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ABSTRACT

Pasture and croplands comprise two different types of land
use, which are very common in Brazil. Mapping these areas
using remote sensing techniques is a challenge when using a
single date image due to their similarity in spectral response.
Time series might aid in discrimination of these areas once
it explores the temporal behavior of surface patterns. In this
work we explore time series obtained from remote sensing
images to separate pasturelands from croplands in Brazilian
Cerrado biome, using metrics derived from a data cube. We
used Landsat 8 imagery as data source to compose a time se-
ries of six bands from OLI sensor (2 to 7) for the year of 2018.
Random Forest algorithm was elected to execute the classifi-
cation obtaining global accuracy of 80% and 0.58 of Kappa.

Index Terms— Time Series, Data cube, Satellite imagery,
Image metrics, Random Forest algorithm

1. INTRODUCTION

Pasture and croplands play an important role in the economic
and political Brazil’s scenarios. While pasturelands are con-
sidered in the country as land reserve, croplands figure in the
frontline of the Amazon arc of deforestation [1]. Pasturelands
are in the center of discussion concerning the intensification
of the livestock production [2]. Surveys showed that in the
latter years, pasturelands in Brazil faced a reduction due to
this intensification process [1]. From 1985 to 2002, the coun-
try underwent a great increasing in pastureland extension, and
from 2002 to 2017, this increasing was diminished by the
growing of this intensification process, which went through in
country territory. This transformation in the territory dynam-
ics may have been driven by the increasing of this intensifica-
tion process with the adoption of practices such as integrated
crop-livestock systems [1, 2].

Deforestation actions are associated with the increasing
of croplands [3]. Generally, deforestation areas are first con-
verted into croplands [4]. This is what is seen in the north and
mid-west regions of the country [1]. Soybeans, maize and rice
lead the plantation chain, which conduct the land conversion
in the states located in these regions [2]. Therefore, mapping
land use and land change is mandatory for government strat-
egy and administration.

Although remote sensing provides a bunch of tools that
allow achieving the goals just mentioned, simple applying
the tools do not guarantee success in the analyses, mainly
using traditional techniques. It means that new approaches
are required to deal with new challenging demands. A tech-
nique largely used in remote sensing is the image classifi-
cation, which extracts from the satellite imagery the classes
that compose land use and land cover. It is commonly ap-
plied in a single date satellite imagery. To obtain good re-
sults, targets to be classified must be spectrally distinct. Prob-
lems ascend, though, when dealing with targets on surface
that presents similarity in the spectral response, although they
hold different usages. Since classification algorithms use the
feature space to find patterns, once we have different targets
with similar spectral response, classifiers become not able to
clearly differentiate them.

Given this contextualization, we are now able to say that
this is the challenge behind the mapping of the pasture and
croplands utilizing automatic techniques. In this work we
tackle the problem of differentiating pasturelands from crop-
lands in a subset of Brazilian Cerrado biome, utilizing new
techniques of time series analyses, based on metric images
created by aggregation of multitemporal satellite imagery.

2. MATERIALS AND METHODS

For the accomplishment of this work, it was used Landsat
8 imagery as data source [5]. The year of 2018 was chosen
for the generation of time series once it is the most recent
complete year before this work have been performed. Study
area comprehends a subset dimensioned by 25 km x 25 km,
approximately, completing an area of about 625 km of ex-
tension over the Brazilian Cerrado biome (Figure 1). This
subset is located in the state of Goiás and takes part of four
municipalities, which are Caçu, Cachoeira Alta, Itarumã, and
Paranaiguara. This area was elected for holding great vari-
ability of both patterns that are being analyzed in this work,
and thus playing as a good area to assess the methodology.

Considering that Landsat 8 has a temporal resolution of
16 days, and that the more observations, the better temporal
characterization, study area was purposely disposed in the
overlaying swath of two Landsat orbits, intending to increase
the amount of observations, and thus attain more loyal time
series to each pattern.
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Fig. 1: Study area designed for methodology assessment.

With this strategy, we could enhance the quantity of ob-
servations, going from 16 days interval to 7-9 [6]. Two scenes
were used to compose the time series, which are represented
by path/row 223/73 and 222/73. Each Landsat scene disposes
22-23 images a year due to its revisit time. Working on the
overlaying swath it was possible to obtain 45 images of the
same area, once this area was seen for two Landsat orbits.

After downloading all images of both scenes from Earth
Explorer repository, they were all involved in a first pre-
processing step of reprojecting, once their reference system
comes set to the Northern hemisphere. Afterward, they were
clipped to the subset that was chosen as the study area. Re-
garding this work seek for assessing a methodology to well
discriminate pasture from croplands, it would not be reason-
able having other types of land cover in the study area, once
this could even disturb the differentiation analyses between
the main patterns herein explored. For this sake, all types of
land use non pasturelands or crop areas were masked with the
land cover mapping from Mapbiomas project, collection 4,
for the same year of the images obtained in this work [7].

Six bands were used in this work, which comprise band 2
to band 7 of OLI sensor. Each band may be considered herein
such as a dimension for the time series. Thus, for each band
it was calculated seven temporal metrics [8], what consists
in an aggregation of the pixel values along the time, creating
new images with the time information embedded in [9, 10].
The metrics that were calculated are the following: mean,
median, standard deviation, minimum, maximum, amplitude
and sum. After these new images were created, they were all
assembled in a single dataset containing 42 resulting metric
images, which were obtained from the 7 metrics applied to
the 6 spectral bands from the 45 Landsat images. This dataset
was then used to feed the classifier algorithm in order to
produce the classification image. Random Forest [11] were
the elected algorithm to perform the classification, due to its
ability to deal with great amount of data maintaining high
level of quality. Flow chart depicted in Figure 2 presents the
methodological draw.

Fig. 2: Flow chart depicting the methodology.

Random Forest algorithm was trained utilizing 100
trees and Mapbiomas classification as ground truth refer-
ence. It was established 500 points as samples, which were
widespread along the image (dataset) according to the size
of each pattern previously observed, i.e. proportionally to its
area [12]. Therefore, 210 samples were selected for croplands
and 290 for pasturelands, once the latter holds a larger area
than the first in study subset. Also, it is worth mentioning that
samples were randomly and automated generated. As well as
for training samples, accuracy assessment points were either
automated, randomly and proportionally widespread [13],
hereon with another set of samples comprised of 200 points,
likewise using Mapbiomas classification as reference. Thus,
84 and 116 points compose the croplands and pasturelands
accuracy set of samples, respectively.

3. RESULTS AND DISCUSSION
Seeking for assessing time series in terms of cloud coverage,
images were visually evaluated through their covering level.
All images were then distributed among six classes, which
expresses their cloud coverage level. These are the estab-
lished classes, from the lowest to the highest level: (i) free at
all; (ii) rather free; (iii) low medium; (iv) high medium; (v)
almost total; and (vi) total. Regarding the amount of observa-
tions in the study area, images affected by clouds, according
to the classes above described, follow these proportions: (i)
17.78%; (ii) 13.33%; (iii) 20.00%; (iv) 17.78%; (v) 15.56%;
and (vi) 15.56%. Overall, it means that only 8 images, from
the total of 45 observations in 2018, are completely free of
clouds. Figure 3 depicts samples of images representative of
cloud coverage classes.

Instead of aggregating all images into new metric images,
we noticed that it would be necessary to remove from the time
series those images affected by clouds. Even if few images
affected by clouds were involved in aggregating process, they
would still injury the resultant image with undesired artifacts,
and ultimately harm the classification process. Next figure
depicts the increase of image harming with the increasing of
images with clouds. As shown in Figure 4, as the number of
cloudy images increases, as harmer the resultant metric image
becomes, even if only images with few clouds are involved in
aggregating process.
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Fig. 3: Image samples depicting examples of the cloud coverage
types utilized to evaluate every image.

Considering it, we saw the necessity of taking out of the
time series all images affected by clouds, even those eval-
uated as rather free, for the reason above explained. This
implies that only free at all (of clouds) images would work
in our methodology. This way we had eight images com-
posing the time series in each band/attribute, unlike the 45
initials. All metric images were then recreated, hereon using
only images with no clouds, and the dataset, reconstructed.
Although the number of images comprising the time series
were diminished, the number of metric images in the final
dataset remained the same, for quantity of calculated met-
rics and number of attributes keeps likewise the same. This
change only affected the density of time series, making them
less dense and irregularly spaced. Moreover, it may have
mischaracterized the temporal behavior of targets, making it
harder for the classifier to identify particularities in the time
series that could cause each pattern to be unique and hence
well classified by the algorithm.

Classification result with the Random Forest algorithm
may be seen in Figure 5. Accuracy assessment is available
at the confusion matrix presented in Table 1. As shown,
global accuracy achieved a percentile of 80.00%, and a
Kappa index of 0.58. User’s and producer’s accuracies of
croplands reached the values of 80.56% and 69.05%, respec-
tively. Regarding the pasturelands, these values are 79.69%
and 87.93%, respectively.

Table 1: Confusion matrix.
Ground Truth

Crop
Areas

Pasture-
lands Totals User

Accuracy
Comission

Error
Crop
Areas 58 14 72 80.56% 19.44%

C
la

ss
ifi

ca
tio

n Pasture-
lands 26 102 128 79.69% 20.31%

Totals 84 116 200 Global
Accuracy

Kappa
Index

Producer
Accuracy 69.05% 87.93% - 80.00% 0.58
Omission

Error 30.95% 12.07% -
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Fig. 4: Mean images of band 2 depicting the harm increasing with
the increase of cloudy images in the aggregating process.

Regardless user and producer percentages, overall results
indicate that the classification was slightly well performed,
and our proposed methodology was able to catch the tempo-
ral behavior of the analyzed patterns, it is, their specificities
along the time series, and thus discriminate one land use from
another. In spite of global accuracy, user and producer ac-
curacies of either croplands and pasturelands revealed some
misclassification, mainly when considering the commission
and omission errors of both land uses, which were a little
higher than expected, but not enough to disqualify the clas-
sification mapping. The main aspect concerning the single
date classification, and which causes it to be voided to sepa-
rate croplands from pasturelands is the different appearance
experienced by croplands throughout the year (i.e. fallow and
growing seasons), whereas pasturelands remain regular the
year along. And when we look at the classification result and
compare it to the original images, we do see these different
characteristics of the croplands assembled in the same class
in the map. This reinforces the thesis that our methodology
was capable to deal with patterns variations along the time
and perform a good classification based on it.

Despite this approach, our results may have been lim-
ited by issues encountered during the process, such as cloud
coverage in most images of the analyzed period. This caused
our time series to be quite reduced and not equally spaced,
and thus, certainly much important specificities concerning
the patterns, which could boost the classification and the
differentiation between them, were lost.

4. CONCLUSIONS AND FINAL REMARKS

The use of time series and metric images generated by ag-
gregation of multitemporal satellite imagery presented a great
potential to classify our dataset and separate targets spectrally
similar, such as pasturelands and croplands.



Fig. 5: Comparison between: a) True Color Image (09/Set. /2018); b) Classification result; and c) Mapbiomas reference.

Despite the reduce time series underwent due to cloud
coverage in most images on the analyzed period, classifica-
tion attained satisfactory results, achieving 80% global accu-
racy and kappa index of 0.58. Misclassification may be ad-
dressed to the lack of temporal information concerning the
time series.

Increasing the time series by either amplifying the period
of analyzes or observations amount, might improve the clas-
sifier differentiation ability, since it will be using a more accu-
rate dataset in terms of temporal behavior. This strategy may
be useful to reduce the impact magnitude of cloud coverage
over the time series.
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