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ABSTRACT
The dwarf planet Haumea is a trans-Neptunian object that is orbited by two moons and has a
recently discovered ring. The particles of this ring are near the 3:1 resonance between the spin of
Haumea and the orbital motion of the particles. In this work, the ring of Haumea is investigated
using Perturbation Maps. These maps show the behaviour and impact of perturbations acting
over particles around Haumea. The information coming from the maps depends on the integral
type for the disturbing acceleration used to build the maps. The types II and IV are used. The
numerical simulations are focused in the region between 2000 and 2500 km from the centre
of Haumea, which is the region where the ring was observed, considering two initial values
for the 3:1 resonant angle: θ res = 0◦ and θ res = 270◦. The possible stable region for the initial
angle θ res = 0◦ is larger than the stable region for the initial angle θ res = 270◦. Furthermore,
we found that these stable regions are not continuous, indicating that there are possible gaps
in the ring. Therefore, our results suggest that Haumea may not have only one single ring, but
a system of rings instead. Possible transit of the particles between the ring and the region close
to the orbit of Namaka is also shown.

Key words: celestial mechanics – minor planets, asteroids: individual: Haumea – planets and
satellites: rings.

1 IN T RO D U C T I O N

Haumea is a trans-Neptunian Object (TNO) with the shape of a
triaxial ellipsoid in fast rotation (3.9155 h). It possesses a rocky
core covered by a thin layer of carbon depleted ice (Pinilla-Alonso
et al. 2009). Haumea is also orbited by two moons, Namaka and
Hi’iaka (Ragozzine & Brown 2009). The inner moon Namaka has
considerable eccentricity (0.249) and it is inclined with respect
to the equator of Haumea (13◦). Alternatively, the outer moon
Hi’iaka has a near circular orbit (eccentricity equal to 0.051) and
low inclination (1◦–2◦), also with respect to the equator of Haumea
(Ćuk, Ragozzine & Nesvorný 2013). These characteristics, added to
the possibility that Haumea is the parent body of a collisional family
(Levison et al. 2008; Desch & Neveu 2015), make this dwarf planet
one of the most intriguing objects in the Solar system. Recently one
more characteristic was added to this system: the discovery of a ring
around Haumea (Ortiz et al. 2017). This ring was discovered in a
region near the 3:1 resonance between the spin of Haumea and the
mean motion of the particles of the ring.

The Haumea system possesses another particular characteristics.
There is a chaotic region between Haumea and Namaka (Sanchez &
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Prado 2017), caused by the superposition of the critical semimajor
axis of the pairs Haumea/Namaka and Haumea/Hi’iaka. This
relationship implies that any particle that leaves the ring region
by increasing its the semimajor axis and/or eccentricity may cross
the chaotic region and could be ejected from the system. There
is also the possibility of collisions with Hi’iaka. These findings
indicate that, even if the perturbation of Namaka and Hi’iaka is
negligible for orbits close to Haumea, as claimed by Sicardy et al.
(2018), and confirmed by our preliminary simulations, they need to
be incorporated in the simulations of the ring.

In the past few years, the dynamics of particles and spacecraft in
the Haumea system have been analysed by the authors in several
different ways. For instance: by separating the system in two pairs,
Haumea/Namaka and Haumea/Hi’iaka, by using the formalism of
the Circular Restricted Three-Body Problem (Sanchez, Prado &
Yokoyama 2016a), considering the Restricted Full Three Body

Problem (Sanchez, Howell & Prado 2016b, 2017), and using the di-
rect integration of the Newtonian equations of motion of the system,
considering several disturbers (Sanchez & Prado 2017). Particularly,
in Sanchez et al. (2016b), a region with direct stable orbits was
found. Since, at the time of that publication, no ring was observed,
the authors came to the conclusion that the apparently stable region
found was useful to place a spacecraft to explore the system. How-
ever, in 2017, after a large number of observations, a 70 km wide
ring was discovered around Haumea. This ring has orbital radius of
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Table 1. Some parameters of the Haumea system.

Object Mass, kg a, km e I, deg Orbital period

Haumea 4.006 × 1021 6.460 20 × 109 0.193 68 28.222 81 283.28 yr
Namaka 1.79 × 1018 25657 0.249 113.013 18.27 d
Hi’iaka 1.79 × 1019 49880 0.0513 126.356 49.44 d

approximately 2287 km. Additionally, new values for the shape of
Haumea (Ortiz et al. 2017) were determined. Comparing the results
from Sanchez et al. (2016b) with the actual position of the ring, one
can conclude that the possible stable region found in that paper is
actually the region of the ring, considering the previous shape of
Haumea suggested by Lockwood, Brown & Stansberry (2014).

In this context, this paper aims to investigate the dynamics of
particles around Haumea, in the region where the ring of Haumea
was found, i.e., particles with semimajor axis from 2000 km to
2500 km. To investigate the behaviour of these particles, we use
Perturbation Maps (Sanchez & Prado 2019). These maps are grids
of initial conditions that show how much the perturbations, coming
from several sources in the system, such as those from the moons of
Haumea, affect the orbital motion of these particles. The information
in the maps is produced via the method of the integral of the
disturbing accelerations (Prado 2013, 2014).

The method of the integral of the disturbing accelerations, or PI
method, was conceived to allow a quantitative assessment of the
mean perturbation that acts over a spacecraft path. The concept
behind the method is that the integral of the acceleration from a
disturber gives the mean variation of the velocity of the spacecraft
(a massless particle in the context of this paper) due to this
disturber, for a given period of time T. In other words, the method
measures the perturbation from a disturber, or a set of disturbers,
in terms of a mean variation of the velocity of the particle. Since
its first appearance (Prado 2013), the method has evolved and
improved (Carvalho, de Moraes & Prado 2014; Oliveira & Prado
2014; Sanchez, Prado & Yokoyama 2014; dos Santos et al. 2015;
Venditti & Prado 2015; Lara 2016; Sanchez & Prado 2017; de
Almeida et al. 2018). There are four types of integrals: the integral
of the absolute value of the disturbing accelerations (type I), which
is the original method; the integral of the disturbing accelerations
in the direction of the velocity of the disturbed body (type II); the
integral of the disturbing accelerations without the modulus (type
III); and the integral of the difference between the acceleration of
the disturbed body and a reference orbit (type IV). A grid of initial
conditions evaluated via the integral of the disturbing acceleration
is called a Perturbation Map. For the particles that compose the ring
of Haumea, an analysis based on Perturbation Maps can reveal the
possible bias of the stability of these particles. This means that the
maps can reveal unstable behaviour of the particles in the ring, as
well as possible stable behaviours, even for low values of T. The
indication of long-term stability given by the maps can be confirmed
by long-term integrations.

This work is organized as follows. In Section 2, we explain the
numerical model used in the paper and the PI method, with its four
variations and the physical meaning of each one. In Section 3, we
present the results of all numerical simulations, Perturbation Maps,
long term simulations, and some considerations about the ring struc-
ture and the resonance in the ring. Section 4 concludes the paper.

2 MATH E M AT I C A L M O D E L S A N D M E T H O D S

The numerical model used to simulate the motion of the particles in
the ring of Haumea is presented in this section. The PI method and

the physical meaning of the Perturbation Maps are also explained.
Table 1 presents some physical and orbital parameters of the
Haumea system (Ragozzine & Brown 2009), such as semimajor
axis (a), eccentricity (e), and inclination (I), to be used in the next
sections. The value of the semimajor axis of Haumea corresponds
to approximately 43 au, where 1 au = 1.495 978 707 00 × 108 km
is the astronomical unit used in this paper. The inclinations in this
table are given with respect to the Ecliptic frame. In the case of
Namaka and Hi’iaka, the corresponding inclinations with respect
to the equator of Haumea are, respectively, 13◦and 2◦ (Ćuk et al.
2013).

2.1 Numerical model

The equation of motion (EOM) of a particle that comprises the ring
of Haumea is given by

r̈ = −GMH

|r|3 r + G

N−1∑
j=1

Mj

(
rj − r∣∣rj − r

∣∣3 − rj

|rj |3
)

+ PH, (1)

where I is the universal gravitational constant, MH, Mj, and rj are
the mass of Haumea and the masses and position vectors of the
disturbers (Hi’iaka, Namaka, and the Sun), respectively. r is the
position vector of the particle. The reference system is centred
in Haumea, with a fundamental reference plane in the equator of
Haumea, aligned with the I-axis at the reference epoch. The equator
of Haumea is defined as the plane perpendicular to its spin axis.
PH is the acceleration due to the gravitational potential of Haumea,
expanded in spherical harmonics up to degree and order four. This
potential is calculated using a modified recursive model given by
Sanchez et al. (2014), adapted to Haumea. The adaptations were
necessary because this model was originally defined for the Earth,
and it depends on the Greenwich Sidereal Time (GST), which only
makes sense for the Earth. To adapt this model to Haumea, an angle
that starts at the x-axis was defined, which is fixed as the larger axis
for the shape of Haumea. The initial value of this angle is always
zero. Due to the symmetry of Haumea (a triaxial ellipsoid) all odd
coefficients of the spherical harmonics expansion are zero. Thus, the
remaining coefficients of the spherical harmonics expansion up to
degree and order four were calculated (Balmino 1994) considering
the shape of Haumea found by Ortiz et al. (2017), which is a = 1,
161 km, b = 852 km, and c = 513 km, where a, b, c are the semi-
axes of Haumea assumed as a triaxial ellipsoid. The coefficients are

C20 = −0.114 805 467 085 9791,

C22 = 0.230 731 993 937 3301 × 10−1,

C40 = 0.305 250 864 286 1946 × 10−1,

C42 = −0.189 209 245 254 6749 × 10−2,

C44 = 0.950 665 232 612 4315 × 10−4. (2)

For completeness, the EOM for Hi’iaka and Namaka is
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r̈NS = −G (MH + MNS)

|rNS|3 rNS (3)

+G

N−1∑
j=1

Mj

(
rj − rNS∣∣rj − rNS

∣∣3 − rj

|rj |3
)

+ PH, (4)

where MNS and rNS are the masses and position vectors of the
natural satellites. We assume that Namaka and Hi’iaka are mutually
disturbed and also disturbed by the gravitational potentials of
Haumea and the Sun. Since we consider the Sun in a Keplerian
orbit, its EOM is

r̈� = −G (MH + M�)

|r�|3 r�, (5)

where M� and r� are the mass and the position vector of the Sun.
We use the Epoch 2008, May 28th for the initial conditions for the
massive bodies. For all numerical simulations, we use the RADAU
(RA15) integrator (Everhart 1985).

2.2 PI method and Perturbation Maps

Perturbation Maps (or PMaps) are grids of initial conditions evalu-
ated via the method of the integral of the disturbing accelerations,
or simply the PI method. Each point in the map shows the value of
the PI for a given initial condition. The PMap carries the name of
the type of integral used to build it. For example, a PMap of type II
is the one generated by using the integral of type II. There are four
types of integrals, and each of them can reveal different aspects of
the perturbations that act over a particle in the ring of Haumea. The
four types of integral are

PIi = 1
T

∫ T

0 |a| dt ,

PIii = 1
T

∫ T

0 〈a, v̂〉dt , with v̂ = v/|v|,
PIiii = 1

T

∣∣∣∫ T

0 adt

∣∣∣,
PIiv = 1

T

∣∣∣∫ T

0 r̈ − r̈kdt

∣∣∣,
where a can be interpreted as either the acceleration due to each

disturber, or the summation of all disturbing accelerations. The latter
applies to our case, where a denotes the summation of the second
and third terms of equation (1). v is the velocity of the particle. r̈k

is the acceleration of a particle in a Keplerian orbit with the same
initial conditions of the particle analysed. T is the final time of the
numerical integration for the trajectory of the particle, which can
be either the total time of the numerical integration or the time until
a critical event, as a collision, that stops the integration before the
total time. Since T can acquire any value between the initial time
and the total time of integration, the integrals of the PI method are
normalized by 1

T
. Thus, the unit of the final value of the PI will

always be velocity per unit of time. The normalization is necessary
to avoid misinterpretation when comparing orbits with different
durations.

The first type of integral measures the total perturbation applied
to the particle. When the acceleration due to a perturbation is
symmetric with respect to one orbital period, the effects caused
by this perturbation can be compensated. An example is the solar
radiation pressure. Let us consider a satellite around the Earth, in
a circular orbit parallel to the Ecliptic. In one orbital period, the
amount of energy that the satellite loses, due to the solar radiation
pressure, when moving towards the Sun, is regained when this
satellite is moving away from the Sun. Thus, over one orbital period,
this specific orbit returns to the same point of the origin. However,

this fact does not imply that the orbit is not disturbed, since the
trajectories with solar radiation pressure and without this effect are
not the same. Then, the first type of integral, using the absolute
value of the acceleration, allows us to compare forces, even forces
with a different nature, because this type of integral eliminates
compensation of the effects of the perturbations. Therefore, it is
useful only when it is desired to consider effects during a single
orbital period, and not for the long term evolution of the orbit. For
this reason this type of integral is not applied in this work.

The integral of the second type shows the perturbations that
directly affect the variation of energy along the orbit of the particle.
If the value of this integral is positive, it means that the perturbation
‘added’ energy to the orbit of the particle, raising its semimajor axis.
In the opposite situation, when the value of this type of integral is
negative, it decreases its semimajor axis. This type of integral is also
useful to assess the stability of a particle orbit. For instance, if the
orbits of two particles, with a small difference in initial conditions,
have different signs in the value of the PIii, it means that there is
a strong possibility that these particles are inside a chaotic region
around the central body. This interpretation relies on the fact that
these two orbits, although close to each other, have very different
behaviour. This property provides an assessment of the chaotic
behaviour in the system. This type of integral is one of the two
types that will be used to study the dynamics of the particles of the
ring of Haumea. This type of integral allows compensation of the
effects along the trajectory.

The third type of integral measures the mean perturbation applied
to the particle. Since this type of integral is calculated by using
a, it allows compensational effects and it is useful to compare
forces from disturbers of similar nature, for example, the third body
perturbation of the Sun and a moon of Haumea. It is also useful to
identify and separate perturbations coming from different sources.
As the integral of the first type, this one is calculated over one orbital
period. For these reasons, this integral is not used in this work.

The fourth type of PI is actually a variation of the third type. It
was idealized in Lara (2016), and later used in de Almeida et al.
(2018). Since this type is the integral of the difference between the
total acceleration of the disturbed particle and the acceleration of a
particle in a reference orbit (a Keplerian orbit in this paper) with the
same initial conditions as the disturbed one, it measures how much
the disturbed orbit deviates from the reference orbit. Considering
that the dynamics in the Cartesian system reflect the dynamics in
orbital elements and vice versa, any variation in the orbital elements
will result in an increase in the value of PIiv. Therefore, this is the
other type of PI, along with PIii, that is used to build the perturbation
maps to study the ring of Haumea in this work.

3 R ESULTS

Equation (1), as well as the equations of motion of the remaining
bodies, are numerically integrated using the RADAU integrator,
hereafter called the main simulation. Preliminary tests demonstrated
that each trajectory needs between 2500 and 10 000 points to ensure
the accuracy of the PI method and, consequently, the accuracy of
the PMaps. The number of points increases when the orbit is close
to the central body. Thus, since the region analysed in this work is
the region between 2000 and 2500 km from Haumea, the number
of points in each orbit was kept at 10 000. To keep this number of
points, even for integrations that stop before the final time due to
critical events like collision, resulting in a number of points less
than the desired one, the program re-runs the simulation adjusting
the time-steps to ensure 10 000 points before the critical event.
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To build the PMaps, all the accelerations are stored in temporary
files during the main simulation. After the end of the main simu-
lation, the code uses the temporary files to calculate the PI, using
the Simpson 1/3 method (Burden & Faires 2010). This strategy is
necessary to avoid the inclusion of accelerations coming from the
sub-steps of the RADAU integrator, which uses a variable step-
size, and to retain the constant spacing for the PI method. This
also ensures the accuracy of the method and saves computational
time. Another important point, as the concept behind the PMaps
suggests, is that the result in the map is the average velocity, per
unit of time, that the particle receives from the disturber. Since this
value is averaged, the initial Epoch does not affect the conclusions
of the work.

The time of integration, T, is another important factor for the
effectiveness in the implementation of the PMaps. The longer is the
time of integration, the longer is the interaction between the particle
and the disturbers. Therefore, the longer is the time of integration,
the higher will be the value of the integral in the PI method. However,
since the integral of the PI method is normalized by 1/T, the value
of the PI is not influenced by the time of the integration, but the
structures that the PMaps can reveal are influenced by T. To explain
this, let us suppose that a particle is orbiting Haumea, at a semimajor
axis of 20 000 km, which is close to Namaka. For a PMap with T =
t1, this particle may not escape or collide, staying around Haumea.
In this PMap, a point may not reveal a high value of PI, because
this time interval is not sufficient large to show the whole impact
of Namaka over the particle, if t1 is less than the orbital period of
Namaka. However, if we take T = t2, with t2 > t1, the time may allow
Namaka to interact with the particle and, consequently, the particle
would have a high value of PI, changing the ‘face’ of the PMap. For
any system, there is a time T = tn for which the PMap resists further
change. This time is called the saturation time and it is related to the
repetition of the system geometry. Then, the saturation time depends
on the nature and number of disturbers. Since the dependency on
T in the PMap is related to third body perturbations as well as the
repetition of the geometry of the external disturbers, the saturation
time can be estimated by comparing the time of integration with the
period of the slowest angular variable in the system to achieve the
goal of the map.

In the case of the analysis of the ring of Haumea, preliminary
simulations showed that the influence of the moons of Haumea
is not relevant, because the ring is too close to Haumea, whose
perturbation from its gravitational potential overcomes the re-
maining perturbations from the system. However, when a particle
leaves the ring, an interaction with the moons is possible, but
this always occurs for short times. For this reason, the time of
saturation is considerably short; with T = 1 yr the maps saturate.
Thus, with this value of T, the PMaps can show the tendency of
stability or instability in the orbits of the particles and remain the
same, regardless how much T is increased. Although preliminary
tests showed that the influence of the Sun in not considerable,
to keep the consistency of the simulations and to allow the
comparison of the PMaps with the long-term integrations, the Sun
is incorporated in the simulations, as explained in the previous
section.

3.1 Regular grid of initial conditions

To start the analysis of the system, a regular grid of initial semi-
major axis, a0, and initial eccentricity, e0, was built. The grid
illustrates the maximum eccentricity achieved in 1 yr of integration.
It includes almost planar orbits (I = 0.001◦), with initial longitude of

ascending node (�) and mean anomaly (l) equal to zero. The initial
value of the argument of the perigee (ω) depends on the desirable
initial value of the resonant angle.

According to Sicardy et al. (2018), the order of the resonance and,
consequently, the initial value of the resonant angle, will depend
on the gravitational model. If an ellipsoid shape is considered for
the gravitational model, the resonance only appears in its fourth-
order version (6:2 resonance instead of 3:1 resonance). Such is the
case of our model, where a triaxial ellipsoid shape is considered in
the calculation of the spherical harmonics. However, for the same
gravitational potential, these resonances are essentially the same.
Thus, to define the initial value of (ω), we chose the 3:1 resonant
angle θ res = λH − 3λ + 2� , where λH is the rotation angle of
Haumea, λ and � are, respectively, the mean longitude and the
longitude of the pericentre of the particles. Another implication of
the ellipsoidal shape is that the gravitational potential is invariant
under a rotation about π . Consequently, there are two configurations
that represent the 3:1 spin–orbit resonance: θ res = ±90◦. These two
configurations are symmetrical, thus, we chose only the θ res = 270◦

to represent initial conditions at the centre of the 3:1 resonance. We
also considered θ res = 0◦ as a configuration outside the libration
centre of the resonance to compare resonant and non-resonant
configurations. Therefore, for θ res = 0◦, we start ω at 0◦, and to
produce a result for θ res = 270◦, we start ω at 90◦.

There are three final scenarios for the orbit of the particle: (i)
the particle collides with Haumea, Namaka, or Hi’aka; (ii) the
particle escapes from the system; and (iii) the particle remains
around Haumea during the time of integration. In the first scenario,
we consider collision with Haumea when the particle is inside a
sphere of radius equal to the largest axis of Haumea, 1161 km. In
the case of collision with Namaka or Hi’iaka, the logic is the same,
but with radii equal to 100 and 195 km, respectively. However,
due to the small size of the moons, collision with either Namaka
or Hi’iaka is rare, although there are close encounters between the
particles and Namaka. In the second scenario, an escape occurs
when the distance of the particle, with respect to Haumea, achieves
4.6 × 106 km, which is the approximate value of the Hill radius of
Haumea.

Regular grids are shown in Fig. 1(a), for θ res = 0◦, and Fig. 1(b),
for θ res = 270◦. In Fig. 1(a), there are three noticeable regions: the
first one between a0 = 2000 and a0 ≈ 2100 km, the second one
from a0 ≈ 2100 to a0 ≈ 2350 km, and the third one from a0 ≈ 2350
to a0 ≈ 2500 km. These regions are comprised of orbits that keep
low values of maximum eccentricity during the maximum time of
integration (1 yr). The remaining part of the figure include orbits
that escape from the system, whose maximum eccentricity achieves
values near one, and orbits that collided with Haumea, Namaka,
or Hi’iaka (white region) after some revolutions. The white region
also represents orbits that have an initial periapsis radius inside
Haumea. There is no distinction between the bodies with which the
particle collides. In Fig. 1(b), there are regions that stand out, but in
the case of this figure, these regions are more distinct. Comparing
Fig. 1(a) with Fig. 1(b), one can see that the regions with orbits
that retain low values of maximum eccentricity are concentrated in
areas with low values of initial eccentricity in Fig. 1(a), whereas the
correspondent region in Fig. 1(b) is concentrated in higher values
of initial eccentricity.

Similar to Fig. 1, Fig. 2 shows the survival time of each particle
as a function of a0 and e0. Fig. 2 confirms the findings in Fig. 1,
where particles with larger values of maximum eccentricity are short
lived. However, the information coming from these two figures is
limited. There is no information about the mechanism behind the
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Perturbation Maps of Haumea’s ring 2089

Figure 1. Maximum eccentricity achieved by particles around Haumea as
a function of the initial semimajor axis and eccentricity. Initial inclination
I = 0.001◦. � 0 = 0◦ (a) and � 0 = 90◦ (b). Maximum time of integration
equal to 1 yr. The white region stands for orbits that collided with a body in
the system after some revolutions and orbits that have initial periapsis radius
inside Haumea.

growth in eccentricity, and there is no way to make long term
predictions by analysing the behaviour of the particles in 1 yr with
these grids. For this reason, it is necessary that the analysis of
the PMaps is evaluated along with the integrations that generated
Figs 1 and 2.

3.2 PMaps

In a PMap there are high values of PI where critical events occur.
These critical events can be collisions or escapes. The difference
between the high and low values of PI in the same map can generate
problems in the visualization of fine structures in the map. To avoid
problems in visualisation, we constrained the scale of the maps
to allow the visualisation of these fine structures. Consequently,
regions in the maps that present values in the extremes of the colour
bar scale may have higher values of PI. The same logic is applied to
negative minimum values of PI, especially in the case of the PMap
of type II.

This section is separated into three parts. In the first part, the
PMap built with the PI method of type II is presented considering all
perturbations combined. Next we present the individual contribution
of each coefficient of the spherical harmonics in the gravitational
potential of Haumea. Lastly, the PMap of type IV is presented.
It is important to highlight that all these maps were calculated
along with the main integration, presented in the previous section,

Figure 2. Lifetime of the particles around Haumea as a function of the
initial semimajor axis and eccentricity. Initial inclination I = 0.001◦. � 0 =
0◦ (a) and � 0 = 90◦ (b). Maximum time of integration equal to 1 yr. The
white region stands for orbits that escaped or collided with Haumea, and
orbits that have initial periapsis radius inside Haumea.

and all perturbations are included for all maps. Different maps
only illustrate different aspects of the same dynamics. PMaps are a
relatively new concept and, in particular, the analysis of the PMaps
of type II and IV is novel. Thus, to explain the structures that appear
in these maps, we formulate an hypothesis and we verify based on
the characteristics of the real ring as given by Ortiz et al. (2017)
and by the comparison of our findings with results in the literature,
specifically with Sicardy et al. (2018) and Winter, Borderes-Motta &
Ribeiro (2019).

3.2.1 PMap of type II – Combined effect of all perturbations

In Fig. 3, which presents the first PMap of type II for θ res = 0◦ (a)
and θ res = 270◦ (b), various regions are apparent. These are regions
with alternating values of PIii, regions with a great concentration of
positive values of PIii, and those with structures like diagonal lines.
Regions with alternating values of PIii i.e., near orbits with distinct
behaviours are an indication of chaos. These regions can be seen for
orbits with high eccentricity near a0 = 2500 km in Fig. 3(a) and for
orbits at the extremes along a diagonal line starting a0 = 2400 km in
Fig. 3(b). Regions with positive high values of PIii are separated into
two classes. The first class is comprised of orbits that do not survive
for the entire time of integration and the second class is comprised
of orbits that survived for the total time of integration (see Fig. 2 for
details on survival regions). In both cases, the positive high value
indicates an increase in some orbital element. In the case of the first
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Figure 3. Perturbation map of type II coming from Fig. 1. This map
demonstrates the balance in the energy of particles around Haumea, as a
function of the initial semimajor axis and eccentricity.

class, there were increases in eccentricity and semimajor axis, since
those orbits escape from the system. In the case of the second class,
the semimajor axis and the eccentricity do not increase. Meanwhile,
in Section 3.4, we show that these high values of PIii are related to
sudden changes in the angular orbital elements.

The diagonal lines present two sides, one with positive values
and the other one with negative values. This behaviour is similar to
the separatrices for resonances in phase spaces, as apparent in the
phase space of a pendulum, since separatrices indicate change in
the regime of a motion. In the case of a pendulum, it indicates the
change from circulation to libration, but in the case of the PMap
of type II, a separatrix indicates a change from the tendency to
increase the value of an orbital element (high positive values) to a
likely decrease in the value (high negative values), or vice versa. The
presence of separatrices in the PMap of type II only indicates the
presence of resonances. Since the gravitational model used in the
simulations incorporates the expansion in spherical harmonics up to
order and degree four, some of the resonant terms may be present in
more than one term of the potential. This leads to the superposition
of resonances showed in Fig. 3, indicated by the presence of more
than two separatrices in the same region. The observational data
given by Ortiz et al. (2017) indicates that the particles of the ring
are in the 3:1 resonance. The region between a0 ≈ 2050 and a0 ≈
2250 km is actually a prominent separatrix, and the orbits on that
region should not survive in long term integrations.

In the next section, the individual contribution of each harmonic
is shown in PMaps of type II.

3.2.2 PMap of type II – individual contribution of the harmonics

The effect of the coefficients of each harmonic of the gravitational
potential of Haumea, Cnm, where n is the order and m is the
degree of the coefficient, can be seen by using separate PMaps
for the harmonics with coefficients C20, C22, C40, C42, and C44

(Section 2.1). To measure the importance of each harmonic, we
need to analyse the number and size of structures that appear in
the individual map, for a given interval of PIii. Comparing Fig. 4(a)
with Fig. 4(b), for θ res = 0◦, one can notice that the influence of the
harmonic with coefficient C20 is one order of magnitude smaller that
the influence of the harmonic with coefficient C22. In fact, the shape
of Fig. 4(b) is very similar to the shape of Fig. 3(a), indicating that
the C22 is the dominant harmonic in the dynamics of the particles
in the ring. It is also noticeable that the order of magnitude of the
C40 (Fig. 4c) and C42 (Fig. 4d) are also smaller if compared with the
harmonic C22. However, the harmonic with coefficient C44 (Fig. 4e)
is only one order of magnitude smaller than the C22 and it has
a prominent separatrix near a0 ≈ 2300 km. This means that the
mentioned separatrix, which appears as a thin line in Fig. 3(a), is
due to a resonant term present in the harmonic with coefficient C44.
Then, the order of importance of the harmonics in the dynamics of
the particles, from the more important to the less important is: C22,
C44, C20, C42, and C40.

When compared with the sectorial (Cn, m, with n = m) and tesseral
(Cn, m, with n �= m) harmonics of the gravitational potential of
Haumea, it is expected that the zonal harmonics (Cn, 0) have a
smaller effect. This is due to the fact that all orbits are almost
planar with respect to the equator of Haumea. Comparing Figs 4(a,
b, c, d, and e), one can notice that the orbits that escape from the
system, identified by Fig. 1(a), have positive values in the PMap of
sectorial and tesseral terms, and negative values in the PMaps of the
zonal terms. Escapes from the system occur when the particles have
a close approach with Haumea. Since Haumea is a prolate body
and the orbits of the particles are almost planar, these escapes occur
when a particle gets too close to the prolate part of Haumea.

All the discussion about the role of the coefficients in the
dynamics of the particles in the ring made for the case with θ res = 0◦

can also be applied for the cases with θ res = 270◦, shown in Fig. 5.
As for the case θ res = 270◦, the separatrix of the resonance present
in the term of the harmonic with coefficient C44 is prominent, and
appears near a0 ≈ 2350 km. This confirms the importance of the
C44 term also for θ res = 270◦. The order of importance of harmonics
is also the same.

3.2.3 PMap of type IV

PMap of type IV shows how much the orbit of a particle deviates
from a reference orbit. We use, for each initial condition, a Keplerian
orbit as the reference orbit. Therefore, the PMap of type IV indicates
if the particles have stable or unstable tendencies. If the orbits of
the particles deviate too much from the reference orbit, i.e., the
particles have high values of PIiv, one can conclude that these orbits
are unstable, having a low chance to stay around Haumea. On the
other hand, orbits with low or almost zero values of PIiv could be
stable. Additionally, as seen in Sanchez & Prado (2019), periodic
orbits would appear with near zero values in both PMaps of type II
and IV. However, there is an exception to these rules: resonances.
When in resonance, the orbit will never have near zero values of PIiv.
Instead, the map will present a ‘wavy’ shape, due to the resonant
effect, with non-zero values of PIiv. Due to this fact, no periodic orbit
was identified in the system, as suggested by Winter et al. (2019).
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Figure 4. Perturbation maps of type II coming from Fig. 1. Each map presents the individual contribution of one harmonic for θ res = 0◦.

The regions with the maximum values of PIiv as shown by the map
follow the lines of the separatrices presented in Fig. 3. This pattern
is expected because the line that separates two distinct behaviours
should deviate more from the reference orbit. The consequence of
this deviation is a spike in the eccentricity of the ring on these lines,
affecting the ring structure. This observation will be discussed in the
next section. Furthermore, the red lines in a ‘v’ shape in Fig. 6(b),
with vertex near a0 ≈ 2150 km and e0 ≈ 0.04, indicates that this
region is possibly not stable.

3.3 Considerations about the ring structure

The presence of regions inside the ring that lead to increases in the
orbital semimajor axis, as well as increases in the eccentricity of
these particles, suggest that the ring has substructures. As mentioned
before, this paper does not consider the interaction between the

particles. However, regardless of the interaction between particles,
any increase in semimajor axis and/or eccentricity in regions of the
ring could lead to gaps. Thus, based on our findings, we can think of
two scenarios that are worth attention. One is that Haumea may have
a system of rings, instead of a single one. Another possibility is that
the separatrices could limit the ring, since any particle that crosses
these lines has an increase of eccentricity. Therefore, the findings
in this paper provide interesting scenarios for the formulation of
theories about the formation of the ring, as well as its final state (we
leave this for future investigation).

It is also worth mentioning a work in which particle interactions
were considered (Sicardy et al. 2018). In such work, Sicardy et al.
(2018) have shown the strong coupling between Haumea and a
surrounding collisional disc, putting tight constraints on the final
location of the ring. Sicardy et al. (2018) have shown that the 2:1
resonance between the mean motion of the particles and the rotation
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Figure 5. Perturbation maps of type II coming from Fig. 1. Each map presents the individual contribution of one harmonics for θ res = 270◦.

of Haumea leads the particles to fall to the surface of Haumea.
Although using completely different methods, our results confirm
the absence of particles within the region where the resonance 2:1
is supposed to be, at a0 = 1758.4808 km.

The whole study of the PMap considers integrations over a
maximum period of 1 yr. One of the advantages of the PMaps
is that they can provide information in short periods of integration.
However, to confirm the results apparent up to now, we perform
additional simulations where we set the total integration time to
1000 yr. Hi’iaka and Namaka are also present in the simulations.
The 1000 yr integration time was chosen due to the fact that the
longitude of the ascending node of Hi’iaka (the slowest evolving
variable) has a period of about 800 yr. Therefore, we can assure
that all possible geometrical configurations of the system will be
covered by this integration time. We consider simulations with
initial eccentricity e = 0.005 and initial inclination I = 0.001◦,

varying the initial semimajor axis with the same range of the grids
of initial conditions previously presented.

Fig. 7 shows the maximum orbital radius (top panel) achieved
by the orbits of particles around Haumea from the integration
performed, as a function of the semimajor axis, for θ res = 0◦.
Detailed view of the lower values of the maximum orbital radius
(centre panel of Fig. 7) and the minimum orbital radius (bottom
panel of Fig. 7) achieved are also plotted. In this figure, we can
see that there are two clear unstable regions that match with the
findings in Fig. 6(a). These two regions could limit the size of
the ring, since the ring was observed between these two regions.
As for the particles within the remaining regions, although stable,
some of them present significant variations in their orbital radius as
well. The regions with increases in the orbital radius are exactly the
same points where Fig. 6(a) showed high values of PIiv. This means
that the PMap successfully predicted long-term behaviour of the
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Figure 6. Perturbation map of type IV coming from Fig. 1. This map shows
how much the orbit of a particle deviates from a Keplerian reference orbit
around Haumea, as a function of the initial semimajor axis and eccentricity.

particles. Also, if the particles could interact among themselves, and
collisionaly evolve, those spikes in the orbital radius could represent
the source for a gap opening inside the ring. If considering θ res =
270◦ (Fig. 8), the stable region is smaller than the stable region
in Fig. 7, but compatible with Fig. 6(b). Therefore, the long-term
integrations confirm the information from the PMaps.

By the analysis of the escape mechanism of each orbit in our
simulations, we noticed that some of the particles leave the ring
region, crossing the orbit of Namaka, passing by the chaotic region
between Haumea and Namaka (Sanchez & Prado 2017). In this
escape mechanism, the orbital eccentricity of the particle grows
due to its interaction with Haumea during close encounters. This
can be observed by checking the values of the minimum orbital
radius of the particles, in the case of escapes, in Figs 7 and 8.
Therefore, when crossing the chaotic region between Haumea and
Namaka, particles can reach any place in the system before escaping.
Particles may also cross the orbit of Namaka. In this case, they may
become temporary eccentric co-orbitals (Sanchez & Prado 2017).
Since these co-orbital orbits are not stable, the particles can return
to the ring region and eventually colliding with Haumea (Fig. 9).
Fig. 9 shows the trajectory (a) of a particle (red) that collides with
Haumea and its projections on the planes xy (b), xz (c), and yz (d),
after crossing the orbit of Namaka (green). This trajectory has initial
semimajor axis equal to 2296.3955 km, initial eccentricity equal to
0.11 and initial θ res = 0◦. This semimajor axis is the theoretical
semimajor axis for the 3:1 resonance (and consequently for the 6:2
resonance), which means that a particle with this semimajor axis
will have a period three times larger than the rotational period of

Figure 7. Maximum radius achieved by the orbits of particles around
Haumea for a maximum time of integration of 1000 yr (top) as a function
of the semimajor axis. Detailed view of the lower values of the maximum
radius (centre). Minimum radius achieved (bottom). These figures have
initial eccentricity e = 0.005, initial inclination I = 0.001◦, for θ res = 0◦.

Haumea. It is clear in Fig. 9 that, after a close passage by Haumea,
the particles can reach large values of orbital eccentricity, with
apoapsis radius close to the value of the semimajor axis of Namaka.
This mechanism also creates the possibility of a collision of the
particle with Namaka, although small, due to the size of that moon.
The possibility that the particle stays, temporarily, as a co-orbital
of Namaka is interesting, because this opens the possibility of the
transit of particles between Haumea and the orbit of Namaka. This
transit may be a continuous process, and indicates that the vicinity
of Namaka may not be empty.

3.4 Considerations about the resonances in the ring

If we consider the information coming from Figs 7 and 8 alone, there
is a false impression that the particles of the ring have a preferential
non-3:1-resonant configuration, since the ring with initial θ res = 0◦

is larger than the ring with initial θ res = 270◦, which is the centre
for the 3:1 resonance. However, as we can see in Fig. 3(a), a large
part of the figure is dominated by positive values of PIii, which
indicates changes in the angular orbital elements of the particles,
as mentioned before. This phenomenon will be discussed in this
section.

To make conclusive assumptions about the resonance of the ring,
we decided to see what happens with the resonant angle in the first
days of the integration. Fig. 10 shows the time evolution of the
resonant angle for several initial values of eccentricity, considering
the theoretical value for the 3:1 spin-orbit resonance semimajor axis,
ares = 2296.3955 km, as the initial semimajor axis. In Fig. 10(a) it
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Figure 8. Maximum radius achieved by the orbits of particles around
Haumea for a maximum time of integration of 1000 yr (top) as a function
of the semimajor axis. Detailed view of the lower values of the maximum
radius (centre). Minimum radius achieved (bottom). These figures have
initial eccentricity e = 0.005, initial inclination I = 0.001◦, for θ res = 270◦.

is possible to assume that the resonant angle is in libration around
0◦, with a large amplitude, for high values of eccentricity. The
amplitude increases with the decrease in eccentricity, until the
angle starts to circulate for e0 < 0.08. However, if we consider
that Haumea is a fast rotating ellipsoid, with a rotation period of
3.1955 h, one can consider that part of the resonant mechanisms may
be present for periods of time within the same order of magnitude,
or even smaller than the rotational period of Haumea. In this way,
it is possible to observe, in Fig. 10(a), that there are libration-like
structures around ±90◦ that occur for very short times, during the
circulations. For example, in the first circulation for e0 = 0.04, the
resonant angle ‘stays’ for 0.08 d (half of Haumea’s period) around
90◦ and then returns to the circulation; stops again around 270◦,
also for 0.08 d, then resume circulation. These short time librations
that we called pseudo-librations, are indicative of the presence of
the 3:1 resonance, although there is no capture in neither of the
resonant angles. Furthermore, the libration period around 0◦ for the
higher values of eccentricity is commensurable with the period of
Haumea, in the ratio of 3:1 between the rotation of Haumea and the
libration period. This is another indication of the presence of the
3:1 resonance.

If the time of integration for Fig. 10(a) is extended for 1000 yr,
all the orbits that survive for the new time of integration are the ones
with pseudo-librations, that occur for e0 < 0.08, as it can be seen
in Figs 11(a–c). For higher values of eccentricity, whose resonant
angle is present for libration around 0◦, the orbits do not survive for
1000 yr and are classified as unstable. This can be seen in Fig. 11(d).
In this figure, after a few days with libration around 0◦, the resonant

angle starts to circulate (without the pseudo-librations) and then
the particle escapes from the system. In fact, this is the resonant
angle for the orbit presented in Fig. 9. The transition between the
libration to the circulation regime happens at approximately 0.005
yr (∼1.8 d), when a close passage by Haumea occurs. After this
passage, there is an increase in semimajor axis value and the particle
leaves the 3:1 resonance and, consequently, the resonant angle starts
to circulate. The libration around 0◦ enables the particle to pass
close to Haumea in the direction of the ‘tips’ of Haumea (ω =
0◦, ω = 180◦). In this way, close encounters in this configuration
generate large increases in the semimajor axis. This observation
could indicate that this configuration is unstable. Furthermore, these
increases in the semimajor axis allow the particle to reach Namaka’s
orbit, making possible the transit of particles between Haumea and
Namaka.

As mentioned before, in Fig. 3(a) there is a great number of high
positive values of PIii, but without escapes. These orbits present
positive values of PIii due to the presence of the pseudo-librations
inside the circulation regime. The variation of the resonant angle is
not constant: the pseudo-librations are, actually, sudden decreases
in the variation ratio of the resonant angle. Recall that Haumea as
an ellipsoid and that its rotation period is three times the period
of the particles in the ring, these decreases in the variation ratio of
the resonant angle occur when particles are passing by the sides
of Haumea, at ω = 90◦ and ω = 270◦. This is the direct effect of
the C22 term of the gravitational potential of Haumea, which gives
to Haumea the prolate shape. Although this is the dominant term,
as it demonstrated in the harmonics analysis, the harmonic with
coefficient C44 is also important and could prevent the resonance to
lock in θ res = ±90◦.

In the case of initial resonant angle θ res = 270◦, in Fig. 10(b)
and in the set of plots in Fig. 12, there is no commensurability
between the period of the resonant angle and the rotation of Haumea.
Consequently, for the semimajor axis analysed, the resonant angle
is circulating for all values of initial eccentricity. Furthermore, the
variation ratio of the resonant angle is not constant and the pseudo-
librations are also present. For Fig. 10(b) there was a preferential
value of eccentricity where the pseudo-librations lasted for longer
(e = 0.04). In the case of θ res = 270◦, the preferential value of
eccentricity is 0.08, double of the correspondent value for initial
θ res = 0◦. This observation may explain why there are more stable
orbits for high eccentricities for θ res = 270◦, if comparing Figs 3(a)
and (b).

For the initial resonant angle θ res = 270◦, escapes occur for values
of eccentricity for which the resonant angle is in the circulation
regime (Fig. 12d), but without libration in 0◦.

Regarding the eccentricity of the ring, even beginning with
near zero eccentricity, all particles achieve considerable values of
eccentricity after some time of integration. This can be observed in
both Figs 7 and 8, by comparing the values of the minimum and
maximum orbital radius. However, this result does not mean that
the real ring has high values of eccentricity. Part of the eccentricity
presented by the particles can be induced by the use of osculating
elements instead of geometrical elements (Renner & Sicardy 2006)
for the conversion from Cartesian coordinates to orbital elements,
and vice versa. Since we are using the expansion in the spherical
harmonics of the gravitational potential of Haumea up to order and
degree four, it is not possible to use geometrical elements, because
these elements only correct the coefficient J2. Currently, there are no
geometrical elements for expansions of orders greater than two and
this is an open problem. However, if the spikes in eccentricity occur
above the systematic error in eccentricity caused by the orbital
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Figure 9. Trajectory of a particle, in red, (a) and its projections on the planes xy (b), xz (c), and yz (d). Initial semimajor axis equal to 2296.3955 km, initial
eccentricity equal to 0.11 for initial θ res = 0◦. The orbit of Namaka if shown in green.

elements conversion, then they are indeed effects caused by the
resonances apparent in the PMaps, and the consequences of the
existence of these spikes are real.

The semimajor axis used in this section was calculated using
the two-body approximation, for the same reasons explained in the
previous paragraph. However, we made a search in the vicinity
of this semimajor axis to find the exact semimajor axis to which
the resonance is locked in θ res = ±90◦. However, we did not
determine such value of semimajor axis. The reason is the presence
of the harmonics above C22, mainly the harmonic C44, as mentioned
before.

4 C O N C L U S I O N S

The ring of Haumea was numerically investigated using PMaps
of type II and IV. These maps provide information, using a short
period of integration, that is not available from the usual grid of

initial conditions, such as maps of the lifetime of the particles and
the maximum eccentricity achieved. PMaps of type II showed that
there are superposition of resonances coming from different terms
of the gravitational potential of Haumea, expanded in spherical
harmonics up to order and degree four. In this case, the dominant
term is the one that contains the coefficient C22, followed by the term
with coefficient C44. The analysis was completed for two values of
the initial resonant angle for the 3:1 resonance, θ res = 0◦ and θ res =
270◦.

The PMap of type II showed some structures in the region
where the real ring was observed that resemble structures from
dynamical systems, such as separatrices. Combining the results
from the PMap of type II and the PMap of type IV, one can conclude
that these separatrices induce gaps inside the region where the
ring is constrained. Integrations for a period of 1000 yr confirmed
the findings given by the PMaps, showing that the places with
high values of PIiv in the PMaps indicate regions with spikes in
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Figure 10. Time evolution of the resonant angle for the first day of
integration, for several values of initial eccentricity, for θ res = 0◦ (a) and
θ res = 270◦ (b). Initial semimajor axis equal to 2296.3955 km.

eccentricity. This analysis leads to the conclusion that the PMaps
can be used to assess the stability of particles in a ring, using short
times of integrations. Our results agree with observational data and
previous work. It gives a new physical explanation for the rings that
can be also applied to other systems.

Additionally, an analysis of the resonances present within the
ring was also completed. In this case, it was shown that the 3:1
resonance is present in the dynamics of the particle. For the stable
configurations of the ring, the resonant angle is circulating, but
with no constant variation ratio. For θ res = 270◦, there is sudden
decrease in the variation ratio, resembling a very short period
libration regime, which we call pseudo-librations. This is a strong
indication that the 3:1 resonance is present, but not locked due to
the presence of additional harmonics in the gravitational potential,
mainly the harmonic with coefficient C44. For θ res = 0◦, the escapes
of the particles from the ring aways occur after libration of large
amplitude in θ res = 0◦, with a period of three times the rotational
period of Haumea. This libration allows the particle to make very
close passages by Haumea, at ω = 0◦ and ω = 180◦, without a
collision. These close passages induce increases in semimajor axis
and eccentricity and, as a consequence, the particles to cross the
unstable region between Haumea and Namaka. After this passage
by the unstable region, the particle can escape from the system,
colliding with one of the moons, or becoming temporarily captured
as a co-orbital of Namaka. This scenario opens the possibility of
transit of particles between Haumea and the vicinity of the orbit
of Namaka. If a continuous process, this transit of particles would
point towards a populated vicinity around Namaka. For θ res = 270◦,
the escapes occur for high values of eccentricity, typically twice the
eccentricity value of the θ res = 0◦ configuration.

Figure 11. Time variation of the resonant angle for four values of eccen-
tricity. Initial resonant angle equal to 0◦. Initial semimajor axis equal to
2296.3955 km.
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Figure 12. Time variation of the resonant angle for four values of eccen-
tricity. Initial resonant angle equal to 270◦. Initial semimajor axis equal to
2296.3955 km.
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