaxy Zoo introduced more options and classification stages
(see Figure 2.3), which provided labeled data for galaxy morphology with an un-
precedent level of detail.

I use GZ1 as supervision for distinguishing ETGs from LTGs, and, GZ2 when at-
tacking problems with more classes. We report experiments with 11 classes (Ei, Ec,
Er, Sa, Sb, Sc, Sd, SBa, SBb, SBc, SBd — which roughly corresponds to the scheme
in Figure 2.1), 9 classes (same as previous but one class for all early-type united)
and 7 classes (same as previous but discarding the faintest galaxy types: Sd and
SBd). For clarity, I itemize each of the problems with different number of classes
below:

• 2 classes: ETGs, LTGs.

• 3 classes: ETGs, barred spirals and non-barred spirals.

• 7 classes: ETGs (grouped together), Sa, Sb, Sc, SBa, SBb, SBc.

• 9 classes: Ei, Ec, Er, Sa, Sb, Sc, SBa, SBb, SBc.

• 11 classes: Ei, Ec, Er, Sa, Sb, Sc, Sd, SBa, SBb, SBc, SBd.
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Figure 2.2 - Galaxy Zoo 1.

Source: Lintott et al. (2008), LINTOTT et al. (2011).
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Figure 2.3 - Galaxy Zoo 2.

Source: Willett et al. (2013).

2.2 Machine learning

The ML field is governed by the central question: “How can we build computers
which can automatically improve their performances with experience? Furthermore,
which are the fundamental laws which drive the learning process?” (MITCHELL,
1997). A machine learns with respect to a specific task, a performance metric and
an experience. The evolution of this learning process is noted if the system reliably
improves its performance with an specific task, following the experience. We specify
ML in this work as follows:

a) Task: morphologically classify galaxies;

b) Performance measure: overall accuracy, precision, recall, Receiver Operat-
ing Characteristic (ROC) curve and Area Under the ROC curve — AUC
(BRADLEY, 1997). We will cover these subjects in detail in Subsections
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2.2.1 and 4.4.3, respectivelly;

c) Training experience: galaxies which have both, Galaxy Zoo classification
and non-parametric morphological features.

2.2.1 Performance metrics — overall accuracy

To empirically guide the experiments and the learning processes themselves, also
to analyze if determined approach has reached its goal, it is necessary to define
and employ consistent validation metrics, also called performance metrics. In this
subsection, we describe the main performance metric used in this work: Overall Ac-
curacy. We calculate overall accuracy (OA) in terms of true positives (TP: correctly
classified galaxies), false positives (FP: misclassification; objects which are not from
this class and were classified as such), true negatives (TN: objects correctly not clas-
sified for such class), and false negatives (FN: galaxies that should be labeled for
such class, but were not). It indicates the probability that a individual galaxy will
be correctly classified — see Equation 2.1.

OA = TP + TN

TP + TN + FP + FN
(2.1)

However, OA alone is not enough to characterize the performance. A model can have
high OA but poorly perform for one or more specific classes. For the most interesting
cases (experiments applying DL for the problem with three classes, for example) we
cover more performance metrics: precision (P ) and recall (R). In astronomy, P and
R are known as purity and completeness. P and R are also calculated by means of
TP, FP, TN and FN:

P = TP

TP + FP
(2.2)

R = TP

TP + FN
(2.3)

2.2.2 Decision Tree

One of the most used methods for classification and regression is the Decision Tree
(DT). The model is adjusted through the learning process to predict the classification
by simple decision rules inferred from the dataset. Among the different versions and
variations of DTs, we use the optimized version of Classification and Regression Tree

9



(CART) algorithm. CART builds up binary trees using feature and threshold that
yield the largest information gain at each node (QUINLAN, 1986; GÉRON, 2019).

2.2.3 Support Vector Machine

Another influential method for supervised classification is the Support Vector Ma-
chine (SVM) which finds the optimal hyperplane that divides the target classes.
SVM performs this task by drawing infinite different hyperplanes for separating
target classes aiming to get the minimum error rate (HEARST et al., 1998; CORTES;

VAPNIK, 1995). The hyperplane which maximizes the separation margins among the
classes is the optimal hyperplane, i.e., the hyperplane provides a unique optimal
solution for the problem (HEARST et al., 1998; CORTES; VAPNIK, 1995).

Generally, the input data is not linearly separable. SVM performs the kernel-trick
in order to find the optimal hyperplane. The kernel-trick maps the original input
space into some high dimensional space through a dot-product in the feature space
by a N -dimensional vector function – polynomial function or radial basis function,
for example (CORTES; VAPNIK, 1995).

2.2.4 Artificial neural networks

A standard Neural Network (NN) consists of many simple, connected neurons, each
one being a computing unit which outputs a sequence of real-valued activations.
A artifitial neural network architecture is organized in layers: input, hidden (which
may be one or many) and output. A Multilayer Perceptron (MLP) has at least three
layers (one input, one hidden and one output layer). With information from previous
layers, weighted connections activates neurons of the next layer. Each neuron has
n inputs i, weights (w), bias (b), an activation function (F (x)) and output (y)
Formally, as represented in Figure 2.4, the output y of the j-th neuron is given by
the Equation 2.4:

yj = F

(
b+

n∑
k=1

wk,jik

)
. (2.4)

Weighted inputs and bias are adjustable parameters which makes the neural network
a parameterized system. Among the nonlinear activation functions, logistic function
and Rectified Linear Unit (ReLU) are two of the most widely used. The logistic
activation function is heavily applied to predict probabilities since it ranges from 0
to 1. ReLU is present in most of the convolutional neural networks and it is given
by the following equation: R(x) = max(0, x), i.e., R(x) is zero for x < 0 and x when
x > 0. The training process optimizes the weights for each neuron by minimizing the
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error of predictions and reaching a specified level of accuracy. One epoch of training
is one forward pass and one backward pass in all training examples through the whole
network. The batch size is the number of training examples in one forward/backward
pass (MITCHELL, 1997; GÉRON, 2019; GOODFELLOW et al., 2016).

Figure 2.4 - Schematic representation of a neuron.

Source: Author’s production.

2.3 Deep learning

A Neural Network (NN) can be extremely complex when using an architecture with
many layers. Deep Learning (DL) methods are built through a deep neural network
with multiple layers of non-linear transformations. A detailed explanation of deep
learning is out of the scope of this thesis, but we provide here a brief introduc-
tion. Multiple layers ensure the deep characteristic while multiple neurons represent
its width. Its quintessence is many parametric functions composed of many other
parametric functions. Each of these parametric functions has multiple inputs and,
possibly, multiple outputs (GOODFELLOW et al., 2016; GÉRON, 2019). DL models
typically benefit from large amounts of training data. The training process can be
accelerated dramatically using parallel processors such as Graphics Processing Unit
(GPU). This approach is impracticable if a huge amount of data is not available to
be extracted for optimizing the features and weights in each layer/neuron. To have
such amount of data processed in a reasonable time, we need specifically dedicated
hardware. With the advance of GPU and hardware in general, it is well-established
that DL is nowadays the state of the art approach for classification tasks (GOOD-

FELLOW et al., 2016; GÉRON, 2019).
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2.3.1 Deep convolutional neural network

Deep Convolutional Neural Network (CNN) or simply Convolutional Networks (LE-
CUN, 1989) are a special kind of neural network for processing data with grid-like
topology. CNN uses a hierarchy of layers to recognize the desired patterns from the
input data. A CNN necessarily has a convolutional layer and uses a variation of the
MLP (Subsection 2.2.4). Convolution preserves the spatial relationship between pix-
els by using submatrices from the input data for learning features. The convolution
operation has two arguments: one often referred as input (simply the input data or
the output from a previous layer) and the kernel, filter, or feature detector. There
are convolutional models using 1D, 3D and even higher-dimensional data, however,
generally, the input data has two-dimensions (images). The convolution operation
allows CNN to be deeper with much fewer parameters than a non-convolutional
network. Considering the input as a two-dimensional matrix, the kernel generally
is a submatrix. The output from the convolution operation can be named the fea-
ture map. Considering a two-dimensional image χ as input, a suitable method for
performing the convolution operation consists in using a two-dimensional kernel ϕ.
Equation 2.5 is one possible formulation of this operation and Figure 2.5 presents a
simple theoretical example to clarify the operation — both, the equation and figure,
inspired by Goodfellow et al. (2016).

S(i, j) =
∑
m

∑
n

χ(m,n)ϕ(i−m, j − n). (2.5)
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Figure 2.5 - Illustration within a 2-D environment of a simple straightforward convolution
operation example.

The output is restricted to positions where the kernel lies entirely within the input matrix.
Inside the dashed rectangles, we have the input (left) and kernel (middle) operands respon-
sible to produce the first element of the output (right). Below each matrix, we present its
dimension. We can imagine the dashed window (kernel) sliding through the input matrix
to produce the output.

Source: Author’s production.

A typical convolutional layer of a CNN has three stages, as represented in Figure 2.6.
In the first stage, several convolutions are performed in parallel to produce a set of
linear activations. The second is the detector stage: a nonlinear activation function
process each of these linear activations. In the third stage, the pooling layer reduces
the spatial dimension which lower the number of parameters. Furthermore, it sum-
marizes the statistic of the neighboring outputs and reduces overfitting occurrences
(GOODFELLOW et al., 2016; GÉRON, 2019). Typically, CNNs use the softmax expo-
nential function (Softmax Activation) in the output layer for classification problems,
since classes are mutually exclusive and the softmax layer produces a probability for
each class.

Figure 2.6 - Representation of typical (complex) Convolutional Layer.

Source: Author’s production.
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2.3.2 GoogleNet Inception

Here, we briefly summarize the main characteristics of the selected deep neural net-
work architecture, GoogleNet Inception, the winner of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014. The success of this architecture is mostly
due to its deepness (22 complex layers) and the presence of nine Inception Modules,
sub-networks that compose the main network. Inception Module captures complex
patterns at various scales. It convolves different sizes in parallel, from the smallest
possible (1x1) to 5x5 kernel matrices, thus, the network is capable of detecting the
presence of thin and rough structural patterns. The output layer of the module is a
max pooling to summarize the information from the previous layer by concatenating
all results from previous layer to pass them forward to the next one (SZEGEDY et

al., 2015; GÉRON, 2019). Figure 2.7 is a representation of the Inception Module and
Figure 2.8 presents the whole architecture of this network.

Figure 2.7 - Inception Module.

Inspired by Szegedy et al. (2015).
Source: Author’s production.

2.4 Machine learning applied to astrophysics

Large astrophysical surveys and the never-ending improving hardware and software
related to machine learning have been heating up publications with such interdisci-
plinary synergy. Ball and Brunner (2010) survey a long list of projects applying data
mining for analyzing astronomical data. Ivezić et al. (2014) provides modern sta-
tistical methods for analyzing astronomical data. Vasconcellos et al. (2011) employ
decision tree classifiers for star/galaxy separation.
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Among the different astrophysical knowledge branches, Galaxy morphology plays
a crucial role for developing the interdisciplinary synergy between computer sci-
ence and astrophysics. Schawinski et al. (2017) use Generative Adversarial Networks
(GAN) to recover features in astrophysical images of galaxies. Khalifa et al. (2017)
reviews the literature and achieves unprecedent success for classifying galaxies into
three morphological classes: Elliptical, Spiral and Irregular types. By using a Convo-
lutional Neural Network (CNN) architecture with 8 layers (1 for input, 1 for output
and 6 hidden layers), they achieved an accuracy of 97.27% using as dataset 13,000
images from the EFIGI (Extraction de Formes Idealisées de Galaxies en Imagerie)
catalog (BAILLARD et al., 2011).

In an innovative approach, HUERTAS-COMPANY et al. (2018) use CNN upon data
from simulations to train the neural network for identifying blue nuggets in real-
world data, i.e., an astrophysical phenomenon has been predicted by cosmological
simulations.

Inside the scope of this PhD, Barchi et al. (2016) present preliminary results for clas-
sifying galaxies using the traditional machine learning approach. With this research
in an early stage, I achieved significant success in separating ETGs from LTGs with
overall accuracy ≥ 97% for all supervised methods explored.

Applying Deep Learning methodologies in galaxy morphology, Dieleman et al.
(2015), Huertas-Company et al. (2015), Sánchez et al. (2018) present different cata-
logs of galaxies. Highlight to Sánchez et al. (2018) who uses Galaxy Zoo 2 questions
and answers to try to replicate the answers from the users and presents classification
by T-Type. T-Type is a number for determining morphogogical types: ETGs have
T-Type ≤ 0 and LTGs have T-Type > 0 (VAUCOULEURS, 1963). T-Type considers
ellipticity and spiral arms strength but does not reflect the presence or absence of
the bar feature in spirals.
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3 MATERIAL AND METHODOLOGY

Analogously to Chapter 2, this chapter presents additional information about ma-
terial and methodology used for publishing the paper presented in Chapter 4. Here,
we briefly introduce Sloan Digital Sky Survey (SDSS), provide more details on the
system for extracting non-parametric galaxy morphology features, and more infor-
mation on Machine and Deep Learning experiments as well.

3.1 Sloan Digital Sky Survey

One of the most handled astronomical datasets is the Sloan Digital Sky Survey —
SDSS (EISENSTEIN et al., 2011) — which is acquiring photometry from the northern
sky since 1998. After its first two phases, it’s Data Release 7 (DR7) has publicly
released photometry for 357 million unique sources, and it is expected to have nearly
15 terabytes of data when the survey is complete (IVEZIĆ et al., 2014). This massive
data set is just one of hundreds of surveys that are being produced continuously
by several institutions. In view of their voluminous size, much of these data are
never looked at, and therefore the potential extraction of information from these
collected data is partially realized. Even though many answers for questions of the
contemporary science depends on the processing of such data (FEIGELSON; BABU,
2006; TAN et al., 2005). Figure 3.1 shows examples of galaxies from SDSS-DR7.
Section 3.2 presents more details about samples and data used in this work.

Figure 3.1 - Examples of ETG (left) and LTG in black and white from SDSS-DR7.

Source: Author’s production.
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3.2 Sample and data

This work uses data acquired from the SDSS-DR7 (EISENSTEIN et al., 2011) and
Galaxy Zoo catalogs (LINTOTT et al., 2008; LINTOTT et al., 2011; WILLETT et al., 2013)
for measuring morphology and training the classification models. The samples are
composed of galaxies in r-band from SDSS-DR7 in the redshift range 0.03 < z < 0.1,
Petrosian magnitude in r-band brighter than 17.78 (spectroscopic magnitude limit),
and |b| ≥ 30o, where b is the galactic latitude.

For supervised learning purposes, we consider the defined classification from Galaxy
Zoo 1 — GZ1 hereafter (LINTOTT et al., 2008; LINTOTT et al., 2011) between E and
S galaxies, and the classification from Galaxy Zoo 2 — GZ2 (WILLETT et al., 2013)
with prefixes in one of 11 following classes: Er, Ei, Ec, Sa, Sb, Sc, Sd, SBa, SBc, SBd
(see Figures 2.2 and 2.3, respectively). Other three different scenarios are explored
with GZ2 supervision. Classification considering 9 classes (same as 11 classes except
that we have one class for all elliptical galaxies united), 7 classes (same as previous
but disregarding the faintest galaxy types: Sd and SBd) and three classes: E, S and
SB.

We study the impact of different datasets on the training process, varying the number
and size of objects in the samples. We define a parameter K as the area of the
galaxy’s Petrosian ellipse divided by the area of the Full Width at Half Maximum
(FWHM). Equation 3.1 presents how to calculate K, where RP is the Petrosian
radius — see Petrosian (1976), Eisenstein et al. (2011) for more details about RP .
By restricting the samples to a minimum K, we limit the number and size of objects
in the dataset. The number of galaxies for the three main samples we explore (K ≥
5, K ≥ 10 and K ≥ 20) are presented in Table 3.1.

K =
(

RP

FWHM/2

)2

(3.1)
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Table 3.1 - Number of galaxies for the main samples in this work from each database
(SDSS, GZ1 and GZ2).

Restriction Number of galaxies in
SDSS GZ1 GZ2

K ≥ 5 239,833 104,787 138,430
K ≥ 10 175,167 89,829 110,163
K ≥ 20 96,787 58,030 67,637

Source: Barchi et al. (2020).

With smaller values of K we have more but smaller objects, while samples restricted
by bigger values of K have less but bigger objects. To properly check the impact
of the number and sizes of objects in the samples, we explore the Deep Learning
approach for three classes problem in detail with other restrictions: K ≥ 7, K ≥ 9,
K ≥ 11, K ≥ 14 and K ≥ 17.

For Machine and Deep Learning experiments, we split the datasets from GZ1 e GZ2
into training-validation-test subsets in the proportion 80-10-10. In all experiments,
each of these subsets are constrained to the same restriction (the model trained
and validated with a subset restricted to K ≥ 20 is also tested with the subset
restricted to K ≥ 20). We should keep in mind that the data used in this work,
SDSS-DR7, does not have a proper spatial resolution (0.396 arcsec pixel −1) and
not adequate PSF FWHM (∼1.5 arcsec). For comparison, the Dark Energy Survey
— DES (ABBOTT et al., 2016), has a pixel size of (0.27 arcsec) and PSF FWHM of
∼0.9 arcsec. This is why we study the quality of our classification as a function of
K.

3.3 CyMorph - non-parametric galaxy morphological system

CyMorph is the non-parametric galaxy morphological system which process Con-
centration (C), Asymmetry (A), Smoothness (S), Entropy (H) and Gradient Pattern
Analysis (GPA) metrics1.

We perform a query in SDSS DR7 database to obtain the data table which is input
to the system. This data table has the required information to download each field
of view (which is a fits image file — example in Figure 3.2.a). It must contain the

1The whole system code is available on this repository: https://github.com/paulobarchi/
CyMorph.
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coordinates (RA and DEC) for each galaxy of interest as well. Alternatively, the
system accepts the path to the directory with all fits files as input.

3.3.1 Preprocessing

Before starting to process the non-parametric morphological metrics, incisive im-
age preprocessing techniques are mandatory for morphology. Preprocessing ensures
the consistency of parameters and improves the feature extraction. For the mor-
phological analysis, there are three major issues in preprocessing: cut the stamp,
remove secondary objects, and generate the segmented image. Source Extractor —
Sextractor (BERTIN; ARNOUTS, 1996) — is employed for photometry and automated
detection of sources in fits image files. In the first step, the desired galaxy is selected
from the field of view image. Then, an interpolation is performed: pixels from sec-
ondary objects that remain inside the stamp are replaced by the target’s isophotal
level. For each pixel, the isophotal level is obtained using a random value from a
Gaussian distribution on the aimed object expanded ellipse that intersects the pixel.
For all metrics except Concentration, we use as input the segmented image, which
is generated by applying the mask (obtained by region growing algorithm from the
center of the galaxy of interest) upon the cleaned image — see Figure 3.2. Concen-
tration does not use the segmented image, instead, it uses the original galaxy stamp
to get the whole accumulated flux profile of each object.
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Figure 3.2 - Preprocessing example.

From original field of view (a), the stamp is cut (b), cleaned (c) and segmented by mask
(d).

Source: Author’s production.

3.3.2 Error detection

It is possible to verify if the galaxy can have problems when calculating non-
parametric metrics. The first verification is to assert that the stamp does not have
n objects inside the area from the center of the galaxy to 2 times the galaxy radius
(4× π×R2). If the galaxy has more objects than n in this area, this galaxy has the
error flag 1 assigned to it. We set n = 10, empirically.

The next verification is associated with the flux profile computed from the galaxy.
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If convergence is not reached in this calculus, an error flag 2 is assigned to the
galaxy. If none of these problems are identified, the galaxy has error flag equals 0
at the end of preprocessing phase. Galaxies with error flags different from 0 are not
processed by the non-parametric morphological system to avoid galaxy images with
possible several problems: central double peak; galaxy at the edge of the field; many
objects of similar brightness superimposed in the field; and merging galaxies. These
problems are mostly identified when calculating the Petrosian radius (Rp). Galaxies
with Error 6= 0 are disconsidered to build up the classification models and to be
classified in the traditional machine learning approach.

All error flags are mapped as follows: Error = 0: success (no errors); Error = 1:
many objects of significant brightness inside 2 × Rp of the galaxy; Error = 2:
not possible to calculate the galaxy’s Rp; Error = 3: problem calculating GPA;
Error = 4: problem calculating H; Error = 5: problem calculating C; Error = 6:
problem calculating A; Error = 7: problem calculating S.

3.3.3 Concentration

Morgan and Mayall (1957) proposed the first concentration index, which is given
by the ratio of the distance that contains 80% brightness2 (R80%) of the observed
galaxy, and the distance that contains 20% brightness (R20%) of the observed galaxy
as shown in Equation 3.2. Notice that fixing the brightness value, the ratio between
this distances indicates the galaxy profile slope.

C1 = log10

(
R80%

R20%

)
(3.2)

Further improvement in this index associate other ratios of brightness proportion
radius, since the distance measurement is affected by the image sky, and seeing
effects in the center of the galaxies (FERRARI et al., 2015). In order to avoid the
smoothing effect from galactic center, Kent (1985) proposed another concentration
index (C2) based on a ratio between R90% and R50%.

In literature, empirical techniques are usually applied for the accumulated flux profile
estimation (CONSELICE, 2003; FERRARI et al., 2015), another approach is to associate
to a galaxy parametric model, as the Sérsic index (GRAHAM et al., 2001). Both
techniques have issues, for instance empirical techniques have problems associated

2A galaxy image brightness is the integrated flux in a given region.
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to seeing effects (FERRARI et al., 2015), whereas parametric models are inaccurate
for late-type galaxies (GRAHAM et al., 2001).

Following the basic methods from these authors and after an empirical analysis
process, we propose to calculate the Concentration index with the following steps:
(1) calculate the flux profile, (2) calculate the ηP function, (3) obtain the Petrosian
Radius (RP ) and (4) calculate the log ratio of the relative Petrosian flux. Each step
is explained below.

(1) The accumulated flux profile is given by the sum of light flux within each circular
radius. For each circular radius R, we calculate the flux inside it as follows:

F (R) =
N,N∑
i,j=0,0

(mi,j −B)× P (3.3)

where

• N is the dimension of the matrix (image).

• mi,j is the intensity of the pixel from the matrix in coordinates (i, j).

• B is the median background intensity value. We have defined four back-
ground corners as the outer most submatrices (top left, top right, bottom
left and bottom right) with dimensions width/5×height/5 for defining B.
B is the median of all these regions.

• P is the percentage of points within the pixel that are inside the galaxy
ellipse. If the pixel is totally inside the galaxy ellipse, P = 1.0; if the pixel
is totally outside the galaxy ellipse, P = 0.0; else, given 1000 random
points inside the pixel, P is the fraction of these points which are inside
the galaxy ellipse.

The accumulated flux profile is the calculus of the above equation for each radius.

(2) The ηP (R) function provides the average intensity within some projected radius
R divided by the intensity at that radius. In order to objectively calculate the
ηP (R) function in a ring area inner centered in R, we adopted a modified form of
the Petrosian system (PETROSIAN, 1976) as Sloan Digital Sky Survey (SDSS) does
(EISENSTEIN et al., 2011).
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ηP (R) =

F (1.25×R)− F (0.8×R)
π(1.252 − 0.82)R2

F (R)
π ×R2

(3.4)

At the end of this step, we have the accumulated flux profile and the ηP for each
radius (R) of the image.

(3) Still within the modified form of the Petrosian system we adopted, the Petrosian
radius RP is given by the radius R which have a corresponding ηP (R) = 0.2. In
most cases, where there is not an exact Rp for which ηP (R) = 0.2, we used linear
interpolation to obtain the desired RP .

(4) Following the literature (FERRARI et al., 2015), we primarily test two configura-
tions for the Concentration index:

C1 = log10

(
R80%

R20%

)
(3.5)

C2 = log10

(
R90%

R50%

)
(3.6)

An optimization work is performed in order to define which ratio better characterizes
the observed galaxies. This process is described in Subsection 4.2.2: a new method-
ology for setting the best configuration parameters for this galaxy morphological
system. Among all configurations tested, the best configuration is:

C = log10

(
R75%

R35%

)
(3.7)

3.3.4 Asymmetry

The Asymmetry index is simply given by the comparison of the source image with
its π-rotated variant. Since this metric is commonly applied to characterize high-
redshift galaxies (CONSELICE, 2003), a diversity of equations and enhancement pro-
cesses were proposed. A popular version of Asymmetry is given by the Equation 3.8
(ABRAHAM et al., 1996). In this equation, Iπi,j is the (i, j) pixel intensity after sub-
tracting the background, and π is the angle of rotation in radians. Notice that each
term of the sum is weighted by |I0

i,j|. This weight enhances the spiral disk region,
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since it usually has lower intensity value than the galaxy central region. However, the
sky is also enhanced in this process since it has a low flux intensity. Consequently,
one of the main tasks is how to segment the images. We may expect higher values
of Asymmetry for Late-Type Galaxies using Equation 3.8.

AA =
N,N∑
i,j

|I0
i,j − Iπi,j|
|I0
i,j|

(3.8)

Among several previous works which contributed with this morphological metric —
with similar computation to Equation 3.8 (ABRAHAM et al., 1996; CONSELICE, 2003;
LOTZ et al., 2004), we follow the strategy by (FERRARI et al., 2015). The Asymmetry
index is measured using correlation coefficients — see Equations 3.9 and 3.10. The
functions r() and s() are, respectively, the Pearson rank and the Spearman rank
(PRESS, 2005). The advantage of the correlation coefficients is the robustness to the
visual effects and the interference of the sky in the measurement.

Ar = 1− r(I0, Iπ) (3.9)

As = 1− s(I0, Iπ) (3.10)

From now on, we refer to asymmetry as A, defined by Equation 3.10 (details on
metric configuration and selection in Subsection 4.2.2).

3.3.5 Smoothness

Classically, the Smoothness is measured as the weighted difference between the im-
age (composed by elements I0

i,j) and its smoothed version(composed by elements
Isi,j), according to the Equation 3.11, where Bi,j is the background intensity value
(CONSELICE, 2003).

SC = 10×
N,N∑
i,j

(I0
i,j − Isi,j)−Bi,j

Ii,j
(3.11)

In recent works, this parameter has been improved by adopting correlation coefficient
(FERRARI et al., 2015). The advantages to this approach are (a) to characterize levels
of flux intensity and (b) the robustness to local noise. The smoothness parameters
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are measured according to Equations 3.12 and 3.13, where I0 is the flux intensity in
the original image, and Is is the flux intensity in the smoothed image.

Sr = 1− r(I0, Is) (3.12)

Ss = 1− s(I0, Is) (3.13)

3.3.6 Gradient pattern analysis applied to galaxy morghology

Gradient Pattern Analysis (GPA) is a novel metric to galaxy morphological analysis
introduced by Rosa et al. (2018). Given a matrix, the local gradient is calculated
as the first partial difference of I(xi, yi) with respect to each neighbour element in
the matrix. The operation returns the x and y components of the two-dimensional
numerical gradient, ∆M , that can be described in terms of its symmetry, and the
local vector characteristics (norm and orientation). ∆M can be represented as a
composition of the following four gradient patterns (GPs):

• GP1: the matrix representation of the total vector distribution ∆M ;

• GP2: the matrix of the respective norms;

• GP3: the matrix of the respective phases;

• GP4: the matrix of the respective complex numbers.

For each type of matrix pattern from the set GP1, GP2, GP3, GP4 we can calculate
specific parameters as the respective gradient moments G1, G2, G3, G4, where each
is extracted from its respective matrix pattern, namely vector, norm, phase and
complex representations.

Traditionally, G1 and G2 Equations are presented as follows:

G1 =


TA−VA

VA
if TA ≥ VA,

0 otherwise.
(3.14)

G2 = VA
V

(
2− |

∑VA
i vi|∑VA
i |vi|

)
. (3.15)
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where V is the total amount of gradient vectors, VA is the amount of asymmetric
vector after removing all the symmetric pairs, TA is the amount of edges (after
performing a Delaunay triangulation), and vi is ith asymmetrical vector norm.

In G1, all vectors that belongs to the sky (background) are forced to be symmetrical,
since G1 depends only on the ratio between the number of Delaunay connections
and the number of asymmetrical vectors. However, in this work we do not apply
the mask for G1, as it has been observed better results for G1 without segmentation
mask.

Concerning GPA performance for characterizing galaxy images, a small change on
G2 is proposed to adapt it to work with segmentation masks. In symmetry detection
step, if a pixel in a position (i, j) is detected as sky (background), then the gradient
at position (i, j) is ignored, decreasing the total number of vectors N (ROSA et al.,
2018).

3.3.7 Entropy

Entropy is a measurement of the distribution of information in the object of anal-
ysis. In digital image processing, it measures the distribution of pixel values in the
image. We adopt the Shannon entropy, given by Equation 3.16, already in use in
galaxy morphology by Ferrari et al. (2015). Assuming the galaxy flux as the random
variable, this measurement shows the heterogeneity degree in pixel distribution.

H = −
∑K
k p(Ik) log(p(Ik))

log(K) (3.16)

To calculate the Equation 3.16, we must separate the flux intensity in bins: k is the
kth bin. Thus, it is fundamental to establish the number of bins (K) to use in this
process. We apply an objective function to determine the optimal number of bins.
Section 4.2.1 and Subection 4.2.2 describe the objective method and experiments
performed, respectively.

3.4 Machine learning applied to galaxy morphology

Traditionally, the main division in ML is with regard to the supervision (or ab-
sence of it) in the learning process. Supervised learning approaches have a guide
for building up the model, while unsupervised learning do not have a supervision
to guide the learning process (MITCHELL, 1997; GÉRON, 2019; GOODFELLOW et al.,
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2016). Supervised learning algorithms learn to associate input (features) with out-
put (labels or floating values) given the training dataset. In this work, we focus
on supervised learning as our main goal is to reproduce the human eye in mor-
phological classification of galaxies and we have Galaxy Zoo 1 and 2 catalogs for
guiding the learning processes. In this work, we focus on supervised learning as our
main goal is to reproduce the human eye in morphological classification of galaxies,
using morphological metrics and catalogs from Galaxy Zoo 1 and 2 to guide the
learning process (as described in Section 3.2). We maintain the restriction related
to the area of the galaxies to build up different classification models: (1) K ≥ 5;
(2) K ≥ 10; and (3) K ≥ 20, i.e., the area of the galaxy is at least five (model
1), ten (model 2) and twenty (model 3) times larger than the Full Width at Half
Maximum (FWHM) area for each corresponding object, respectively. We build up
Decision Tree (DT), Support Vector Machine (SVM) and Multilayer Perceptron
(MLP) models to classify galaxies considering different numbers of classes. We use
scikit-learn (PEDREGOSA et al., 2011) python library to perform the experiments
and procedures reported in this document (see more about computational details in
Chapter 5).

Figure 3.3 - Traditional Machine Learning schema.

Source: Author’s production.

For each classification model, it is necessary to address how to split the dataset into
training, validating and testing sets. If no refined strategy is adopted to perform
this partitioning, the results may be biased to the sets selected. Cross-Validation
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(CV) is the most common procedure used to overcome this challenge. CV addresses
the trade-off between bias and variance by slicing the dataset in k-folds (k = 10,
10 folds with 10% of the data), and the learning process is repeated k times, each
time combining different folds to compose training and testing sets, maintaining the
defined proportions. In this work, first we split the dataset in a 90/10 proportion
for training and testing sets, respectively. CV is applied in the 90% portion of the
dataset. CV imposes the learning process to occur ten times, each time using all
possible different combinations of folds. The resulting model is then validated on
the remaining part (10%) of the data. Besides CV to properly perform the dataset
partitioning, we use Grid Search (GS) to exhaustively generate and test values for
parameter candidates in Decision Tree (DT) models. This process is also known as
hyperparameter optimization. Hyperparameter values are not adjusted by the learn-
ing process itself. The hyperparameter optimization tests all possible combinations
of parameter values by automatically performing the CV step (described above), fit-
ting the model and computing the score on the validation set. The best configuration
is used for the definitive model. DT parameters are associated with the tree depth.
The training process is feasible when applying GS to DT and the results improve
significantly. For SVM and MLP, there are many more parameter values to test in
GS. Preliminary tests exploring problems with two and three classes show that the
results are equivalent whether or not we use GS. We do not use GS in SVM and
MLP experiments because the computational cost is very high and it would have a
minimal impact in the results.

3.5 Deep learning applied to galaxy morphology

In this work, we focus on two notable robust CNN architectures, Residual Net-
works –ResNet (HE et al., 2016) — and GoogleNet (SZEGEDY et al., 2015), judging
overall accuracy performance and training time. We split the datasets into training-
validation-test subsets in the proportion 80-10-10. The training phase for all ex-
periments consist of 30 epochs, which is enough since we always reach convergence
with 30 or less epochs. The batch size is limited by available hardware — enough to
reach full capacity of 2 TESLA P100 GPUs (more hardware details in 5). ResNet
consumes more memory since it has a deeper architecture with 50 layers. The batch
size for ResNet is 32 and, for GoogleNet, 128. With these characteristics defined,
we perform experiments to answer the other questions. We first test ResNet and
GoogleNet on raw data (no preprocessing). We perform experiments on three dif-
ferent datasets restricted by K ≥ 5: two classes from GZ1, Lintott et al. (2008),
LINTOTT et al. (2011); and three classes from GZ2, Willett et al. (2013) with
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Table 3.2 - Experiments with different configurations for CNN architectures.

ResNet GN (r) GN (p)
t OA t OA t OA

2c unb 3:40 85.4 2:33 98.7 2:33 98.7
3c unb 4:17 51.6 1:36 78.2 2:01 80.8
3c bal 2:54 34.0 0:45 73.6 0:45 75.0

Summary of experiments with different configurations for CNN architectures: ResNet (HE
et al., 2016), GoogleNet — GN (SZEGEDY et al., 2015) — without pre-trained model (r)
and GN using pre-trained model (p). The datasets are: imbalanced dataset considering two
classes (2c unb), imbalanced dataset considering three classes (3c unb), balanced dataset
considering three classes (3c bal). We show processing time t (format: h:mm) and Overall
Accuracy (OA in percentage).

Source: Author’s production.

2 variations, imbalaced dataset and balanced dataset (see Subsection 4.4.2 about
the class imbalance problem). Table 3.2 presents the results regarding these exper-
iments to establish the network configuration. Considering the same datasets, we
address the issue of using or not pre-trained models. We compare the performance
of the default GoogleNet network (without pre-trained weights) and with weights
from a network already trained for another problem. We obtain the same OA, but
pre-trained models present better results considering processing time and number
of epochs. Finally, we set up an experiment to answer the question about using
raw data or clean images (preprocessed data). We apply GoogleNet on the dataset
limited by K ≥ 20 for the two classes problem. Both models perform equivalently
regarding OA (∼ 99.5%), but we choose to use raw images since we avoid the prepro-
cessing step. After these tests, we select GoogleNet with pre-trained weights and raw
data for building up the classification models. Just to give examples of what kind of
features deep neural networks extract from these galaxies, Figure 3.4 presents the
output of convolutions performed by Inception Module through different stages of
the network.
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Figure 3.4 - Example of convolutions applied to a galaxy for illustration purposes.

Top left: the input image of a galaxy in r-band. Top right: the output of the first convolution
performed. Bottom left: the output of the first Inception Module. Bottom right: the output
of the last Inception Module of the neural network.

Source: Author’s production.

31





4 MACHINE AND DEEP LEARNING APPLIED TO GALAXY MOR-
PHOLOGY - A COMPARATIVE STUDY

4.1 Introduction

1In observational cosmology, the morphological classification is the most basic in-
formation when creating galaxy catalogs. The first classification system, by Hubble
(1926), Hubble (1936), distinguishes galaxies with dominant bulge component —
also known as Early-Type Galaxies (ETGs) — from galaxies with a prominent disk
component — named Late-Type Galaxies (LTGs). LTGs are commonly referred to
as spiral galaxies because of their prominent spiral arms, while ETGs are commonly
referred to as elliptical (E) galaxies as they have a simpler ellipsoidal structure, with
less structural differentiation (less information). More refined classifications fork
spirals into two groups: barred (SB) and unbarred (S) galaxies. These two groups
can also be refined even further by their spiral arms strength. A number known as
T-Type can be assigned to the morphological types: ETGs have T-Type ≤ 0 and
LTGs have T-Type > 0 (VAUCOULEURS, 1963). T-Type considers ellipticity and
spiral arms strength but does not reflect the presence or absence of the bar feature
in spirals.

Morphology reveals structural, intrinsic and environmental properties of galaxies. In
the local universe, ETGs are mostly situated in the center of galaxy clusters, have a
larger mass, less gas, higher velocity dispersion, and older stellar populations than
LTGs, which are rich star-forming systems (ROBERTS; HAYNES, 1994; BLANTON;

MOUSTAKAS, 2009; POZZETTI et al., 2010). By mapping where the ETGs are, it is
possible to map the large-scale structure of the universe. Therefore, galaxy mor-
phology is of paramount importance for extragalactic research as it relates to stellar
properties and key aspects of the evolution and structure of the universe.

Astronomy has become an extremely data-rich field of knowledge with the advance
of new technologies in recent decades. Nowadays it is impossible to rely on human
classification given the huge flow of data attained by current research surveys. New
telescopes and instruments on board of satellites provide massive datasets. There-
fore, in view of their voluminous size, much of the data are never explored. The

1This chapter is an adapted version of the paper: BARCHI, P.; CARVALHO, R. de; ROSA,
R.; SAUTTER, R.; SOARES-SANTOS, M.; MARQUES, B.; CLUA, E.; GONÇALVES, T.; SÁ-
FREITAS, C. de; MOURA, T. Machine and deep learning applied to galaxy morphology-a com-
parative study. Astronomy and Computing, v. 30, p. 100334, 2020. I have incorporated content
from the original paper in the previous and next chapters, and suppressed it here for better com-
prehension of the thesis.
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potential extraction of knowledge from these collected data is only partially accom-
plished, even though many answers of the contemporary science critically depend
on the processing of such large amount of data (WAY et al., 2012; IVEZIĆ et al., 2014;
FEIGELSON; BABU, 2006). Automatic classification can address this bottleneck of
observational research.

One of the most used astronomical datasets is the Sloan Digital Sky Survey — SDSS,
which has been acquiring photometry from the northern sky since 1998. After its
first two phases, SDSS Data Release 7 has publicly released photometry for 357
million unique sources, and it is expected to be around 15 terabytes of data when
the survey is complete (EISENSTEIN et al., 2011). This massive dataset is just one of
hundreds of surveys that are currently underway.

One effort to overcome the challenge to classify hundreds of thousands of galaxies de-
pends on the laborious engagement of many people interested in the subject. Galaxy
Zoo is a citizen science project which provides a visual morphological classification
for nearly one million galaxies in its first phase (Galaxy Zoo 1) distinguishing ellip-
tical from spiral galaxies. With general public help, this project has obtained more
than 4 × 107 individual classifications made by ∼ 105 participants. In its second
phase, Galaxy Zoo 2 extends the classification into more detailed features such as
bars, spiral arms, bulges, and many others, providing a catalog with nearly 300 thou-
sand galaxies present in SDSS. Throughout this work, we use Galaxy Zoo (LINTOTT

et al., 2008; LINTOTT et al., 2011; WILLETT et al., 2013) classification as supervision
and validation (ground truth) to our classification models.

Several authors (ABRAHAM et al., 1996; CONSELICE et al., 2000; CONSELICE, 2003;
LOTZ et al., 2004) studied and presented results about objective galaxy morphology
measures with Concentration, Asymmetry, Smoothness, Gini, and M20 (also known
as CASGM or CAS system). Ferrari et al. (2015) introduced the entropy of informa-
tion H (Shannon entropy) to quantify the distribution of pixel values in the image.
Rosa et al. (2018) introduced the Gradient Pattern Analysis (GPA) technique to
separate elliptical from spiral galaxies by the second moment of the gradient of the
images. This whole system used by Rosa et al. (2018) — called CyMorph — is
described in this paper (Section 4.2).

It is not trivial to determine the success of each non-parametric morphological pa-
rameter to perform this classification task. Considering the separation between el-
liptical and spiral galaxies, for example, a morphological parameter is more reliable
if it maximizes the separation of the distributions of these two types. Rosa et al.
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(2018) described the evaluation technique proposed and adopted to measure the
success of metrics to separate elliptical from spiral galaxies — see also Subsection
4.2.1 and Sautter and Barchi (2017).

The main purpose of this investigation is to answer the question “How to mor-
phologically classify galaxies using Galaxy Zoo (LINTOTT et al., 2008; LINTOTT et

al., 2011; WILLETT et al., 2013) classification through non-parametric features and
Machine Learning methods?” We also apply Deep Learning techniques directly to
images to overcome the same challenge and compare results from both approaches.
Deep Convolutional Neural Network (CNN) is a well-established methodology to
classify images (GOODFELLOW et al., 2016). Without the need of a feature extractor,
the network itself adjusts its parameters in the learning process to extract the fea-
tures. Figure 4.1 shows both flows for each approach used in this work: Traditional
Machine Learning (TML) and Deep Learning (DL).

Figure 4.1 - Illustrative sketch of traditional machine learning and deep learning flows.

Source: Barchi et al. (2020).

The huge amount of photometric astrophysical data available and the highly increas-
ing advancements on hardware and methods to perform automatic classifications has
been leveraging related publications (LAW et al., 2007; FREEMAN et al., 2013; KHAL-

IFA et al., 2017; HUERTAS-COMPANY et al., 2018; BARCHI et al., 2016; DIELEMAN et

al., 2015; KHAN et al., 2018; HUERTAS-COMPANY et al., 2015; SÁNCHEZ et al., 2018).
Highlight to Sánchez et al. (2018) who use questions and answers from Galaxy Zoo
2 for replicating the answers from the users, and provide morphology classification
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by T-Type in their final catalog.

The approach used in this paper is different from the one used in Sánchez et al.
(2018). Instead of using questions and answers from Galaxy Zoo 2, we use the classi-
fications and images themselves. Also, we revisit issues not touched upon in previous
studies dealing with morphological parameters (ABRAHAM et al., 1996; CONSELICE

et al., 2000; CONSELICE, 2003; LOTZ et al., 2004); namely, threshold dependence in
the use of the segmented image. We study the impact of that on the parameters
that ultimately will be used in the TML approach.

Although it is already a well-established observation that for perception tasks (which
galaxy morphology is) Deep Learning is likely to outperform machine learning mod-
els trained on hand engineered features (RUSSAKOVSKY et al., 2015), this subject is
in its infancy in galaxy morphology and such comparison of these two approaches
have never been presented in the same work in the literature. Also, deep learning
methods need huge amounts of data to learn from and huge computational resources
to make it effective. Deep learning models can be hard to tune and tame, and the
prediction time can take much longer than other models because of the complex-
ity (GOODFELLOW et al., 2016). The traditional machine learning approach is still
relevant.

4.2 Advances in non-parametric galaxy morphology

Methodologies for computing non-parametric morphological metrics have been pre-
sented by several authors (MORGAN; MAYALL, 1957; KENT, 1985; ABRAHAM et al.,
1996; TAKAMIYA, 1999; CONSELICE, 2003; LOTZ et al., 2004; FERRARI et al., 2015;
ROSA et al., 2018). In this section, we present CyMorph — a non-parametric galaxy
morphology system which determines Concentration (C), Asymmetry (A), Smooth-
ness (S), Entropy (H) and Gradient Pattern Analysis (GPA) metrics.

We perform image preprocessing techniques to ensure consistency and improve fea-
ture extraction. CyMorph achieves this goal in three major steps: producing the
galaxy stamp, removing secondary objects, and generating the segmented image. To
remove secondary objects inside the stamp we replace their pixels by the median
value of the isophotal level that cross that object.

Concentration is the only metric we calculate using the clean galaxy stamp since we
want the whole accumulated flux profile of the galaxy. For all other metrics, we use
the segmented image as input which we obtain by applying a mask upon the clean
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image. The mask is computed by a region growing algorithm (PEDRINI; SCHWARTZ,
2007). We summarize CyMorph metrics as follows:

a) Concentration is defined as C = log10(R1/R2), where R1 and R2 are the
outer and inner radii, respectively, enclosing some fraction of the total flux
(CONSELICE, 2003; LOTZ et al., 2004; FERRARI et al., 2015). We use an op-
timization process for setting up the best configuration parameters for Cy-
Morph. The best configuration by this method is: C = log10 (R75%/R35%).

b) Asymmetry is measured using the correlation between the original and
rotated image: A = 1 − s(I0, Iπ), where I0 and Iπ are the original and
the π-rotated images. The function s() is the Spearman’s rank correlation
coefficient (PRESS, 2005), which has been proved to be a stable and robust
correlation coefficient (SAUTTER, 2018).

c) Smoothness describes the flux dispersion of an image, namely how the gra-
dient varies over the entire image. This can be measured as the correlation
between the original image and its smoothed counterpart (ABRAHAM et al.,
1996; CONSELICE, 2003; FERRARI et al., 2015). We apply the Butterworth
filter for smoothing the images. This filter provides the advantage of a
continuous adaptive control of the smoothing degree applied to the image
— see Kaszynski and Piskorowski (2006), Pedrini and Schwartz (2007),
Sautter (2018) for more details. We use the the Spearman’s rank correla-
tion coefficient to compute smoothness, following the same reasoning as for
asymmetry. We define smoothness as S = 1−s(I0, Is), where I0 is the flux
intensity of the original image, and Is is the flux intensity of the smoothed
image.

d) Gradient Pattern Analysis (GPA) is a well-established method to estimate
the local gradient properties of a set of points, which is generally repre-
sented in a two-dimensional (2D) space (ROSA et al., 1999; RAMOS et al.,
2000; ROSA et al., 2003). We use the improved version of GPA developed
for galaxy morphology — see Rosa et al. (2018) and references therein for
more details.

e) In digital image processing, the entropy of information, H — Shannon
entropy Bishop (2006) — measures the distribution of pixel values in the
image. In galaxy morphology, we expect high values of H for clumpy galax-
ies because of their heterogeneous pixel distribution, and low H for smooth
galaxies — see Ferrari et al. (2015), Bishop (2006) for more details.
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For more specific details about how to compute each of these metrics, see Sautter
(2018) and references therein.

4.2.1 Geometric histogram separation (δGHS)

For a given sample of galaxies, CyMorph measures C, A, S, H and GPA and these
parameters depend on some quantities. Our main goal is to choose the best quan-
tities possible for reaching a maximum performance in classifying galaxies. Using
an independent morphological classification (from GZ1, e.g.), we have elliptical and
spiral distributions for each parameter. All we need is a simple and reliable method
to objectively assign a value for the separation between elliptical and spiral distri-
butions. Here, we measure the geometric distance between the distributions with
the GHS (Geometric Histogram Separation) algorithm — see[Sautter and Barchi
(2017), Rosa et al. (2018) for more details.

4.2.2 Optimizing morphological metrics configuration

CyMorph has configurable parameters that we have to fine tune for better distinction
between different morphological types. One specific configuration is the threshold
parameter used in Sextractor (BERTIN; ARNOUTS, 1996) to detect objects on an
image: DETECT_THRESH (hereafter dσ). Sextractor detects an object if a group
of connected pixels is above the background by a given dσ. Thus, we want to find
the minimum dσ value, sufficiently above the background limit, for which we do not
lose information when computing each metric. Most of the configurable parameters
are related to each morphological metric. It is important to stress these possibilities
to obtain the best performance out of CyMorph. Asymmetry only depends on dσ.
For the other metrics, we exhaustively explore the combinations of configurable
parameters: outer (R1) and inner (R2) radii for Concentration; control parameter
c of Butterworth Filter for Smoothness; modular (mtol) and phase tolerance (ptol)
for G2; and, number of bins β for Entropy. Table 4.1 summarizes parameters and
ranges explored. The optimization process may be approached in different ways.
One of them consists of optimizing all variables at once by maximizing a metric
which is output from the application of a local two-sample test (KIM et al., 2019). In
this work, we focus on a variable-by-variable optimization which not only enables
to select the best configuration and input metrics to TML methods but also leaves
to the same accuracy in morphology as that obtained in GZ1 (see Section 4.4).
In the optimization experiments reported here, we randomly select a sample with
1,000 ellipticals and 1,000 spiral galaxies. Figure 4.2 presents the results for all
optimization experiments. In each plot, all lines are dashed except the red one which
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contains the best configuration for a given metric. The y-axis has GHS separation
values (δGHS) in every panel. In the following Subsection, we interpret the results
displayed in Figure 4.2.

Table 4.1 - Parameter ranges explored in the optimization process. Asymmetry is ommited
since it depends only on dσ. Concentration(*) does not depend on dσ.

Sextractor C* S G2 H

0.1 ≤ dσ ≤ 5.0 0.55 ≤ R1 ≤ 0.80
0.20 ≤ R2 ≤ 0.45 0.2 ≤ c ≤ 0.8 0.00 ≤ mtol ≤ 0.20

0.01 ≤ ptol ≤ 0.04 100 ≤ β ≤ 250

Source: Barchi et al. (2020).
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Figure 4.2 - Optimization process for morphological metrics configuration.

Respective metrics’ plots from top left to bottom right: Concentration, Asymmetry,
Smoothness, Entropy, and GPA (modular tolerance and fine tuning). Red continuous
lines (not dashed) have the best configuration for the given parameter. See the explanation
for the experiments and best configuration results obtained in this Subsection 4.2.2.

Source: Barchi et al. (2020)
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4.2.3 Results on morphology

In this subsection, we compare the results obtained by computing the classic CAS
system (CONSELICE, 2003; LOTZ et al., 2004), which are presented in Figure 4.3 and
the optimal results obtained by CyMorph system, exhibited in (Figure 4.4). Con-
selice (2003), Lotz et al. (2004) estimate Concentration and Asymmetry without
significant differences among them. However, Smoothness is implemented in differ-
ent ways. We present Smoothness as in Lotz et al. (2004), which gives the most
consistent results. For each non-parametric morphological index, we display a bino-
mial distribution histogram with elliptical galaxies (in red) and spiral galaxies (in
blue). In each panel we also list the δGHS value.
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Figure 4.3 - Results on galaxy morphology using Classic CAS (CONSELICE, 2003; LOTZ et
al., 2004).

From top to bottom: Concentration, Asymmetry, Smoothness. Elliptical galaxies in red
and spiral galaxies in blue.

Source: Barchi et al. (2020).
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Figure 4.4 - Results on galaxy morphology using CyMorph.

Elliptical galaxies in red and spiral galaxies in blue.
Source: Barchi et al. (2020).

The classic CAS system has the best result with Concentration (δGHS = 0.79),
however, this is still lower than the lowest performance obtained by CyMorph met-
rics, which is Asymmetry with δGHS = 0.83 (see Figure 4.4). With this improve-
ment in CAS metrics within CyMorph (Smoothness, for instance, the best result:
δGHS = 0.92), and the adoption of Entropy (δGHS = 0.87) and Gradient Pattern
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Analysis (G2: δGHS = 0.90), we have satisfactory non-parametric morphology met-
rics to serve as input features to the Traditional Machine Learning algorithms. G2

and H, two of the best metrics by δGHS, have highly correlated results: the greater
the Entropy value, the more asymmetric gradient patters, and vice versa, lower
entropy values correspond to more symmetric gradient patters.

The reasons for the improvement upon classic metrics can be summarized as: (1)
the three-step preprocessing, (2) Butterworth filter to smooth the image (concern-
ing Smoothness metric), (3) usage of correlation coefficients for Asymmetry and
Smoothness, and (4) optimization process to better configure each metric.

4.3 Machine learning applied to galaxy morphology

CyMorph presents a consistent non-parametric morphological system. By employing
Machine Learning (ML) methods with CyMorph metrics as features, we can value
the best morphological information and obtain reliable and consistent classification
results in galaxy morphology. An alternative would be to test logistic regression and
other regression methods, which is beyond the scope of this paper. The five input
features for the learning process are the best morphological metrics (given by δGHS)
computed by CyMorph: C, A, S, G2 and H. We maintain the restriction related to
the area of the galaxies to build up different classification models: (1) K ≥ 5; (2)
K ≥ 10; and (3) K ≥ 20, i.e., the area of the galaxy is at least five (model 1),
ten (model 2) and twenty (model 3) times larger than the FWHM area for each
corresponding object, respectively.

We build up Decision Tree (DT), Support Vector Machine (SVM) and Multi-
layer Perceptron (MLP) models to classify galaxies considering different numbers of
classes. We use scikit-learn (PEDREGOSA et al., 2011) python library to perform
the experiments and procedures reported in this Section. We use Cross-Validation
(CV) to split the dataset in training-validation-testing to address the trade-off be-
tween bias and variance (MITCHELL, 1997; GÉRON, 2019). First, we split the dataset
in a 90/10 proportion for training and testing sets, respectively. CV is applied in
the 90% portion of the dataset.

Consistent performance validation metrics are crucial to guide the learning process
and to objectively measure the performance of each model. No metric is designed
to perform this task alone. We employ the Overall Accuracy (OA) as the figure of
merit to compare all the different models. Additionally, we employ other perfor-
mance metrics: Precision (P) and Recall (R) — see Mitchell (1997), Géron (2019),
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Goodfellow et al. (2016) for more details about OA, P, and R. For a further analy-
sis on the problem with two classes, we use the Receiver Operating Characteristic
(ROC) curve and the Area Under the ROC curve — AUC (BRADLEY, 1997).

4.4 Results on classification and discussion

4.4.1 Classifier’s performance by overall accuracy (OA)

As we have shown in previous sections, there are several parameters driving the
final classification and an appropriate figure of merit is needed to establish which
setup/method works best. In Tables 4.2 and 4.3, we present the Overall Accuracy
(OA) achieved by all the experiments carried-out in this work. The main goal here is
to distinguish between an Early-Type Galaxy (ETG), elliptical (E), and a Late-Type
Galaxy (LTG), spiral (S). In the case of TML, using the K ≥ 20 sample, all methods
reached over 98% of OA. In this training set, there are many more S galaxies (∼87%)
than E galaxies (∼13%). This difference in the number of examples between classes
is called class imbalance. We discuss class imbalance in Subsection 4.4.2. Despite of
the imbalance, we have at least 95% precision and 96% recall for E systems. Since
most of the training set is constituted by S galaxies, it is not surprising that we reach
∼99% precision and recall, establishing a model with ∼99% OA for this dataset.

Overall, CNN is the best approach to establish morphological classification of galax-
ies. We can safely assert that starting from the classes E and S from Galaxy Zoo 1,
we can reproduce the human eye classification with all methods and samples (OA
> 94.5%). When trying to distinguish among 11 classes, the problem is much more
complex, as it would be for the human eye, and the best result is OA ∼ 65.2% using
CNN with K ≥ 20. However, if we use only three classes we find an OA > 80% with
CNN, for all samples, namely elliptical (E), unbarred (S) and barred spiral (SB)
galaxies.
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4.4.2 Class imbalance in galaxy morphology

The class imbalance problem is one of the top in data mining, data science, and
pattern recognition (YANG; WU, 2006). It arises when at least one of the classes has
considerably fewer examples than the other(s). This problem is inherent in galaxy
morphology, as the number of examples among classes will never be equal. Applying
the restriction of K ≥ 20 in the dataset from Galaxy Zoo 1 (LINTOTT et al., 2008;
LINTOTT et al., 2011), for example, there are ∼ 87% of galaxies classified as spiral and
only ∼13% as elliptical. Balancing the dataset generally improves the performance
for minority classes (since we increase the number of examples of such classes for
training), and thus increases precision and recall for these classes (GOODFELLOW

et al., 2016). The first plot of Figure 4.5 shows the number of examples from three
classes (E, S, SB) in Galaxy Zoo 2 - SDSS DR7 in different bins of K. The bin size is
0.5 and K varies from 5 to 20. SB is the minority class with the number of galaxies
approximately constant — the bar component is a feature identified in all resolutions
explored. The number of S galaxies increases until K = 10, approximately where
the numbers of S and E galaxies are equal.

We investigate the impact of the imbalance class problem on the morphological
classification testing four different datasets: imbalanced, undersampling, oversam-
pling and Synthetic Minority Over-sampling Technique (SMOTE). The imbalanced
dataset is the original query. In the undersampling dataset all classes have the same
number of examples as SB originally have. For oversampling, we sample the minority
class set with replacement. Using SMOTE, we synthetically generate more examples
for SB and we consider the smaller of either the number of E galaxies or double the
number of SB galaxies to be the number of examples for each class (PEDREGOSA et

al., 2011).
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Figure 4.5 - Panel about class imbalance in galaxy morphology.

The first plot shows number of elliptical (E), unbarred spiral (S) and barred spiral (SB)
galaxies from GZ2 classification varying K. The other four plots are related to the class
imbalance problem considering three classes: E (in redder colours), S and SB — in bluer
colours. The black lines indicate the Overall Accuracy (OA). For each of the three classes,
continuos lines represent Precision (P) and the dashed lines indicate Recall (R), considering
the original imbalanced dataset (panel b), the dataset generated with SMOTE (panel c),
the undersampled balanced dataset (panel d) and the oversampled balanced dataset (panel
e). Plots from top left to bottom right: (a) Number of examples as a function of K, for
different classes; (b) Imbalanced (original dataset); (c) Balanced — SMOTE; (d) Balanced
— undersampling; (e) Balanced — oversampling.

Source: Barchi et al. (2020).
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From the second to the last plots of Figure 4.5, we exhibit OA, P, and R for all experi-
ments exploring the imbalance class problem considering the three classes described
above. The minority class (SB) is the one more affected by imbalanced datasets,
with low P (51%) and R (69%), in average. By employing balancing techniques, we
improve to P (76%) and R (79%) for the minority class, thus reducing the misclas-
sification for the SB class. All balancing strategies have similar performances. In all
strategies, there is a ∆OA ∼ 2% when K varies from 5 to 20. From panels (b) to (e)
of Figure 4.5, we notice that OA weakly increases with K, a trend that would imply
that restricting the sample to bigger objects reduces classification problems, but the
impact is not very significant. Thus, our model built up with the sample restricted
by K ≥ 5 can safely be used to classify an unknown dataset as it classifies smaller
objects with a similar OA compared to bigger objects (such as K ≥ 20).

In the remaining of this paper we continue analysing three methods: Traditional
Machine Learning (TML) and Deep Learning (DL) approaches using imbalanced
dataset for discriminating between two classes; and DL using SMOTE dataset to
classify into three classes. For the TML approach, we choose the Decision Tree (DT)
algorithm as it is the simplest solution (compared to Support Vector Machine and
Artificial Neural Network) and the results have ∆OA ∼ 0 among them (Tables 4.2
and tab:resultsGZ2) — Occam’s razor (BLUMER et al., 1987). For three classes, we
select the model trained with SMOTE dataset because it is in the middle ground
between under and overbalancing techniques, and the results using different balanced
datasets are equivalent (Figure 4.5). These are the selected classifiers to build up
the catalog — see details about the final catalog in 4.6.

4.4.3 Classifier’s performance by ROC curve and AUC

One of the most important issues in machine learning is performance measurement.
A very popular method is the ROC (Receiver Operating Characteristics) curve and
the Area Under the ROC curve — AUC (BRADLEY, 1997). In our particular case,
ROC is the probability curve and AUC represents a measure of separability. It
indicates how a model is capable of distinguishing between classes. Higher the AUC,
better the model is at predicting E’s as E’s and S’s as S’s. Based on data presented in
Tables 4.2 and 4.3, Figure 4.6 displays the ROC curves, the histograms with ground
truth probabilities given by the models using different datasets as well. Also, deeper
into the three classes problem, Figure 4.6 exhibit histograms with ground truth
probabilities given by the models for each class.

49



Figure 4.6 - Performance metrics plots.

The first row presents ROC Curve and the Area Under the ROC Curve (AUC — area)
for each approach and different dataset restrictions considering the two classes problem
(panels a and b). Such plots consider the ground truth and predicted labels. The dotted
black line represents a random guess. The second row shows histograms with ground truth
probabilities given by the models for each class (panels c, d, e). The third row presents
histograms with ground truth probabilities given by the models for each class in regard
to the three classes problem (panels f, g, h). Plots from top left to bottom right: (a) ROC
curves - TML - 2 classes; (b) ROC curves - DL - 2 classes; (c) Truth Probability - TML
- two classes; (d) Truth Probability - DL - two classes; (e) Truth Probability - DL - three
classes; (f) Truth Probability - DL - three classes - K ≥ 5; (g) Truth Probability - DL -
three classes - K ≥ 10;(h) Truth Probability - DL - three classes - K ≥ 20.

Source: Barchi et al. (2020).

ROC curves are typically used in binary classification to study the output of a clas-
sifier (BRADLEY, 1997; GÉRON, 2019). Figure 4.6 show ROC curves considering the
ground truth and predicted labels (no probabilities). These ROC curves and area
values confirm what Table 4.2 shows with OA: all models have high standards for
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acting upon the two classes problem with AUC > 0.90; restricting to the Deep Learn-
ing (DL) approach we improve it to AUC > 0.97. By experimenting with different
dataset restrictions and approaches we can draw some interesting conclusions. The
restriction on the dataset has more impact on TML approach than using DL. The
ROC curves are closer to each other on the second plot of Figure 4.6 (∆AUC = 0.014)
when compared to the first one (∆AUC = 0.075). One example is to compare TML
using K ≥ 20 and DL using K ≥ 10 (∆OA ∼ 0.5% and ∆AUC ∼ 0 among them).
Using smaller objects, DL can achieve a very similar performance as TML using
bigger objects.

The output probabilities given by these models with regard to the ground truth from
Galaxy Zoo are explored in the two bottom rows of Figure 4.6). These histograms
do not distinguish each class. We consider the output probability from each model
for the ground truth of each galaxy. Again, we confirm that: (1) both approaches
have a very high performance considering two classes — very high concentration of
frequency density for truth probability > 0.9, and (2) DL (fourth plot of Figure 4.6)
improves the results when comparing to TML (third plot) by reducing the frequency
density with low truth probability values. The impact of the dataset restriction
continues as well: the higher we set the threshold for K, the denser the frequency
for truth probability > 0.9.

Although the fifth plot of Figure 4.6 also presents a high frequency density for truth
probability > 0.9, it is natural to see a higher frequency density for lower truth
probabilities when comparing to the first and second plots, since this problem is
more complex when having one more class to consider. Exploring further, the bottom
row of Figure 4.6 shows different dataset restrictions employed to train models on
the three classes problem. Once more, we can see clearly the impact of using bigger
(but less) objects: the frequency density for lower truth probabilities decreases from
left to right and gets even lower in the last plot. Non-barred spiral galaxies does not
have a very high concentration for truth probability > 0.9. However, the other two
classes have a high frequency density for truth probability > 0.9.

4.4.4 Learning about differences between TML and DL from misclassi-
fications

The two approaches used in this work, Traditional Machine Learning — TML; and
Deep Learning — DL, achieve almost the ideal performance considering the Overall
Accuracy (OA ∼ 99%) for the two classes problem with the sample restricted by
K ≥ 20. However, it is still worthwhile to further investigate what causes misclas-
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sification even at a low percentage. We remind the reader that misclassification is
always established using Galaxy Zoo 1 as the ground truth. Figure 4.7 presents some
examples of misclassification using TML. In the first and the last image we see that
the preprocessing phase was not able to properly clean the image or discard such
examples as bright objects remain close to the central galaxy. The other cases reflect
the variance in the parameters used by Decision Tree and the natural uncertainty
of the process. In Figure 4.8 we display some misclassified galaxies by DL. Here,
the absence of preprocessing allows galaxies to be too close to the border (second
and fourth images) and as before the other examples are simple misclassifications
imposed by the method itself, namely the galaxies are easy to be misclassified — a
bright central structure which gradually fades away to the outer part of the galaxy,
which, in a more detailed classification (visual), could be considered as a S0 galaxy.
We should stress that this misclassification is very low. Using a sample of 6,763
galaxies selected from the grand total of 58,030 galaxies listed in Table 1 ( K ≥ 20,
from GZ1), not used in the training process, TML misclassifies only 72 galaxies (1%)
while DL gets 0.5% misclassified galaxies. Also, we noticed that none of the galaxies
misclassified by TML are in the list of misclassifications by DL. These results seem
innocuous, however they remind us of how important is to treat objects close to the
border and those near a very bright source as an specific set since this will always be
present in any sample. It also reinforces how important it is that we treat indepen-
dent methodologies along the process of establishing a final morphology attached
to an object. The examples presented here show how visual inspection is still an
important source of learning about morphology (the problem is not the eye but the
quality of the image placed in front of you), although inefficient for large catalogs
currently available and the ones coming up in the near future.
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Figure 4.7 - Sample of misclassified galaxies among traditional machine learning approach
and GZ1.

Sample of misclassified galaxies comparing the classification of Galaxy Zoo 1 (GZ1) and
our Traditional Machine Learning (TML) approach trained with the sample restricted by
K ≥ 20. Under each galaxy image, we present the object ID number from SDSS-DR7
and the classification given by GZ1 and TML (0: Elliptical; 1: Spiral). Top row: galaxies
classified as elliptical by GZ1 and as spiral by our TML approach. Bottom row: galaxies
classified as spiral by GZ1 and as elliptical by our TML approach.

Source: Barchi et al. (2020).

Figure 4.8 - Sample of misclassified galaxies among our deep learning approach and GZ2.

Sample of misclassified galaxies comparing the classification of Galaxy Zoo 1 (GZ1) and
our Deep Learning (DL) approach trained with the sample restricted by K ≥ 20. Under
each galaxy image, we present the object ID number from SDSS-DR7 and the classification
given by GZ1 and DL (0: Elliptical; 1: Spiral). Top row: galaxies classified as elliptical by
GZ1 and as spiral by our DL approach. Bottom row: galaxies classified as spiral by GZ1
and as elliptical by our DL approach.

Source: Barchi et al. (2020).
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4.4.5 Validating classification with spectroscopic data

The performance analysis presented in the previous section reflects our ability to
establish a morphological classification using a given method among several that
might in principle works properly, and that’s why finding a robust figure of merit is
of paramount importance. However, an independent validation is even more essen-
tial when presenting a catalog with reliable morphology, namely, we have to show
that our new classes recover well know relations. Figure 4.9 presents histograms of
Age, stellar mass (Mstellar), Metallicity ([Z/H]) and central velocity dispersion (σ) —
for more details on how these parameters were obtained and errors, see DE CAR-
VALHO et al. (2017). In every panel we show the distribution for ellipticals (in
red) and spirals (in blue). Also, we display the parameter δGHS which measures how
distant these two distributions are (see Section 3.8). This validation procedure was
done using only galaxies from GZ1 classified as "Undefined". The classification here
is provided by DT (TML). We remind an important characteristic of the samples:
K ≥ 5, which has more but smaller objects; K ≥ 10; and K ≥ 20, which has less
but bigger objects. Although we have a bigger dataset with K ≥ 5, the presence
of smaller objects impairs our classification. The degradation of the quality of our
classification as we go to smaller galaxies in evident from Figure 4.9 where δGHS de-
creases for smaller K for all quantities except for Age where only a small fluctuation
is noticed.

The number of galaxies for each histogram from Figure 4.9 is as follows:

a) K ≥ 5: 13,373 ellipticals; 87,095 spirals; Total: 100,468.

b) K ≥ 10: 9,030 ellipticals; 59,096 spirals; Total: 68,126.

c) K ≥ 20: 6,390 ellipticals; 24,988 spirals; Total: 31,378.

Figure 4.9 shows how our classification recovers well known properties of galaxies like
in the first row we see that ellipticals have ages peaked around 9 Gyr while spirals are
younger and the distributions is more spread, probably due to the contamination
by S0 galaxies. The second row exhibits the stellar mass distribution and again
ellipticals have larger Mstellar compared to spirals with a difference of ∼0.9 dex, peak
to peak. In the third row it is also evident the difference in metallicity (∼0.4 dex),
ellipticals are more metal rich than spirals, specially for larger systems. Finally,
the distributions of central velocity dispersion show larger values for ellipticals and
for spirals we even see a bimodality which reflects the disk to bulge ratio in this
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morphological type. These distributions attest credibility to our final classification
using DT (TML).

Figure 4.9 - Spectroscopic validation.

Spectroscopic validation for the “Undefined” galaxies from Galaxy Zoo 1 which here are
classified by our Machine Learning approach using Decision Tree. Elliptical galaxies are
displayed in red and spirals in blue. In each panel we give the geometric histogram sepa-
ration, δGHS.

Source: Barchi et al. (2020).
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4.4.6 Case study: star formation acceleration and morphologies

In this section we describe an application of the method presented here to study
the relation between morphologies and galaxy evolution. More specifically, we use
the method to classify a sample of galaxies between disks and spirals and measure
quenching timescales for each group separately.

It has been established that galaxies are show a bimodal distribution in colors, with
two distinct peaks with young (blue) and old (red) stellar populations — e.g., Baldry
et al. (2004), Wyder et al. (2007) — and a minimum in the distribution commonly
known as the green valley. Although it is generally accepted that galaxies move from
blue to red, the physical processes associated with this transition are not completely
understood, i.e., we do not know which phenomena are responsible for accelerating
the decline in star formation rates, whether a single one or a combination of effects.

Using galaxy colours and stellar population synthesis models, Schawinski et al.
(2014) has shown that galaxy quenching can be divided into two distinct processes
depending on morphology: elliptical galaxies quench faster, probably through merger
activity. Nogueira-Cavalcante et al. (2018) have reached a similar conclusion with
more precise measurements from spectral indices (the 4000Å break in the spectral
continuum and the equivalent width of the Hδ absorption line). Nevertheless, both
works rely on assuming specific exponentially declining star-formation histories.

To circumvent this limitation, Martin et al. (2017) have developed a method us-
ing the same spectral indices but with no restraints regarding a parametric star
formation history. The authors have shown, by comparisons with results from cos-
mological simulations, that one could infer the instantaneous time derivative of the
star-formation rates, denominated the star-formation acceleration. Formally, this is
defined as

SFA ≡ d

dt
(NUV− r), (4.1)

with higher values representing stronger quenching.

In Sá-Freitas et al. (in prep) we apply this methodology to a sample of galaxies
out to z = 0.120, divided by morphology. We only consider galaxies brighter than
Mr = −20.4 for the sake of sample completeness. When compared to previous
works, we are able to measure SFA in galaxies according to morphology for all
objects, regardless of colour and assumed quenching histories. In that sense, the
learning techniques presented here are fundamental to our analysis: by classifying a
much larger number of galaxies (almost 30,000 galaxies in total), we are able to bin
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our sample by colours and draw conclusions based on smaller subsamples of objects
according to their morphologies.

Figure 4.10 - Star formation acceleration (SFA) as a function of NUV-r colours.

Higher SFA values represent faster quenching, while more negative values indicate strong
bursts of star formation, with the green line showing no current variation in SFR. Data
are binned in colour, with blue triangles for spiral galaxies and red circles for ellipticals.
Error bars show the standard deviation within each bin. Contours show the number of
galaxies in the diagram as percentage of the total count for each morphological type.
Red galaxies are statistically indistinguishable, while ellipticals in the green valley are
quenching significantly faster than spirals. At the blue end, the difference is not large
enough for this sample to draw any conclusions.

Source: Barchi et al. (2020).

In Figure 4.10 we show our results: as expected, the bluest galaxies are currently un-
dergoing strong bursts, while red galaxies are typically quenching. More importantly,
we detect a significant distinction between SFA values for spirals and ellipticals in
the green valley. Elliptical galaxies are quenching more strongly, while spirals appear
to be moving gradually towards redder colours. We perform Kolmogorov-Smirnoff
and Anderson-Darling tests to test for the null hypothesis that the distributions for
spirals and ellipticals are drawn from the same parent sample in each bin, ruling this
out (p < 0.05) only for 2 . (NUV − r) . 5. We therefore conclude that this is an
effect distinguishable primarily within the green valley, which means that the star

57



formation histories of spirals and ellipticals are only significantly different during
their transition to the red sequence.

In the near future, we expect the large upcoming imaging and spectroscopic surveys
such as Euclid and DESI to increase our samples significantly, and deep learning
techniques will yield reliable morphological classification of millions of objects. This
will in turn allow us to further divide our galaxy sample, correlating morphologies
with other phenomena such as AGN activity and environment in order to narrow
our studies to the specific impact of each on the star formation histories of spiral
and elliptical galaxies.

4.5 Comparison to other available catalogs

To attest the reliability of the morphological classification we provide in this work
(see 4.6 for details about our catalog), it is of paramount importance to do exter-
nal comparisons. There are currently two reliable catalogs that serve this purpose.
First, Nair and Abraham (2010) provide T-Type information for 14,034 galaxies vi-
sually classified by an expert astronomer. Second, Sánchez et al. (2018) lists 670,722
galaxies also with T-Type available.

Figure 4.11 presents the histogram of T-Type provided by Nair and Abraham (2010)
for the elliptical and spirals classes from our work. In general, the distributions are
as expected - ellipticals peak around T-Type = -5 and spirals around T-Type = 5. In
all three cases we notice an extension of the histogram for ellipticals towards larger
T-Types, like a secondary peak around T-Type = 1, which may be associated to S0
galaxies. In the second plot (top right) of Figure 4.11, we note an improvement in
using DL over TML by observing the decrease of the fraction of elliptical galaxies
and the corresponding increase of spiral galaxies with T-Type > 0. Such behavior is
also there in the last plot (bottom center) of Figure 4.11, considering three classes,
with elliptical galaxies mostly with T-Type ≤ 0 and spirals (S and SB) primarily
with T-Type > 0. The general comparison to the classification obtained by Nair and
Abraham (2010) exhibit a 87% agreement.

Figure 4.12, analogous to Figure 4.11, shows how our classification performs in
comparison with that provided by Sánchez et al. (2018). In all panels, we see a
striking different wrt the comparison with Nair and Abraham (2010) - a considerable
amount of spirals around T-Type ∼ -2. Along with T-Type, Sánchez et al. (2018)
provide also the probability of each galaxy being S0: PS0. They define elliptical
galaxies as those with T-Type ≤ 0 and PS0 < 0.5; S0 galaxies have T-Type ≤ 0
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and PS0 > 0.5; and spiral galaxies have T-Type > 0. We plot the elliptical galaxies,
following their definition, as a filled histogram in orange, and this shows a higher
peak at T-Type∼ -2 wrt the distribution of the ellipticals with no T-Type restriction.
Therefore, restricting the definition we get much higher concordance, namely higher
fraction of systems that we classify as ellipticals, which translates into a higher peak
around T-Type ∼ -2. Not only this, but as we can see from panel (c), using the
three classes morphologies, the fraction of ellipticals with no T-Type restriction gets
lower and the barred spirals appear more prominently around T-Type ∼ 4. In the
same way we did when comparing to Nair and Abraham (2010), here we find a 77%
agreement when comparing only elliptical and spiral galaxies.

Figure 4.11 - Histograms presenting classifications for Nair and Abraham (2010)’s sample.

Histograms (normalized by area) presenting classifications for Nair and Abraham (2010)’s
sample by T-Type using Traditional Machine Learning classification with two classes
(panel a) and classification with two (panel b) and three classes (panel c) from deep
CNN.

Source: Barchi et al. (2020).
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Figure 4.12 - Histograms presenting classifications for Sánchez et al. (2018) sample.

Histograms presenting classifications for Sánchez et al. (2018) sample by T-Type using
Traditional Machine Learning classification with two classes (panel a), and, classification
with two (panel b) and three classes (panel c) from deep CNN (normalized by area).

Source: Barchi et al. (2020).

A final note on the comparison with Sánchez et al. (2018) is related to the S0 class,
in which we see a prominent bulge and a disk. They classify 230,217 as S0 and
27.96% of these systems (64,380) have K < 5, i.e., ∼ 28% of galaxies classified as S0
are very small objects. Visually, it is easy to misclassify galaxies with predominant,
oval and bright structure; and the task becomes even more difficult if the objects are
small. Figure 4.13 shows a sample of galaxies with -2.25 ≤ T-Type ≤ -2 according
to Sánchez et al. (2018) that we classify as spiral galaxies. As our classifiers do not
discriminate the S0 morphology it is not surprising that we classify as spiral if the
galaxy has a prominent disk.

Finally, we note that since Nair and Abraham (2010) and Sánchez et al. (2018)
present their classification as T-Type, a proper comparison is difficult to make.
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However, the agreement displayed in Figures 4.11 and 4.12, together with the global
concordance when comparing elliptical and spiral galaxies, give us confidence that
the classifications obtained here in this work are consistent and robust.

Figure 4.13 - Sample classified as spiral galaxies by our classifier with -2.25 ≤ T-Type ≤
-2 by Sánchez et al. (2018).

The object ID number from SDSS-DR7 is presented under each galaxy image.
Source: Barchi et al. (2020).

4.6 Final catalog (paper appendix)

The final product of this work is a catalog with morphological information for
670,560 galaxies (available at this public link 2. The input data comes from SDSS-
DR7 and the sample is restricted by the redshift range 0.03 < z < 0.1, Petrosian
magnitude in r-band brighter than 17.78, and |b| ≥ 30o. We provide morphological
classification using TML and DL approaches for distinguishing elliptical (0) from
spiral (1) galaxies. Furthermore, using DL approach, we release classification con-
sidering three classes: ellipticals (0), unbarred spirals (1) and barred spirals (2).
For DL classification, we exhibit the classes ordered by probability and respective
confidence percentages. We provide our best morphological non-parametric parame-

2Full link for the final catalog: https://www.sciencedirect.com/science/article/pii/
S2213133719300757?via%3Dihub#ec-research-data).
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ters as well: Concentration (C), Asymmetry (A), Smoothness (S), Gradient Pattern
Analysis parameter (G2) and Entropy (H). The columns we provide are: the value of
the parameter K, CyMorph metrics (5 columns), CyMorph Error, TML classifica-
tion considering two classes, DL classes considering two classes and their respective
percentages (4 columns), DL classes considering 3 classes, and their respective per-
centages (6 columns). In detail:

a) K is the area of the galaxy’s Petrosian ellipse divided by the area of the
Full Width at Half Maximum (FWHM).

b) C, A, S, G2 and H are the non-parametric morphological parameters from
the CyMorph system (see Section 4.2);

c) Error contains the Error flag after processing CyMorph;

d) ML2classes is the classification obtained with the TML approach, using
CyMorph and Decision Tree to separate galaxies into elliptical and spiral
galaxies. Here, we maintain the restriction about K: galaxies with 5 ≤
K < 10 are classified by the model built up with the sample with K ≥ 5
restriction; galaxies with 10 ≤ K < 20 are classified by the model built
up with the sample with K ≥ 10 restriction; galaxies with K ≥ 20 are
classified by the model built up with the sample with K ≥ 20 restriction;
galaxies with K < 5 are not classified.

e) CNN2classes1stClass is the class with the highest probability consider-
ing the two classes problem. Analogously for CNN2classes2ndClass,
and for three classes classification with CNN3classes1stClass,
CNN3classes2ndClass and CNN3classes3rdClass.

f) CNN2classes1stClassPerc is the probabibility percentage of the 1st class
in the two classes problem. Analogously for CNN2classes2ndClassPerc,
and for three classes classification with CNN3classes1stClassPerc,
CNN3classes2ndClassPerc and CNN3classes3rdClassPerc.

Both classifications for two classes problems are performed by models trained with
imbalanced datasets. For the 3 classes separation, we use the model trained with
the SMOTE dataset. For classifications provided by CNN, we use models trained
with K ≥ 5 dataset. On the one hand, it is important to remember that TML does
not classify galaxies with some problem detected by CyMorph. On the other hand,
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DL acts directly upon images and has no error detection. This catalog represents
a significant improvement for extragalactic studies related to galaxy morphologies.
The Galaxy Zoo project (LINTOTT et al., 2008; LINTOTT et al., 2011; WILLETT et

al., 2013) is a great success in offering large numbers of galaxies with reliable mor-
phological classification. Nevertheless, GZ does not provide morphology information
for a significant fraction of galaxies. Our catalog complement such effort. We show
in Subsection 4.4.6 that such classification is especially relevant in sparsely inhab-
ited areas of the colour-magnitude diagram, i.e. red spirals and blue ellipticals, for
which the lack of objects renders the measurement imprecise. In Figure 4.14 we ex-
hibit some typical examples of each class, where we can see the high quality of the
classification for large objects (K ≥ 10).
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Figure 4.14 - Sample of galaxies classified by our deep learning approach.

A sample of galaxies classified here in this work using Deep Learning, Galaxy Zoo 2 as
supervision (3 classes problem) from K ≥ 10 dataset. Elliptical galaxies (two top rows),
unbarred spirals (two middle rows), and barred spirals (two bottom rows).

Source: Barchi et al. (2020).
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5 GENERAL DISCUSSION

The discussion for machine and deep learning applied to galaxy morphology is exten-
sively performed in Subsection 4.4 and summarized in Subsection 6.1. The following
Subsection focuses on computational aspects of this specific work.

5.1 Computational aspects

From a practical perspective, this section provides relevant information on hardware,
software and processing time for future studies with similar approach. We address
technical details on CyMorph, TML, DL and data.

In Section 4.2, we present CyMorph, a non-parametric galaxy morphological system
written in Cython. Cython is an extension from python which allows explicit type
declarations and its code is directly compiled to C. Cython has the high-level aspect
from python and treats the large overhead for numerical loops from python by
interacting natively with C (BEHNEL et al., 2011).

CyMorph has a configuration file to specify all details before run. In this file, it is
possible to edit the path to the images of fields of view of the sky and stamps; whether
to delete image files after processing or not; whether the image to be processed is
already cut in the form of stamp or not; whether all metrics except concentration
are supposed to act upon the segmented image or not; dimensions of the stamps in
function of the Petrosian Radius (Rp); whether to save or not the images generated in
intermediate steps (clean, smoothed and rotated images, for example); which metrics
to process; and the desired configuration for each metric – the optimal configuration
described in this work is set to be the default. If the field of view of a desired galaxy
is not saved in disk, CyMorph also downloads the field of view from Sloan Digital
Sky Survey Data Release 7 (SDSS-DR7) database before preprocessing.

When working with galaxy morphology on astrophysical images, we deal with fields
of view of the sky and galaxy stamps. A typical field of view from SDSS DR7 has
5.9MB. One average galaxy stamp has approximately 21KB. Considering a common
CyMorph run which saves the original stamp (raw cut from the field of view), clean
stamp (after cleaning other objects) and a segmented stamp, we need ∼63KB of
storage for each galaxy. For the final catalog of this work, for example, we have
670.729× 3× 21KB ∼ 39.7GB just for the stamps.

There is a branch in Computer Science for studying the performance of algorithms
by mathematical analysis called Analysis of Algorithms. The most common notation
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for measuring the execution of an algorithm is the Big-O (O). Any function whose
magnitude is upper-bounded by c× f(n) (where c is a constant and n is the input
size) for all sufficiently large n is O(f(n)) (KNUTH; GREENE, 1999). Big-O is a
convenient way to express the worst-case scenario for a given algorithm.

All tasks with high computational cost of CyMorph are O(n2) because they operate
upon an image. Preprocessing, each step to calculate the concentration, asymmetry,
smoothness, entropy and Gradient Pattern Analysis (G2) are O(n2). We do not
discuss the Big-O for Sextractor, Machine and Deep Learning algorithms in details
since we are using well-stablished packages and frameworks for such methodologies.
For all approaches presented in this work, we discuss processing time and computer
architecture required following in this section.

Since the goal is to compute the same metrics upon all galaxies from the sample,
the correct approach is to parallelize the execution with regard to data. CyMorph
uses Open MPI (GABRIEL et al., 2004) and mpi4py (DALCÍN et al., 2005) to perform
single program, multiple data (SPMD) parallelism. The list of galaxies is distributed
equally among all processes. Every process has its own output file. When all galaxies
are processed, the main process concatenates the output files from all the children
processes to produce the final result.

We describe here the hardware used to process CyMorph on different samples. We
use DELL Precision Tower with 64 GB of RAM and 8 CPU cores for smaller samples
(< 200.000 objects). For a sample with ∼100.000 objects, CyMorph takes ∼1 day, 7
hours and 20 minutes to process in this machine with 16 parallel processes. We use
Xeon Phi Knights Landing with 68 available CPU cores and 512 GB of RAM for
medium samples (∼240.000 objects). With 40 parallel processess, CyMorph takes
∼3 days and 6 hours to process this sample in this machine. For the biggest sample
we analyse in this work, we use the Helios Cluster (located at the building of At-
mospheric and Space Sciences, in National Institute for Space Research — INPE)
which have 40 CPU units and 64 GB of RAM. CyMorph takes ∼9 days and 1 hour
to process this sample with 20 parallel processes in this machine.

We perform the TML experiments with scikit-learn (PEDREGOSA et al., 2011)
python library using the DELL Precision Tower machine described above. Generally,
it takes seconds to build up the classification model and classify galaxies. Considering
the ∼240.000 objects sample, it takes ∼3 seconds to build up the model and ∼2
seconds to classify.

66



For DL experiments, we use NVIDIA DIGITS 6.1.1 (YEAGER et al., 2015) and Caffe
0.17 (JIA et al., 2014) as frameworks to build up the dataset, train the networks and
classify. Our input images have 256x256 (applying stretch, if needed). DL run at
an NVIDIA DGX-1 machine with 40 CPU units, 512 GB of RAM and 8 Graphical
Processing Units (GPU) TESLA P100 with 16 GB of memory (located at Federal
Fluminense University, Brazil). Each training process uses 2 TESLA P100 GPU.
For the sample with ∼240.000, it takes ∼2 hours and 44 minutes to build up the
classification model and ∼24 minutes to classify.
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6 CONCLUSION

6.1 Summary

With the new photometric surveys coming up, in several bands and with varying
depth, it is of paramount importance to have the proper machinery for morphological
classification, which is one of the first elements to create a reliable galaxy catalog,
from which we can select clusters of galaxies and study the large scale structure of
the universe. Here, we present models and methodologies to achieve these goals. We
investigate the limits of applicability of TML and DL, in the supervised mode and
compare their performances. We revisit the non-parametric methodology using C, A,
S, H and G2 and study some details ignored in previous works. Also, we examine how
different methods are sensitive to the size of the galaxies, here identified by the ratio
between the object’s area and the PSF area. Finally, we remind the readers again
of the importance of comparing TML with DL, since they are radically different
approaches that in principle should result in similar classes. In the following, we
summarize the main contributions of this paper:

a) We investigated how parameters involved in the TML (S,A,H, and G2)
depend on the threshold used to obtain the segmented image. Although
this seems a minor detail, it has proven to be an important ingredient in
improving the TML performance, since the separation between ellipticals
and spirals, δGHS, is maximized according to the threshold. Comparison
with the traditional CAS system shows a considerable improvement in
distinguishing ellipticals from spirals, namely, for CAS (δGHS = 0.79, 0.50,
0.21 for C, A and S respectively), while in our modified CAS we have δGHS

= 0.84, 0.83, 0.92. Besides, the new parameters H and G2 have their δGHS

values very high (0.87 and 0.90, respectively) attesting their usefulness
in galaxy morphology analysis. We list all these parameters in our main
catalog with 670,560 galaxies.

b) One way of testing the quality of our morphological classification (based
on photometric data) is to compare with independent classes established
with different data (spectroscopy). We use only galaxies from Galaxy Zoo
1 classified as ‘Undefined’ and applied our Decision Tree with the tradi-
tional machine learning approach. The result is presented in Figure 4.9
where we see an excellent performance of our classes in distinguishing the
stellar population properties of ellipticals and spirals. Ellipticals have ages
peaked around 9 Gyr while spirals are younger and the distribution is more
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spread. Ellipticals have larger Mstellar compared to spirals with a difference
of ∼0.9 dex. The difference in metallicity (∼0.4 dex) between ellipticals
and spirals is noticeable, specially for larger systems. Also, ellipticals show
larger values of central velocity dispersion show larger values for ellipticals
compared to spirals, for which we even see a bimodality reflecting the disk
to bulge ratio variation in this morphological type.

c) We present a preliminary result on SFA which study was always hampered
by the lack of reliable morphological classification for a sizeable sample.
Our catalog provides the necessary input data for such analysis. We show
that the bluest galaxies are currently experiencing strong bursts while red
galaxies are quenching. Also, we present for the first time a significant
distinction between SFA values for spirals and ellipticals in the green valley.
We find that the star formation histories of spirals and ellipticals are only
significantly different during their transition to the red sequence. A full
analysis of this topic and consequences for galaxy evolution is presented in
Sá-Freitas et al. (in prep).

d) We use a deep convolutional neural network (CNN) - GoogLeNet Inception,
to obtain morphological classifications for galaxies for all galaxies in the
main catalog under study here. With the twenty-two layer network and
imbalanced datasets, the results obtained considering two classes are very
consistent (OA ≥ 98.7%) and for the three classes problem they are still
good, considering the quality of the data (OA ∼ 82%). Also, in comparison
with TML, DL outperforms by ∆OA ∼ 4% and ∆AUC ∼ 0.07 for galaxies
with K≥ 5.

e) We make public a complete catalog for 670,560 galaxies, in the redshift
range 0.03 < z < 0.1, Petrosian magnitude in r-band brighter than 17.78,
and |b| ≥ 30o. The input data comes from SDSS-DR7. We provide mor-
phological classification using TML and DL, together with all parameters
measured with our new non-parametric method (see 4.6 for catalog de-
tails). We append classifications (T-Type) from Nair and Abraham (2010)
and Sánchez et al. (2018) whenever available.

6.2 Concluding remarks

In the big data era, it is of paramount importance to have the expertise to explore
different computational approaches and systems to attack each specific problem.
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The main paper of this research presented in Chapter 4 provides the best results we
obtained in a catalog with morphological information for almost 700.000 galaxies.
Here, I present concluding remarks on the hypotheses presented in Introduction
(Chapter 1):

a) Hypothesis 1: It is hypothesized that TML and DL approaches can reli-
ably perform galaxy morphology classification, considering the separation
between ETGs and LTGs. In all of our samples, both strategies have over
94.5% Overall Accuracy (OA) when distinguishing elliptical from spiral
galaxies — 99% OA in average when using DL models, i.e., we can imitate
classification provided by the human eye. Thus, our data, methodologies
and experiments support this hypothesis.

b) Hypothesis 2: DL achieves higher standards of performance than TML
for visual classification, however, TML has a similar performance (consid-
ering two classes) while preserving meaningful features. DL’s higher stan-
dards of performance over ML are cited in the previous item. Given the
two classes problem, TML and DL have ∆OA ≈ 4.0%, ∆OA ≈ 3.4%,
∆OA ≈ 0.9% for K ≥ 5, K ≥ 10, K ≥ 20, respectivelly. We can safely
assert that the performance for TML is not far behind. And, as shown
throughout this document, TML features, and, consequently, classifica-
tion, are more concretely and directly understandable for humans than
DL’s — highlight to Figures 3.4 and 4.4 with plots for DL features and
TML (CyMorph) features. Explaining further, it is possible to define and
understand galaxy morphology types by analyzing non-parametric mor-
phology features. Although one can state that we understand deep neural
networks are extracting texture, rough and thin patterns from the images,
it is not easy to have a rational grasp of these sets of features.

Chapter 5 presents a discussion on computational aspects. Annex chapters present
other important publications I was involved in the course of this PhD.

It is worth mentioning other projects that I have collaborated with Dra. Marcelle
Soares-Santos and her research group at Brandeis University in my one-year abroad
(CAPES Sandwich Program)1:

a) Code improvement for galaxy cluster finder and characterization;

1My academic website can be accessed through this link: https://paulobarchi.github.io/.
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b) Design, prototype and perform preliminary tests on detecting the EM coun-
terpart of Gravitational Waves with Deep Learning;

c) System for preprocessing stamps of galaxies for Dark Energy Survey
database.2

2The repositories for such developments can be accessed either on my github
(https://github.com/paulobarchi) or on the github of Dra. Marcelle Soares-Santos research group
(https://github.com/SSantosLab).
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ANNEX B - EXTRACTING THE SLIME MOLD GRAPH FROM THE
COSMIC WEB

I have participated in the Kavli Summer School in Astrophysics 2019: Machine
Learning in the era of large astronomical surveys at University of California, Santa
Cruz (UCSC). The full version of the report delivered to the program can be ac-
cessed through this link as well: https://kspa.soe.ucsc.edu/sites/default/
files/Barchi.pdf.
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