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ABSTRACT 

 

This study aims at mapping Land Use and Land Cover 

(LULC) in the region of Roraima, Brazil, using time-series of 

Sentinel-1 Synthetic Aperture Radar (SAR) data. All 

available Sentinel-1 images covering the study area were 

used and classified using two machine learning algorithms, 

namely random forest and multilayer perceptron. LULC 

heterogeneity with the SAR process complexity makes the 

process challenging in distinguishing certain classes. Results 

show that SAR data could be used for LULC mapping, as 

rainforest, savannas, water, and sandbank/outcrop classes. 

But cannot provide accurate separation for all classes, mainly 

for those with similar geometrical structures, such as 

regeneration areas, perennial crops, and buritizais.  

 

Index Terms—Roraima, machine learning, radar, 

Sentinel-1. 

 

1. INTRODUCTION 

 

Remote Sensing is a powerful tool for Land Use and Land 

Cover (LULC) monitoring and mapping [1]. But, it is a 

challenging task in the northern regions of Brazil, mainly 

because of the complex that involved the landscape [2] and 

frequent cloud cover [3]. 

These cloud limitations could be minimized by utilizing the 

microwave sensors data, such as the Synthetic Aperture 

Radar (SAR). SAR data collection can be performed under 

all-weather conditions, independently of lighting conditions, 

and are not affected by atmospheric and cloud conditions [4].  

For this reason, it is possible to obtain a dense temporal 

series of SAR data, even in areas with large cloud cover, such 

as tropical regions. Thus, there is a significant potential for 

the SAR data to be utilized in mapping and monitoring LULC 

[5]. 

Radar backscatter is affected by factors related to crop 

biomass, structure, and ground conditions [1], and depends 

on the interaction among vegetation canopies and microwave 

energy. Those properties are influenced by the radar system 

itself such as polarization and frequency and/or by canopy 

conditions, such as dielectric constant, size, orientation, 

incidence angle, wetness, etc. [4], [5].  

Different polarizations are more sensitive to certain 

canopies' characteristics. Cross-polarization is more sensitive 

to volume scattering, meanwhile, co-polarization is more 

directly related to direct backscattering [1].  Moreover, specific 

canopy properties cause different impacts on the SAR 

scattering intensity, scattering-type, and phase 

characteristics. These properties are specific for each 

vegetation type and vary with the phenology changes [5]. 

For the LULC classification process with SAR data, 

Random Forest (RF), Maximum likelihood (ML), and Neural 

Network (NN) are the more utilized [6]. RF is a robust 

classifier and can handle a high number of variables [7]. 

Moreover, RF is widely used in LULC approaches, mainly 

with SAR data [2]. Multilayer Perceptron (MLP) is a feed-

forward artificial NN trained by the backpropagation method, 

designed to map a set of input vectors to a set of output 

vectors [3], [6]. 

In this context, this study has the objective to classify the 

LULC in a small area in Roraima for the 2019 year. For that, 

we used Sentinel-1 SAR images and tested different 

parameters of the RF and the MLP. 

 

2. STUDY AREA & DATA DESCRIPTION 

 

Roraima Brazilian state is located in the northern part of 

Brazil. It has an area of 224,300 km², with 15 municipalities 

and a population of 606,000 people. Roraima has three major 

natural formations: rainforest, campina-campinarana, and 

savannas (called the “lavrados”). 

Altitude in Roraima ranges between 30 meters in the 

Amazon River to 2000 meters in the Roraima mountain [8]. 

This altitude range act as a natural barrier, blocking the 

moisture bought by the trade winds along the Intertropical 

Convergence Zone (ITCZ). These factors allowed a 
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precipitation gradient and a frequent cloud frequency in the 

state, which greatly limits the use of satellite optical images.  

Roraima rainy season is from May to August months, with 

2000 mm accumulated rainfall. In the lavrados, the small 

lakes fill and connect in this period. The mean annual 

temperature is 28◦C [2]. 

Combining the climatic, altitude, and water availability 

factors, as well as affordable land prices and government 

subsidies, has encouraged agricultural exploitation 

(agriculture and livestock) in the state [9]. Moreover, the crop 

calendar, with harvest during the off-season for the other 

Brazilian states (April-September), favors better prices and 

facilitates production chain logistics. 

Besides, agriculture in Roraima is in the process of 

expansion, mainly over the lavrados. The scenario is more 

intensify after 2010, due to the soybean crop expansion, 

causing environment threatening. This activity needs to be 

monitored and regulated; otherwise, it can affect the 

availability of natural resources (e.g. water, soil) [9]. 

Considering these factors and the big Roraima extensions, 

this study was used in a small area that represents a portion 

of all heterogenic LULC inside the state. The square is 

located between the coordinates 61.06° W, 2.38° N; 60.69° 

W, 2.92° N, with 2390.92 km². The location was chosen due 

to large agricultural expansion in this area.  

Due to the frequent cloud cover, mainly during the crop 

seasons, it is almost impossible to obtain clear sky 

observations with optical data in this region [2]. Therefore, 

Sentinel-1 A and B SAR images data were utilized [10]. 

Sentinel-1 SAR has dense time-series data, can be used to 

improve and/or develop new methods for mapping and 

monitoring LULC [11]. It was utilized both polarizations, VH 

and VV, IW (Interferometric Wide swath) mode, GRD 

(Ground Range Detected) and 12 days for each satellite 

temporal resolution, 4 and 8 for both satellites.  

We used field data for the classification process. These 

data were obtained in fieldwork (August-September – 2019), 

during the crop season.  

 

3. METHODOLOGY 

 

The process steps are showing in Fig 1. We preprocessed the 

SAR data and then we made the classification process. 

Field data was collected roadside using the Locus Map 

Pro applications. After, with QGIS software and Sentinel 2 

optical images true color (10 meters spatial resolutions), we 

drew the polygons (630 in total), avoiding mix pixels in the 

edges.  

We used 13 LULC classes (rainforest, savanna, 

campinarana, water, regeneration areas, sandbank or outcrop, 

buritizais, annual crops, perennial crops, pasture, forestry, 

conversion, anthropic areas). The polygons were randomly 

separated in 75% for training and 25% for the validation 

process.  

Sentinel-1 images were obtained through the Copernicus 

Open Access Hub (also known as the Sentinels Scientific 

Data Hub) (https://scihub.copernicus.eu/), with an open-

source toolbox in a python routine, named SentinelSat 

(https://github.com/sentinelsat/sentinelsat) [12]. It was 

downloaded all 2019 Sentinel-1 images. The pre-processed 

were performed using the Sentinel Application Platform-

SNAP applications and python routines. In the total, was used 

59 images (118 bands), being 30 from Sentinel-1A and 29 

from Sentinel-1B. 

 

 
Fig. 1. Steps to process and evaluate the Land Use and Land Cover 

(LULC) classification with SAR images and Random Forest (RF) 

and Multilayer Perceptron (MLP) classifiers. 

 

In the SAR data preprocessing, after several tests and 

bibliographic consults [13], we used the following procedure: 

apply orbit file; thermal noise removal without re-

introduction; calibration: gamma enough; multilook with 

ground square pixel and number of ranges look equal to one, 

intensity output; speckle filter: refined lee; terrain correction: 

bilinear resample method, projection WGS84 22N UTM, 10 

meters of spatial resolution and without mask out areas with 

elevations; and results were converted to decibels (dB). After 

the preprocessing, it was built virtual raster, utilizing the 

GDAL. This procedure is important to save disk space. 

We performed the average, median, mean, standard 

deviation, variance, range and percentiles (25%, 50%, and 

75%) metrics for each satellite and each polarization data set, 

total 36 metrics bands. For this step, we used the panda library 

in python routine. 

For the LULC classification process, we utilized two 

machine learning classifiers, RF, and MLP. We performed in 

a python routine with the scikit-learn library [14]. In the RF, 

we tested different tree numbers, and in the MLP different 

layers size, alpha, and learning rate values.  In total, were 

building 12 scenarios for each classifier. These scenarios 

were applied for the backscattering and the metrics Sentinel-

1 SAR images. Accuracies were evaluated using a confusion 

matrix, performed the overall accuracy (OA), user’s accuracy 

(UA), and producer’s accuracy (PA) [15].  
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4. RESULTS 

 

Fig. 2 shows the Overall Accuracy (OA) and training time 

results for each image data set and each classifier.  

In general, MLP applied on backscattering images 

classification had better performance overall (scenario 10, 

layers:50, alpha: 10e-2, learning rate: 0.005, OA: 80.37%, Fig 

3). RF shows better results for the metrics images, using 300 

trees (scenario 12, OA: 75.05%). 

 

 
Fig. 2. Overall Accuracies (OA) and training time (in seconds) for 

each scenario on backscattering and metrics images. 

 

Fig. 3 shows the better classification map achieved 

(Fig.2), with MLP classifier on the backscattering images. 

The accuracy was assessed for this better map, using the 

Users (UA) and Producers (PA) accuracies (Fig. 4). Fig. 5 

shows Sentinel 1A and 1B backscattering temporal profile to 

help understand the results with the class seasonality.  

Even the best accuracy does not provide higher accuracies 

(UA, PA) for all LULC classes. Some classes were better 

classified, like rainforest and savannas. However, for other 

classes, the classification is less possible or almost impossible 

only with SAR data use. 

Water and sandbank/outcrop classes had similar 

accuracies with some confusion between them. The 

sandbanks are seasonal, occurring inside the river and 

depends on the rain season, which difficult the separation.   

Annual crops and pasture classes showed confusion 

between them. Annual crops have PA: 46%, due to most of 

his reference data, were mapped as pasture. In this way, 

pasture class has a large commission error, UA: 39%, due to 

the confusion with annual crops. These two classes have 

similar temporal backscattering profiles between themselves 

and with savannas (Fig. 5), that difficulty the accurate 

separation. 

 
Fig. 3. Best classification scenario map with backscattering images 

and MLP algorithm. 

 

 
Fig. 4. Confusion matrix and User (UA) and Producer Accuracies 

(PA) for the best classification scenario with backscattering images 

and MLP algorithm. A: rainforest; B: savannas; C: campinarana; D: 

water; E: regeneration and others natural; F: sandbank and outcrop; 

G: buritizais; H: annual crops; I: perennial crops; J: pasture; K: 

forestry; L: conversion areas; M: anthropic areas 

 

Regeneration areas, perennial crops, and burizitais classes 

have a similar geometric structure with rainforest and 

forestry. For this reason, these LULC classes have similar 

backscattering temporal profiles (Fig. 5). Consequently, SAR 

data do not provide accurate separation among them, 

occurring misclassification, mainly for the small classes (Fig. 

3 and 4). 

Nevertheless, with SAR data was possible to identify 

some land uses, as annual crops and pasture, and some land 

covers, like water, savannas, and rainforest. In this way, it is 
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possible to identify humans’ impacts in environments, like 

the agriculture expansion over the small lakes in the lavrados. 

 

 
 

 
Fig. 5. Sentinel – 1A and 1B temporal backscattering profiles for 

VV and VH polarization in 2019. A: rainforest; B: savannas; C: 

campinarana; D: water; E: regeneration and others natural; F: 

sandbank and outcrop; G: buritizais; H: annual crops; I: perennial 

crops; J: pasture; K: forestry; L: conversion areas; M: anthropic 

areas. 

 

5. CONCLUSIONS 

 

This study showed the potential of SAR satellite data to 

provide the LULC mapping in a tropical region with high 

cloud cover. With the Sentinel-1 SAR data, it was possible to 

discriminate the more heterogeneous LULC classes, such as 

rainforest, savannas, sandbank/outcrop, and water. However, 

only the SAR data could be not enough to discriminate 

similar classes, such as buritizais, perennial crops, 

regenerations areas. Future work will include efficient use of 

optical data for the classification process and it will quantify 

the multi-year LULC changes. 
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