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“The beautiful thing about learning is that nobody can take it away
from you”.

B.B. King
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ABSTRACT

Mapping Earth land use and land cover is crucial to understand agricultural dy-
namics. Recently, analysis of time series extracted from Earth observation satellite
images has been widely used to produce land use and land cover information. In
time series analysis, clustering is a common technique performed to discover pat-
terns on data sets. In this work, we evaluate the Growing Self-Organizing Maps
(GSOMs) algorithm for clustering satellite image time series and compare it with
Self-Organizing Maps (SOMs) algorithm. This paper presents two case studies using
satellite image time series associated to samples of land use and land cover classes,
highlighting the advantage of providing a neutral factor (called spread factor) as a
parameter for GSOM, instead of the SOM grid size. We first compare GSOM with
traditional SOM, analyzing the resultant network topology, the algorithm running
time, the cluster accuracy and the neighborhood maintenance. In the second case
study, we changed the dataset, increasing the number of samples and repeating the
analysis. We finish concluding that it is possible to cluster satellite image time series
with GSOM, avoiding the SOM grid size additional parameter. Besides that, GSOM
keeps most of SOM properties and can be considered as a suitable alternative to
SOM.

Palavras-chave: Growing Self-Organized Map. Land Use and Land Cover. Machine
Learning. Clustering. Unsupervised Learning.
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CLUSTERING DE SÉRIES TEMPORAIS DE IMAGENS DE
SATÉLITE UTILIZANDO GROWING SELF-ORGANIZING MAPS

RESUMO

Mapear o uso e a cobertura da Terra é crucial para entender a dinâmica agrícola.
Recentemente, a análise de séries temporais extraídas de imagens de satélite de
observação da Terra tem sido amplamente utilizada para produzir informações sobre
uso e cobertura da terra. Na análise de séries temporais, o clustering é uma técnica
utilizada para descobrir padrões em conjuntos de dados. Neste trabalho, avaliamos o
algoritmo GSOM (Growing Self-Organizing Maps) para agrupar séries temporais de
imagens de satélite e o comparamos com o algoritmo SOM (Self-Organizing Maps).
Este artigo apresenta um estudo de caso utilizando séries temporais de imagens de
satélite associadas a amostras de uso da terra e classes de cobertura, destacando
a vantagem de fornecer um fator neutro (chamado spread factor) como parâmetro
para o GSOM, no lugar do tamanho da grade do SOM. Nós iniciamos comparando o
GSOM com o SOM tradicional, analisando a topologia da rede resultante, o tempo
de execução dos algoritmos, a eficácia dos clusters e a manutenção da vizinhança.
No segundo estudo de caso, nós modificamos o conjunto de dados, aumentando
a quantidade de amostras e repetindo a análise. Nós terminamos concluindo que
é possível fazer o clustering de séries temporais de imagens de satélite utilizando
o GSOM e evitando o parametro adicional do tamanho da grade requerido pelo
SOM. Além disso, o GSOM mantém a maioria das propriedades do SOM, e pode
ser considerado como uma alternativa adequada ao SOM.

Keywords: Growing Self-Organized Map. Uso e Cobertura da Terra. Aprendizado
de Máquinas. Clustering. Aprendizado Não Supervisionado.
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1 INTRODUCTION

Land use was always considered a local environmental issue, but nowadays, it is
becoming a force of global importance. It encompasses a wide variety of activities
that vary substantially in their intensity and consequences. Human actions like in-
tensifying farmland production, clearing tropical forests, practicing subsistence agri-
culture, or expanding urban areas are changing the world’s landscapes in pervasive
ways (SPERA et al., 2020). After several decades of research, environmental impacts
of land use throughout the globe were revealed, varying from changes on Earth’s
ecosystems to modifications in atmospheric composition (FOLEY et al., 2005).

Mapping and monitoring of land use and land cover is essential for planning and
managing natural resources. Remote sensing is a useful technique to detect land use
and land cover. There is a serious scientific effort to use Earth observation satellite
imagery to evaluate land transformation, such as deforestation, on continental to
global scales (PARENTE et al., 2017).

Technologies and methods of remote sensing and digital image processing play a
crucial role in the identification, mapping, assessment and monitoring of land use
and land cover. The use of remote sensing image time series analysis to produce
land use and land cover information has increased greatly (GOMEZ et al., 2016).
Time series derived from Earth observation satellite images are useful to facilitate
detecting complex underlying processes that would be difficult to identify using
traditional change detection approaches or bi-temporal analysis (PASQUARELLA et

al., 2016).

In order to classify Earth observation image time series to produce land use and land
cover maps, machine learning methods such as Support Vector Machine (SVM) and
Random Forest (RF) have been used (PICOLI et al., 2018). Most of these methods are
based on supervised learning algorithms, requiring a training step that uses labeled
land use and land cover samples. An important challenge on this task is the selection
of representative samples to obtain a good classification accuracy.

To better select land use and land cover samples from satellite image time series, San-
tos et al. (2019) propose a method based on Self-Organizing Maps (SOM) neural
network (KOHONEN et al., 2001). SOM is a clustering method suitable for time se-
ries data sets. The proposed method uses SOM to produce metrics that indicate
the quality of the land use and land cover samples. The goal is to evaluate which
spectral bands and vegetation indexes are best suitable for the separability of land
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use and land cover classes. This method explores two main features of SOM: (1) the
capacity of mapping high-dimensional input space to a two-dimensional grid; and
(2) the topological preservation of neighborhood, which generates spatial clusters of
similar patterns in the output space (SANTOS et al., 2019).

Despite its advantages, SOM has a characteristic that difficult its use by regular
users. It uses a predefined and fixed network architecture in terms of number and
arrangement of neural processing elements. Simulations have to be run several times
on different network sizes to find an appropriate network structure (FLEXER, 1999).

Several methods have been proposed to grow SOMs during training according to
the input data. Most of these growing maps attempt to dynamically evolve the map
structure, rather than train a grid with fixed data (SAMARASINGHE, 2006).

On the Growing Hierarchical Self-Organizing Map (GHSOM), the key idea is to
use a hierarchical structure of multiple layers where each layer consists of a number
of independent self-organizing maps. One SOM is used at the first layer of the
hierarchy. For every unit in this map a SOM might be added to the next layer of
the hierarchy (DITTENBACH et al., 2000).

The Growing Cell Structure of Map (GCS) is based on two-dimensional SOMs start-
ing with a small grid size, usually three units forming a triangle (FRITZKE, 1993).
The basic approach is to add neurons in areas that receive a high number of inputs,
or add neurons in areas with the highest accumulated error of a neuron. After in-
serting new neurons, connections are adjusted between them so that the triangular
connectivity is maintained.

On Growing Neural Gas (GNG) an incremental model similar to GCS adds neurons
and connections trying to learn the data topological relations, but replaces the fixed
unit growing with an increasing number of units during the self-organization pro-
cess (FRITZKE, 1995b). To determine where to insert new units, local error measures
are gathered during the adaptation phase.

The Growing Self-Organizing Map (GSOM) grows dynamically, and its growth can
be controlled using a spread factor such that a smaller map showing broader (macro)
cluster regions can initially be obtained (ALAHAKOON et al., 2000). If more accuracy
is needed, the whole map can be grown further until desired accuracy is achieved in
terms of the visibility of interesting clusters (SAMARASINGHE, 2006).
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1.1 Objective

Determine the SOM grid size is not a straightforward task for regular users. Users
regularly understand data set details, but are not usually specialists on clustering
methods. The objective of this work is to propose and analyze an alternative to SOM,
providing the same SOM clustering capabilities, but avoiding the task of previously
determine the grid size. We intend to facilitate the user workload, providing a method
to cluster time series data, based on a neutral parameter instead of the grid size,
avoiding steps that require specific computational knowledge.

Our hypothesis is that it is possible to use an variation of the SOM algorithm, that
adapts its size to the input data, avoiding the prior task of determine the SOM
grid size.

In this work, we analyze several evolving SOMs proposals, studying different growing
mechanisms to dynamically evolve the map structure. The differences between the
several evolving SOMs are explored, looking at each solution benefits and penalties,
and highlighting the advantages of Growing Self-Organizing Map (GSOM) over other
approaches. After the analysis, the use of GSOM is proposed to be used as an
alternative of traditional SOM for satellite image time series clustering.

This work also review the available implementation of GSOM solutions, testing the
packages/scripts and validating the results. By the end of this phase, a Python
package is described to showcase the GSOM algorithm implementation. By using
this approach, the indirect knowledge discovery of unsupervised learning provided
by GSOM is tested, and the benefits of the organic map growing are validated.

Finally, is also scope of this work to apply the GSOM on the clustering of satellite
image time series, comparing its results with the obtained by Santos et al. (2019).
By using the same samples and the same approach, but with a different algorithm,
this work assure the accuracy of the GSOM time series clustering, comparing it
with the traditional SOM and checking the characteristics of the generated map.
We also apply the GSOM on another time series data set, in order to validate its
clustering capabilities.

1.2 Main contributions

This work is part of the Brazil Data Cube Project. This project creates multidimen-
sional data cubes from Brazilian territory and applies machine learning methods
and satellite image time series analysis to generate land use and land cover infor-
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mation from these data. In this project, the SOM method is being used for satellite
image times series clustering Santos et al. (2019). So, this work contributes to land
use and land cover research area by validating an approach that avoids SOM grid
size parameter.

Despite using satellite images time series clustering on the whole work, the analysis
can be expanded for generic time series cases. After reviewing the original GSOM
algorithm, we propose a customization, in order to fine tune the clustering method
to better fit the time series clustering. The proposed changes aim to better adapt
the algorithm to the proposed problem.

After testing the available GSOM implementations, we also contribute releasing a
new python package including the base algorithm and the above proposed changes.
The source code is available on GitHub, as an open source package, granting users
the rights to use, study, change and distribute the software to anyone and for any
purpose. Further works are also able to retrieve the functionalities needed to repro-
duce and improve this work.

We applied the Growing SOM into a data set extracted from satellite images, and
compare its results with the SOM results obtained by previous works. We also
compare the network topology, clustering accuracy, performance and neighborhood
of both algorithms, to contribute validating GSOM as a feasible alternative to SOM
on the proposed scope.

This work also derived two publications. The first one is a short paper called "Eval-
uating Growing Self-Organizing Maps for Satellite Image Time Series Clustering"
presenting the preliminary results of this study at GeoInfo 2019 - Brazilian Sympo-
sium on Geoinformatics (ADEU et al., 2019). The second one is a full paper accepted
in MALSEOD 2020 workshop (Machine Learning for Space and Earth Observation
Data) at ICCSA (International Conference on Computational Science and Appli-
cations) and waiting to be published in LNCS - Springer Lecture Notes in Com-
puter Science (ADEU et al., 2020).
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2 LITERATURE REVIEW

2.1 Land use and land cover

Land use and land cover relate to the usage and biophysical cover of the Earth’s
terrestrial surface, identifying bare soil, inland water, vegetation or human infras-
tructure and the changes between them. Accurate land use information is required
for science, monitoring and reporting. Land cover changes naturally over time, as
well as a result of human activities. Monitoring and mapping of land use and land
cover in a consistent and robust manner over large areas is made possible with Earth
Observation (EO) data (GOMEZ et al., 2016).

Satellite data can be used to map and monitor land cover over daily to weekly
temporal scales and from continental to local scales. Advances in spatial analysis
software, image processing libraries and database management tools have enhanced
the ability to analyze these data for representing land cover and land use (TREITZ,
2004). Remote sensing and digital image processing enables observation, identifi-
cation, mapping, assessment, and monitoring of land cover at a range of spatial,
temporal, and thematic scales (ROGAN; CHEN, 2004). Remote sensing applications
have taken advantage from recent developments, which were focused on interoper-
ability with GIS, ease-of-use improvements and increased availability of algorithms
for remote sensing data automated processing (FRANKLIN, 2001).

A time series of land cover maps can capture the complexities of Earth’s changing
surface. The inclusion of time series in the land cover mapping process provides
information on class stability and informs on logical class transitions (both tempo-
rally and categorically) (LIU; CAI, 2012). Therefore, successful utilization of remotely
sensed data for land use and land cover monitoring requires careful selection of an
appropriate data set and image processing technique(s) (LUNETTA; ELVIDGE, 1998).

2.2 Satellite image time series

One of the recent leading research trends in land use science is the use of large time
series data sets derived from Earth observation. Multiyear time series composed of
multiple land surface attributes allow a broader and in deep view of land use and
land cover (PICOLI et al., 2018).

Since remote sensing satellites revisit the same place, we can calibrate their images
so that measures of the same place at different times are comparable (Figure 2.1(a)).
These observations can be organized so that each measure from the sensor maps to a
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three-dimensional array in space-time. From a data analysis perspective, each pixel
location (x, y) at consecutive times, t1, ...,tm, makes up a satellite image time series,
such as the one in Figure 2.1(b). From these time series, we can extract land use
and land cover information.

Figure 2.1 - Deriving Time series from Earth observation satellite images.

Based on a collection of satellite images, its possible to create a dimensional array of
satellite images (a), and extract a vegetation index time series at a fixed (x,y) pixel location
(b).

SOURCE: Maus et al. (2016)

A lot of studies have shown the interest of such multi-temporal satellite images to
improve the accuracy of several classes of vegetation classification (PETITJEAN et

al., 2010; SABOUR et al., 2007). In fact, different types of vegetation have different
phenologies, i.e. different life cycles. As a consequence, the vegetation are easily
discriminate by using multi-temporal satellite images than by analyzing a single
image (GUYET; NICOLAS, 2015).

In the process to extract land use and land cover information from Earth observation
data sets, Santos et al. (2019) proposes the use of SOM to improve the training step
of the land cover classification. It is used to assess the quality of the land use and
land cover samples and to evaluate which spectral bands and vegetation indexes are
best suitable for the separability of land use and land cover classes.

2.3 Self-organizing Map (SOM)

A Self-Organizing Map (SOM) is an unsupervised neural network. SOM maps a
high dimensional space onto a low-dimensional space preserving its neighborhood
topology. SOM is composed by input and output layers, with the latter generally
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being a two-dimensional grid.

Each element of a grid is called neuron. An important property of SOM is that the
neurons are organized in a way that they maintain a similar neighborhood, that is,
neurons that have similar characteristics are close in the output layer. Figure 2.2
shows the structure of SOM.

Figure 2.2 - SOM Structure.

An example of a 4x4 SOM structure. The input vector is presented to the grid. The
most similar neuron adapts its weight vector, trying to approximate the samples. The
neighborhood of this neuron is also updated, generating a similar neighborhood.

SOURCE: Author

Each neuron j has a n-dimensional weight vector wj = [w1, . . . , wn] associated to
it. An input x(t) = [x(t)1, . . . , x(t)n] is associated with most similar neuron to it
through distance metrics, as Euclidean distance. The distance Dj is computed be-
tween an input vector and each neuron j for all the neurons in the output layer
(Equation 2.1).
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Dj =
N∑

i=1

√
(x(t)i−wj)2. (2.1)

Once we have with all distances between an input and all neurons, the minimum dis-
tance is determined the Best-Matching-Unit (BMU), i.e. the neuron db with weight
vector closer to x(t) (Equation 2.2):

db = min {D1, . . . , Dj} . (2.2)

The BMU and its neighbors within a radius r must be updated. The weights are
adjusted to increase the similarity with the input vector, the update is given by:

wj(t) = wj(t)+α(t)× hb,j(t)[x(t)i−wj(t)], (2.3)

In Equation 2.3, α(t) is the learning rate, set as 0 < α(t) < 1 and hb,j is a neigh-
borhood function. The SOM mapping ends when all input vectors are presented to
the output layer. During each time, the α(t) must be reduced and the neighborhood
function reduces the radius of the neighborhood. There are several ways to reduce
the value of α(t) and the radius of the neighbors, they can be found in Natita et al.
(2016).

2.4 SOM on time series clustering

SOM has been widely used for time series clustering in various domains, such as me-
teorology and oceanography (LIAO, 2005; MWASIAGI, 2011; LIU et al., 2016; PEARCE

et al., 2014). In many studies, authors point out the benefits of SOM to identify tem-
poral patterns from time series and to visualize big amounts of time series. However,
in land use and land cover domain, the neural network SOM has not been widely
exploited for image time series analysis.

Santos et al. (2019) proposes a methodology that can be used as an exploratory
analysis tool for land use and land cover samples from remote sensing image time
series, based on SOM properties. It also intends to provide means to detect sample
outliers textually and not only visually, using neighborhood analysis. In Figure 2.3
there are neurons labelled as Soy-Corn, Millet-Cotton and Soy-Sunflower in the
middle of the region classified as Soy-Cotton. Since the classes of the samples in
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these neurons match the input classes, two possibilities are considered. The first
hypothesis is that these input samples are outliers, insofar as their classification has
been mapped to different locations in the SOM map that other inputs of the same
class. A competing hypothesis is that there is some inherent confusion between some
of the classes that cannot be resolved by the SOM methods with the current input
samples.

Figure 2.3 - SOM Clustering and Possible Outliers

Two SOM results for the same dataset. Analyzing neighborhood and identifying neurons
labeled with different classes than its neighbors highlights possible outliers.

SOURCE: Santos et al. (2019)

Similarity measure is a key aspect for achieving effectiveness in time series analysis
and working with time series is very expensive in terms of processing cost (DING et

al., 2008). It’s important to observe that the distance function used by time series
SOM comparisons, directly influences the clustering accuracy and the overall time
spend on the clustering. For remote sensing image time series clustering, Euclidean
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and Manhattan distances are more accurate than DTW (FERREIRA et al., 2019).

The literature shows that the determination of grid size is an empirical process. The
amount of training samples can influence the size of the grid, for large data sets,
reasonably large maps are better (FLEXER, 2001; KOHONEN et al., 2001). Besides
that, super estimating the grid implies on empty neurons without any associated
sample, or neurons without generalization capabilities, with a single sample associ-
ated. Underestimating the grid implies on generalist neurons and clustering errors.
In the next sections, alternatives to evolving the grid dynamically are presented, in
order to simplify the sizing of the grid and avoid generalization capability issues,
while trying to preserve the neighborhood.

2.5 Evolving SOM methods

There are several proposed methods to address the traditional SOM fixed grid.
Most of them rely on identifying the insertion point for a new neuron/map, and use
a specific approach do grow the map. In the next sections, some of these methods
are detailed.

2.5.1 Growing hierarchical self-organizing maps (GHSOM)

The key idea of the GHSOM is to use a hierarchical structure of multiple layers
where each layer consists of a number of independent SOMs. One SOM is used at
the first layer of the hierarchy. For every unit in this map a SOM might be added
to the next layer of the hierarchy. This principle is repeated with the third and any
further layers of the GHSOM (DITTENBACH et al., 2003). This generates a three-
dimensional tree-structure in order to represent the hierarchical structure present in
a data collection during an unsupervised training process.

This neural network architecture is capable of identifying the required number of
units during its unsupervised learning process. Additionally, the data set is clustered
hierarchically by relying on a layered architecture comprising a number of indepen-
dent self-organizing maps within each layer. The actual structure of the hierarchy
is determined dynamically to resemble the structure of the input data as accurately
as possible (DITTENBACH et al., 2002).

A graphical representation of a GHSOM is given in Figure 2.4. The map in layer 1
consists of 2x2 units and provides a rather rough organization of the main clusters in
the input data. The three independent maps in the second layer offer a more detailed
view on the data. The input data for one map is the subset which has been mapped
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on to the corresponding unit in the upper layer. One unit in the first layer map has
not been expanded into a map in the second layer because the data representation
quality was already accurate enough. It has to be noted that the maps have different
sizes according to the structure of the data, which relieves us from the burden of
predefining the structure of the architecture.

Figure 2.4 - Architecture of a GHSOM.

The GHSOM evolves to a structure of SOMs reflecting the hierarchical structure of the
input data. Each neuron with accumulated error above a threshold generates a new layer
with a new SOM associated to it.

SOURCE: Dittenbach et al. (2002)

2.5.2 Growing cell structure of map (GCS)

The Growing Cell Structure of Map presented here is proposed by Wu e Yen (2003)
and provides the ability to automatically find a suitable network structure and size.
This is achieved through a controlled growth process that also includes occasional
removal of units. The method starts with a small grid size. The proposed approach
suggests three units forming a triangle. The network structure can grow based on
two different conditions: (1) add neurons in areas that receive a high number of
inputs, or (2) add neurons in areas with the highest accumulated error of a neuron
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(i.e., the largest sum of the distance between a neuron’s codebook vector and all
inputs belonging to that neuron) (SAMARASINGHE, 2006). The connections between
the neurons are updated after the insertion of new neurons, so that the triangular
connectivity is maintained.

In the Figure 2.5, the initial map is the three-neuron map (a). The cross indicates
the position where a neuron needs to be added, based on the criteria stated above.
The next image (b) in Figure 2.5 shows the new map with the new neuron added and
the map reorganized to maintain a triangular structure. The third image (c) shows
the map extended after adding a neuron at the position of the cross in the second
map (b) and reorganized to maintain the triangular structure. The last image (d)
in Figure 2.5 shows a map that has grown further. This process continues until it
no longer is necessary to grow the map further (SAMARASINGHE, 2006).

Figure 2.5 - GCS growing example.

Schematic illustration of map growing in Growing Cell Structure (GCS) method. The
initial map is a three-neuron map (a). The cross indicates the position where a new neuron
needs to be added. The subsequent figures (b), (c) and (d) illustrates the map growing,
with new neurons being added on the cross position.

SOURCE: Samarasinghe (2006)

With the addition of a new neuron, GCS intends to create a new Voronoi region
for that neuron, where the inputs closer to this new neuron fall. The properties of
the new neuron are interpolated from their neighbors. This redistribution of the
inputs is reflected in the GCS method of redistributing the errors of the two existing
neurons with the newly created one (FRITZKE, 1995a). This guarantee local order
in the map and in nearly all cases also leads to global ordering.

12



2.5.3 Growing neural gas (GNG)

The Neural Gas is an algorithm to represent network topologies based on a Heb-
bian adaptation rule with winner-take-all like competition (MARTINETZ; SCHULTEN,
1991). Based on this concept, the Growing Neural Gas (GNG) is proposed, as an
incremental network model that learns topological relations by adding neurons and
connections, until a performance criterion has been met (FRITZKE, 1995b). It uses a
similar approach as the Growing Cell Structure of Map, but it replaces the topology
with a fixed dimensionality for a dimensionality which depends on the input data
and may vary locally.

Growing Neural Gas has two different phases alternating until a threshold is met.
The first one is the adaptation phase, where the neural network adapts itself to
a random signal input. At this time, a connection between the input signal two
nearest neurons is strengthened (or created if it does not exist), the nearest neuron
and all its direct neighbors move towards the input signal and the nearest neuron
error is increased. Also, an aging neuron mechanism is triggered, removing from the
network neurons not strengthened for a long time. The second one is the growing
phase, where new neurons are created and connected into the network. The neuron
with the largest error in the whole network is found, and a new neuron is created
between this neuron and its neighbor with the largest error (FISER et al., 2013).
Figure 2.6 shows an example of how GNG network adapts to a signal distribution
which has different dimensionalities in different areas of the input space.
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Figure 2.6 - The Growing Neural Gas network growing

Schematic example of a Growing Neural Gas network adapting to a signal distribution.
The initial network (a) starts with 2 randomly placed neurons and evolves, filling the space
applying 600 (b), 1800 (c), 5000 (d), 15000 (e) and 20000(f) input signals

SOURCE: Fritzke (1995b)

2.5.4 Growing SOM (GSOM)

Growing SOM (GSOM) is an alternative to traditional SOM for satellite image time
series clustering. It is originally proposed to address the SOM requirement of pre-
determining the map size (ALAHAKOON et al., 2000). SOM attempts to fit a data
set into a predefined structure by self-organizing its node weights as well as possi-
ble within its fixed borders, while in GSOM the network borders are expandable,
generating new nodes whenever needed to expand the network outwards.

The GSOM is parameterized by a spread factor, a data dimensionality neutral factor.
It can be used as a controlling measure for generating maps with different sizes,
without previous knowledge about the data set number of samples or attributes.
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Figure 2.7 - Initial GSOM grid with four neurons.

The GSOM grid starts with 4 nodes, and 8 available positions for new nodes. The available
positions are located on the nearest neighborhood of the initial grid. The node with the
highest accumulated error will start the growing on its nearest neighborhood.

SOURCE: Vasighi e Abbasi (2017)

The GSOM learning algorithm has three phases:

Initial phase: At the initialization phase, GSOM network starts with four neurons
with randomly assigned weight vectors. All the initial neurons are bound-
ary nodes and have the opportunity to grow. In Figure 2.7, the four initial
neurons are connected with lines and the available positions are shown via
dashed circles.

Growing phase: In this phase, the time series data are presented to the network.
The weight vector that is closest to the input vector mapped (the win-
ner neuron), is selected based on a distance function. The winner neuron
accumulative error is calculated according to a distance function between
the input vector and the winner neuron weight vector. This error indicates
the distance between the input vector and the weight vector of neurons.
When the accumulated error of a neuron exceeds a growing threshold (cal-
culated based on the spread factor), and the candidate neuron is on the
grid boundary, new neurons are added in the available free positions around
the candidate neuron in the grid, as shown on Figure 2.8. If the winning
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neuron is not on the grid boundary, the accumulated error of the neighbors
are updated according to the winner’s distance, giving the nonboundary
nodes some ability in initiating node growth.

Smoothing phase: In order to fine-tune the weight vector position and improve
the map smoothness, a smoothing phase is applied after the growing is
completed (VASIGHI; ABBASI, 2017). No new nodes are added during this
phase. The purpose is to smooth out any existing quantization error, espe-
cially in the nodes grown at the growing phase latter stages (ALAHAKOON

et al., 2000). The smoothing phase is stopped when the node error values
in the map become very small.

Figure 2.8 - New node generation from the network boundary.

Any node with at least one of its immediate neighboring positions free is considered a
boundary neuron. If the accumulated error of the node with the highest accumulated error
exceeds a growing threshold, new nodes are generated on all free neighboring positions.

SOURCE: Alahakoon et al. (2000)

This process generates the GSOM, which develops into different shapes depending
on the clusters present in the data. The GSOM shape represents the data grouping,
and therefore, such grouping has a better opportunity of attracting the user attention
for further investigation (ALAHAKOON et al., 2000).

2.6 Evolving SOM - methods evaluation

After reviewing the available Evolving SOM methods, and selecting the most ref-
erenced ones (GHSOM, GCS, GNG and GSOM), they are compared, to highlight
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the differences between the methods. The objective is to select a candidate to be
used in replacement of SOM on satellite image time series clustering. All the re-
viewed solutions address the fixed grid restriction imposed by traditional SOM in a
different way.

On the GHSOM, the hierarchical relationship between the multiple SOMs, gener-
ated by the additional SOM layers, turns the data visualization confused. It is not
possible to understand the relationship between the SOMs in the same layer, as this
relationship is not explicit. The neighborhood concepts between the neurons are also
not clear, since the samples are located in different neurons depending on the layer.

Although the concept behind the GCS of Map seems to be simple, there is some
uncertainty on the algorithm. Fritzke (1993) highlights that the position for inserting
the new neurons could be the neighbor with the maximum accumulated error, the
neighbor with the most distant center position or even a randomly picked neighbor.
Nonetheless, there is some arbitrariness in the definition of the conditions that have
been suggested to define the directions of growing. Arbitrary branching criteria
define arbitrary structures in the network (KOHONEN, 2013). This leads us to believe
that GCS does not provide an organic growing of the map.

Fiser et al. (2013) states that GNG has a poor time performance, particularly on
large scale problems, and this can be a limiting factor for further applications or a
wider usage. This work validates the clustering data sets composed by time series
derived from satellite images. An important characteristic of this data set is that its
size tends to increase quickly with the time. Besides that, the growing mechanism
provided by GNG is a complicating factor, interfering on the visual inspection of
the similar clusters and turning the outliers identification into a complicated task.

Due to its flexible structure, the GSOM achieves the same amount of spread that
traditional SOM, with a lesser number of nodes, and provide a useful advantage in
mapping large data sets. In addition, such flexible structure provides a better visual-
ization of the groups in the data and attracts attention to such groups (and outliers)
by branching out. This characteristic also preservers the neighborhood, during the
map growing. It should be added that the GSOM has preserved the simplicity and
ease of use of the SOM and has expanded its usefulness by dynamically generating
the map structure (ALAHAKOON et al., 2000). This characteristic, combined with the
detailed specification presented on Alahakoon et al. (2000) turns the GSOM into the
selected option as a SOM alternative into the satellite image time series clustering.
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3 GROWING SOM FOR SATELLITE IMAGE TIME SERIES CLUS-
TERING

3.1 Review of GSOM implementations

As a starting point, some implementations of the algorithm were searched. The three
implementations found were PyGSOM (LUDWIG, 2016), Kohonen-Maps (RALHAN,
2018) and GSOM (MENDIS, 2015). These implementations were tested, but the re-
sults were not satisfactory. In some cases the performance are not acceptable, or the
algorithm specification is not precisely implemented. On PyGSOM, different possi-
ble approaches for the GSOM algorithm are used in the implementation, resulting
in a mixed solution. Ludwig (2016) states that this implementation should not be
taken as a reference. Kohonen-Maps implementation seems to be a study based on
the GSOM specification, manually constructed to fit a specific data set. Any mod-
ification to adapt this solution to fit any larger time series data set could result
in a huge manual job. The GSOM implemented by Mendis (2015) stores only the
last sample associated to each neuron, instead of all the samples. As a consequence,
visualization of the best matching unit is based on the last classified sample, not
on the most common. Furthermore, after running examples, this solution seems to
not respect the neighborhood while growing the grid. In Figure 3.1 is possible to
notice neurons holding samples from the same cluster, but spatially distant on the
generated grid.
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Figure 3.1 - Python GSOM implementation.

Python GSOM grid for Iris data set. Neurons labeled with the same class are spatially
distant on the grid, indicating that the neighborhood similarity was not preserved.

SOURCE: Author

To establish the comparison between the use of SOM into the clustering of satellite
image time series as specified on Santos et al. (2019) and the possible improvements
provided by GSOM, a search for a GSOM implementation on R environment was
started. The only GitHub available R package is GrowingSOM (HUNZIKER, 2018).
Unfortunately, this package is not available as an official R package on CRAN. After
installing and testing this package, was noticed that this implementation does not
store the relationship between the samples and the neuron associated with them. The
visualization features and the developed public interfaces are also limited. But the
main concern of this implementation is the training performance. As this solution is
fully implemented in R, and the main goal of this work is the clustering of satellite
image time series, the performance is not acceptable.

3.2 GSOM customization for satellite image time series

In this work, we propose minor changes in the GSOM described by Alahakoon et
al. (2000). These changes aim to fit the algorithm to work with satellite image time
series. It is important to advise that in all the time series comparison made by
GSOM, the Euclidian distance is used.

During the network weights adaptation, the described learning rate states that it
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needs to be a function that gradually takes higher values as the map grows and the
number of nodes becomes larger (ALAHAKOON et al., 2000). The suggested function
is described by equation (1) with R = 3.8, and n(t) is the number of neurons on a
given iteration t.

(1−R
n(t) ) (3.1)

The use of this learning rate function result in a classification accuracy decrease. In
order to improve the accuracy, this function is replaced by the function described by
equation (2), that gradually takes minor values as the number of epochs increases:

e( −iteration
epochs

), (3.2)

with iteration representing the current iteration number and epochs representing
the total amount of epochs.

Alahakoon et al. (2000) states that the GSOM starting neighborhood selected for
weight adaptation is smaller compared to the SOM, and weight adaptation is carried
out by reducing neighborhood until neighborhood is unity. But a function for initial-
izing and reducing the neighborhood influence during the growing and smoothing
phase is not provided. To satisfy these requirements, after several tests, we defined
the neighborhood influence as showed by Equation (3):

e
( −d

2×σ2 )
, (3.3)

σ = ini× e( −iteration
epochs

), (3.4)

where ini is the initial neighborhood influence, iteration is the current iteration
number, and epochs is the total amount of epochs. On all GSOM executions used
in this work, the initial neighborhood influence varies between 0 and 1. Alahakoon
et al. (2000) reinforces that the neighborhood influence in GSOM should be smaller
when compared to regular SOM.
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3.3 Python package development

After reviewing the available GSOM implementations, and looking at the algorithm
description provided by Alahakoon et al. (2000), we decide to build an implemen-
tation from scratch. The intend is to better understand each step of the algorithm,
and be able to modify any needed parameter to fine tune GSOM to fit the time
series clustering approach.

The source code of the developed package is available on GitHub (GSOM. . . , 2020)
and can be installed as follows:

python3 -m pip install
git+https://github.com/rodrigosales/GSOM.git

In order to use the package, all python source codes must use the import directive
with the package name:

import GSOM

The package allows two different input methods, the first one starts a GSOM exe-
cution, with both Growing phase and Smoothing phase. On the above example, a
GSOM grid is initialized with a Spread Factor configured as 1.0 and a 0.7 Learning
Rate. After that, a Growing Phase with 5 epochs will be started, and followed by a
Smoothing Phase with 15 epochs.

init_grid (input, sf = 1.0, alfa = 0.7)
start_growing_phase (input, 5)
start_smoothing_phase (input, 15)

As the SOM algorithm is very similar to a GSOM Smoothing phase, an alias for
SOM execution is also provided as a second input method. In order to start a simple
SOM, we need to provide the grid size and a Learning Rate. In the following example,
a 25x25 grid is initialized with a 0.6 Learning Rate, and 15 epochs will run.

init_grid (input, 25, 25, 0.6)
start_som (input, 15)
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We provide 5 output methods, to be able to retrieve GSOM results. The first one
prints the best matching unit of each sample, indicating the neuron that best cluster
each sample.

print_clustering(input)

In order to provide a classification based on the generated clusters, a method is
developed to label a neuron, based on the most frequent samples associated to each
neuron, this output can be retrieved as:

neuron_labels = get_neuron_labels(input, input_labels)

Based on the input labels, and the retrieved neuron labels, it is possible to get the
accuracy for each neuron:

check_neuron_accuracy(input, neuron_labels, input_labels)

Based on the same data, we are able to generate the confusion matrix, and get the
classification accuracy for each class:

generate_confusion_matrix(input, neuron_labels, input_labels)

Finally, providing e color for each label, we are able to plot a scatter and visually
check the network topology:
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labels_colors = {
"Pasture":"#F77B01",
"Cerrado":"#2B6490",
"Forest":"#4EAF4A",
"Fallow_Cotton":"#E41B1D",
"Soy_Fallow":"#C26596",
"Soy_Corn":"#BFC127",
"Soy_Sunflower":"#CCEBC5",
"Soy_Millet":"#949494",
"Soy_Cotton":"#A65628"

}

plot_map(input, input_labels, neuron_labels, labels_colors,
show_samples = False)

All the GSOM results presented in this text were obtained using the above functions.
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4 GSOM TESTS AND ANALYSIS

In order to check the accuracy of GSOM for satellite image time series cluster-
ing and to compare it with SOM, we implemented both SOM and GSOM in
Python (PYTHON SOFTWARE FOUNDATION, 2020). GSOM implementation includes
changes proposed in Section 3.2 of this work. This implementation was tested in two
different data sets, providing case studies with different analysis.

4.1 Case study 01

As a first case study, we executed SOM and GSOM in the same time series data
set described in Santos et al. (2019). In this case study, we run both algorithms and
compare the results, analyzing the network topology, performance, cluster accuracy
and neighborhood influence.

4.1.1 Data set

The methodology to extract the satellite image time series data set used in our case
study is shown in Figure 4.1. This data set is composed of 2215 ground samples of
land use and land cover classes, including natural vegetation and agricultural, from
Mato Grosso state in Brazil. These samples refer to nine distinct land use and land
cover classes. These classes and the samples are detailed on Table 4.1.

Table 4.1 - Ground samples used in case study 01.

Class Label Count Frequency
Cerrado 400 18.9%
Fallow-Cotton 34 1.6%
Forest 138 6.5%
Pasture 370 17.5%
Soy-Corn 398 18.8%
Soy-Cotton 399 18.9%
Soy-Fallow 88 4.2%
Soy-Millet 235 11.1%
Soy-Sunflower 53 2.5%

Each sample has a spatial location (latitude and longitude), start and end date
that corresponds to the agricultural year (from August to September) and the cor-
responding sample class label. For each sample spatial location, we got the time
series associated to that location or pixel from a satellite image collection ordered in
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time, as shown in Figure 4.1. In this work, we used the product MOD13Q1, Collec-
tion 6 from MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor of the
NASA satellite Terra, including samples from 2001 to 2016, extracted every 16 days
at 250 meter spatial resolution. Each time series has multiple attributes that are
generated by EVI (enhanced vegetation index), NDVI (normalized difference vege-
tation index), NIR (near-infrared) and MIR (mid-infrared) attribute concatenation.
These ground samples were retrieved from DIDAN (2015).

Figure 4.1 - Extracting satellite image time series from land use and land cover samples.

An example of a fixed spatial location in Mato Grosso do Sul state in Brasil extracted from
the dataset, and the multiple satellite images associated to it. The multiple parameters
collected by the satellite generates multiple time series.

SOURCE: Ferreira et al. (2019)

4.1.2 Network topology

SOM uses a fixed network architecture in terms of number and arrangement of
neural processing elements which have to be predefined. To better estimate the SOM
network size, a preliminary study about the number of attributes, classes separability
and number of data samples needs to be done. On the other hand, GSOM requires
only a spread factor as an input parameter. The spread factor is a neutral number
between 0 and 1 that defines how much the network needs to grow.
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Figure 4.2 shows the networks created by SOM (a) using a fixed 25 x 25 grid and
GSOM (b) using a spread factor 1, learning rate 1, initial neighborhood influence
0.6 and number of epochs 15; 10 epochs for growing and 5 epochs for smoothing.
Both algorithms achieved similar classification accuracy, but with different network
topologies. In the SOM case, as the grid size is always prefixed, the cluster distri-
bution can differ, but the grid will always have the same size. On the other hand,
in the GSOM case, we can observe the grid growing to fit the data.

Figure 4.2 - SOM x GSOM network topology.

The differences between the network topology generated by SOM (a) always showing a
fixed and pre-determined grid and GSOM (b) showing a variable structure depending on
the input data.

SOURCE: Author

4.1.3 Running time

Trying to approximate SOM classification accuracy, several GSOM running exper-
iments were made, testing different learning rates, spread factors and number of
epochs. We noticed that, for the given data set, the GSOM map increased signif-
icantly on the number of neurons between epochs 1 and 5. Between epochs 6 and
10, the map had a small growing of the neuron number. After epoch 11, we faced
almost no growing. Analyzing the smoothing phase, we noticed that after 5 epochs,
the difference between the neuron weights after each epoch were above 0.001. This
fact leads us to fix the number of epochs on growing phase in 10, and the number
of epochs on smoothing phase in 5.
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As the SOM algorithm has a fixed grid, each epoch takes approximately the same
time to run. On the GSOM growing phase, the increasing number of neurons implies
on a variable time spent on each epoch. Figure 4.3 illustrates the time spend by
SOM (with 25 x 25 fixed grid) and GSOM parametrized with 10 Growing epochs
and 5 Smoothing epochs. Both algorithms were executed 10 times, using the same
learning rate and the same neighborhood update functions. Thanks to its increasing
number of neurons during the growing phase, GSOM running time is smaller than
SOM running time on the first 5 epochs. After that, both algorithms had similar
running times.

Figure 4.3 - SOM x GSOM running time comparison.

During the growing phase, GSOM has a small advantage over SOM running time, thanks
to the smaller number of nodes. After the growing phase (epochs 5) both algorithms have
similar running time.

SOURCE: Author

4.1.4 Cluster accuracy

After the unsupervised clustering provided by SOM and GSOM, each neuron is
analyzed, and the samples associated to this neuron are counted. All neurons are
labeled, using the label of the majority samples associated with it. It is important
to notice that, when each neuron is labeled with the class of the majority samples,
the samples associated to other classes are considered as mistakes. We are able to
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calculate the resulting accuracy, but actually we are calculating the purity of the
neurons, as the following statement:

When each map node was labeled according to the majority of the
subsections in the node and the abstracts belonging to the other
subsections were considered as misclassifications, the resulting
accuracy (actually, the purity of the nodes) was 64% (KOHONEN

et al., 2000).

As a consequence, considering each neuron as a single cluster, we were able to
calculate the accuracy (the purity) of the whole map.

In order to better understand the algorithm result’s variability, we ran GSOM on
the same dataset 10 times, calculating the cluster accuracy on each execution, using
the majority sample rule. The box plot shown in Figure 4.4 summarizes the GSOM
clustering accuracy for each class and for the whole dataset.

Figure 4.4 - GSOM 10 executions blox plot

Box plot for 10 GSOM executions, showing the average accuracy (with an x), median,
lower quartile, upper quartile, minimum and maximum value for each class.

SOURCE: Author
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In order to compare the cluster accuracy, the same implementation of SOM and
GSOM algorithms were executed 10 times, using the same learning rate and the
same neighborhood update functions. As the Python implementation slows down
the overall solution performance, only 15 epochs of each algorithm were ran. Before
that, several GSOM executions were ran in order to generate a grid map with almost
the same neurons quantity of a 25 x 25 SOM. The results are shown in Table 4.2.
We noticed that, besides a small classification increment, GSOM presents significant
results of +11.9% and +15.3% on Fallow-Cotton and Soy-Sunflower clustering re-
spectively.

Table 4.2 - 15 SOM epochs x 15 GSOM epochs - Accuracy for each cluster.

Cluster SOM Accuracy GSOM Accuracy GSOM – SOM
Cerrado 96.4 97.7 1.3
Fallow-Cotton 84.1 96.0 11.9
Forest 98.4 98.6 0.2
Pasture 88.9 94.1 5.2
Soy-Corn 86.1 89.2 3.1
Soy-Cotton 91.1 93.9 2.8
Soy-Fallow 99.9 100.0 0.1
Soy-Millet 82.1 86.7 4.6
Soy-Sunflower 70.3 85.6 15.3
Overall Accuracy 90.0 93.1 3.1

In the case study provided by Santos et al. (2019), the best classification scenario
is obtained with the time series presented to a SOM parameterized with grid size =
25 x 25, learning rate = 1 and number of epochs = 100. The SOM implementation
used in these experiments is the Kohonen R package (WEHRENS; BUYDENS, 2007).
It provides the original SOM functionality with good performance due to its Rcpp
implementation (EDDELBUETTEL; FRANÇOIS, 2011). The use of C++ code mixed
with R code provides a significant reduction on the algorithm running time, allowing
an increase on the number of epochs without a huge impact on the overall execution
time. After 100 epochs, the overall classification accuracy was 93%.

The same time series attributes were presented to a GSOM, parameterized with
spread factor = 1, learning rate = 1, initial neighborhood influence = 0.6 and number
of epochs = 15 (10 epochs for growing and 5 epochs for smoothing). The cluster
accuracy for each cluster is presented in Table 4.3. We can notice that, despite of a
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small classification decrease on Soy-Millet and Pasture clusters, GSOM presents a
significant increment of the Fallow-Cotton and Soy-SunFlower clustering accuracy of
+10.3% and +8.7% respectively. Also, the overall sample cluster was pretty similar
and stated as 93.0% for SOM and 93.1% for GSOM.

Table 4.3 - 100 SOM epochs x 15 GSOM epochs - Accuracy for Each Cluster.

Cluster SOM Accuracy GSOM Accuracy GSOM – SOM
Cerrado 97.3 97.7 0.4
Fallow-Cotton 85.7 96.0 10.3
Forest 99.3 98.6 –0.7
Pasture 97.3 94.1 –3.2
Soy-Corn 84.0 89.2 5.2
Soy-Cotton 95.5 93.9 –1.6
Soy-Fallow 100.0 100.0 0.0
Soy-Millet 90.3 86.7 –3.6
Soy-Sunflower 76.9 85.6 8.7
Overall Accuracy 93.0 93.1 0.1

4.1.5 Neighborhood analysis

A relevant SOM property that needs to be validated during the GSOM tests is the
neighborhood topography maintenance. On a regular SOM, similar satellite image
time series are grouped into nearness neighborhoods, even if these time series are
labeled as different classes. The distribution on the SOM grid over the epochs tends
to cluster satellite image time series of a specific sample on the same closer neighbor-
hood. In the specific case of satellite image time series associated with land use and
land cover ground samples, the neighborhood maintenance in the clustering process
is useful to identify sampling outliers.

In this case study, we observed that GSOM also keeps this property when looking
at the nearest neighbors, as shown in Figure 4.5. The map highlights the nearest
neighbors of Neuron 1 (N1). We also point out some random distant neighbors in
blue (N593, N607, N610, and N615). Analyzing the distance between the weight
vectors of Neuron 1 and the weight vectors of the nearest and some distant random
neighbors, we can notice that the distance between the neuron weights grows as
we move away from the comparing source. We can visually inspect the time series
generated by each of this neuron weights, to check the distance between the nearest
neighbors and the distant ones, as shown in Figure 4.6.
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Figure 4.5 - GSOM grid sample extract - neighborhood analysis.

Nearest neighborhood of neuron N1 highlighted, including neurons N0, N3, N5 and N4.
Random distant from neuron N1 highlighted, including neurons N593, N607, N615 and
N610.

SOURCE: Author
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Figure 4.6 - Neighborhood Analysis - Nearest x Random Distant Neighbors.

SOURCE: Author

The sum of the difference between Neuron 1 weights of its nearest neighbors is 26.94.
As we move away from Neuron 1, this distance grows. As an example, the distance
between the selected distant random neuron weights and Neuron 1 weights is 57.15.
These distances are summarized on Table 4.4. This property was analyzed for other
neurons in the map and similar results were found.

Table 4.4 - Distance between Neuron 1 weights and its nearest/farther neighbors.

N1 - Nearest Distance N1 - Farther Distance
N1 - N0 7.27 N1 - N593 14.80
N1 - N3 5.67 N1 - N607 16.43
N1 - N5 6.28 N1 - N615 13.95
N1 - N4 7.72 N1 - N610 11.97
Neighborhood Distance 26.94 Neighborhood Distance 57.15
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4.2 Case study 02

As a tentative to validate the GSOM algorithm applied to time series clustering,
we propose the use of the algorithm in another data set. Trying to compare the
results with the Chapter 4 outcome, the GSOM was initially executed with the
same learning rate, neighborhood influence function and spread factor. In order
to provide detailed neighborhood analysis, we then vary the initial neighborhood
influence and measure the results.

4.2.1 Data set

This second data set is composed of 50360 ground samples of land use and land cover
classes from Cerrado biome, on multiple states in Brazil, detailing natural vegeta-
tion and agricultural. These samples were also retrieved from product MOD13Q1,
Collection 6 from MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor
of the NASA satellite Terra (DIDAN, 2015). These data set classes are the result of
a merge between visual interpretation of high resolution images by remote sensing
specialists and field observations provided by INPE (National Institute for Space
Research). These classes and the samples are detailed on Table 4.5.

Table 4.5 - Ground samples used in case study 02.

Class Label Count Frequency
Cerrado 9172 18.2%
Cerradao 11659 23.2%
Soy-Cotton 4124 8.2%
Fallow-Cotton 630 1.3%
Silvicultura 423 0.8%
Soy-Fallow 1712 3.4%
Soy-Corn 5557 11.0%
Pasture 6602 13.1%
Araguaia 2699 5.4%
Cerrado Rupestre 6916 13.7%
Dunas 550 1.1%
Millet-Cotton 316 0.6%

4.2.2 Results

Comparing with the first data set, the increase on the data set number of samples
had a direct effect on the final grid size. After one growing and five smoothing epochs
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with Spread Factor configured as 1.0, the grid size was expanded from the initial 4
to 2543 neurons. Despite that, we still observing the grid growing to fit the input
data, instead of an undetermined growing. Figure 4.7 shows the resultant network
topology.

Figure 4.7 - GSOM - Larger data set / Larger Map (Spread Factor = 1.0)

Resulting GSOM topology using the larger dataset. After 6 epochs, with Spread Factor
configured as 1.0, 2543 neurons were generated.

SOURCE: Author

To provide the classification capabilities and validate the clustering accuracy, the
same methodology used in the first case study was used. The neurons were labeled,
based on the majority samples associated with it, and the map accuracy was calcu-
lated. The results are shown on the middle column of Table 4.6.

Despite the 95.4% classification accuracy, the large network implied on a huge in-
crease of the overall time to run the GSOM algorithm. Each of the 50360 samples
need to be shown to all the 2543 neurons in order to find the best matching unit,
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resulting in an expressive increase on the execution time.

Trying to decrease the whole execution time and improve the generalization capa-
bility of the network, we reduced the spread factor, in order to generate a smaller
map. After two growing and five smoothing epochs with 0.7 spread factor, we were
able to obtain the network showed in Figure 4.8.

Figure 4.8 - GSOM - Larger data set / Smaller Map(Spread Factor = 0.7)

Resulting GSOM topology using the larger dataset. After 6 epochs, with Spread Factor
configured as 0.7, 559 neurons were generated.

SOURCE: Author

This map finished the growing phase with 559 neurons. It results on a smaller map
than the first resultant map from Case Study 1. The map showed on Figure 4.6
classified 2215 samples on 615 neurons, resulting on 3.6 samples per neuron average
density. The larger map of this second case study classified 50360 samples using 2543
neurons, resulting in 19,8 samples per neuron average density. The last map showed
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on Figure 4.8 classified 50360 on 559 neurons, resulting on 90.0 samples per neuron
average density.

Table 4.6 last column summarizes the classification results of this last experiment.
We can notice that, despite the overall accuracy of 91.3%, Silvicultura samples were
classified with poor accuracy (23.2%) on the smaller map.

Table 4.6 - GSOM Accuracy Table - Larger Map x Smaller Map

Cluster GSOM Larger GSOM Smaller
Map Accuracy Map Accuracy

Cerrado 95.3 92.9
Cerradao 93.9 90.6
Soy-Cotton 98.5 92.8
Fallow-Cotton 91.5 74.6
Silvicultura 74.7 23.2
Soy-Fallow 97.8 94.2
Soy-Corn 98.3 96.2
Pasture 94.91 88.8
Araguaia 91.5 92.8
Cerrado Rupestre 97.5 92.9
Dunas 100.0 100.0
Millet-Cotton 76.5 62.6
Overall Accuracy 95.4 91.3

4.2.3 Neighborhood analysis

Observing the results presented in the neighborhood analysis of the first case study,
we concluded that GSOM keeps the neighborhood influence for the nearest neigh-
bors. But looking at the whole map, and comparing it with a similar SOM (as
presented in Figure 4.2), we can notice that GSOM overall neighborhood was com-
promised. Neurons labeled with the same class seem to create more concise groups
on SOM than on GSOM. Despite the recommendations from Alahakoon et al. (2000)
for keeping the neighborhood influence smaller on GSOM, we ran experiments and
compared maps with initial neighborhood influence 0.6 and 1.0.

In order to expand the neighborhood analysis done on Section 4.1.5, we calculated
the distance between a single neuron and all the other neurons on the grid. These
distances were normalized and expressed in grayscale, with lighter pixels expressing
smaller distances and darker pixels expressing larger distances. In Figure 4.9 we
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present this distance for 3 different maps. The first one (a) is the SOM map, used
as a reference. The second one (b) is a GSOM with initial neighborhood influence
configured as 0.6. The last one (c) had initial neighborhood influence configured as
1. In all cases, the distance is relative to Neuron 0, showed in the map as a white
dot at [0, 0].

Figure 4.9 - Distance grey map

Grey map representing the distance between neuron N0 and all the other Neurons for
SOM (a), GSOM with initial neighborhood influence configured as 0.6 (b) and GSOM
with initial neighborhood influence configured as 1.0 (c).

SOURCE: Author

In Figure 4.9 we can observe that a larger initial neighborhood influence generates
a more homogeneous map. Higher initial neighborhood influence implies on neuron
weights distance increasing with the distance between the neurons. On the several
experiments done, varying the reference neuron from Neuron 0 to any other neuron,
the results were similar.
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Trying to expand this analysis and generate a global metric for the whole map,
we calculated the unified distance matrix (U-matrix) of the GSOM map. The U-
matrix has become a standard visualization of self-organizing feature maps (LOTSCH;

ULTSCH, 2014) and express the distance between the weight vector of a neuron and
its nearest neighbors. After calculating this value for all the map neurons, we present
this value in a gray scale, where lighter pixels represents smaller distances and darker
pixel represents greater distances.

Figure 4.10 shows the U-matrix for a SOM (a), for a GSOMwith initial neighborhood
influence configured as 0.6 (b) and for a GSOM with initial neighborhood influence
1.0 (c). In general, groups of light pixels are considered clusters, and groups of dark
pixels are considered boundaries between these clusters.

Figure 4.10 - U-matrix for SOM and GSOM

U-matrix map representing the distance between a single neuron and its nearest neighbors
for SOM (a), GSOM with initial neighborhood influence configured as 0.6 (b) and GSOM
with initial neighborhood influence configured as 1.0 (c).

SOURCE: Author
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The topology map, including each neuron labeled according the dominant classes is
presented in Figure 4.11, for SOM (a), GSOM with initial neighborhood influence
0.6 (b) and 1.0 (c) respectively. We can observe more concise and grouped clusters
in GSOM when higher initial neighborhood influence was used. On the other hand,
with smaller initial neighborhood influence, GSOM seems to spread the neurons
labeled with the same classes, creating smaller and diffused clusters.

Figure 4.11 - Neighborhood Clusters and Boundaries

The topology map for SOM (a), GSOM with initial neighborhood influence 0.6 (b) and 1.0
(c). Increasing GSOM initial neighborhood influence parameter results on more concise
and grouped clusters.

SOURCE: Author

Despite the difference on the cluster grouping, the accuracy of the map seems not to
be affected by the neighborhood influence. Both GSOM executions achieve almost
the same classification accuracy, regardless of difference on each single class accuracy.
Table 4.7 shows the classification accuracy for each single class and for the whole
GSOM maps (with initial neighborhood influence 0.6 and 1.0 respectively).
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Table 4.7 - Cluster accuracy comparison between GSOM with different initial neighbor-
hood influences.

Cluster GSOM 0.6 ini GSOM 1.0 ini
Cerrado 83.8 87.0
Cerradao 92.6 92.5
Soy-Cotton 94.9 93.2
Fallow-Cotton 87.9 73.6
Silvicultura 79.3 79.6
Soy-Fallow 94.4 89.4
Soy-Corn 95.6 95.9
Pasture 86.5 87.2
Araguaia 78.0 92.2
Cerrado Rupestre 97.4 94.1
Dunas 100.0 100.0
Millet-Cotton 76.0 77.2
Overall Accuracy 89.7 90.4
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5 CONCLUSIONS

For the given satellite image time series clustering problem, on the given data set
(Mato Grosso state in Brazil and Cerrado biome vegetation ground samples), GSOM
seems to be a suitable alternative to SOM. After small customization and adaptation,
the GSOM generated map grew as expected, reaching the same amount of neurons
of the equivalent SOM, but with a different network topology. GSOM also keeps an
important characteristic of SOM, the neurons neighborhood influence.

The cluster accuracy reached by GSOM was similar to the equivalent SOM. It also
had a small advantage on the overall clustering time, thanks to its growing phase,
when the neuron number is smaller than SOM. We were also able to test the main
GSOM characteristic that initiates this work, which was the capability of clustering
the data set without specifying the grid size. The Spread Factor usage was a simple
and effective task, allowing data analysts without previous algorithm knowledge to
cluster the data.

Another important conclusion was the changes provided by the initial neighborhood
influence. Despite the recommendation the keep it as lower values, using greater
values provided the same cluster accuracy and more concise clusters.

The source code used in this work and the data set files are available on GitHub
(GSOM. . . , 2020). The current implementation is a prototype, that will be evolved
in order to become a consolidated product in the future.

Suggested future works include changes on the GSOM algorithm in order to in-
corporate the geo-targeting information of the samples, and consider it during the
clustering. We believe that the spatial location of the sample can influence the clus-
tering and improve the classification accuracy. We also include in the future works
the combined use of GSOM with other methods like Bayesian classifiers, in order to
improve the classification accuracy.
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