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Devi avere sognato almeno per un secondo
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Puoi provare a volare lasciando a terra te stesso.“
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ABSTRACT

Accurate maps are an important tool for informing effective deforestation contain-
ment policies. The main existing mapping approaches to produce these maps are
largely manual, requiring significant effort by trained experts. In recent years, Deep
Learning (DL) have emerged becoming the state-of-the-art in Machine Learning and
Pattern Recognition. Despite its effectiveness, the computational concepts behind
these methods are very complex, as well as the computational platforms available to
implement it. This complexity makes it difficult for a Remote Sensing analyst with-
out a strong programming background to perform image analysis using those meth-
ods. Furthermore, despite DL have been successfully applied in many Remote Sens-
ing studies, most of those have focused on the detection of very specific urban targets
in high-resolution imagery, due to the high availability of reference and benchmark
datasets with these characteristics. The lower number of studies on the application of
DL to medium and low-resolution imagery and to another types of targets have been
attributed, among other reasons, to the lack of reference and benchmark datasets
for these types of images. Within this context, this thesis has three main contribu-
tions. First, we developed DeepGeo, a toolbox that provides modern DL algorithms
for Remote Sensing image classification and analysis. DeepGeo focuses on providing
easy-to-use and extensible methods, making it easier to those analysts without strong
programming skills to use those DL methods. It is distributed as free and open source
package and is available at https://github.com/rvmaretto/deepgeo. Second, we
present the PRODES-Vision collection of dataset, a collection of reference dataset
of deforested areas, based on PRODES deforestation maps, to train Deep Neural
Networks, as well as a methodology to the generation of reference datasets based on
thematic maps. We believe that these datasets would encourage the development
of new methods for automatically map Land Use and Land Cover changes. And
finally, we propose a fully automatic mapping approach based on spatio-temporal
convolutional neural networks aiming to reduce the effort of mapping deforested
areas. Furthermore, we propose two spatio-temporal variations of the U-Net archi-
tecture, which make it possible to incorporate both spatial and temporal contexts.
Using a real-world dataset, we show that our method outperforms a traditional U-
Net architecture, achieving approximately 95% accuracy. We also demonstrate that
our preprocessing protocol reduces the impact of noise in the training dataset. To
demonstrate the scalability of our method, it was applied to map deforestation over
the entire Pará State, achieving approximately 94% overall accuracy. And finally,
to demonstrate its applicability to another areas, it was applied to a region of the
Brazilian Cerrado, achieving approximately 91% overall accuracy.

Keywords: Deep Learning. Machine Learning. Deforestation Mapping. Convolutional
Neural Networks. Deep Neural Networks. Remote Sensing. Land Cover Change Map-
ping.
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MAPEAMENTO AUTOMÁTICO DE MUDANÇAS NA
COBERTURA DA TERRA: UMA ABORDAGEM BASEADA EM

DEEP LEARNING PARA MAPEAMENTO DE ÁREAS
DESMATADAS

RESUMO

Mapas precisos constituem uma importante ferramenta para fornecer informações
para políticas efetivas de combate ao desmatamento. Os principais métodos exis-
tentes para este tipo de mapeamento são manuais, demandando grande esforço de es-
pecialistas treinados. Nos últimos anos, métodos de Deep Learning (DL) se tornaram
o estado-da-arte em Machine Learning e Reconhecimento de Padrões. Porém,
apesar da eficácia destes métodos, eles são constituídos de conceitos computacionais
complexos, assim como as plataformas disponíveis para implementação dos mesmos.
Esta complexidade torna mais difícil para um analista de Sensoriamento Remoto
sem um conhecimento profundo em programação executar classificações e análises
baseadas nestes métodos. Além disso, apesar dos métodos de DL terem sido aplicados
com sucesso em muitos estudos de Sensoriamento Remoto, a maioria destes estudos
foca na detecção de alvos urbanos muito específicos em imagens de alta resolução,
devido à grande disponibilidade de datasets de referência e benchmarks com estas
características. O baixo número de estudos aplicando métodos de DL à imagens
de média e baixa resolução espacial e à outros tipos de alvos tem sido atribuído,
entre outras razões, à falta de datasets de referência e benchmarks para este tipo de
imagens. Neste contexto, esta tese tem três principais contribuições. Primeiramente,
desenvolvemos a plataforma DeepGeo, que dispõe de algoritmos modernos de DL
para a classificação e análise de imagens de Sensoriamento Remoto. A plataforma
DeepGeo foca em fornecer métodos extensíveis e fáceis de usar, facilitando assim
que analistas sem um profundo conhecimento em programação usem métodos de
DL em suas análises. A plataforma é distribuída como um pacote gratuito e de
código aberto, disponível em https://github.com/rvmaretto/deepgeo. Segundo,
apresentamos a coleção de datasets PRODES-Vision, uma coleção de datasets de
referência de áreas desmatadas, baseado nos mapas de desmatamento fornecidos pelo
programa PRODES, para o treinamento de Redes Neurais Profundas. Acreditamos
que estes datasets podem encorajar o desenvolvimento de novos métodos para a
automatização do mapeamento de mudanças no uso e cobertura da terra. Por
fim, visando reduzir o esforço do mapeamento de áreas desmatadas, propomos
uma abordagem totalmente automática baseada em Redes Neurais Convolucionais
espaço-temporais. Nesta abordagem, propomos duas variações espaço-temporais
da arquitetura U-Net, que possibilita incorporar ambos os contextos espacial e
temporal. Usando um dataset real, mostramos que nosso método supera a U-Net
tradicional, conseguindo uma acurácia de aproximadamente 95%. Demonstramos
também que o protocolo de pré-processamento proposto reduz o impacto de ruídos
nos datasets de treinamento. Para demonstrar a escalabilidade de nosso método,
este foi aplicado ao mapeamento do desmatamento em todo o estado do Pará, com
uma acurácia aproximada de 94%. Finalmente, para demonstrar a aplicabilidade
para outras áreas, o mesmo foi aplicado à uma àrea do Cerrado Brasileiro, obtendo
uma acurácia de aproximadamente 91%.
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mento. Redes Neurais Convolucionais. Redes Neurais Profundas. Sensoriamento
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1 INTRODUCTION

Remote Sensing (RS) techniques have become increasingly important in data-
collection tasks and location-based services. With the recent growing accessibility of
new generation RS sensors, a large bulk of data has become freely available, which
led this period and onward to be called the years of Big Free Data in RS (KUS-

SUL et al., 2017). Having access to this massive amount of data has brought the
opportunity to widen our ability to understand the Earth. At the same time, it
turned to be impracticable the use of traditional non-automatic analyses methods,
increasing the focus on the ability to automatically extract valuable information
from imagery. However, many traditional analysis methods may not be suitable
to represent the complexity of large-scale analysis, specially on high and medium
spatial resolution imagery, which present different and complex challenges inherent
to their structure. In the case of high-spatial resolution imagery, it arises from its
high-frequency components, the horizontal layover produced by off-nadir look an-
gles, the strong effect of shadows, and the large number of land-cover types (IM et

al., 2008). However, in medium resolution imagery, which are more accessible and
largely used for large-scale mapping and analysis, the challenges emerge from the
lower frequencies, pixels with high spectral mixture rate and consequently the lack
of well-defined edges (SHARMA et al., 2017). These factors brought into a challenging
problem to automatically generate efficient representations able to produce suitable
understanding of these scenes (ZHANG et al., 2016).

Mapping Land Use and Land Cover (LULC) and Land Use and Cover Changes
(LUCC) have been some of the most important RS tasks, for providing means to
understand the territory and consequently, providing information to enable public
policies. Automating these tasks represent a great challenge, specially when dealing
with large-scale areas. The main challenges we may point out, in addition to those
mentioned above, are the presence of clouds and cloud shadows, imbalance between
classes, the integration of imagery of different sensors, the signal differences due
to phenological changes and environmental conditions, and various other imaging
artifacts that act as interference factors in the phenomena being mapped (MARETTO

et al., 2020; SYRRIS et al., 2019).

Aiming to overcome these problems, several works have proposed new approaches,
based on Machine Learning (ML) and Data Mining (DM) algorithms. Specially in
the last decades, a huge number of approaches and platforms have been developed
with algorithms that consider not only the local pixel, but contextual information
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obtained from homogeneous regions in images (KÖRTING et al., 2013; SYED et al.,
2005; WALTER, 2004). Nevertheless, most traditional ML and DM approaches de-
pend on human-designed features, lacking on learning efficient representations of
the images. This point constitutes the weakness of those approaches, which usually
extract only shallow features that cannot easily represent complex details of real
data, making it difficult to achieve an optimal balance between discriminability and
robustness (LECUN et al., 2015; ZHANG et al., 2016).

In this context, Deep Learning (DL) techniques emerged in recent years becoming
a hotspot in the Computer Vision (CV) and Pattern Recognition (PR) communi-
ties. According to Lecun et al. (2015), these techniques have been responsible for
the major advances to solve problems that have resisted the best attempts of the
Artificial Intelligence (AI) community for many years. Able to learn representative
and discriminative features from data, DL consists on set of Artificial Neural Net-
works (ANN), also called Deep Neural Networks (DNN), composed of multiple levels
of feature extraction layers organized in a hierarchical way. Each layer transforms
the representation of the previous one (starting with the raw data) into a higher,
slightly more abstract model, mapping different levels of abstraction and combining
them from lower to higher levels, and then being able to model and explore intrin-
sic correlations of the data. A key aspect of DNNs is that feature extraction layers
are not designed by humans, but learned from the data through a general-purpose
learning procedure. They are designed to be good to discover intricate structures
in high-dimensional data, requiring only few manual feature engineering, and then
taking advantage of increases in the amount of available computation resources and
data.

More recently, DNNs have started to be widely used by the RS community, being
successful for many tasks, from pre-processing to classification and analysis. Some
approaches have been developed for pan-sharpening (HUANG et al., 2015), semantic
segmentation (pixelwise classification) (VOLPI; TUIA, 2016), superpixel-based clas-
sification (GONZALO-MARTÍN et al., 2016), laser scanning point clouds data process-
ing (HAMRAZ et al., 2019; HU; YUAN, 2016), synthetic aperture radar (SAR) data
processing (GENG et al., 2015), among others, with promising results. According to
Ma et al. (2019) most studies applying DNNs to Remote Sensing imagery focused
on LULC mapping and classification, what might be explained by the importance of
these applications for understanding the territory. However, most studies are applied
to the detection of very specific urban targets in High-resolution imagery, with a few
number of studies applied to vegetation targets or to medium and low resolution
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imagery. Ma et al. (2019) also attribute the lower number of studies on the applica-
tion of DNNs to medium and low resolution imagery and to other types of targets,
among other reasons, to the lack of reference and benchmark datasets for these types
of images, as well as to the difficulties to deal with the lack of well-defined edges.
Most reference and benchmark datasets available focus on the detection of specific
types of objects (airplanes, cars, etc) on high-resolution imagery from urban areas.

When it comes to the LULCC detection, the challenge increases with the depen-
dency on temporal information, instead of only on spatial context. A special LULCC
detection problem, deforestation mapping, have aroused the interest of the Remote
Sensing community in the last decades. This interest is due to the fact that pro-
ducing accurate maps of this phenomenon is critical for informing and enabling
public policies aimed at combating deforestation. Since 1988, PRODES1 program,
developed by INPE, have been estimating deforestation rates in the Brazilian Ama-
zon on an annual basis. Since 2000, digital maps have been produced, resulting in
the most consistent and dense temporal series of maps of anthropic disturbance on
primary forests in the Brazilian Amazon (INSTITUTO NACIONAL DE PESQUISAS ES-

PACIAIS - INPE, 2019c). In the past few years, INPE has spent efforts to produce
PRODES maps also for other Brazilian biomes, especially the Cerrado, a well-known
agricultural expansion frontier (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS -

INPE, 2019b). Together with the Near Real-time Deforestation Detection System
(DETER), PRODES have played an important role for the implementation of pub-
lic policies against illegal deforestation (BOUCHER et al., 2013). In addition, both
PRODES and DETER data have been considered the main reference on large-scale
accurate mapping of deforestation (CARVALHO et al., 2014). However, both systems
are still dependent on remote sensing experts to perform visual analysis on satellite
imagery, making that tasks time-consuming, expensive and strong dependent on the
expertise of the analysts.

In this context, this thesis presents a three-fold contribution. First, the main goal
is to develop, describe and assess a fully automated method based on DNNs to
map deforested areas from Landsat 8 Operational Land Imager (OLI) Imagery. To
accomplish that, we assume the hypothesis that, designing a DNN able to combine
the spatial context and temporal information, in a spatio-temporal approach, the
feature representation learned by the network would be effective to accurately map
deforested areas. Second, we propose the DeepGeo toolbox, an extensible and easy-
to-use platform that aims to facilitate the access to DNNs by RS analysts without

1Program for monitoring deforestation through satellite imagery
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a strong programming background. We believe that this platform might help and
encourage the use of DNNs by the RS community, democratizing the access to
those techniques. The platform will also contribute to facilitate the development
of fully automated approaches, once it also provides tools to download, preprocess
data, easily generate training datasets, visualize and analyze classification results.
Third, we provide a collection of reference datasets of deforestation maps, based
on PRODES data and Landsat 8 OLI imagery, ready-to-use to train DNNs, that
we call PRODES-Vision. We believe that this dataset might be able to help and
encourage the community to develop new methodologies based on DNNs for LULCC
mapping using medium-resolution imagery. Considering the aforementioned goals,
we propose two spatio-temporal variations of the U-Net network, firstly presented
by Ronneberger et al. (2015). Finally, we consider that these three components
compose a solid classification system, which we demonstrate that can be used for
accurately and effectively map LULC and LULCC.

The methods were developed and evaluated over a region comprising nearly
111,000 km2, in southeastern Pará State, a well known agricultural expansion fron-
tier, achieving an accuracy of approximately 95%. In order to demonstrate the scal-
ability of our method, it was used to map the entire territory of Pará State, which
comprises an area of approximately 1.25 million km2, representing approximately
25% of the Brazilian Amazon territory. For this large-scale area, the method also
demonstrated to be effective, achieving an overall accuracy of approximately 94%.
Subsequently, to demonstrate the applicability of our method to other biomes, an
experiment was also executed on an area of the Brazilian Cerrado, which comprises
approximately 130,000 km2. These experiments also demonstrated the integration of
the main components of this thesis as a classification system, namely: the PRODES-
Vision dataset collection, the proposed methodology to generate reference datasets
for LULC mapping, the DeepGeo framework, and the proposed fully-automated
methodology for deforestation detection.

1.1 Document organization

Considering the aforementioned contributions of this thesis, we organized this doc-
ument by describing, in each chapter, the components of those contributions. The
Chapters 3 and 5 are based on articles, which were published in international con-
ference and journal, respectively. Therefore, this thesis is organized as following:

• Chapter 2 presents a contextualization about Deep Neural Networks and
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a theoretical basis for the methods proposed in this thesis.

• Chapter 3 describes the DeepGeo ToolBox and how it may contribute for
the RS community.

• Chapter 4 describes the proposed collection of reference deforestation
dataset, that we named PRODES-Vision datasets, and the proposed
methodology to generate reference datasets for LULC mapping.

• Chapter 5 describes the methodology that we propose to automatically
map deforestation in Amazon Rainforest, and also discuss the experiments
and results accomplished.

• Chapter 6 presents two additional experiments which aim to test and
demonstrate the scalability of the proposed classification system, as well
as its applicability to a different biome with different types of vegetation.

• Chapter 7 presents some concluding remarks, future works and directions
for this research.
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2 THEORETICAL BACKGROUND

DL techniques have been widely used for many tasks, like web search, text trans-
lation, image annotation, text recognition, and remote sensing image analysis, per-
forming dramatically better than the conventional ML methods. Conventional ML
methods have demonstrated a limited ability to process data in its raw form, re-
quiring a careful feature engineering and wide domain expertise to design a feature
extractor that can properly transform the raw input data (pixel values, words, fre-
quencies, etc) into a suitable internal representation, from which a machine-learning
or pattern-recognition system could detect or classify patterns in the input (LECUN

et al., 2015).

The data representation has a huge impact on the performance of machine learning
algorithms. A simple example is shown in Figure 2.1. Imagine a problem where you
need to classify two categories of two-dimensional data using a linear function. In
this case, if the data is represented using Cartesian coordinates, it is not possible
to obtain an appropriate result, while using polar coordinates the problem becomes
simpler to solve. Some classification tasks can be successfully performed by a simple
methodology if the set of features to be extracted are properly defined. However,
for most real world tasks, like remote sensing applications, the choice of what fea-
tures should be extracted can be very difficult. By gathering the knowledge from
experience, representation learning approaches are able to avoid the need of human
intervention to design a formal definition of the knowledge representation needed
for classification. Learned representation usually provides better performance when
compared with hand-designed ones, also allowing the algorithms to be able to adapt
fast to new tasks, with minimum human intervention (GOODFELLOW et al., 2016).
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Figure 2.1 - Example of two different feature representation.

SOURCE: Goodfellow et al. (2016).

Algorithms for learning features are usually designed to separate the factors of vari-
ation able to explain the observed data. These factors are concepts or abstractions
that can help us making sense of the rich variability of the data. In an image of a
car, for example, factors of variation include the position of the car, its color, and
the angle and brightness of the sun. When it comes to Remote Sensing, these factors
might also be the spectral response of a target across the spectral bands, its form,
texture or its behavior in an image time series. A major source of difficulty in many
real-world applications is that several factors of variation have strong influence in the
whole observed data. Therefore, it can be difficult to extract high-level and abstract
features from raw data, because many of these factors may be sophisticated and
close to human level understanding of data, and then difficult to obtain a suitable
representation. In these cases, even traditional representation learning techniques
may not be helpful. DL techniques solves this problem by using representations that
are hierarchically expressed in terms of simpler representations (GOODFELLOW et

al., 2016).

Therefore, DL consists in representation learning techniques based on neural net-
works, which we call Deep Neural Networks, whose design was inspired by the way
neurons are organized in human cognitive system. In most applications, the function
that maps the input data to a classification is very complex and impossible to be
learned if tackled directly. DNNs deals with this difficult by breaking the desired
mapping function into a series of nested simpler modules. Each module transforms
the representation at one level into a more abstract representation for the next
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level. It allows to construct computational models composed of multiple levels of
representation learning, composing simple nonlinear modules in a hierarchical way.
The networks learn the concepts in terms of a hierarchy, with each concept defined
in terms of its relation to simpler ones, allowing the computer to learn complex
concepts by building them out of simpler ones. For CNN, for example, as shown
in Figure 2.2, the first layer typically represents the presence or absence of edges
at particular orientations and locations. The second layer usually detects network
motifs1 by spotting particular arrangements of edges, ignoring small variations in
its positions, recognizing then corners and extended contours. The third layer can
join motifs into larger combinations that may correspond to parts of familiar ob-
jects. The objects can be detected, as combinations of these parts, in the subsequent
layers (GOODFELLOW et al., 2016; LECUN et al., 2015).

Figure 2.2 - Example the hierarchical feature representation in a CNN.

SOURCE: Goodfellow et al. (2016).

1Network Motifs consists in small isomorphic recurring patterns common in complex networks.
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The CNNs are a set of DNNs that have been particularly effective for image clas-
sification and object detection. We will present in the next section the main char-
acteristics of CNNs and how they evolved for the Fully Convolutional Networks,
which has been widely used for pixel-level classification, also known as Semantic
Segmentation.

2.1 From convolutional to fully convolutional neural networks

The CNNs have been considered the most successful DNNs for visual recognition,
outperforming most of the other existing algorithms. Its architecture is designed
to take advantage of the two-dimensional structure of input image, inspired by hu-
man’s visual system (BENGIO, 2009). CNNs are deep networks with a trainable
hierarchical multilayer architecture composed of multiple feature extraction stages.
According to Lecun et al. (2015), there are four main ideas behind them that take
advantage of the properties of images and natural signals: local connections, shared
weights, pooling and the use of many layers. The deep structure of CNNs allows the
model to learn highly abstract feature detectors, mapping the input features into
representations that can boost the performance of subsequent classifiers. Basically,
each feature extraction stage, as depicted in Figure 2.3, consists of three main lay-
ers: a convolutional layer, an activation layer, and a pooling layer. A typical CNN
is composed of several feature extraction stages followed by a fully connected layer
with a final classifier layer, like a sigmoid of softmax (ZHANG et al., 2016). There are
a few works in the literature that, instead of coupling a classifier layer in the end of
CNNs, use it only for feature extraction, and then use another algorithm like SVM
to classify the output, achieving either good results (NOGUEIRA et al., 2017).
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Figure 2.3 - A typical CNN feature extraction stage.

SOURCE: Adapted from Hu et al. (2015).

The convolutional layer, filters the entire image through a set of convolution opera-
tions whose kernel weights composes the network weights. The analysis of the image
is done at different scales in different layers, with deeper layers extracting higher-
level features (GONZALO-MARTÍN et al., 2016; GOODFELLOW et al., 2016). Since each
filter works on every part of the image with shared weights, it searches for the same
feature in every location in the image, i. e., all the neurons in this layer detect ex-
actly the same feature at different locations, generating one feature map for each
filter. Figure 2.4 shows a scheme of how the convolutional layers operates in (a) and
a scheme of how is the convolution computing (b).
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Figure 2.4 - Scheme of the Convolutional Layer operation (a) and the convolution com-
puting (b).

SOURCE: Adapted from Chun (2015) and Goodfellow et al. (2016).

The convolutional layer is usually followed by an activation layer, that consists of
a pointwise function applied to each component of the feature map. Inspired by
inhibition schemes present in neurons of human brain, the main goal of these layers
is to improve the generalization of the convolutional layer output. The most common
activation function used is the Rectified Linear Unit (ReLU), which applies the
non-saturating activation function f(x) = max(0, x) (LECUN et al., 2015). Another
functions can be used in this stage but, according to Krizhevsky et al. (2012) the
ReLU is usually a better choice, once it becomes the training process several times
faster without making significant differences in the accuracy of the generalization,
and faster learning has a great influence on the performance of large models trained
on large datasets.

The multiple sequences of convolutional and activation layers produce a huge amount
of complex features. The pooling layer is then responsible for merging the seman-
tically similar features, downsampling the feature maps and simplifying the infor-
mation in the output of previous layers (KRIZHEVSKY et al., 2012). That is made
to reduce the dimensionality of the of the data generated by the two previous lay-
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ers, ensuring that the network will focus on the most relevant features. The most
common function used for pooling is the max-polling, which outputs the maximum
activation in the looked rectangular neighborhood, as shown in Figure 2.5. Other
functions include the average of a rectangular neighborhood, the L2 norm of a rect-
angular neighborhood or a weighted average based on the distance from the central
pixel (GOODFELLOW et al., 2016). Although it is a simple operation, the pooling lay-
ers are considered essential for the good results of CNNs, once it reduces the amount
of data and makes the representation approximately invariant to small translations
in of the target in the input (SZEGEDY et al., 2015; GOODFELLOW et al., 2016).

Figure 2.5 - Scheme of a max-pooling layer.

SOURCE: Adapted from Chun (2015).

After sequences of convolutions, activations and poolings, CNNs usually have one or
more fully-connected layer, commonly used in shallow neural networks, where each
neuron has full connections to all neurons in the adjacent layer. Each activation
in this layer is computed by multiplying the entire input V (output from previous
layer) by weights W in the current layer. After transformations generated by the
fully-connected layer, the final feature representations are sent to a classification
layer, which generates the labels of the input image (ZHANG et al., 2016). The most
common classification layer is a fully-connected softmax, that computes scores for
each defined class (HU et al., 2015; KRIZHEVSKY et al., 2012; SZEGEDY et al., 2015;
ZEILER; FERGUS, 2014). According to Nogueira et al. (2017) and Bengio (2009),
the softmax function, also called normalized exponential, is a generalization of the
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multinomial logistic function. It generates a k-dimensional vector of real values in
the range [0, 1], representing a categorical probability distribution. Therefore, if the
softmax layer is removed, the network can be treated as a feature extractor, which
can be used together with any classifier, like SVM for example. Figure 2.6 shows an
example of the complete structure of a CNN.

Figure 2.6 - Example of CNN structure.

SOURCE: Saha (2018).

2.1.1 Fully convolutional networks

Despite the effectiveness of CNNs for image classification and object detection, it
was not designed to make dense pixelwises predictions, having fixed-sized inputs and
producing non-spatial outputs. The main limitation came from the fully connected
layers, which have fixed dimensions loses the spatial coordinates. To overcome this
limitation, Long et al. (2015) presented the idea of the convolutionalization of the
fully connected layers, proposing the Fully Convolutional Networks (FCN), depicted
in Figure 2.7. The basic idea behind this architecture is that the fully connected
layers can be viewed as convolutions whose kernels cover the entire input regions.
Following this idea, the fully connected layers were replaced by convolutions, pro-
ducing a dense pixel-wise output after the last pooling layer. A 1 × 1 convolution
with the the same channel dimension as the number of classes was append to the
latest coarse layer to predict scores for each class.
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Figure 2.7 - Fully Convolutional Network.

SOURCE: Adapted from Long et al. (2015).

However, due to the downsampling performed by the pooling operations, the out-
put prediction has a coarser resolution and smaller size than the input image. To
overcome that and be able to produce a classification output with the same size and
resolution of the input image, the authors applied the idea of transposed convolu-
tions to upsample the output prediction to the same resolution as the input image.
The main advantage of the transposed convolution over a common interpolation is
that the kernel weights of this operation are also trained in the backpropagation
according to the pixel-wise loss. Stacked with activation functions, the transposed
convolution is even able to learn nonlinear upsamples. The transposed convolution
strides the pixels of pooling output with an inverse factor to the downsampling, i. e.,
if the size of the pooling layer being upsampled is 1/f of the original input size, it
will be strided with a factor of f to return to the original size. They proposed then
the idea of three architectures that differs in the factor of the upsampling applied to
the output prediction, also depicted in Figure 2.7. The name of each architecture is
defined in terms of this upsampling factor and consequently of the size of the stride
applied to perform the transposed convolution. The first, FCN-32s appends a 1 × 1
at the top of pool5 and directly upsample output with a factor of 32. The direct
upsample with a 32 pixel stride still limiting the scale of details of the upsampled
output. To overcome that, the FCN-16s and FCN-8s add links that combine the final
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prediction layer with lower layers with finer strides. For the FCN-16s, the output
stride was divided in half, and a 1 × 1 convolution was added on top of pool4 to
produce additional class predictions. The output of this prediction was fuse with the
upsampled output from pool5 and the fused output was upsampled with stride 2
to produce the full sized output. Finally, for the FCN-8s, they followed the same
idea, by adding another link with the pool3 layer, in an encoder-decoder structure,
producing finer results.

By adding this trainable upsample, they achieved considerable improvements in the
classification results, when compared with other approaches that tried to perform
pixel-wise segmentation using CNNs. In addition to the performance improvements
achieved, they overcome the need of fixed the input size, once the fully connected
layers were removed. This makes this networks to be able to operates on inputs of
any sizes, producing outputs with corresponding spatial dimensions.

Following the same idea of a network that works as a convolutional encoder-decoder,
Ronneberger et al. (2015) proposed the U-Net as an evolution of the FCNs, depicted
in Figure 2.8. The U-Net, instead of directly upsample the prediction, upsample
the feature maps and concatenate them with the feature maps from the encoder,
introducing several convolutional feature extractors over these concatenated feature
maps. These feature extractors allow the network to propagate context information
from the higher resolution layers. Another important contribution of the U-Net was
the use of unpadded convolution, making the output of the network smaller than
the input. This strategy allowed to perform the prediction over large-scale images
with an overlap-tiling strategy improving the context information in the borders of
the tiles.
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Figure 2.8 - U-Net architecture.

SOURCE: Ronneberger et al. (2015)

Due to the aforementioned characteristics, the U-Net have been amongst the most
successful DNN for Remote Sensing applications. Studies like the conducted by Wag-
ner et al. (2019), which applied the U-Net to map forest types and tree species in the
Brazilian Atlantic Rainforest using high spatial resolution imagery, achieving over
95% accuracies for most classes, and Zhang et al. (2018) , which proposed a Resid-
ual U-Net to detect roads on high-resolution imagery, achieving approximately 90%
accuracy have demonstrated the potential of this architecture for LULC mapping
over Remote Sensing imagery. In this context, as we describe in the next chapters,
our work takes advantage of the encoder-decoder structure of the U-Net and the
the way it fuses the feature maps to propose two spatio-temporal variations of this
network for Land Use and Land Cover mapping tasks, allowing it to consider not
only the spatial context, but also temporal information.
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3 DEEPGEO: AN EXTENSIBLE AND EASY-TO-USE TOOLBOX
FOR DEEP LEARNING BASED ANALYSIS OF REMOTE SENSING
IMAGES1

DL methods are currently the state-of-the-art in Machine Learning and Pattern
Recognition. In recent years, DL has been successfully applied to RS image pro-
cessing for several tasks, from pre-processing to classification. This chapter presents
DeepGeo, a toolbox that provides some state-of-the-art DL algorithms for RS image
classification and analysis. DeepGeo focuses on providing easy-to-use and extensible
methods, making it easier to those RS analysts without strong programming skills,
as well as provide means to facilitate the automation of the analysis process, from the
data download to the validation and quality assessment. It is distributed as free and
open source package and is available at https://github.com/rvmaretto/deepgeo.

3.1 Introduction

With the recent growing accessibility of new generation Remote Sensing (RS) sen-
sors, a large bulk of data has become available. This availability of an incredible
amount of data have brought the opportunity to widen our ability to understand
the Earth. At the same time, it turned to be impracticable the traditional non-
automatic analyses, increasing the focus on the ability to automatically extract
valuable information from those images.

In recent years, DL has become a hotspot in the Machine Learning and Pattern
Recognition communities. It is characterized by a set of ANN, also called DNN,
composed of multiple feature extraction layers. Those layers are able to extract
features in different levels of abstraction, starting from the raw data (ZHU et al.,
2017). In the feature extraction layers, each level transforms the representation of
the previous ones into a more abstract model, hierarchically combining them, and
then being able to model and explore intrinsic correlations in the data (LECUN et

al., 2015).

In RS image processing, DL methods have been successfully applied for many differ-
ent purposes, such as pan-sharpening (HUANG et al., 2015) and semantic segmenta-
tion (pixelwise classification) (FU et al., 2017; KEMKER et al., 2018; ZHAI et al., 2017).
Therefore, these methods have been considered by (ZHANG et al., 2016) as crucial
for the future of RS data analysis, specially in the years of big free data in RS.

1This chapter is based on Maretto et al. (2019), extended with recent developments and more
detailed descriptions.
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Several toolboxes are available for DL development, like TensorFlow (ABADI et

al., 2016), Keras (CHOLLET et al., 2015), Theano (AL-RFOU et al., 2016) and Py-
Torch (PASZKE et al., 2019). Although very powerful, the currently available tool-
boxes for DL development are hard to use by analysts without strong programming
skills. Due to the complexity of the concepts involved, they demand from the analyst
a background in Computer Science to be able to implement a DNN and perform
tasks like classification and analysis.

Focusing on facilitating the access to DL techniques by RS analysts with as few
lines of source code as possible, this chapter presents DeepGeo toolbox. It provides
configurable building blocks to perform the entire cycle of DL based analysis of RS
data. Along the chapter, we present also some diagrams depicting the conceptual
representation and flow of the modules and processes. It is important to keep in
mind that, once the platform is very flexible, these diagrams does not represent a
mandatory flow, but what we understand to be the conceptual representation and
natural flow of these processes. In addition, this chapter describes the main concepts
and modules of the system, which has other smaller and less important functions
and types that will not be detailed in the scope of this work.

3.2 DeepGeo toolbox

DeepGeo is a Python toolbox that provides, as configurable building blocks, tools
to perform spatial and multi-temporal DL based analysis of RS imagery. It inte-
grates several tools to perform the following tasks: query and download data; pre-
process data; generate training, evaluation and validation datasets; train predefined
DNNs; easily customize and implement new DNNs; apply DL classification based on
a trained DNN; and analyse and visualize results.

DeepGeo is distributed as a free and open source software under the terms of the
GNU General Public License version 3.0 or later, running on multiple platforms,
e.g., Windows, Mac OS X and Linux. The system works as a package for Python
programming language, which provides a high level and easy-to-use API (Applica-
tion Programming Interface). DeepGeo API was developed with focus on making it
easy to perform the entire DL based analysis cycle with as few lines of source code
as possible, taking advantages of TensorFlow parallelism to make it easily scalable
to process large amounts of data, remaining flexible and easily extensible. After de-
fined the input data and the DNN model to be used, we consider that the cycle of
DL based classification and analysis of RS data, as shown in Figure 3.1, have the
following main steps:
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a) define the input data and DNN model;

b) preprocess input data;

c) generate training dataset;

d) train the Model;

e) evaluate training results, repeating the training step, if necessary, until
having satisfactory results;

f) perform the classification;

g) visualize and analyze classification results, repeating the training step if
necessary.

Figure 3.1 - Cycle for Remote Sensing image classification and analysis using Deep Learn-
ing.
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In the next sub-sections, we describe, based on this cycle, the conceptual modules
of DeepGeo and present some examples of how to use its functionalities.

3.2.1 Data catalog module

Most RS image catalogs are based on web applications or non-standardized and
sometimes complex programming APIs, what may become the task of automating
the download of images from different sensors for large-scale areas relatively com-
plex for analysts without a strong programming background. Google Earth Engine
(GEE) provides an extensive data catalog and a powerful cloud computing system
to large-scale image processing (GORELICK et al., 2017). Despite its power, there is
no integration with DL APIs available yet, forcing the user to perform DL-based
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analysis outside the system, in another cloud-based platform or in local computers
and consequently, to export the data. However, GEE still have some limitations in
the data export, limiting the size of the exported data to only few Gigabytes. To
make the task of downloading the images easier, and at the same time, encourage
the development of fully-automated systems, we developed a simple API that allows
the user to easily access the main providers of free RS data and download those
images. A basic scheme of this module is depicted in Figure 3.2.

Figure 3.2 - Conceptual scheme of the Data Catalog module.
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Basically, as aforementioned, the data catalog module has an interface with the
current main free RS data providers, namely:

• USGS2 ESPA platform for the entire Landsat and Modis series;

• INPE image catalog for several different sensors, specially the CBERS3

series;

• Amazon AWS4 for Landsat-8 data;

• Google Cloud for Landsat-8 data;

• ESA5 Copernicus Open Access Hub for Sentinel data.

Figure 3.3 shows an example of the module usage, where a query is performed
on the USGS Landsat-8 catalog, through the ESPA system. The query performed
in this figure will search for all the scenes that intersect the Region of Interest
(ROI) defined in the shapefile "roi.shp" passed as parameter for the method
get_intersections at line 6. The result of this query for the intersection scenes
can be ploted, as shown in line 8, which result is depicted in Figure 3.4. This plot,

2United States Geological Survey
3China-Brazil Earth Resources Satellite
4Amazon Web Services
5European Space Agency

22



made over OpenStreetMap (HAKLAY; WEBER, 2008), allows the user to navigate
and check few information about the scenes, like their path and row in the Landsat
Worldwide Reference System. After defined the scenes or tiles to be searched, a
query can be performed selecting the desired range of data and maximum cloud
cover in the image, as depicted in lines 10-13. With the result of this query, the
user can generate the order, selecting the desired products, file format and Spatial
Reference System (geographic projection), and automatically place it. In the USGS
system, the images are processed on demand, what may take some hours. Thus, the
API has also a mechanism to check if the order is completed and then download it.

Figure 3.3 - Querying for images in the USGS Landsat 8 catalog through the Data Catalog
module.

1 import deepgeo . data_catalog . espa_downloader as ed
2 # Define the downloader and authenticate on USGS -ESPA system
3 downloader = ed. EspaDownloader ()
4 downloader . authenticate ( username ="user", password =" password ")
5 # Compute and plot the Landsat Scenes that intersects the ROI

defined in the shapefile "roi.shp"
6 downloader . get_intersections ("roi.shp")
7 # Plots the scenes that intersects the ROI in a dynamic map
8 downloader . plot_intersections ()
9 # Search for scenes from 2018 with less than 20% of cloud cover

10 bulk , ids , notfound = \
11 downloader . consult_dates ( start_date ="2018 -01 -01",
12 end_date ="2018 -12 -31",
13 max_cloud_cover =20)
14 downloader . get_available_products ()
15 downloader . get_available_projections ()
16 # Generate order with the desired products , file format and

projection
17 downloader . generate_order ( products =["sr", "ndvi"],
18 file_format ="gtiff",
19 projection =" lonlat ",
20 verbose =True)
21 # Place the order in USGS system
22 downloader . place_order ()
23 # List active orders
24 orders = downloader . list_orders ()
25 # Check if a given order is complete and download it
26 if downloader . is_order_complete ( orders [0]):
27 downloader . download_order ( orders [0], output_dir ="./ images ")
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Figure 3.4 - Dynamic plot of a scene query generated with the Data Catalog module.
Result of line 8 from Figure 3.3.

3.2.2 Preprocessing module

When dealing with RS imagery, having it properly prepared to input to a DNN is
often a great challenge. This module provides easy ways to perform a wide range
of preprocessing operations, like performing mosaics, crop images, rasterize vector
layers of ground truth data and compute spectral indices.

Normalize input images is an important step for ANNs, once it accelerates the train-
ing process, making the convergence faster (LECUN et al., 2012). This module also
provides functions to automatically perform standardization or normalization of the
input images with several strategies. The code snippet presented in Figure 3.5 shows
the definition of a Preprocessor structure. In this figure, a preprocessor is defined for
the raster "my_raster.tif" . To exemplify the extensibility of the structure, a new
function for computing the Normalized Difference Water Index (NDWI) (GAO, 1996)
is created and registered in the preprocessor (lines 5-10) to be then computed for the
input raster. Then, the raster is normalized with the default strategy and saved into
a new geotiff file, "output.tif" . We emphasize here that the standardize_image
method has also several different normalization strategies already implemented, and
is also extensible in the same way as we exemplified for the compute_indices
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method.

Figure 3.5 - Defining and using a Preprocessor.

1 import deepgeo . dataset . preprocessor as prep
2 # Define a Preprocessor for file " my_raster .tif"
3 preproc = prep. Preprocessor (" my_raster .tif", no_data =0)
4 # Create a function to compute the NDWI and register it in the

Preprocessor
5 def ndwi(raster , param):
6 nir = raster [:,:, param[" idx_b_nir "]]
7 swir = raster [:,:, param[" idx_b_swir "]]
8 ndwi = (nir - wir) / (nir + swir)
9 return ndwi

10 self. preproc . register_new_idx_func (’ndwi ’, ndwi)
11 # Compute Spectral indices (NDVI and NDWI)
12 preproc . compute_indices ({
13 "ndvi": {" idx_b_red ": 3, " idx_b_nir ": 4},
14 "ndwi": {" idx_b_swir ": 5, " idx_b_nir ": 4}})
15 # Standardize the image. Subtracts from the mean and then divides

by the standard deviation
16 preproc . standardize_image ()
17 preproc . save_stacked_raster (" output .tif")

In RS classification tasks, the ground truth data is frequently provided as thematic
maps in vector format instead of raster. The Rasterizer type allows the user to easily
convert a ground truth data in vector format to raster, making it possible to input it
as labels to the DNN. Once the Rasterizer uses another raster file as reference to gen-
erate the grid of the rasterized labels, it ensures that all the pixels from the ground
truth and the image will match. Figure 3.6 presents a code snippet that rasterizes
an input vector file "my_labels.shp" using the raster file "my_raster.tif" as
reference and save it in a new raster file, named "my_labels.tif" .
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Figure 3.6 - Rasterizing vector ground truth data.

1 import deepgeo . dataset . rasterizer as rast
2 # Defines the column in shape file containing the classes
3 class_column = "class"
4 # Define the classes to be rasterized
5 classes_of_inter = [" deforestation ", " forest "]
6 # Defines the Rasterize
7 rasterizer = rast. Rasterizer ( vector_file =" my_labels .shp",
8 in_raster_file =" my_raster .tif",
9 class_column = class_column ,

10 classes_interest = classes_of_inter )
11 # Rasterizes the data and save at " my_labels .tif"
12 rasterizer . rasterize_layer ()
13 rasterizer . save_labeled_raster_to_gtiff (" my_labels .tif")

3.2.3 Dataset generation module

Due to its depth and complexity, DL is computationally hard to process, making
it impossible to process an entire RS Image at once. Due to this limitation, it is
common to split the images into smaller processing units, called chips or patches,
i.e., small windows in the original image. The Dataset Generation Module provides
a simple API to sequentially or randomly split the image and save it into a training
dataset, to sequentially split images for the classification process and to reconstitute
a classified image from a sequential set of classified patches. Figure 3.7 shows an
scheme of this module, in green, and its integration with the Preprocessor module,
in orange, represented here by the Preprocessor and Rasterizer types.
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Figure 3.7 - Scheme of the Dataset Generation and Preprocessing modules and the inte-
gration between them to generate a training dataset.
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The code snippet depicted in Figure 3.8 shows an example of the generation of a
dataset using this module. The code presented in this figure is a continuation of the
snippets depicted at Figures 3.5 and 3.6, and will use data generated by the Ras-
terizer and Preprocessor. At this point we work already with the images and labels
as arrays and matrices. The description defined at lines 3-9 compose the metadata
of the dataset, and will be saved in the same directory as a .csv (Comma-separated
values) file. This description is not mandatory, nor has mandatory arguments, but
can be used to store the preprocessing steps performed to generate the dataset. At
lines 15-16, the DatasetGenerator is defined based on both image and ground
truth arrays. After this definition, the data is sequentially sliced at line 17, the chips
with more than 50% of no data pixels are removed and the chips are shuffled. At
line 22, the dataset is splitted in training, test and validation datasets, following the
default proportions of 70% for training, 15% for test and 15% for validation. These
proportions can also be changed using optional parameters for the method. Finally,
at line 24, the datasets are saved in TFRecords in the directory "my_dataset" ,
with the prefix name "dataset" , and the suffixes _train , _test and _valid .
The toolbox also supports saving the dataset as a .npz file, but this format im-
plies in loss of performance when training the network, due to the optimization of
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TensorFlow input pipeline.

Figure 3.8 - Generating a dataset. This code is a continuation of the codes in Figures 3.5
and 3.6.

1 import deepgeo . dataset . dataset_generator as dsgen
2 # Defines the metadata for the dataset . It will be saved in a .csv

file in the same folder as the generated datasets .
3 dataset_description = {" standardization ": " norm_range ",
4 " spectr_indexes ": ["ndvi", "ndwi"],
5 " sensor ": "Landsat -8 OLI",
6 " classes ": [" deforestation ", " forest "],
7 " img_no_data ": 0,
8 " chip_size ": 316,
9 "notes": " Dataset for an example ."}

10 # Get the raster from the Preprocessor as a NumPy array
11 raster_array = prep. get_array_stacked_raster ()
12 # Get the labels from the Rasterizer as a NumPy array
13 labels_array = rasterizer . get_labeled_raster ()
14 # Creates the dataset generator using the default strategy ,

sequential slicing
15 generator = dsgen. DatasetGenerator ( raster_array , labels_array ,
16 description = dataset_description )

17 generator . generate_chips ( params ={" win_size ": 316})
18 # Remove all the chips with more than 50% of the pixels containing

no data value.
19 generator . remove_no_data ( tolerance =0.5)
20 # Shufle the chips in the dataset , split it into training , test and

validation datasets .
21 generator . shuffle_ds ()
22 generator . split_ds ()
23 # Save the dataset in the folder " my_dataset ".
24 generator . save_to_disk ( out_path ="./ my_dataset ", filename =" dataset ")

3.2.4 Deep learning module

The Deep Learning module provides several DNNs models already implemented,
like the U-Net (RONNEBERGER et al., 2015) and the Fully Convolutional Networks
(FCN) proposed by Long et al. (2015), and some adaptations of these networks for
multi-temporal analysis. It also provides an easy way to define new models, using
the predefined DeepGeo structure to train them and perform classification, without
the need of large experience with TensorFlow API. Figure 3.9 shows an scheme of
the operational flow of the DL module and its integration with the Preprocessing
module, represented in orange, and used here to prepare the image for the clas-
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sification, following the same preprocessing steps of the generation of the training
dataset.

Figure 3.9 - Scheme of the Deep Learning module and its integration with the Preprocess-
ing module.
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Despite powerful, DL methods are highly prone to overfitting, being necessary a
huge amount of samples and some regularization techniques to avoid it. Some RS
applications, due to the difficulties to acquire labeled samples, are even more prone
to this problem (ZHU et al., 2017). Attempting to counteract overfitting, a common
regularization technique is the use of data augmentation, which artificially increase
the size of the training dataset synthetically modifying existing samples. It is also
important to make the model more invariant to the position of the target object in
the image. This module provides operations to perform data augmentation applying
on the samples different angles of rotation and flipping, substantially increasing the
number of training samples. Taking advantages of the parallelism and the structure
of TensorFlow data input pipeline, the data augmentation is applied while loading
the images for the training process.

The code snippet presented in Figure 3.10 defines a FCN8s, proposed by Long et al.
(2015), and perform the training process based on a previously generated dataset.
As depicted in this figure, the parameters are defined as a Python dictionary, where
the user can setup not only the basic parameters, like number of epochs or batch
size, but also some advanced hyper-parameters, like learning rate decay or rates
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for L2 regularization or dropout (lines 6-13). In this example, 6 data augmentation
operations are applied to each chip, being 3 rotations and 3 flips defined in the
parameter "data_aug_ops" . The system also allows to apply less data augmen-
tation operations per chip, randomly chosen between the operations defined in the
parameter "data_aug_ops" . After trained the model, it is applied to the validation
dataset (line 19) through the validate method, which performs the prediction in
all chips of the validation dataset and compute quality metrics. After the validation,
the model is applied to classify the image "img.tif" , and the result is saved in the
file "classif.tif" .

Figure 3.10 - Defining and training a FCN8s model.

1 import deepgeo . networks . model_builder as mb
2 import deepgeo . dataset .utils as dsutils
3 # Defines the directory where the model checkpoints will be saved.
4 model_dir = " trained_model "
5 # Defines some parameters of the DNN.
6 params = {" network ": "fcn8s",
7 " epochs ": 100,
8 " batch_size ": 20,
9 " learning_rate ": 0.1,

10 " l2_reg_rate ": 0.0005 ,
11 " data_aug_ops ": ["rot90", " rot180 ",
12 " rot270 ", " flip_left_right ",
13 " flip_up_down ", " flip_transpose "]}
14 # Defines a FCN8s model and trains it.
15 model = mb. ModelBuilder ( params )
16 model.train(" dataset_train . tfrecord ", " dataset_test . tfrecord ",
17 model_dir )
18 # Test in validation dataset
19 model. validate (" dataset_valid . tfrecord ", model_dir )
20 # Perform classification
21 model. predict ("img.tif", model_dir , " classif .tif")

It is important to emphasize that the ModelBuilder type is also extensible. It
allows the user to register new network descriptions without defining lower level
TensorFlow structures, like the Estimator, or dealing with the low-level TensorFlow
Sessions.

3.2.5 Visualization and classification analysis module

The Visualization and Classification Analysis module focuses on providing tools to
visualize and analyze the quality of the input dataset and the classification results.
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It provides metrics to measure the classification accuracy, like pixel-wise accuracy,
Receiver Operating Characteristics (ROC) curve, F1-score and cross-entropy. In
addition, to make it possible to visually analyze the quality of the input dataset and
the classified labels, this module provides tools to easily plot the image, ground truth
labels, classified labels, histograms, confusion matrices, and patches distribution in
the original image.

3.3 Experimental results: mapping deforested areas in brazilian amazon

In this section we present a case study to illustrate the effective use of DeepGeo
toolbox. The focus here is not to obtain an accurate classification model, but to
exemplify the use of DeepGeo in a practical application. We used the system to
produce a classification of deforestation in a small area of the Brazilian Amazon
for the year 2017, taking the PRODES data (INSTITUTO NACIONAL DE PESQUISAS

ESPACIAIS - INPE, 2019c) as ground truth to train the Fully Convolutional Network
FCN8s, proposed by Long et al. (2015). PRODES is a program developed by INPE
6 that provides a large database of yearly maps of deforested areas in the Brazilian
Amazon since 2000.

The area to be classified corresponds to one scene of Landsat 8 OLI 7 sensor. Figure
3.11 shows this image in (a), the ground truth labels in (b) and the classification
results in (c). Preprocessing steps were made through the source code presented in
Figure 3.5. The ground truth data was rasterized through the source code presented
in Figure 3.6. Based on the input raster, 2000 patches were randomly generated as
the input training dataset. Data augmentation was performed rotating and flipping
the generated patches, thus totaling 14000 input patches for the training process.
The training process was performed through the source code shown in Figure 3.10.

Some advantages of using this system can be pointed out, as the facility to per-
form preprocessing steps in the input image, standardizing it, computing spectral
indices, generating training and classification datasets, perform data augmentation
and classification.

3.4 Final comments and future works

DeepGeo toolbox was presented in this chapter. By providing DL methods, prepro-
cessing, dataset generation and result analysis functionalities as easy-to-use building

6National Institute for Space Research, Brazil
7Operational Land Imager
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Figure 3.11 - Classification of deforested areas: a) Input Image; b) Ground truth; c) Clas-
sification output.

blocks, it allows to easily perform the entire cycle of DL based analysis on RS data.
In this way, DeepGeo can make DL methods more accessible to those RS analysts
without strong background in computer science. It also provides easy ways to extend
the current functionalities by adding new strategies for each step of the analysis cy-
cle. Besides that, taking advantages of the flexibility and expressiveness of Python
programming language, DeepGeo provides easy ways to be extended and integrated
to another tools.

The system can also deal with different types of geospatial data formats for raster
and vector data, that can be used as ground truth. For now, it only provides tools
based on convolutional encoder-decoders for semantic segmentation. We aim to in-
clude extending DeepGeo to provide more DL approaches and applications, like
Recurrent Neural Networks for time-series analysis. Finally, DeepGeo is a Free and
Open Source Software project, which can be improved and customized by developers,
and extended according to application needs.
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4 PRODES-VISION DATASETS: CONSTRUCTING A REFERENCE
TO TRAIN AND DEVELOP NEW DEFORESTATION DETECTION
METHODS

In this chapter we address the challenge of constructing and providing reference
datasets for deforestation detection over Landsat 8 OLI imagery. As diagnosed by
Ma et al. (2019), the reduced number of studies using DNNs for LULC mapping
over medium-resolution imagery is related, among other reasons, to the lack of ref-
erence and benchmark datasets for these types of images. Aiming to fill this gap,
we propose a novel collection of reference datasets based on Landsat 8 OLI im-
agery and PRODES deforestation maps, which we call PRODES-Vision datasets.
Furthermore, we propose a methodology to, based on trustable maps of Land Use
and Land Cover classes, generate new reference datasets for training Deep Convolu-
tional Neural Networks. PRODES-Vision is composed by a set of reference datasets
of deforested areas in the Brazilian Amazon and Cerrado biomes. The proposed
methodology is described in Section 4.2, and was implemented using DeepGeo func-
tionalities, presented in Chapter 3. The dataset will be publicly distributed with the
source-code needed to generate it, from the download of the images to the complete
dataset generation, ensuring that the methodology may be easily reproducible for
the development of new datasets for other domains.

4.1 Introduction

LULC mapping is an important Remote Sensing task, once it provides information
to understand the territory and consequently, inform and enable public policies. The
recent aroused interest in the development of policies for environmental conservation
and sustainable development due to the emergency of climate changes, allied to the
growing accessibility of freely distributed RS imagery, have increased the demand
for producing LULC maps for large-scale areas. However, to process this massive
amount of data and produce maps for large-scale areas has become almost impracti-
cable with non-automatic approaches. In this context, DNNs have been increasingly
used in tasks like LULC mapping and object detection. However, despite the wide
availability of freely distributed medium-resolution imagery, according to Ma et al.
(2019), there is a lack of reference datasets for this type of data, which has led
most studies to focus on the use of the publicly available ready-to-use benchmark
datasets, composed by high-resolution and hyperspectral images, with only a few
number of studies focusing on practical applications, specially for pixel-wise classi-
fication (semantic segmentation) on large-scale areas.
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The task of producing a reference dataset for large scale areas represents a great
challenge, once the process of manually annotate the images is expensive and time-
consuming. The PRODES program provides the most consistent and dense temporal
series of maps of anthropic disturbance in primary forest in the Brazilian Amazon
and Cerrado biomes, the two biggest South American biomes, comprising total areas
of 4.2 million km2 and 2.03 million km2 respectively. Produced over Landsat 8 OLI
imagery with estimated accuracies around 95%, PRODES maps constitute a power-
ful data to produce reference datasets for the task of automatically map deforested
areas.

Therefore, aiming to fill a gap on the lack of datasets to support the development
of methodologies based on DNNs for large-scale LULC mapping over medium-
resolution imagery, we propose a novel collection of reference datasets, called
PRODES-Vision datasets. In addition, we propose a methodology to, based on exist-
ing LULC maps, produce new reference and benchmark datasets for LULC mapping.
To make it available for the community, the proposed methodology was implemented
at DeepGeo toolbox, presented in Chapter 3. Before defining the proposed dataset,
we would emphasize that, in our understanding, there is an slight difference between
reference and benchmark datasets. We consider that reference datasets can contain a
certain level of noise in the training labels, being useful for developing new methods,
but not for comparison between different methods, once the noise might generate
overrated or underrated error measures. Benchmark datasets, however, are designed
to allow the comparison between different methods, and then should not have noise
in the ground truth labels.

The next sections present the structure and configuration of PRODES-Vision
datasets, as well as the proposed methodology for generating new datasets. Cur-
rent version of PRODES-Vision dataset provides training data for three different
areas, two in the Amazon biome, and one in the Cerrado biome. When developing
a new model and tuning its parameters, it is desirable to have a smaller dataset, for
quicker iterations. For this purpose, we provide two development-oriented dataset
configurations. The first covers an area of approximately 110,000 km2 in the Ama-
zon, in Southestern Pará State (configuration 1), and is described in Section 4.3.1.
The second comprises an area of approximately 130,000 km2 in the the Brazilian
Cerrado (configuration 3), and is described in Section 4.3.3. Additionally, we provide
a large-scale dataset comprising the entire Pará State (configuration 2), an area of
approximately 1.26 million km2, which corresponds to approximately 25% of the
Brazilian Amazon, and is described in Section 4.3.2.
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4.2 Building reference datasets

We propose a methodology to generate reference datasets for LULC mapping with
DL methods. This methodology can also be used as a reference to develop datasets
for the domains of other applications. A flowchart that synthesize the proposed
methodology is depicted in Figure 4.1. When working with ANNs, the normaliza-
tion is a recommended preprocessing step, due to the fact that having the pixel
values in the interval [−1, 1] or [0, 1] makes the training process to reach a faster
convergence (LECUN et al., 2012). Therefore, once most RS applications work with
images in surface reflectance values, to keep the coherence with such measure, the
input images are firstly normalized to [0, 1]. To produce multi-temporal datasets, the
images from different timestamps are sequentially stacked in a single array, where
the number of channels will be the number of timestamps multiplied by the number
of bands of each image. This stacking makes the possible number of timestamps
flexible without the need of changing the number of input parameters of the model
being developed. The shapefiles with the LULC maps, in our case PRODES defor-
estation maps, are rasterized with the same 30 meters of spatial resolution of the
input Landsat-OLI images, making each pixel to have a corresponding label in the
ground truth.

Figure 4.1 - Flowchart of the methodology to generate PRODES-Vision reference datasets.
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Sometimes, LULC maps are produced taking into account images from several differ-
ent dates. That makes some classes of interest to appear under clouds when taking
one single image from an specific date. In the case of PRODES, for example, it
measures the increment in the deforestation on primary forests, using a mask to
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ensure that older deforested areas will not be mapped again, thus keeping the con-
sistency of the temporal series. Furthermore, to produce the maps for each year, in
order to reduce the misobserved deforestation caused by the occurrence of clouds,
PRODES uses images from several dates. This brings a problem to train DNNs, be-
cause merging several images in a cloudless image could produce undesired artifacts,
potentially confusing the classifier. To overcome this problem, we use the Landsat
quality assessment channel to create a new class related to the clouds and cloud
shadow in the ground truth data, generating a mask and then replacing the labels
for the corresponding pixels. With this approach, we are able to reduced the cloudy
noise in the ground truth data.

After that, the images and labels are sequentially or randomly sliced into small
patches to reduce the computational cost of the training process. In the case of
PRODES-Vision datasets, the choice was to use the sequential slicing without over-
lap between the patches, to ensure that the entire area would be covered by the
dataset, and consequently to ensure a better diversity and representability of the
training samples. After the slicing step, the patches containing only pixels with no
data values are discarded. The patches are then shuffled and split into training, test
and validation datasets following the proportion of 60%, 20% and 20% respectively.
Each of the training, test and validation datasets are then encoded to the desired
file format and recorded to the disk. For TensorFlow models, TFRecords, which are
quicly described in Section 4.3, are recommended for performance optimization.

4.3 PRODES-Vision collection and its structure

Landsat OLI images are composed of 8 multispectral bands with 30 meters of spatial
resolution and one panchromatic band with 15 meters of spatial resolution, as pre-
sented in Table 4.1. To Generate PRODES-Vision datasets, we used 5 multispectral
bands: Green, Red, Near Infrared (NIR), and the two Short-wave Infrared (SWIR).
The bands 1 and 2 (Coastal Aerosol and Blue) were discarded due to the strong
atmospheric effect on shorter wavelengths. The band 9 (Cirrus) was designed for
the detection of a very specific type of clouds, called cirrus clouds, that are usually
invisible in the other spectral bands (UNITED STATES GEOLOGICAL SURVEY - USGS,
2020a). It presents a very low spectral response for most targets in the earth surface,
and was discarded for this reason.
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Table 4.1 - Description of multispectral and panchromatic bands of Landsat 8 OLI sensor.

Band number Band name Wavelength (µ m) Resolution (m)
1 Coastal Aerosol 0.43 - 0.45 30
2 Blue 0.45 - 0.51 30
3 Green 0.53 - 0.59 30
4 Red 0.64 - 0.67 30
5 Near Infrared (NIR) 0.85 - 0.88 30
6 Short-wave Infrared 1 (SWIR 1) 1.57 - 1.65 30
7 Short-wave Infrared 2 (SWIR 2) 2.11 - 2.29 30
8 Panchromatic 0.50 - 0.68 15
9 Cirrus 1.36 - 1.38 30

SOURCE: UNITED STATES GEOLOGICAL SURVEY - USGS (2020b)

To support the development of the methodology and comparisons presented in
Chapters 5 and 6, all configurations of PRODES-Vision datasets were developed
containing multi-temporal samples with two timestamps each. The configuration 1,
presented in Section 4.3.1, was developed also in a version containing only single-
temporal samples. This first version of PRODES-Vision was developed using only
Landsat 8 OLI imagery to keep the consistency with PRODES methodology, that
uses images from the same sensor. All the files of PRODES-Vision datasets were
encoded in TFRecords to take advantage of the highly optimized TensorFlow input
data pipeline. TFRecord file format is a particular type of binary file developed
to optimize not only the performance for reading and parsing the input data, but
also to efficiently interleave between a large quantity of files in a single training
process (TENSORFLOW, 2020b). It is encoded through a protocol buffer, a struc-
ture developed by Google for the efficient serialization of structured data (GOOGLE,
2020). The feature description used to encode PRODES-Vision datasets is presented
in Table 4.2. The fields channels, height, width and timestamps are used to correctly
decode and reshape the images and labels, once the fields encoded as bytes, when
read from the TFRecord files, come as a flatten array of bytes. Together with all
datasets, a .csv file is also provided with a complete description of the dataset and
the preprocessing steps followed to generate it.
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Table 4.2 - Feature encoding of PRODES-Vision TFRecords.

Field Name Field type Data shape Description

images
Array of Float
32 bits, encoded
as bytes

316 × 316 × 10
or 316 × 316 × 5

Array containing an image
patch. In multi-temporal
datasets, it has 10 chan-
nels, in single-temporal ones
5 channels.

labels
Array of Int 32
bits, encoded as
bytes

316 × 316 × 1 Array containing a patch of
the ground truth.

channels Int 64 bits single value

Integer number describing
the total number of chan-
nels (bands) of the patches
stored in the field "images".

height Int 64 bits single value

Integer number describing
the height of the patches
stored in "images" and "la-
bels".

width Int 64 bits single value

Integer number describing
the width of the patches
stored in "images" and "la-
bels".

timestamps Int 64 bits single value

Integer number describing
the number of timestamps
stacked in the "images" ar-
ray.

In the current version, three configurations of PRODES-Vision datasets were gen-
erated, two comprising regions in the Amazon biome and the third one comprising
a region in the Cerrado biome. For the Amazon biome, we generated one smaller
dataset for development, debugging and tuning the models, and one comprising a
large-scale area, to test and demonstrate the scalability of the developed models.
The third configuration, that comprises a region in the Cerrado biome, was devel-
oped to demonstrate the applicability of the classification system proposed in this
thesis to a different region with a different and more complex type of vegetation.
These three configurations are detailed described in the following three subsections,
and a summary is presented in Table 4.3. The choice of the patch size was guided by
the U-Net structure. In the paper where the U-Net was proposed, Ronneberger et al.
(2015) stipulated patches of 572 × 572 pixels, but we reduced this size to reduce the
memory consumption, allowing the use of bigger batches in the training process. Our
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first attempt was to reduce this size in a half, using patches of 286 × 286 pixels, and
this is the reason why the configuration presented in Section 4.3.1 was produced
also in this size. Despite the promising results produced with this patch size, as
presented in Chapter 5, we diagnosed that it led some of the pooling layers to gen-
erate odd sizes. These odd sizes in intermediate layers did not impact considerably
the performance of the network, but we consider that avoiding it could be a good
practice. We identified then that the best way to change the input sizes, avoiding
odd sizes in intermediate layers, was to reduce or increase the size by subtracting
or adding it with a number power of two (2n). For this reason, all the configura-
tions of PRODES-Vision datasets were developed with patches of 316 × 316 pixels,
subtracting 572 by 256 (28).

4.3.1 Configuration 1: PRODES-Vision Amazon Parakanã

As aforementioned, this configuration of the dataset was generated with two different
patch sizes, 286 × 286 pixels and 316 × 316 pixels, the first one for supporting the
results presented in Chapter 5. To create this dataset we selected 4 Landsat 8 OLI
scenes in the area around the Parakanã Indigenous Land, Southeastern Pará State,
as depicted in Figure 4.2. The paths and rows of the selected scenes, following
the Landsat Worldwide Reference System (WRS) (UNITED STATES GEOLOGICAL

SURVEY - USGS, 2020c), were 224/64, 224/65, 225/64 and 225/63. This region was
chosen because it is a well-known agricultural expansion frontier, and has been a
deforestation hotspot in the Amazon Biome in the last decades. The total area
comprised by the dataset is approximately 110,000 km2.
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Figure 4.2 - Area of the development dataset generated for the Amazon Biome, in South-
eastern Pará State.
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A 5-years temporal series of those 4 scenes, from 2013 to 2017, was used to create
the dataset. For the multi-temporal dataset, to achieve the samples for each year,
the images from that year and the previous were stacked, with the first 5 channels
being the first year and the following 5 channels being the second. For example, for
the year of 2017, images from 2016 and 2017 were stacked. The generated multi-
temporal datasets has a total size of 27 GB in both patch sizes. The single-temporal
version of this dataset has a total size of 18 GB also in both patch sizes. In both
configurations, the patches were split with a proportion of 60% for training, 20% for
test and 20% for validation. The total number of patches is presented in Table 4.3.
Figure 4.3 shows the spatial distribution of the patches generated for this dataset.
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Figure 4.3 - Spatial distribution of the chips for the PRODES-Vision Amazon Parakanã.

The ground truth labels are composed by three classes, not deforestation, deforesta-
tion and clouds. PRODES aims to map anthropic disturbance, produced through
clear cut, in primary Amazon forests in areas dominated by the vegetation with
forest physiognomy according to the classification proposed by DEPARTAMENTO
NACIONAL DE PRODUÇÃO MINERAL - DNPM (1976). The produced maps are
composed of four main classes, non forest, forest, hydrography and deforestation.
The class forest comprises all the areas of primary forest, according to the afore-
mentioned classification, with the class non forest being composed of all the areas
that does not belong to this domain. The hydrography class comprises the main
rivers and water bodies of the region. And finally, the deforestation class comprises
all areas deforested through clear cut bigger than 6.25 ha. Once PRODES aims to
detect only disturbance on primary forests, areas that were deforested and aban-
doned, regenerating the vegetation and becoming secondary forests are still being
mapped as deforestation (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE,
2019a). The deforestation class is also divided in several other classes, one for the
deforestation detected on each year, since the beginning of the project. To produce
these datasets, the classes forest, non forest and hydrography were grouped in the
class not deforestation. For each year of the temporal series, the deforestation class
was produced by composing all the areas deforested until that year, i. e., for pro-
ducing the labels for 2017, all the areas mapped as deforestation until 2017 were
considered as deforestation. The Amazon is a very rainy region, and several areas
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remains covered by clouds most part of the year, being sometimes difficult to find
completely cloud free images. For this reason, to be able to achieve the biggest cov-
erage possible, to produce the maps for each scene, images from several different
dates are used. As mentioned in Section 4.2, to overcome this problem, the class
clouds was created using the Landsat Quality Assessment data.

4.3.2 Configuration 2: PRODES-Vision Pará

This configurations provides a large-scale dataset, which comprises the entire area of
Pará State. Due to computational issues, in this version we only produced a multi-
temporal version of the dataset. The mosaic of the entire area was composed of 67
Landsat 8 OLI scenes, cropped with the limits of the state, which comprises an area
of approximately 1.26 km2, and then sliced in patches of 316×316 pixels, discarding
the patches fulfilled with no data values. Pará State, the second biggest Brazilian
state and the second biggest of the Amazon biome, presents a diversity of areas with
different characteristics, like coastal zones, protected areas and riverside areas. In
addition, it also presents a diversity of different deforestation patterns, according
to the typology presented by Saito et al. (2012). Historically, this state has also
presented the highest deforestation rates in the Amazon Biome in last decades,
concentrating between 34% and 58% of the total deforestation of the biome every
year since 2006, and a total of 34.12% of the total deforested area when considering
the entire PRODES timeseries (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS -

INPE, 2019c). Therefore, the choice for this area was guided by these reasons, namely,
large-scale area, diversity of deforestation patterns, and being high deforestation
rates. The spatial distribution of the generated patches is presented in Figure 4.4.
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Figure 4.4 - Spatial distribution of generated patches over Pará State when discarding all
patches containing only no data values.

A 5-years temporal series of images, from 2013 to 2017, was used to create the
dataset. The multi-temporal stacking was performed in the same way as described
in Section 4.3.1, stacking pairs of years to generate each patch sample. The generated
dataset has a total size of 273 GB, and the patches were split with the proportion of
60% of for training, 20% for test and 20% for validation. The total number of patches
is presented in Table 4.3. In order to optimize the storage and deployment of the
dataset, as well as to optimize the memory consumption during the training process
and during the dataset generation, the dataset was partitioned into four TFRecords,
which can be randomly interleaved for loading the chips during the training process.
Once this dataset is a large-scale version of the previous configuration, as described
in previous section, the ground truth labels are composed by three classes, not
deforestation, deforestation and clouds.
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4.3.3 Configuration 3: PRODES-Vision Cerrado Correntina

This configuration provides an smaller scale dataset for development, debugging
and tuning networks, similar to the Configuration 1, comprising a region in an-
other biome, the Cerrado, also known as the Brazilian Savanna. It the context of
this thesis, this dataset was developed to test and demonstrate the applicability
of the classification system proposed to a different region, with different types of
vegetation and dynamics. The choice for this area was made for two main reasons.
Firstly, mapping LULC in the Cerrado Biome, the second largest Brazilian biome,
with approximately 2 million km2, represents a great challenge, once it presents
a very rich diversity of vegetation types, being considered one of the 35 hotspots
for biodiversity conservation on the planet (MITTERMEIER et al., 2011). Beyond the
great phenological diversity of this biome, many of these phenological types present
a much stronger seasonality effect, when compared with Amazon, leading this region
to be more complex to be accurately mapped. The second reason is that this biome
has been one of the most active agricultural expansion frontiers in Brazil, leading
to a large suppression of natural vegetation, and consequently to a dangerous loss
of biodiversity. This loss, which reached in 2019 almost 50% of the total area of the
biome (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE, 2019b), has lead
this rich biodiversity to a risk of collapse (STRASSBURG et al., 2017), and directly or
indirectly causing problems like soil erosion, carbon cycle instability, micro climate
changes and strongly affecting water supply(KLINK; MACHADO, 2005), once some of
the most important Brazilian rivers have springs in the region(AGÊNCIA NACIONAL

DE ÁGUAS - ANA, 2019).
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Figure 4.5 - Area of the dataset generated for the Cerrado Biome, in the area surrounding
Correntina County, east of the Biome.
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In this context, one of the deforestation hotspots of the Cerrado is located in the
region around the borders between Bahia, Goiás, Minas Gerais and Tocantins states,
east of the biome. Therefore, we selected an area around Correntina County, west
Bahia state. Aiming to have a more regular crop for the target region, instead
of using the Landsat WRS system as reference, we used the Harmonized Landsat
Sentinel-2 (HLS) Tiling System (NATIONAL AERONAUTICS AND SPACE ADMINIS-

TRATION - NASA, 2020). To reach an area similar to that of the datasets defined in
Section 4.3.1, we selected 12 HLS tiles, covering a region of approximately 130,000
km2 in the borders between Bahia, Goiás, Minas Gerais and Tocantins States, east
of the Cerrado biome. The tiles selected to delimit the study area were, respectively:
23LLD, 23LLE, 23LLF, 23LLG, 23LMD, 23LME, 23LMF, 23LMG, 23LND, 23LNE,
23LNF and 23LNG. The limits of these HLS tiles were used to delimit the study area
and crop the Landsat 8 OLI imagery. The selected area is presented in Figure 4.5.
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Figure 4.6 - Spatial distribution of the chips for the PRODES-Vision Cerrado Correntina.

The spatial distribution of the generated patches is presented in Figure 4.6. A 5-
years temporal series of Landsat 8 OLI images, from 2013 to 2017, was used to
create the dataset. The multi-temporal stacking was performed in the same way as
described in Section 4.3.1, stacking pairs of years to generate each patch sample.
The generated dataset has a total size of 25 GB, and the patches were split with
the proportion of 60% of for training, 20% for test and 20% for validation. The total
number of patches is presented in Table 4.3. The smaller storage size and number of
patches compared with the configuration 1 is due to the lower presence of no data
values in this regular crop.

The class composition of the maps produced by PRODES Cerrado are slightly dif-
ferent from the Amazon maps, and do not contain the non forest class. The maps are
then composed by three main classes, water bodies, not deforestation and deforesta-
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tion. For the design of this dataset, the classes water bodies and not deforestation
were grouped into the class not deforestation. Due to the climate of the Cerrado
biome, which has a dry winter, it is easier to find completely cloud-free images.
For this reason, all the images used were completely free of clouds, and the class
clouds was not produced. Consequently, the ground truth labels are composed of
two classes, not deforestation and deforestation.

4.4 Final comments

In this chapter, we addressed the challenge of producing reference datasets to train
DNNs to LULC mapping. For this task, we propose a methodology to, given an input
LULC map, generate reference datasets to train DNNs. In addition, we presented a
novel set of reference datasets for deforestation detection. To obtain this datasets, we
have used freely provided Landsat 8 OLI imagery and PRODES deforestation maps,
which are considered the most consistent and dense temporal series of anthropic
disturbance on primary vegetation. The proposed datasets are composed of three
main classes, based on three classes, extracted from PRODES maps and Landsat
8 cloud information, namely: deforestation, not deforestation, and clouds. Table 4.3
presents a summary of all configurations of PRODES-Vision datasets, with storage
size, number of chips and temporal configuration.

Table 4.3 - Summary of the configurations of PRODES-Vision datasets.

Dataset Config. Time Stacking Size (GB) Train Patches Test Patches Val. Patches

Config. 1 (286) Single-Temp. 18 5904 1968 1968
Multi-Temp. 27 4723 1574 1574

Config. 1 (316) Single-Temp. 18 4773 1591 1591
Multi-Temp. 27 3818 1273 1273

Config. 2 Multi-Temp. 272 39789 13263 13267
Config. 3 Multi-Temp. 25 3590 1197 1197

As we will demonstrate in Chapters 5 and 6, the methodology presented in this
chapter to automatically generate datasets for LULC change detection, as well
as the proposed PRODES-Vision datasets, has proved to be effective to support
the development of new classification methods. Despite the promising results and
demonstrated effectiveness of the classification system proposed, detailed described
in Chapters 5 and 6, further improvements in PRODES-Vision collection of datasets
are still needed. We identified that, regardless the quality of Landsat 8 quality as-
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sessment data, the produced cloud mask still contains a certain number of false
positives, inserting certain noise in the ground truth. As we will demonstrate in the
aforementioned chapters, the proposed DNN was effective to deal with the noise in
the ground truth. However, we believe that improving the cloud mask to reduce or,
if possible, eliminate the errors, specially the false positives, we will be able to, not
only improve the accuracy of the produced maps, but also to provide these datasets
as a benchmark for comparison between methods, encouraging the development of
new deforestation detection methods.

When scaling up the dataset for large-scale areas, we detected that, to be able
to extend the datasets to cover the entire extension of the Amazon and Cerrado
biomes, improvements are needed in the data partitioning strategy are needed both
in the generation and storage of the datasets. This improvements will allow to have a
better performance in the training process as well as to be able to have more efficient
ways to organize and provide the dataset collection for the users. Therefore, future
works include improvements in the cloud mask used to generate the cloud labels and
the design of a better partitioning strategy for the dataset, for a better efficiency
on training, storage and deployment. In addition, it includes the generation of a
new version of PRODES-Vision collection comprising the entire extension of both
Brazilian Amazon and Cerrado biomes, that together cover an area of approximately
6.23 million km2. And finally, we aim to include imagery from different sensors with
resolution compatible with Landsat 8, like the Sentinel and CBERS collections,
expanding the possibilities of generating multi-sensor approaches, which would be
able to provide a better temporal resolution on the maps produced.
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5 SPATIO-TEMPORAL DEEP LEARNING APPROACH TO MAP
DEFORESTATION IN AMAZON RAINFOREST1

We address the task of mapping deforested areas in the Brazilian Amazon. Accu-
rate maps are an important tool for informing effective deforestation containment
policies. The main existing approaches to this task are largely manual, requiring
significant effort by trained experts. To reduce this effort, we propose a fully auto-
matic approach based on spatio-temporal deep convolutional neural networks. We
introduce several domain-specific components, including approaches for: image pre-
processing; handling image noise, such as clouds and shadow; and constructing the
training dataset. We show that our preprocessing protocol reduces the impact of
noise in the training dataset. Furthermore, we propose two spatio-temporal varia-
tions of the U-Net architecture, which make it possible to incorporate both spatial
and temporal context. Using a large, real-world dataset, we show that our method
outperforms a traditional U-Net architecture, achieving approximately 95% accu-
racy.

5.1 Introduction

Despite the significant reduction in the deforestation rates in the Brazilian Amazon
in the early 2000s, mainly due to the Brazilian Policies and enforcement actions,
thousands of square kilometers of forest are still being cleared every year. Produc-
ing accurate deforestation maps is critical for informing and enabling public policies
aimed at combating deforestation. Since 1988, the PRODES program, developed by
INPE, has been estimating deforestation rates on an annual basis. Since 2000, digi-
tal maps have been produced, resulting in the most consistent and dense temporal
series of maps of anthropic disturbance in primary forests in the Brazilian Ama-
zon (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE, 2019c). Together with
the Near Real-time Deforestation Detection System (DETER), PRODES played an
important role in the reduction of deforestation rates in the early 2000s (BOUCHER

et al., 2013). PRODES and DETER are considered the main references on large-
scale accurate mapping of deforestation in tropical forests (CARVALHO et al., 2014).
Data generated by PRODES and DETER are used by the Brazilian government
to support environmental surveillance actions, environmental protection and public
policies in the Brazilian Amazon. However, both systems still rely on remote sens-
ing experts to perform the visual analysis of the satellite imagery (INSTITUTO NA-

CIONAL DE PESQUISAS ESPACIAIS - INPE, 2019c). That makes the task of producing

1This chapter is based on Maretto et al. (2020)
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deforestation maps being expensive, time consuming, and strongly dependent on the
expertise of the analysts. Many initiatives have been made to automate this process,
such as the Global Land Analysis an Discovery (GLAD), developed by Global Forest
Watch (HANSEN et al., 2013) and the Deforestation Alert System (SAD), developed
by Imazon. However, none of them achieved the classification accuracy greater than
90% similar to PRODES and DETER. Therefore, there is still necessity to develop
an automated method of deforestation detection in the Brazilian Amazon that can
be operational, processing a large amount of data in an efficient way, and also having
high classification accuracy.

Automating LULC mapping and change detection are difficult tasks. As a change
detection problem, the deforestation mapping involves some challenges. The main
challenges include: the presence of clouds and cloud shadows; integrating imagery
from different sensors; spectral difference due to phenological changes; and various
other imaging artifacts. Recently, DL methods have shown promise for LULC map-
ping and change detection tasks, with high accuracies, robustness to various sources
of noise, and the ability to scale to large-scale mapping (CHENG et al., 2017; MA et

al., 2019).

This chapter investigates the effectiveness of DL techniques for mapping defor-
estation in the Brazilian Amazon. We propose a fully automatic approach, using
PRODES maps as ground truth, to train three variations of the U-Net (RON-

NEBERGER et al., 2015) on Landsat 8 OLI images. Furthermore, we propose two
spatio-temporal variations of the U-Net. We found that including temporal context
is important for reducing false positives, as well as increasing the focus on changes.
The approach was tested for a region comprising nearly 111,000 km2 in southeastern
Pará State, a well-known agricultural expansion frontier. The resultant deforesta-
tion maps achieved an accuracy of approximately 95% on a held-out testing set. An
overview of these results is presented in Figure 5.1
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Figure 5.1 - Overview results for the Late Fusion U-Net, which achieved the best per-
formance among the tested models. The deforestation and cloud classes are
here overlaid to the images with a color composition on Landsat 8 OLI bands
R(6)G(5)B(4).
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5.2 Deep learning based land use and land cover mapping

The feature representation learned by DNN, especially the CNN and the end-to-end
FCN (LONG et al., 2015), has shown to be greatly effective in scene classification and
semantic segmentation tasks. Through a Recurrent Attention structure, the ARCNet
was able to focus selectively on key regions, demonstrating the importance of high-
level features and achieving over 99% accuracy on target detection tasks (WANG et al.,
2019a). Wang et al. (2019b) developed a weekly supervised adversarial approach able
to learn domain-invariant features, improving the semantic segmentation accuracy
with synthetically produced training data. Several works have demonstrated the
effectiveness of DNN for LULC mapping and LULC change detection (MA et al.,
2019). Syrris et al. (2019) evaluated different variations of four DNN models to
map 8 different land cover classes from the Infrastructure for Spatial Information in
Europe (INSPIRE) TOP10NL dataset over Sentinel-2 images, reaching an overall
accuracy of approximately 87%, compared to 81% obtained by the Random Forest.

To map four different classes in urban spaces on the high-resolution airborne Images
from the ISPRS dataset Vaihingen, Häufel et al. (2018) evaluated a traditional
CNN on a superpixel segmentation approach against the pixel-wise DeepLabV3+,
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proposed by Chen et al. (2018), achieving promising results, with 82% and 88%
overall accuracy, respectively. Originally proposed by Ronneberger et al. (2015) to
perform semantic segmentation on medical images, the U-Net and its variations are
amongst the most successful DNN architectures for Remote Sensing applications.
Zhang et al. (2018) proposed a Residual U-Net to perform road extraction on high-
resolution aerial images from the Massachusetts roads dataset.

However, despite the successful results, most applications work on ready-made train-
ing datasets with preprocessed data. Our approach encompasses not only the clas-
sification task but also the data preprocessing and dataset generation, providing a
fully automatic approach from preprocessing to classification.

5.3 Methodology

The main purpose of this work is to apply DL based semantic segmentation tech-
niques to automate the deforestation detection in the Brazilian Amazon. We propose
a fully automatic approach to preprocess input data, deal with ground truth labels
under clouds, train the proposed DNN classifiers, and perform the prediction, using
PRODES maps as ground truth. Figure 5.2 represents a simplified flowchart of data
preprocessing and training processes, described at Section 5.3.1.

Figure 5.2 - Overview of the DNN training methodology.
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Since deforestation is a land cover change phenomenon, it is necessary to take into
account not only the spatial context but also temporal dynamics. To accomplish
that, we propose two variations of U-Net that take into account short-term tem-
poral dynamics. These two variations were tested with two different loss functions,
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the average soft dice score, and the weighted cross-entropy, that are described at
Section 5.3.3. These spatio-temporal variations were then compared with our imple-
mentation of the traditional U-Net.

5.3.1 Preprocessing and training

To take better advantage of the neuron’s activation, which is done through the Recti-
fied Linear Unit (ReLU) function, the input images were normalized to the interval
[0, 1]. PRODES maps are produced from Landsat 8 OLI images and distributed
as shape files through the TerraBrasilis Platform2. To keep the consistency with
PRODES methodology, our method was developed over images from the same sen-
sor. To develop our method, firstly the shape files were rasterized with the same 30 m
of spatial resolution of the input Landsat 8 OLI Images, to keep the correspondence
between the image pixel and ground truth labels. PRODES maps the increment in
the deforestation on primary forests, using a mask to ensure that older deforested
areas will not be mapped again, thus keeping the consistency of the temporal series.
PRODES uses images from several dates to produce the maps for each year, due to
the high occurrence of clouds in the Amazon region. This brings a problem to train
the DNN, because merging all images in a cloudless image could produce undesired
artifacts, potentially confusing the classifier. To overcome this problem, we used the
Landsat quality assessment channel to create a new class related to the clouds and
cloud shadow in the ground truth data, generating a mask and then replacing the
labels for the corresponding pixels. With this approach, we reduced the cloudy noise
on the ground truth data.

After that, the images and labels were sequentially sliced into 286×286 patches, to
reduce the computational cost. Besides, all patches containing pixels with no data
values were removed from the training dataset. The generated patches were divided
into three datasets: 60% for training, 20% for evaluation and 20% for validation.

5.3.2 Spatio-temporal U-Net with trainable temporal fusion

As aforementioned, three U-Net variations were compared in this paper, a baseline
model that follows the same architecture as described in Ronneberger et al. (2015)
and two U-Net extensions with a trainable temporal fusion approach, to consider not
only the spatial context but the temporal dynamics between N timestamps, with
N being considered the temporal depth. The baseline method consists of the same
structure of the original U-Net, changing the input size to 286×286 pixels. As in the

2www.terrabrasilis.dpi.inpe.br/downloads
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original U-Net, the output image is smaller than the input, due to the unpadded
convolutions, with a size of 100×100 pixels.

Trainable temporal fusion component: Used in both U-Net variations proposed
in this paper, the temporal fusion is depicted in the bottom right frame of Figure 5.3.
It consists of concatenating the N time-stamps and then performing a 1×1 convo-
lution with the same number of filters as the number of channels of each individual
input image. This process aims to reduce the amount of data being processed by the
network, as well as work as a trainable change detector. The main difference between
the two spatio-temporal approaches is the way this temporal fusion is applied.

Early Fusion (EF) spatio-temporal U-Net: In the EF version, depicted in
Figure 5.4, the temporal fusion of the N timestamps is performed as an extra layer
before starting the network encoder, with the resulting feature maps following the
traditional U-Net flow.

Figure 5.3 - U-Net with early spatio-temporal fusion. On the bottom-right frame, the
Trainable Temporal Fusion.
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Late Fusion (LF) spatio-temporal U-Net: In the LF version, depicted in Fig-
ure 5.3, the U-Net encoder is duplicated and each image is processed by its corre-
sponding encoder. After each convolutional block, the temporal fusion is applied,
fusing the feature maps generated by the N encoders, and then the fused feature
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maps are cropped and copied to be concatenated on the corresponding block on the
decoder.

Figure 5.4 - U-Net with late spatio-temporal fusion. On the bottom-right frame, the Train-
able Temporal Fusion.
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5.3.3 Loss functions

The input data is unbalanced, in terms of the number of pixels, between the classes of
interest. For that reason, we tested two different losses that have been successfully
applied in the literature for unbalanced data, the weighted cross-entropy and the
average soft dice.

Weighted Cross-Entropy (WCE): The cross-entropy evaluates the class predic-
tion for each pixel vector individually, asserting equal importance for every pixel
in the learning process. This may bring problems if the classes have an unbalanced
distribution across the image. To overcome that, Long et al. (2015) and Ronneberger
et al. (2015) successfully applied different weighting strategies to the cross-entropy.
The first loss function evaluated was the WCE, described as:

WCE = −
C∑

c=1
wc

N∑
i=1

ytrue log(ypred) (5.1)

where the weight wc of each class, described below in equation 5.2, is defined as the
mean across the proportions of all classes (µP ) divided by the proportion pc of that
class. C represents the total number of classes and c the index of the current class.
N represents the total number of samples (pixels) and i the index of the current
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sample. ytrue represents the ground truth and ypred the prediction (logits) generated
by the network.

wc = µP

pc

(5.2)

Average Soft Dice (ASD): Based on the Dice Score (DS), it is also commonly
used as the loss function for semantic segmentation tasks. Originally developed for
binary data, the DS is essentially a measure of overlap between two sample sets, that
ranges in [0, 1]. The adaptation of the DS to be used as loss function is called soft dice
(SD) and is described in equation 5.3, where ε represents an infinitesimal number
used for numerical stability, to avoid divisions by zero. The numerator represents
the measure of the common activations between the predicted map and the ground
truth, while the denominator represents the measure of the number of activations
in each one. This has an effect of normalizing the loss according to the size of the
target mask, making it less affected by imbalanced data.

SDc = 1 − 2 ∑N
i=1 ytrueypred∑N

i=1 y
2
true + ∑N

i=1 y
2
pred + ε

(5.3)

The SD score is computed for each class separately and then averaged across all
classes, resulting in the ASD. An essential difference between the WCE and the ASD
is that the first is computed over the network logits, while the second is computed
over the predicted probabilities.

5.3.4 Implementation and optimization details

DL methods are highly prone to overfitting, bringing the need of strategies to avoid
it. We used three strategies for that: batch normalization, L2 regularization and data
augmentation. The batch normalization was applied after each convolution opera-
tion, before the ReLU activation. The L2 regularization was applied to all convolu-
tion layers, with a factor of 5 × 10−4. The data augmentation is used to artificially
increase the number of training samples. To accomplish that, four operations were
applied to each patch on the training dataset, randomly chosen between three rota-
tions (90, 180 and 270 degrees) and three flips (left-right, up-down and transpose).
Taking advantage of the parallelism of the TensorFlow input data pipeline (ABADI

et al., 2016), the data augmentation operations were applied on the fly during the
training process. For the EF U-Net and the LF U-Net, we used a total of 4723
patches for training, increasing to 23,615 with the data augmentation procedure.
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For each of the evaluation and validation, 1574 patches were used. For the baseline
U-Net, once each year was processed separately instead of fusing pairs of years, we
had a total of 5904 patches for training (29,520 after the data augmentation) and
1968 for each of the evaluation and validation.

The network weights were initialized through the Xavier initializer. For all exper-
iments, it was run for 100 epochs, with batches of 80 patches. Once the networks
were trained from scratch, the learning rate was adjusted through exponential de-
cay, starting from 0.1, and decaying with a rate of 0.95. Due to the high influence of
atmospheric effects on lower wavelength bands, we used the 5 bands corresponding
to the green, red, near infrared and the two short wave infrared bands. The methods
were developed into the DeepGeo Toolbox (MARETTO et al., 2019).

5.4 Study area and experiments

Our study area corresponds to 4 Landsat 8 OLI scenes, comprising an area of nearly
111,000 km2, in southeastern Pará state, a well-known agricultural expansion fron-
tier. The training dataset is composed by a 5-year time series, from 2013 to 2017,
and the spatio-temporal networks were configured with a temporal depth of two
years. Thus, to achieve the data samples for each year, the images from that year
and the previous were used. For example, for the year of 2017, images from 2016
and 2017 were used. PRODES classify 4 main classes, non forest, forest, hydrography
and deforestation. For simplification purposes, once hydrography and non forest are
invariant in time, we grouped them with the class forest in one single class, named
not deforestation.

Due to the availability of PRODES temporal series for the entire Amazon, it is more
important to ensure the network generalization in time than in space. To produce
the results in this chapter, we used the images from 2018 as a test dataset. As shown
in Table 5.1, the LF U-Net presented better scores for all metrics with both losses,
when compared with the baseline and the EF U-Net, with the baseline network
performing slightly better than the EF U-Net. Furthermore, we can also observe
that all network configurations presented better scores with the WCE than with the
ASD, demonstrating better ability to deal with the data imbalance. Although the
LF U-Net worked well in improving the performance of the network, the EF U-Net
did not have the same success. This may be explained by the fact that, applying the
temporal fusion only in the beginning, the reduced amount of filters was not enough
to properly deal with the temporal dynamics.
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Table 5.1 - Average metrics across all classes.

Model Loss Function F1-score Avg. accuracy AuC
Baseline U-Net

WCE
0.9448 0.9447 0.9883

EF U-Net 0.9427 0.9425 0.9873
LF U-Net 0.9471 0.9470 0.9887
Baseline U-Net

ASD
0.9417 0.9417 0.9857

EF U-Net 0.9388 0.9388 0.9858
LF U-Net 0.9460 0.9461 0.9876

When performing a class-wise comparison, shown in Table 5.2, we observe that,
although the WCE loss function performed better for most classes and metrics,
the ASD presented a better precision for the deforestation and clouds classes. This
might be explained by the fact that the ASD loss function is derived from an overlap
measure reducing the number of false positive detections, once the precision measures
the purity of the positive detections. However, the higher recall for the WCE shows
that the number of true positives was also reduced when using the ASD, which
explains the better Overall Accuracy for the versions using the WCE.

Table 5.2 - Class-wise metrics for the proposed U-Net variations.

Baseline Early Fusion Late Fusion Baseline Early Fusion Late Fusion
Metric Class Weighted cross-entropy Soft Dice Score

F1-score
Not Deforestation 0.9536 0.9520 0.9558 0.9522 0.9507 0.9557
Deforestation 0.9241 0.9215 0.9274 0.9189 0.9182 0.9248

Clouds 0.9662 0.9617 0.9650 0.9599 0.9395 0.9636

Precision
Not Deforestation 0.9636 0.9630 0.9657 0.9484 0.9449 0.9531
Deforestation 0.9101 0.9074 0.9147 0.9204 0.9223 0.9286

Clouds 0.9593 0.9498 0.9537 0.9795 0.9617 0.9660

Recall
Not Deforestation 0.9438 0.9413 0.9461 0.9561 0.9564 0.9584
Deforestation 0.9386 0.9362 0.9405 0.9173 0.9142 0.9209

Clouds 0.9732 0.9739 0.9766 0.9411 0.9183 0.9612

AuC
Not Deforestation 0.9881 0.9868 0.9891 0.9843 0.9847 0.9870
Deforestation 0.9871 0.9855 0.9879 0.9829 0.9838 0.9859

Clouds 0.9994 0.9989 0.9990 0.9981 0.9971 0.9886

The main goal of PRODES is to map anthropic disturbance on primary forests,
creating a consistent temporal series of the deforested areas. For this reason, the de-
forested areas that are abandoned and regenerated, becoming secondary forest still
being mapped as deforestation. Nevertheless, the areas abandoned for longer time
present a similar spectral behavior as the primary forest, acting then as a kind of
noise in the ground truth for the training process. Taking a closer look at the classi-
fication produced by our model, we observed that several false negatives happened
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due to these regenerated areas. This behavior can be observed in the red circles in
the left column on Figure 5.5. Therefore, we believe that the real error, especially in
more recently deforested areas, was overrated. In the right column on Figure 5.5, it is
possible to observe that the ground truth is speckled with some nonexistent clouds,
which also acts as noise in the training data. In this case, our network was also
able to classify only the existent clouds, circled in cyan, also indicating an overrated
error. This highlights the robustness of our model to noise in the ground truth.

Figure 5.5 - Highlights on special cases on regenerated areas (red) and clouds (cyan), show-
ing robustness to noises on training data.
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5.5 Conclusion

We developed a fully automatic approach to mapping deforested areas in the Brazil-
ian Amazon using Landsat 8 OLI imagery. Our approach uses modern learning-
based classification techniques tailored to the particulars of the task and the avail-
able datasets. Through extensive evaluation, we demonstrated that our approach
successfully generalizes from year-to-year, achieving an overall accuracy of approxi-
mately 95%. We also demonstrated that our approach is somewhat robust to noise
in the ground truth, as depicted in Figure 5.5.
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In future work, we aim to expand our study area to the entire Brazilian Amazon
in an operational application. Furthermore, we aim to evaluate its generalization in
space, by testing the methodology for other biomes and regions. We also believe that
by extending the methodology to include images from additional sensors, we may
be able to produce highly accurate deforestation maps every few days. This would
likely be an important tool for combating illegal deforestation.

60



6 ADDITIONAL RESULTS AND DISCUSSIONS

This chapter presents two additional experiments, the results produced and a dis-
cussion about these results. The first experiment aims at testing the scalability of
the proposed classification system to large-scale areas. The second one is about the
applicability to areas of a different biome, with different types of vegetation. Con-
sidering that the Late Fusion U-Net achieved the best results in the experiments
presented in Chapter 5 in comparison with the other tested architectures, and as-
suming that this architecture is more effective for capturing the temporal dynamics,
we decided to focus the following experiments on testing the performance of this
network for the other proposed study areas. The machine used to run all the exper-
iments, including the experiments of the paper presented in Chapter 5, was a server
equipped with two Intel Xeon E5-2630L CPUs with a total of 40 cores, 512 GB of
RAM memory and 4 GPUs NVIDIA Tesla V100 with 16GB of memory each.

6.1 Scaling up deforestation detection for large-scale areas

This experiment investigates the scalability of the proposed classification system to
large-scale areas. To accomplish that, we trained the multi-temporal Late Fusion
U-Net presented in Section 5.3.2 using the large-scale configuration of PRODES-
Vision dataset presented in Section 4.3.2, which provides samples for the entire Pará
State. The choice for using this network was guided by its better performance in
the previous experiments, when compared with the Early Fusion and the traditional
U-Net. The Pará State comprises an area of nearly 1.26 km2, occupying 25% of
the Brazilian Amazon, and has concentrated, since 2006, the highest deforestation
rates in the Brazilian Amazon every year (INSTITUTO NACIONAL DE PESQUISAS

ESPACIAIS - INPE, 2019c). As aforementioned, the training dataset is composed of
a 5-years temporal series of Landsat 8 OLI images, from 2013 to 2017, with each
sample being composed of images from a pair of years. We used a total of 39,789
patches for training, 13,263 patches for the evaluation and 13,267 for the validation,
and due to the large amount of patch samples, the data augmentation was not used.
To produce the results presented in this section, the trained network was used to
generate a deforestation map for the year of 2018 as a test dataset, and the generated
map is depicted in Figure 6.1. To improve the performance on the training input,
in the dataset storage, and in the dataset generation process, the training dataset
was partitioned in four TFRecord files, randomly interleaving between them when
training the network.
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Figure 6.1 - Overview of the results produced with the Late Fusion U-Net for the entire
area of Pará State. The deforestation and clouds are here overlaid to the
images with a color composition on Landsat 8 OLI bands R(6)G(5)B(4).
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Due to the large number of chips in the dataset, the experiment was run over 50
epochs, with batches of 60 patches (15 for each GPU device), using an all-reduce
algorithm to communicate between the GPU devices, and a mirrored distributing
strategy, provided by TensorFlow API, to perform the parallelism across the GPU
devices. This strategy creates one replica of the model per GPU device, syncing them
through the all-reduce algorithm (TENSORFLOW, 2020a). A detailed computational
performance analysis is not in the scope of this thesis, and for this reason, we will
not describe the parallelism strategy.

The network was configured using two regularization strategies, the batch normaliza-
tion and L2 regularization, with the same configuration described in Section 5.3.4,
performing the batch normalization after each convolution operation, before the
ReLU, and the L2 regularization being applied to all convolution layers, with a fac-
tor of 5 × 10−4. The network weights were initialized with the Xavier initializer,
and the learning rate was adjusted through exponential decay, starting with 0.1 and
decaying with a rate of 0.95. As in previous experiments, PRODES classes forest,
non forest and hydrography were grouped in a single class, named not deforestation.
As described in Sections 4.2 and 4.3.2, a third class that comprises the clouds was
included, making the dataset composed of three classes, namely: not deforestation,
deforestation and clouds. The network was configured with the Late Fusion U-Net
using the Weighted Cross-entropy as loss function. Despite the Average Soft Dice
presented also accurate results in the experiments presented in Section 5.4, reducing
the false positives when coupled to the LF U-Net, it have presented an unstable
behavior in our experiments, and for this reason, we need to further study this loss
to be able to scale up the application of the network using it.

As depicted in Table 6.1, which presents the average quality metrics across all classes,
the classification model demonstrated to be effective for the task of mapping defor-
estation on large-scale areas. However, when analysing the metrics on Table 6.2,
which presents the quality metrics computed separately for each class, one can no-
tice that, despite the high recall for the deforestation class, this class presented lower
values for the Precision and F1-Score. This means that, despite the high rate of true
positives for this class, indicated by its high recall, there is also a higher rate of
false positive deforestation detections, once the F1-Score is a measure of overlap-
ping, and the precision measures the rate of pixels predicted as a given class that are
annotated with the same class in the ground truth. Analysing the confusion matrix
presented in Figure 6.2, it is possible to identify that most false positives for the
deforestation class were annotated as not deforestation in the ground truth (4.07%
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of the total predicted deforestation pixels) and a small percentage were annotated
as clouds (0.093%). Additionally, 6.33% of the false negatives for deforestation were
annotated as not deforestation in the ground truth. We might point out a few rea-
sons for that. First, as mentioned in Section 5.4, the main goal of PRODES is to
map anthropic disturbance on primary forests, creating a consistent temporal series
of the deforested areas. Therefore, deforested areas that were abandoned for a long
time and regenerated, becoming secondary forest, are still mapped as deforestation.
As depicted in the previous experiment, in Figure 5.5 part of the false positives came
from those areas. In addition, according to PRODES methodology, described in IN-
STITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE (2019a), the class
Non Forest encompasses all the areas that are not defined in the domain of vegeta-
tion with forest physiognomy, according to the classification defined by the project
RADAMBRASIL, developed by DEPARTAMENTO NACIONAL DE PRODUÇÃO
MINERAL - DNPM (1976). For this reason, it is composed by several different types
of targets, like the areas containing different vegetation types, headlands of hills, nat-
ural exposed soil, among others. Many of these targets present an spectral behavior
similar to the deforested areas, being also a source of confusion for the classifica-
tion algorithm. Figure 6.3 demonstrates some of these false positive deforestation
detected in areas originally mapped by PRODES within the non forest class. And
last, we may point out, as another source of false positives for some pixels, the delim-
itation performed by the algorithm in the borders of the objects is slightly different
from that produced by human analysts.

Table 6.1 - Average metrics across all classes for the map produced for Pará State.

Loss Function F1-score Avg. accuracy AuC
WCE 0.9263 0.9389 0.9886

Table 6.2 - Class-wise metrics for the map produced for Pará State.

Loss Function Class F1-score Precision Recall AuC

WCE
Not Deforestation 0.9543 0.9748 0.9347 0.9891
Deforestation 0.8854 0.8519 0.9217 0.9896

Clouds 0.9392 0.9121 0.9681 0.9971

When it comes to the performance of the model when scaling it up, we diagnosed
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in this experiment that the strategy used to partition the dataset files still need
to be improved. The TFRecords stored are still large, leading to a high memory
consumption during the training process. Therefore, to be able to scale it up for
larger areas, like the entire Amazon and Cerrado biomes, this partition strategy still
need to be further optimized.

Regardless the analysis of the computational performance of the proposed method
is not in the scope of this thesis, we may point out that, despite the aforementioned
limitations, this experiment demonstrated its potential of this method to acceler-
ate the process of producing PRODES maps. With the proposed methodology, the
entire training process over the 273 GB dataset was performed in 22 hours and 28
minutes. After the network trained, the prediction process was executed in approx-
imately 10 minutes, and the data preprocessing for prediction, stacking the mosaics
of 2017 and 2018, normalizing it, slicing into smaller patches and reconstructing the
prediction output after the classification were executed in approximately 45 minutes.
Even with the massive amount of data of the mosaic being processed, 50 GB, the
slicing process is still a performance bottleneck and needs parallelism to improve the
performance for large-scale areas. However, despite the high accuracy achieved by
manually generated PRODES maps, over 95%, it currently takes a long time to be
produced. For the Pará State, for example, it takes several weeks to map the entire
area, spending a long time for several Remote Sensing experts to visually inspect
all 67 Landsat OLI scenes that that cover the state.

Figure 6.2 - Confusion matrix of the predicted deforestation map for Pará State.
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Figure 6.3 - Example of false positive in the Non Forest class, represented magenta in (c)
and (d).
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6.2 Mapping deforested areas at the Cerrado biome

This experiment aims to investigate the applicability of the proposed classifica-
tion system to another regions, with different types of vegetation. To accomplish
that, as aforementioned, we chose an area comprising approximately 130,000 km2

at east of the Cerrado Biome, in the borders between Bahia, Goiás, Minas Gerais
and Tocantins states, one of the deforestation hotspots in this biome. Beyond that,
according to the classification proposed by Ribeiro and Walter (2008), the Cerrado
has three major vegetation types: Grasslands, Savannas and Forests. The grasslands
and savannas, specially, present a great challenge for the detection of the suppres-
sion of the primary vegetation. The study area was described in Section 4.3.3 and
depicted in Figure 4.5. As in the previous experiment, we used here the Late Fusion
U-Net, but in two configurations, one with WCE and other with ASD as losses.
The training dataset is also composed of a 5-years temporal series of Landsat 8 OLI
imagery, from 2013 to 2017, with the dataset in the multi-temporal configuration of
the dataset, as previously described. We used a total of 3590 patches for training,
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1197 patches for test and 1197 for validation. One particularity of this dataset is
that, due to availability of cloud-free images, the dataset is composed only by two
classes, the deforestation and not deforestation. Then, the year of 2018 was used as
a test dataset to produce the results presented in this section. Figure 6.4 presents
the map produced with the network configured with the ASD, which in this case
presented slightly better results, in terms of overall accuracy, when compared with
the WCE.

Figure 6.4 - Overview of the results produced with the Late Fusion U-Net for the test
region in the Cerrado biome. The deforestation, represented in yellow, is
here overlaid to the images with a color composition on Landsat-OLI bands
R(6)G(5)B(4).

Ground Truth Prediction

The experiment used the same hyperparameters values and configuration of the ex-
periment described in Section 5.4. The training process was run through 100 train-
ing epochs, with batches of 60 patches (15 for each GPU device). The network was
configured using the same two regularization strategies, batch normalization and L2
regularization, performing the batch normalization after each convolution operation,
before the ReLU, and the L2 regularization being applied to all convolution layers,
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with a factor of 5 × 10−4. The network weights were initialized through the Xavier
initializer, with the learning rate being adjusted through exponential decay, starting
from 0.1 and decaying with a rate of 0.95. PRODES Cerrado has an slighly differ-
ence in the classes definition, when compared to the PRODES Amazon, presenting
only three classes, deforestation, water bodies and not deforestation. The classes not
deforestation and water bodies were grouped into the class not deforestation.

Table 6.3 presents the average quality metrics across all classes, and Table 6.4
presents the quality metrics computed separately for each class. Despite the slightly
better results presented by the network configured with the ASD loss in the average
metrics, we may observe in the class-wise comparison that some metrics presented
higher discrepancies, that can also be observed in the confusion matrices presented in
Figure 6.5. Despite the very similar F1-scores, we can observe through the confusion
matrices that the WCE loss presented a considerably higher rate of false positives
(9.22% against 5.96%), but on the other hand, it presented a considerably lower rate
of false negative detections (9.4% against 13.08%). The WCE, as observed in the
confusion matrices, also presented a considerably higher rate of true positives for
the deforestation class, with 90.6% against 86.92% of the ASD.

Table 6.3 - Average metrics across all classes for the Cerrado Biome.

Loss Function F1-score Avg. accuracy AuC
ADS 0.9075 0.9126 0.9622
WCE 0.9032 0.9071 0.9629

Table 6.4 - Class-wise metrics for the Cerrado Biome.

Loss Function Class F1-score Precision Recall AuC

ADS Not Deforestation 0.9293 0.9184 0.9404 0.9634
Deforestation 0.8858 0.9030 0.8692 0.9632

WCE Not Deforestation 0.9227 0.9380 0.9078 0.9642
Deforestation 0.8838 0.8626 0.9060 0.9642
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Figure 6.5 - Confusion matrix of the predicted deforestation map for the Cerrado test area.
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Finally, despite the higher error rates when comparing to the Amazon Biome, we
consider that the method has strong potential to be applied also for the Cerrado,
considering the higher complexity of this biome in terms of different types of veg-
etation and stronger seasonal behavior. However, to be able to accomplish better
results for the Cerrado and have an operational model, further studies are needed
to fine tune the hyperparameters of the network for the particularities of the re-
gion. Beyond the hyperparameters tuning, due to the more dynamic nature of the
vegetation of this region, that presents stronger seasonal variations, we believe that
further studies are needed in the depth of the temporal component of the network.
Including, for example, images from the dry and wet seasons in the time series might
be useful to reduce the errors caused by the seasonal behavior of the vegetation.
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7 CONCLUSION AND FUTURE WORKS

In this thesis, three main contributions were presented: (i) the development of a
fully automatic method based on DNNs to map deforested areas from Landsat 8
OLI imagery, designing two spatio-temporal DNNs able to combine spatial con-
text and short-term temporal information; (ii) the development of a free and open
source toolbox, DeepGeo, which provides extensible and easy-to-use building blocks
to facilitate the access to DNNs by RS analysts without a strong programming
background; and (iii) the development of a collection of reference datasets called
PRODES-Vision, used to the development of new DNN models to map deforested
areas, and a methodology to the generation of new reference datasets for mapping
LULC.

The functionalities of the DeepGeo toolbox were used to fully automate all the
steps of the proposed methodologies, from the query and download of the used
images to the dataset generation, the application of the developed DNNs, until
the production of the output maps. By providing easily configurable funcionalities
to download data, preprocess input imagery and ground truth, generate datasets,
as well as some DNNs and tools to analyse the quality of the output results, the
platform demonstrated to be very effective in both the usability, extensibility, and
the automation of LULC mapping tasks. It is important to emphasize that the
platform still have some drawbacks, that are related to the fact that it is relatively
young and in a constant development. We expect to have these drawbacks addressed
over time, while the system matures. Therefore, as a free and open source project,
it can be improved and customized by the community developers, being extended
to different versions according to the needs of the applications. For future works
in this component, we aim at extending DeepGeo to provide more DL approaches
and extend the platform to other domains and applications of Remote Sensing, like
Recurrent Neural Networks for dense Time Series Analysis.

Three reference datasets were generated following the proposed methodology, com-
posing the first version of the PRODES-Vision collection of reference datasets,
demonstrating the effectiveness of this methodology presented to automatically gen-
erate datasets for LULC change detection. The application of the generated collec-
tion of datasets to produce a novel spatio-temporal DNN for mapping deforested
areas over large-scale datasets has demonstrated its effectiveness to support the
development of new classification methods. However, there are still challenges for
improving the quality of the generated datasets, like the occurrence of false positives
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in the cloud labels, due to the uncertainty inherited from the Landsat Quality As-
sessment data. As demonstrated in the presented experiments, the proposed DNN
was effective to deal with the noise in the ground truth. However, we believe that,
reducing or eliminating the current noise in the datasets would help to improve the
accuracy of the classification methods. We expect that, with the evolution of our
methodology in future works, we might be able to improve the quality of the la-
bels of the dataset collection to the point that it may be considered a benchmark
dataset for the comparison of new DNN methods. Another open challenge is the
data partitioning strategy, to be able to scale the dataset to cover larger-scale areas,
like the entire extension of the Amazon and Cerrado biomes. We believe that this
improvements in the data partitioning strategy will also allow to achieve a better
computational performance in the training process, as well as to have more efficient
ways to organize it for the deployment for the users. Therefore, future works in this
component include: (i) the improvements in the cloud mask used to generate the
cloud labels and in a more efficient way to partitioning the dataset for training,
storage and deployment; (ii) providing more different configurations of the datasets,
to allow the development of DNN models with different structures; (iii) generate a
new version of PRODES-Vision collection comprising the entire extension of both
Brazilian Amazon and Cerrado biomes, that together cover a continental-scale area
of approximately 6.23 million km2; and finally, (iv) to include imagery from differ-
ent sensors with spatial resolution compatible with Landsat 8, like the Sentinel and
CBERS collections, expanding the possibilities for the development of multi-sensor
LULC mapping approaches.

The aforementioned two components were used, in an integrated methodology, with
the third component, the proposed spatio-temporal DNNs, to produce deforestation
maps for areas of the Amazon and Cerrado biomes using Landsat 8 OLI imagery.
Our approach uses modern learning-based DNNs tailored to the peculiarities of the
task and the available datasets. Through extensive evaluation, we demonstrated that
our approach successfully generalizes from year-to-year, achieving high accuracies on
three different datasets. We demonstrated that our method is scalable to large-scale
areas, producing a map to the entire area of Pará state, which comprises nearly
1.26 million km2. We also demonstrated its generalization in space, by testing the
methodology for the Cerrado biome, a complex and important area, which is one of
the main hotspots for biodiversity conservation on the planet, and at the same time,
one of the main deforestation hotspots in Brazil. Furthermore, we demonstrated
that our approach is somewhat robust to noise in the ground truth.
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However, despite the promising results and demonstrated effectiveness of the pro-
posed methodology for mapping deforestation, we understand that some challenges
in this application domain are still open. Firstly, we believe that, to be able to bet-
ter reproduce PRODES methodology in an automatic way, we need to find ways
to include, as part of the network model, masks containing previously deforested
areas, as well as the Non Forest class. Some experiments have been conducted in
this direction, but once the results are not mature yet, they were not presented in
the scope of this thesis. Another open challenge regards to explore the use of dense
image time series combined to spatial approaches. However, this combination in-
creases exponentially the computational cost of the methods, making it unfeasible
to map large-scale areas. For this reason, it is necessary to find a balance between
the density of the time series and computational cost for integrating spatial context
and temporal information. Therefore, we believe that future works in the domain of
this application include: (i) to expand our study area to the entire Brazilian Ama-
zon and Cerrado biomes in an operational continental-scale application; (ii) extend
the proposed DNN to be able to work as a multi-sensor classifier, including images
from additional sensors with compatible spatial resolution; (iii) extend the proposed
DNN to use the knowledge of previously known masks as mechanisms to improve the
performance in the classification; (iv) explore ways to go deeper in the integration
between space and time, integrating our proposed DNN with the use of dense image
time series, keeping it scalable for large-scale mapping.

Finally, as depicted in the aimed future works listed in this chapter, we believe that
the promising results produced in this thesis have potential to guide our research
for several new challenges.

73





REFERENCES

ABADI, M. et al. TensorFlow: large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016. Available from:
<https://arxiv.org/abs/1603.04467>. 20, 56

AGÊNCIA NACIONAL DE ÁGUAS - ANA. Conjuntura recursos hídricos no
brasil: informe 2018. [S.l.]: ANA, 2019. 44

AL-RFOU, R. et al. Theano: a Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, may 2016. Available
from: <http://arxiv.org/abs/1605.02688>. 20

BENGIO, Y. Learning deep architectures for AI. Foundations and Trends R© in
Machine Learning, v. 2, n. 1, p. 1–127, 2009. Available from:
<https://doi.org/10.1561/2200000006>. 10, 13

BOUCHER, D.; ROQUEMORE, S.; FITZHUGH, E. Brazil’s success in reducing
deforestation. Tropical Conservation Science, v. 6, n. 3, p. 426–445, 2013.
ISSN 19400829. 3, 49

CARVALHO, O.; DIGIANO, M.; HESS, L.; STICKLER, C.; MCGRATH, D.;
CASTELLO, L.; SHIMADA, J.; BEZERRA, T.; ALENCAR, A.; MOTTA, R.
Ronaldo Seroa da; SWETTE, B.; MCGRATH-HORN, M.; HANSEN, M. C.;
AZEVEDO, A.; BRANDO, P.; ARMIJO, E.; NEPSTAD, D. Slowing Amazon
deforestation through public policy and interventions in beef and soy supply
chains. Science, v. 344, n. 6188, p. 1118–1123, 2014. ISSN 0036-8075. 3, 49

CHEN, L.-C.; ZHU, Y.; PAPANDREOU, G.; SCHROFF, F.; ADAM, H.
Encoder-decoder with atrous separable convolution for semantic image
segmentation. CoRR arXiv preprint, abs/1802.0, 2018. ISSN 21666784.
Available from: <http://arxiv.org/abs/1802.02611>. 52

CHENG, G.; HAN, J.; LU, X. Remote sensing image scene classification:
benchmark and state of the art. Proceedings of the IEEE, v. 105, n. 10, p.
1865–1883, 2017. ISSN 0018-9219. 50

CHOLLET, F. et al. Keras. 2015. Available from: <https://keras.io>. 20

CHUN, S. Machine learning study (19) deep learning - RBM, DBN,
CNN. 2015. Available from: <http://sanghyukchun.github.io/75/>. 12, 13

75

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1605.02688
https://doi.org/10.1561/2200000006
http://arxiv.org/abs/1802.02611
https://keras.io
http://sanghyukchun.github.io/75/


DEPARTAMENTO NACIONAL DE PRODUÇÃO MINERAL - DNPM.
RADAMBRASIL. [S.l.]: DNPM, 1976. 41, 64

FU, G.; LIU, C.; ZHOU, R.; SUN, T.; ZHANG, Q. Classification for high
resolution remote sensing imagery using a fully convolutional network. Remote
Sensing, v. 9, n. 5, p. 1–21, 2017. ISSN 20724292. 19

GAO, B.-C. Ndwi—a normalized difference water index for remote sensing of
vegetation liquid water from space. Remote sensing of environment, v. 58,
n. 3, p. 257–266, 1996. 24

GENG, J.; FAN, J.; WANG, H.; MA, X.; LI, B.; CHEN, F. High-resolution SAR
image classification via deep convolutional autoencoders. IEEE Geoscience and
Remote Sensing Letters, v. 12, n. 11, p. 2351–2355, 2015. ISSN 1545598X.
Available from: <http://ieeexplore.ieee.org/document/7286736/>. 2

GONZALO-MARTÍN, C.; GARCIAPEDRERO, A.; LILLO-SAAVEDRA, M.;
MENASALVAS, E. Deep learning for superpixel-based classification of remote
sensing images. In: GEOBIA 2016 - SOLUTIONS & SYNERGIES.
Proceedings... Enschede, The Netherlands, 2016. 2, 11

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT
Press, 2016. http://www.deeplearningbook.org. 7, 8, 9, 11, 12, 13

GOOGLE. Protocol buffers. 2020. Available from:
<https://developers.google.com/protocol-buffers>. 37

GORELICK, N.; HANCHER, M.; DIXON, M.; ILYUSHCHENKO, S.; THAU, D.;
MOORE, R. Google Earth Engine: planetary-scale geospatial analysis for
everyone. Remote Sensing of Environment, v. 202, n. 2016, p. 18–27, 2017.
ISSN 00344257. Available from:
<http://dx.doi.org/10.1016/j.rse.2017.06.031>. 21

HAKLAY, M.; WEBER, P. OpenStreet map: user-generated street maps. IEEE
Pervasive Computing, v. 7, n. 4, p. 12–18, 2008. ISSN 15361268. 23

HAMRAZ, H.; JACOBS, N. B.; CONTRERAS, M. A.; CLARK, C. H. Deep
learning for conifer/deciduous classification of airborne LiDAR 3D point clouds
representing individual trees. ISPRS Journal of Photogrammetry and
Remote Sensing, v. 158, p. 219–230, 2019. ISSN 09242716. Available from:
<https://doi.org/10.1016/j.isprsjprs.2019.10.011>. 2

76

http://ieeexplore.ieee.org/document/7286736/
http://www.deeplearningbook.org
https://developers.google.com/protocol-buffers
http://dx.doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.isprsjprs.2019.10.011


HANSEN, M. C.; POTAPOV, P. V.; MOORE, R.; HANCHER, M.;
TURUBANOVA, S. A.; TYUKAVINA, A.; THAU, D.; STEHMAN, S. V.;
GOETZ, S. J.; LOVELAND, T. R.; KOMMAREDDY, A.; EGOROV, A.; CHINI,
L.; JUSTICE, C. O.; TOWNSHEND, J. R. G. High-resolution global maps of
21st-century forest cover change. Science, v. 342, n. 6160, p. 850–853, 2013. ISSN
1095-9203. 50

HÄUFEL, G.; LUCKS, L.; POHL, M.; BULATOV, D.; SCHILLING, H.
Evaluation of CNNs for land cover classification in high-resolution airborne images.
Proceedings of SPIE Remote Sensing, v. 10790, p. 10790, 2018. Available
from: <https://doi.org/10.1117/12.2325604>. 51

HU, F.; XIA, G.-S.; HU, J.; ZHANG, L. Transferring deep convolutional neural
networks for the scene classification of high-resolution remote sensing imagery.
Remote Sensing, v. 7, n. 11, 2015. ISSN 2072-4292. Available from:
<http://www.mdpi.com/2072-4292/7/11/14680/htm>. 11, 13

HU, X.; YUAN, Y. Deep-learning-based classification for DTM extraction from
ALS point cloud. Remote Sensing, v. 8, n. 9, p. 730, 2016. 2

HUANG, W.; XIAO, L.; WEI, Z.; LIU, H.; TANG, S. A New Pan-Sharpening
Method With Deep Neural Networks. IEEE Geoscience and Remote Sensing
Letters, v. 12, n. 5, p. 1037–1041, 2015. Available from:
<http://ieeexplore.ieee.org/document/7018004/>. 2, 19

IM, J.; JENSEN, J. R.; TULLIS, J. a. Object-based change detection using
correlation image analysis and image segmentation. International Journal of
Remote Sensing, v. 29, n. 2, p. 399–423, 2008. ISSN 0143-1161. 1

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Metodologia
utilizada nos projetos PRODES e DETER. [S.l.], 2019. Available from:
<http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes/pdfs/
Metodologia_Prodes_Deter_revisada.pdf>. 41, 64

. PRODES annual increment of deforested areas in the Brazilian
Cerrado. [S.l.], 2019. Available from: <http://www.obt.inpe.br/cerrado>. 3,
44

. PRODES deforestation estimates in Brazilian Amazon. [S.l.], 2019.
Available from: <http://www.obt.inpe.br/prodes>. 3, 31, 42, 49, 61

77

https://doi.org/10.1117/12.2325604
http://www.mdpi.com/2072-4292/7/11/14680/htm
http://ieeexplore.ieee.org/document/7018004/
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes/pdfs/Metodologia_Prodes_Deter_revisada.pdf
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes/pdfs/Metodologia_Prodes_Deter_revisada.pdf
http://www.obt.inpe.br/cerrado
http://www.obt.inpe.br/prodes


KEMKER, R.; SALVAGGIO, C.; KANAN, C. Algorithms for semantic
segmentation of multispectral remote sensing imagery using deep learning. ISPRS
Journal of Photogrammetry and Remote Sensing, v. 145, p. 60–77, 2018.
ISSN 09242716. Available from:
<https://doi.org/10.1016/j.isprsjprs.2018.04.014>. 19

KLINK, C. A.; MACHADO, R. B. Conservation of the brazilian cerrado.
Conservation Biology, v. 19, n. 3, p. 707–713, 2005. 44

KÖRTING, T. S.; FONSECA, L. M. G.; CÂMARA, G. GeoDMA - Geographic
Data Mining Analyst. Computers and Geosciences, v. 57, p. 133–145, 2013.
ISSN 00983004. Available from:
<http://dx.doi.org/10.1016/j.cageo.2013.02.007>. 2

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet classification
with deep convolutional neural networks. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS. Proceedings... [S.l.], 2012. p. 1–9.
ISBN 9781627480031. ISSN 10495258. 12, 13

KUSSUL, N.; LAVRENIUK, M.; SKAKUN, S.; SHELESTOV, A. Deep learning
classification of land cover and crop types using remote sensing data. IEEE
Geoscience and Remote Sensing Letters, v. 14, n. 5, p. 778–782, may 2017.
ISSN 1545598X. 1

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, p.
436–444, 2015. Available from: <http:
//www.nature.com/nature/journal/v521/n7553/abs/nature14539.html>. 2,
7, 9, 10, 12, 19

LECUN, Y.; BOTTOU, L.; ORR, G. B.; MÜLLER, K. R. Efficient backprop. In:
MONTAVON, G.; ORR, G.; MULLER, K. R. (Ed.). Neural networks: tricks of
the trade. lecture notes in computer science. Berlin, Springer, 2012. v. 7700,
p. 9–48. ISBN 978-3-642-35289-8. Available from:
<https://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3>.
24, 35

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for
semantic segmentation. In: THE IEEE CONFERENCE ON COMPUTER
VISION AND PATTERN RECOGNITION (CVPR). Proceedings... IEEE
Xplore, 2015. p. 3431–3440. ISBN 978-1-4673-6964-0. ISSN 01628828. Available
from: <https://arxiv.org/pdf/1411.4038.pdf>. 14, 15, 28, 29, 31, 51, 55

78

https://doi.org/10.1016/j.isprsjprs.2018.04.014
http://dx.doi.org/10.1016/j.cageo.2013.02.007
http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html
http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html
https://link.springer.com/chapter/10.1007/978-3-642-35289-8{_}3
https://arxiv.org/pdf/1411.4038.pdf


MA, L.; LIU, Y.; ZHANG, X.; YE, Y.; YIN, G.; JOHNSON, B. A. Deep learning
in remote sensing applications: a meta-analysis and review. ISPRS Journal of
Photogrammetry and Remote Sensing, v. 152, p. 166–177, jun 2019. ISSN
09242716. 2, 3, 33, 50, 51

MARETTO, R. V.; FONSECA, L. M. G.; JACOBS, N.; KÖRTING, T. S.;
BENDINI, H. N.; PARENTE, L. L. Spatio-temporal deep learning approach to
map deforestation in Amazon Rainforest. IEEE Geoscience and Remote
Sensing Letters (Undergoing Publication), 2020. 1, 49

MARETTO, R. V.; KÖRTING, T. S.; FONSECA, L. M. G. An extensible and
easy-to-use toolbox for deep learning based analysis of remote sensing images. In:
IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING
SYMPOSIUM - IGARSS 2019. Proceedings... Yokohama, Japan: IEEE Xplore,
2019. p. 9815–9818. ISBN 9781538691540. Available from:
<https://ieeexplore.ieee.org/document/8898823>. 19, 57

MITTERMEIER, R. A.; TURNER, W. R.; LARSEN, F. W.; BROOKS, T. M.;
GASCON, C. Global biodiversity conservation: the critical role of hotspots. In:
ZACHOS, F. E.; HABEL, J. C. (Ed.). Biodiversity hotspots. [S.l.]: Springer,
2011. p. 3–22. 44

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA. Tiling
system for harmonized Landsat Sentinel-2. NASA, 2020. Available from:
<https://hls.gsfc.nasa.gov/products-description/tiling-system/>.
Access in: 24 Feb. 2020. 45

NOGUEIRA, K.; PENATTI, O. A.; SANTOS, J. A. dos. Towards better
exploiting convolutional neural networks for remote sensing scene classification.
Pattern Recognition, v. 61, p. 539–556, jan. 2017. Available from:
<https://doi.org/10.1016/j.patcog.2016.07.001>. 10, 13

PASZKE, A.; GROSS, S.; MASSA, F.; LERER, A.; BRADBURY, J.; CHANAN,
G.; KILLEEN, T.; LIN, Z.; GIMELSHEIN, N.; ANTIGA, L.; DESMAISON, A.;
KOPF, A.; YANG, E.; DEVITO, Z.; RAISON, M.; TEJANI, A.;
CHILAMKURTHY, S.; STEINER, B.; FANG, L.; BAI, J.; CHINTALA, S.
Pytorch: an imperative style, high-performance deep learning library. In:
WALLACH, H.; LAROCHELLE, H.; BEYGELZIMER, A.; BUC, F. d’Alché;
FOX, E.; GARNETT, R. (Ed.). Advances in neural information processing
systems 32. [S.l.]: Curran Associates, 2019. p. 8024–8035. 20

79

https://ieeexplore.ieee.org/document/8898823
https://hls.gsfc.nasa.gov/products-description/tiling-system/
https://doi.org/10.1016/j.patcog.2016.07.001


RIBEIRO, J. F.; WALTER, B. M. T. As principais fitofisionomias do bioma
cerrado. In: SANO, S. M.; ALMEIDA, S. P.; RIBEIRO, F. P. (Ed.). Fisionomias
do bioma Cerrado. Brasília: Embrapa Informação Tecnológica, 2008. v. 1, p.
151–212. 66

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-Net: convolutional networks for
biomedical image segmentation. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, v. 9351, p. 234–241,
2015. Available from:
<https://link.springer.com/chapter/10.1007/978-3-319-24574-4{_}28>.
4, 16, 17, 28, 38, 50, 52, 53, 55

SAHA, S. A comprehensive guide to convolutional neural networks - the
ELI5 way. Towards Data Science, Dec 2018. Available from:
<https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53>.
14

SAITO, A.; FONSECA, L. M. G.; ESCADA, M. I. S.; KÖRTING, T. S. Efeitos da
mudança de escala em padrões de desmatamento na Amazônia. Revista
Brasileira de Cartografia, v. 63, n. 3, mar. 2012. Available from:
<http://www.seer.ufu.br/index.php/revistabrasileiracartografia/
article/view/43749>. 42

SHARMA, A.; LIU, X.; YANG, X.; SHI, D. A patch-based convolutional neural
network for remote sensing image classification. Neural Networks, v. 95, p.
19–28, 2017. ISSN 18792782. Available from:
<http://dx.doi.org/10.1016/j.neunet.2017.07.017>. 1

STRASSBURG, B. et al. Moment of truth for the cerrado hotspot. Nature
Ecology & Evolution, v. 1, n. 4, 2017. 44

SYED, S.; DARE, P.; JONES, S. Automatic classification of land cover features
with high resolution imagery and lidar data: an object-oriented approach. In:
SPATIAL INTELLIGENCE, INNOVATION AND PRAXIS: THE NATIONAL
BIENNIAL CONFERENCE. Proceedings... Melbourne, 2005. p. 512–522. ISBN
0958136629. Available from:
<http://www.ecognition.com/sites/default/files/266{_}0185.pdf>. 2

SYRRIS, V.; HASENOHR, P.; DELIPETREV, B.; KOTSEV, A.;
KEMPENEERS, P.; SOILLE, P. Evaluation of the potential of convolutional

80

https://link.springer.com/chapter/10.1007/978-3-319-24574-4{_}28
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/43749
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/43749
http://dx.doi.org/10.1016/j.neunet.2017.07.017
http://www.ecognition.com/sites/default/files/266{_}0185.pdf


neural networks and random forests for multi-class segmentation of Sentinel-2
imagery. Remote Sensing, v. 11, n. 8, apr 2019. ISSN 20724292. Available from:
<https://www.mdpi.com/2072-4292/11/8/907>. 1, 51

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.;
ERHAN, D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with
convolutions. In: 2015 IEEE CONFERENCE ON COMPUTER VISION AND
PATTERN RECOGNITION (CVPR). Proceedings... IEEE, 2015. Available
from: <https://doi.org/10.1109/cvpr.2015.7298594>. 13

TENSORFLOW. Distributed training with TensorFlow. 2020. Available
from: <https://www.tensorflow.org/guide/distributed_training>. 63

. TFRecord and tf.example. 2020. Available from:
<https://www.tensorflow.org/tutorials/load_data/tfrecord>. 37

UNITED STATES GEOLOGICAL SURVEY - USGS. How is the Landsat 8
Cirrus Band 9 used? USGS, 2020. Available from:
<https://www.usgs.gov/faqs/how-landsat-8-cirrus-band-9-used>. Access
in: 23 Feb. 2020. 36

. Landsat 8 band designations. USGS, 2020. Available from:
<https://www.usgs.gov/media/images/landsat-8-band-designations>.
Access in: 23 Feb. 2020. 37

. The worldwide reference system. USGS, 2020. Available from:
<https://landsat.gsfc.nasa.gov/the-worldwide-reference-system>.
Access in: 23 Feb. 2020. 39

VOLPI, M.; TUIA, D. Dense semantic labeling of sub-decimeter resolution images
with convolutional neural networks. IEEE Transactions on Geoscience and
Remote Sensing, p. 1–13, 2016. 2

WAGNER, F. H.; SANCHEZ, A.; TARABALKA, Y.; LOTTE, R. G.;
FERREIRA, M. P.; AIDAR, M. P. M.; GLOOR, E.; PHILLIPS, O. L.; ARAGÃO,
L. E. O. C. Using the u-net convolutional network to map forest types and
disturbance in the atlantic rainforest with very high resolution images. Remote
Sensing in Ecology and Conservation, v. 5, n. 4, p. 360–375, mar. 2019.
Available from: <https://doi.org/10.1002/rse2.111>. 17

81

https://www.mdpi.com/2072-4292/11/8/907
https://doi.org/10.1109/cvpr.2015.7298594
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/tutorials/load_data/tfrecord
https://www.usgs.gov/faqs/how-landsat-8-cirrus-band-9-used
https://www.usgs.gov/media/images/landsat-8-band-designations
https://landsat.gsfc.nasa.gov/the-worldwide-reference-system
https://doi.org/10.1002/rse2.111


WALTER, V. Object-based classification of remote sensing data for change
detection. ISPRS Journal of Photogrammetry and Remote Sensing, v. 58,
n. 3-4, p. 225–238, 2004. ISSN 09242716. 2

WANG, Q.; GAO, J.; LI, X. Weakly supervised adversarial domain adaptation for
semantic segmentation in urban scenes. IEEE Transactions on Image
Processing, v. 28, n. 9, p. 4376–4386, 2019. ISSN 19410042. 51

WANG, Q.; LIU, S.; CHANUSSOT, J.; LI, X. Scene classification with recurrent
attention of VHR remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing, v. 57, n. 2, p. 1155–1167, 2019. ISSN 01962892. 51

ZEILER, M. D.; FERGUS, R. Visualizing and understanding convolutional
networks. In: FLEET, D.; PAJDLA, T.; SCHIELE, B.; TUYTELAARS, T. (Ed.).
Computer Vision – ECCV 2014. Springer International Publishing, 2014. p.
818–833. Available from: <https://doi.org/10.1007/978-3-319-10590-1_53>.
13

ZHAI, M.; BESSINGER, Z.; WORKMAN, S.; JACOBS, N. Predicting
ground-level scene layout from aerial imagery. In: IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, 30., 2017.
Proceedings... [S.l.]: IEEE, 2017. p. 4132–4140. 19

ZHANG, L.; ZHANG, L.; KUMAR, V. Deep learning for remote sensing data: a
technical tutorial on the state of the art. IEEE Geoscience and Remote
Sensing Magazine, v. 4, n. 2, p. 22–40, 2016. ISSN 16877268. 1, 2, 10, 13, 19

ZHANG, Z.; LIU, Q.; WANG, Y. Road extraction by deep residual U-Net. IEEE
Geoscience and Remote Sensing Letters, v. 15, n. 5, p. 749–753, may 2018.
ISSN 1545598X. 17, 52

ZHU, X. X. et al. Deep learning in remote sensing: a comprehensive review and list
of resources. IEEE Geoscience and Remote Sensing Magazine, v. 5, n. 4, p.
8–36, 2017. ISSN 21686831. 19, 29

82

https://doi.org/10.1007/978-3-319-10590-1_53


PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP) Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.


	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Document organization

	2 THEORETICAL BACKGROUND
	2.1 From convolutional to fully convolutional neural networks
	2.1.1 Fully convolutional networks


	3 DEEPGEO: AN EXTENSIBLE AND EASY-TO-USE TOOLBOX FOR DEEP LEARNING BASED ANALYSIS OF REMOTE SENSING IMAGES
	3.1 Introduction
	3.2 DeepGeo toolbox
	3.2.1 Data catalog module
	3.2.2 Preprocessing module
	3.2.3 Dataset generation module
	3.2.4 Deep learning module
	3.2.5 Visualization and classification analysis module

	3.3 Experimental results: mapping deforested areas in brazilian amazon
	3.4 Final comments and future works

	4 PRODES-VISION DATASETS: CONSTRUCTING A REFERENCE TO TRAIN AND DEVELOP NEW DEFORESTATION DETECTION METHODS
	4.1 Introduction
	4.2 Building reference datasets
	4.3 PRODES-Vision collection and its structure
	4.3.1 Configuration 1: PRODES-Vision Amazon Parakanã
	4.3.2 Configuration 2: PRODES-Vision Pará
	4.3.3 Configuration 3: PRODES-Vision Cerrado Correntina

	4.4 Final comments

	5 SPATIO-TEMPORAL DEEP LEARNING APPROACH TO MAP DEFORESTATION IN AMAZON RAINFOREST
	5.1 Introduction
	5.2 Deep learning based land use and land cover mapping
	5.3 Methodology
	5.3.1 Preprocessing and training
	5.3.2 Spatio-temporal U-Net with trainable temporal fusion
	5.3.3 Loss functions
	5.3.4 Implementation and optimization details

	5.4 Study area and experiments
	5.5 Conclusion

	6 ADDITIONAL RESULTS AND DISCUSSIONS
	6.1 Scaling up deforestation detection for large-scale areas
	6.2 Mapping deforested areas at the Cerrado biome

	7 CONCLUSION AND FUTURE WORKS
	REFERENCES

