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Abstract: The total energy dissipation rate on the ocean surface, εt (W m−2), provides a first-order
estimation of the kinetic energy input rate at the ocean–atmosphere interface. Studies on the spatial
and temporal distribution of the energy dissipation rate are important for the improvement of climate
and wave models. Traditional oceanographic research normally uses remote measurements (airborne
and platforms sensors) and in situ data acquisition to estimate εt; however, those methods cover small
areas over time and are difficult to reproduce especially in the open oceans. Satellite remote sensing
has proven the potential to estimate some parameters related to breaking waves on a synoptic scale,
including the energy dissipation rate. In this paper, we use polarimetric Synthetic Aperture Radar
(SAR) data to estimate εt under different wind and sea conditions. The used methodology consisted
of decomposing the backscatter SAR return in terms of two contributions: a polarized contribution,
associated with the fast response of the local wind (Bragg backscattering), and a non-polarized (NP)
contribution, associated with wave breaking (Non-Bragg backscattering). Wind and wave parameters
were estimated from the NP contribution and used to calculate εt from a parametric model dependent
of these parameters. The results were analyzed using wave model outputs (WAVEWATCH III) and
previous measurements documented in the literature. For the prevailing wind seas conditions, the εt

estimated from pol-SAR data showed good agreement with dissipation associated with breaking
waves when compared to numerical simulations. Under prevailing swell conditions, the total energy
dissipation rate was higher than expected. The methodology adopted proved to be satisfactory
to estimate the total energy dissipation rate for light to moderate wind conditions (winds below
10 m s−1), an environmental condition for which the current SAR polarimetric methods do not
estimate εt properly.

Keywords: SAR; radar polarimetry; wave breaking; energy dissipation rate

1. Introduction

Wave breaking plays a significant role in momentum, energy and gas exchanges at the
ocean–atmosphere interface. Wave breaking controls the maximum height of surface waves,
and therefore can affect the skill of operational wave models [1]. The flux of greenhouse gases have
been shown to depend on the water-side turbulence [2,3], which depends on the wave breaking [4–6].
The breaking of surface waves also produces whitecaps, promotes the mixing and enhances the
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insertion of bubbles in the surface layers in the ocean [1]. This influences the estimation of the inherent
optical properties of the ocean, and thus the interpretation of the ocean color data [7,8]. Moreover,
whitecap cover serves as a first step in the modeling of sea spray droplet as a sea spray source [9].
Several authors have demonstrated that instead of the wind speed, U10, the total energy dissipation
rate, εt, is a more adequate parameter to model the whitecap coverage, since whitecaps are generated
by the breaking of the waves [10–12].

Direct measurements of the energy dissipation rate resulting from wave breaking are not yet
possible. However, estimates of εt can be obtained using spectral dissipation models. Different spectral
dissipation models can be found in the literature [13–16]. Phillips [14] obtained the total energy
dissipation rate by integrating the spectral density function over an equilibrium range of wavenumbers
in which the wind input, dissipation and non-linear transfers were in local balance. This solution
has been used as a basis for calculating the dissipation rate associated with breaking waves using
field measurements of the wave spectrum [12,17–19]. In fact, the Phillips model has been used in
measurements of the energy dissipation rate using remote sensing methods [20]. Several approaches
using remote sensing can be used to study wave breaking properties, including: combined use of visual
observations and simultaneous measurements of wind and waves [8,18,21], acoustic methods based
on the penetration of air bubbles during the process of breaks [17,22], infrared remote sensing [23,24]
and of the passive and active microwaves [9,25,26]. The difficulty in obtaining in situ measurements of
wave breaking events and surface sea roughness, especially in strong wind fields, encourages the use
of orbital remote sensing to derive an estimate of these quantities.

Polarimetric SAR data can be used to estimate the effects of breaking waves in co-polarized and
cross-polarized radar return [27–29]. The main parameter of interest estimated by SAR is the oceanic
normalized radar cross section (NRCS), also known as sigma zero (σ0), which is proportional to the
surface roughness on the scale of short waves. The σ0 can be decomposed as a sum of polarized
scattering, due to two-scale resonant Bragg-scattering, and a non-polarized scattering component (NP),
due to breaking of waves [28,29]. Using RadarSAT-2 dual and quad-polarization, Hwang et al. [28]
obtained an empirical relationship between the NP backscatter from cross-polarization return and the
total energy dissipation rate. The authors found that quad-pol data is more accurate in estimating
εt, especially in conditions of strong winds (U10 above 10–15 m s−1), where its low noise floor
(about −36 dB) has a negligible contribution to the cross-polarized return. However, estimates
of εt in light to moderate wind speed conditions using both dual-pol and quad-pol data does not have
a good correlation with expected values from parametric models. Considering that whitecaps occur
on the surface of the ocean under wind speeds above 3 m s−1 [18,30], the relationship obtained by
Hwang et al. [28] does not include the interval between low-to-moderate wind speeds.

For low winds below 10 m s−1, Kudryavtsev et al. [31] observed that the NP contribution
in co-polarized backscattering channels depends exponentially on the wind speed. More recently,
Kudryavtsev et al. [32] derived empirical dependencies between the NP contribution in dual co- and
cross-polarized SAR and wind speed and geometry of SAR observations (polarimetry, incidence and
azimuth angles) using a large dataset of RadarSAT-2 quad-polarized images. The empirical functions
obtained by the authors proved to be valid for wind speeds above 3 m s−1, and can then be used to
assess upper ocean processes. Using this approach, this study aims to analyze the potential use of
NP contribution presented in the co-polarized backscattering SAR return to estimate the total energy
dissipation rate, extending the interval of estimation for the low-to-moderate winds. For this purpose,
we use quad-pol RadarSAT-2 satellite images to estimate the total energy dissipation rate associated
with breaking waves from the NP contribution present in the co-polarized NRCS channels. We analyze
the estimated εt in relation to the Bragg polarization ratio model, and the influence of different
environmental conditions and incidence angles. An indirect check of the proposed methodology was
done comparing the estimates from SAR scenes with those obtained from wave modeling.

This paper is organized as follows. The study area and data are presented in Section 2. In Section 3
we present the methodology for estimating the total energy dissipation rate using backscatter SAR
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return. The results based on the proposed methodology are presented in Section 4, followed by the
discussion in Section 5. The conclusions are presented in Section 6.

2. Study Area and Materials

2.1. Study Area

This study was undertaken in three different oceanic regions: (1) a region off the California coast
located in the South of the Santa Barbara Channel, (2) in the northern portion of the Gulf of Mexico,
and (3) a region off the Santos Basin located close to the shelf break, Figure 1. These regions were
chosen for their different marine and meteorological conditions, and proper for assessing the validity
of the proposed methodology. The scenes were also obtained for different ocean depths, ranging from
20 to 1000 m.

Figure 1. Study area used: (left) California coast; (right and upper) northern portion of the Gulf of
Mexico; and (right and bottom) portion of the Santos Basin, Brazil.

2.2. SAR Data Set

The SAR data set consists of nine RadarSAT-2 (RS-2) fine-quad polarimetric acquisitions collected
over different oceanic regions of the Atlantic and Pacific Ocean (see Figure 1, represented by red
squares). Angles of incidence (AoI) ranging from about 24.6◦ in California coast to 43.3◦ in the northern
part of the Gulf of Mexico. The RS-2 operates in the C-band (central frequency of 5.40 GHz) and
has a nominal resolution of 4.7 and 5.2 m in the range and azimuth, respectively. Each scene covers
an area of approximately 25 × 25 km, and the single-look complex (SLC) product provides the four
complex scattering amplitudes, i.e., both co-pol channels (VV/HH) and cross-pol channels (VH/HV).
The nominal noise-equivalent sigma zero (NESZ) of the system is approximately −36 dB but shows a
variation with incidence angle [33].

The original SAR data were pre-processed according to the following steps: (a) calibration in
normalized radar cross section (NRCS) units, (b) NESZ correction using the method of the minimum
eigenvalue of the 4 × 4 Coherency Matrix proposed in Hajnsek et al. [34], (c) extraction of clean-sea
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surface tiles from the SAR data set, and (d) finally the resampling of SAR images using the spatial
multilooking with 10-by-10 pixels window. Figure 2 shows extracted tiles of the VV- and HH-polarized
intensity images of SAR dataset representing clean-sea surface areas.

Figure 2. RadarSAT-2 dataset. VV- and HH-polarized intensity images (size: 150 × 150 pixels,
spatial resolution: 50 m), in dB, over clean-sea surface area. Numbers refer to ID of each scene as shown
in Table 1.
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2.3. Ancillary Information

Wind field (U10, Udir) and sea surface temperature (SST) information was provided by the
European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis [35]. The wind and
SST products from ERA5 data set are on a 0.25◦ × 0.25◦ spatial grid and hourly temporal resolution.
The wind speed ranged from low-to-moderate wind speeds, i.e., from about 3 to 11 m s−1. Hereafter we
use U10 to refer to the low-resolution (∼25 km) wind speed field obtained from ERA5.

In situ wind and wave information was provided by the buoy data set from National Data Buoy
Center (NDBC) and National Buoy Program of the Brazilian Navy (PNBOIA). This information was
used to characterize the sea state for each scene, using the concept of a non-dimensional wave age [36],
WA = cp/u∗, where cp is peak wave speed and u∗ is the friction velocity. Only half of the SAR scenes
were collocated with the buoys, the other half of buoys were within 100 km from the scene. The used
ancillary information is summarized in Table 1.

Table 1. RadarSAT-2 data set and meteo-oceanographic variables.

Scene Product Central Location AoI U10 Udir

ID ID Date/Hour (UTM) Latitude Longitude (◦) Orbit (m s−1) (◦) WA

1 53,617 26 September 2009 01:56 32.43◦ N 119.54◦ W 31.3–33.0 Ascending 8.0 123 54.8
2 57,307 27 October 2009 01:52 32.43◦ N 119.61◦ W 24.6–26.5 Ascending 5.6 127 83.6
3 63,140 14 December 2009 01:52 34.36◦ N 119.90◦ W 25.7–27.6 Ascending 8.4 108 54.7
4 63,215 14 December 2009 14:09 34.31◦ N 119.80◦ W 24.6–26.5 Descending 4.2 172 123.4
5 79,608 1 May 2010 12:05 28.14◦ N 92.27◦ W 39.3–40.7 Descending 10.0 330 25.9
6 80,536 8 May 2010 12:01 26.80◦ N 92.02◦ W 41.9–43.3 Descending 6.0 270 35.7
7 80,536 8 May 2010 12:01 26.63◦ N 92.05◦ W 41.9–43.3 Descending 6.0 270 35.7
8 81,514 15 May 2010 11:57 28.39◦ N 88.34◦ W 41.9–43.3 Descending 7.3 295 47.1
9 496,265 5 August 2016 08:25 24.36◦ S 44.37◦ W 31.7–34.7 Descending 12.5 258 20.9

2.4. Wave Model

For this study we employed the third-generation wave model, WAVEWATCH III (WW3) version
5.16 [37], and used the model generated energy dissipation rate to compare to the satellite estimates.
The WW3 model was developed by the National Oceanic and Atmospheric Administration/National
Centers for Environmental Prediction (NOAA/NCEP) and it is currently at version 6.07.1. The forcing
fields are 0.25◦ spatial resolution from ERA5 and the bottom topography data are from ETOPO1.
The model was run using three nested grids in a two-way nesting scheme: a global grid of 25 km
spatial resolution, a regional grid of 5 km spatial resolution, and a local grid of 1 km spatial resolution
incorporating all or part of each SAR image (see Figure 1, represented by black rectangles).

The ST4 parameterization of Ardhuin et al. [16] for the input (Sin) and dissipation (Sds) source term
was used, while the non-linear interaction source term used was the Discrete Interaction Approximation
(DIA) parameterization. The ST4 parameterization is based on [15], where dissipation source is due
to breaking while dissipation by swell is considered a negative wind input. The dissipation source
term is then calculated as the sum of two contributions: one breaking-induced contribution that is
based on the local saturation spectrum and one cumulative dissipation rate contribution estimated
from breaking wave probabilities. The full physical-mathematical description of this parameterization
can be found in [16].

The model was configured to generate source term outputs every full hour using approximately
100 stations, distributed within each local grid and spaced between 1 to 2 km apart. The spectral grid
was discretized with 24 directions and 25 frequencies.

3. Model Approach

3.1. Energy Dissipation Rate

Wave breaking is considered to be the dominant source of turbulence and energy dissipation
in the upper ocean, and different studies of the energy dissipation rate indicate a cubic wind speed
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dependence [12,14,17,18]. Hwang and Sletten [12] establish a parameterized dissipation function
expressed in terms of wind speed, significant wave height and peak wave frequency:

εt = αρaU3
10 (1)

where ρa is the air density (=1.20 kg m−3, for air at 20 ◦C) and α is a parameter dependent on the sea
state development. As the wave develops, α gradually increases until it reaches a maximum value
(∼5.7×10−4) in conditions of fully developed sea, and then decreases as the waves become more
mature. The value of α depends on the non-dimensional parameters of peak wave frequency and
surface elevation variance. For convenience, these parameters can be approximated from U10 using
the look-up-table described in Hwang and Sletten [12] (see their Table 1).

Wind speed, surface elevation variance and peak wave frequency can be obtained using satellite
remote sensing (e.g., scatterometry and altimetry) or meteo-oceanographic buoy data. However,
such methods provide only the regional wind and wave fields due to their low spatial resolution.
The high spatial resolution from SAR data has the potential to estimate the energy dissipation rate on
a local scale.

3.2. Wave Breaking Contribution in σ0

Using the concept of length of breaking fronts per unit area statistics introduced by [38] combined
with an approach of the composite Bragg theory, Kudryavtsev et al. [27,29] described a model to
predict σ0 as a combination of three components:

σ
pp
0 = σ

pp
0Br + σ

pp
sp + σwb (2)

where pp represents the transmitted and received polarizations (H or V). The first component on
right side, σ

pp
0Br, represents backscatter associated with the Bragg’s resonant mechanism. The second

component, σ
pp
sp , is associated with the contribution of specular reflection, which can be neglected for

intermediate incidence angles. The last component, σwb, represents the non-polarized (NP) contribution
due to the breaking of surface waves, and it is the same for both polarizations [27]. The wave breaking
contribution can be removed through the polarization difference (PD) between co-polarized returns:

∆σ0 = σVV
0 − σHH

0 = σVV
0Br − σHH

0Br (3)

Combining Equations (2) and (3), and considering the range of incidence angles between 25◦

and 50◦ where the specular contribution can be neglected, the NP contribution can be expressed as a
function of ∆σ0 as:

σwb = σVV
0 − ∆σ0

1− pB
(4)

where pB correspond to the polarization ratio for the two-scale Bragg-scattering components
(pB = σHH

0Br /σVV
0Br ). Using Equations (3) and (4), the co-polarized images can be decomposed in NP and

PD components which are related to different scattering mechanisms. The NP contribution is related
to enhanced surface roughness generated by the breaking waves and also specular reflection from
forward faces of breaking waves, while the PD contribution is related to Bragg scattering provided by
wind waves responses [31,32]. The PD contribution is estimated directly from the σ0 measurements in
each SAR image. On the other hand, the Bragg polarization ratio cannot be estimated directly from the
scenes. Different approaches can be used to obtain pB. Two possibilities to evaluate pB are:

(a) using simplified two-scale models (TSM) calculated from the mean square slope (MSS) statistics
of tilting waves [27,29]; or,

(b) estimated using σVV
0Br and σHH

0Br from an electromagnetic backscatter model calculated from a
chosen wave spectrum model [39,40].
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Although Method (a) using approximate equations is computationally simpler, Method (b) should
provide a more accurate estimate of pB at the cost of more computational time depending on the
electromagnetic model used [41]. In our work, σwb was calculated from SAR images using Equation (4),
pixel-at-pixel, with the Bragg polarization ratio estimated using both methods (a) and (b). We used the
approximate equations for the TSM model described in Kudryavtsev et al. [32] (see Equation (A1) in
Appendix A) for Method (a), and we used the two-scale Boundary Perturbation Model (BPM) [42,43]
for Method (b).

The BPM model represents the backscattering (σ0) of the sea surface as a superposition of two
independent stochastic processes: one process associated with capillary and short–gravity waves
(small-scale roughness) and one process associated with the long waves (large-scale roughness).
It has been used for sea surface scattering [42] and sea oil slick observations [43,44], and the model
allows for detailed scattering calculations in very little computer time in a table-top machine. The full
physical-mathematical description of BPM model can be found in [43]. The two-dimensional sea
surface spectrum used for the BPM model was Elfouhaily [45], which is specified once the wind
friction velocity (calculated from U10 and formula described in [46]) and the fetch x are provided.

3.3. Relationship between σwb and Environmental and Imaging Parameters

Using nearly 1700 RS-2 quad-pol SAR images co-located with buoy observations and the model
described by Equation (4), Kudryavtsev et al. [32] derived an empirical relationship between σwb and
wind speed U10, incidence angle θ and azimuth angle φ, as (see their Equation (8)):

σwb = fwb(θ)Ywb(φ)U
nwb(θ)
10 (5)

where fwb and nwb depends on incidence angle, and are described as:

fwb(θ) = 1.9× 10−3e−0.32(θ−30◦)

nwb(θ) = 1.3 + 4.7× 10−2(θ − 30◦)
(6)

The angular distribution coefficient, Ywb, depends on both θ and φ, and is described as:

Ywb(φ) = exp[A0wb + A1wb cos φ + A2wb cos 2φ]

with,


A0wb = 0.24− 1.4× 10−2(θ − 30◦)

A1wb = 0.33 + 1.3× 10−2(θ − 30◦)

A2wb = 0.12 + 1.4× 10−2(θ − 30◦)

(7)

Based on these results, σwb can be estimated directly from the SAR co-polarized components
(Equation (4)) or from the environmental and imaging conditions (Equation (5)). We use the NP
contribution obtained from Equation (4) at each pixel of the SAR scenes to estimate the associated
wind speed (Ũ10) using Equations (5)–(7) as:

Ũ10(σwb, θ, φ) =

(
σwb

fwb(θ)Ywb(φ)

)1/nwb(θ)

(8)

In this way, we preserve the variability associated with wind speed while taking into account the
effect of wave breaking. Hereafter we use Ũ10 to refer to the high-resolution (∼500 m) wind speed
field obtained from SAR images and Equation (8). Finally, we used Ũ10, instead of U10 from ERA5
data set, to estimate the α parameter, now function of Ũ10, and the total energy dissipation rate from
Equation (1), as:

εt = α(Ũ10)ρaŨ3
10 (9)



Sensors 2020, 20, 6540 8 of 18

thus obtaining the energy dissipation rate at ∼500 m of spatial resolution.

4. Results

4.1. Influence of the pB Estimation on the Non-Polarized Contribution

The relative contribution of σwb in the co-polarized components as a function of the incidence
angle, when using (a) the simplified TSM model (Appendix A) and (b) BPM model to estimate the
polarization ratio, is shown in Figures 3 and 4, respectively. Using the simplified TSM model (Figure 3),
the relative contribution for both polarizations varied between 10% and 50%, with the lowest values
occurring mostly in the high incidence angles. The percentual values obtained in our work are below
the average values obtained by [32]. Using the BPM model (Figure 4), the relative contribution
in VV varied between 20% and 70%, with the highest percentage of contribution occurring at low
incidence angles (approximately 60%), and rapidly decreasing to approximately 15% at high incidence
angles. The relative contribution in HH, however, remained at approximately 50% across the range
of moderate incidence angles (>30◦), with the maximum contribution occurring at low incidence
angles. These results show a similar behavior to those obtained by [32], where the contribution of σwb
in VV-polarization shows a decreasing trend with increasing incidence angle, and the contribution in
HH-polarization tends to stabilize at incidence angles above 30◦. In addition, the percentage values are
closer to the average values obtained by the authors (see [32], Figure 2) when using the BPM model.

Figure 3. Relative contribution of σwb in VV (left) and HH (right) components when using a simplified
TSM model. RadarSAT-2 observations are represented as black dots, while red circles with vertical bars
are mean values and percentiles of 5% and 95%, respectively.

Figure 4. Relative contribution of σwb in VV (left) and HH (right) components when using a BPM
model. RadarSAT-2 observations are represented as black dots, while blue circles with vertical bars are
mean values and percentiles of 5% and 95%, respectively.
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The sensitivity of σwb estimated from SAR images (SAR-derived σwb) with respect to the
method used to determine pB was analyzed using the expected value of σwb using the environment
low-resolution wind (U10, Udir) and imaging (AoI, azimuthal angles) configurations and the empirical
relationship described in Equation (5) (Empirical σwb). Figures 5 and 6 show a comparison of
σwb estimated using both the simplified TSM and BPM models. As already noted in Figure 3,
there was an underestimation of the NP contribution when using the TSM model, in all sea conditions.
Kudryavtsev et al. [31] showed that a variation of up to ±10% in the estimate of pB can lead to an
error of approximately ±20% or greater in the estimate of NP contribution. The estimate of the NP
contribution when using the BPM model (Figure 6) showed an overall good agreement with the
estimated values using the empirical relationship, even at and especially in sea conditions of prevailing
old swell. The estimates obtained from the simplified TSM model had bias values of −4.45 dB and
RMSE of 5.45 dB, indicating both an underestimation and a large variance in σwb in relation to the
expected average in each scene. The estimates obtained from the BPM model had values of bias of
−0.33 dB and RMSE of 1.99 dB, which were close to the values obtained by Kudryavtsev et al. [32].

Figure 5. Comparison between σwb estimated using Equation (5) (Empirical σwb) versus σwb estimated
from SAR images (SAR-derived σwb) using a simplified TSM model. The observations were grouped
into 1 dB bins, where the circles with vertical bars are mean values and percentiles of 5% and 95%.
Colors represent the wave age of observations (see Table 1).

Figure 6. Comparison between σwb estimated using Equation (5) (Empirical σwb) versus σwb estimated
from SAR images (SAR-derived σwb) using the BPM model. The observations were grouped into
1 dB bins, where the circles with vertical bars are mean values and percentiles of 5% and 95%.
Colors represent the wave age of observations (see Table 1).
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4.2. Estimation of εt Using the Non-Polarized Contribution

A comparison between associated wind speed (Ũ10) derived from the SAR images with the BPM
model using Equation (8) and wind speed obtained from ERA5 (U10) is presented in Figure 7. It can be
observed a greater variability in Ũ10 values in relation to the same interval of U10 values. Although on
average Ũ10 correspond to the wind field expressed by U10 on regional scale, the latter is not able to
represent the local variability associated with wind stress on the ocean surface.

Figure 7. Comparison between (U10) wind speed obtained from ERA5 and (Ũ10) associated wind speed
derived from the SAR images with the BPM model using Equation (8). The observations were grouped
into 0.5 m s−1 bins, where the circles are mean values. Vertical and horizontal bars represent percentiles
of 5% and 95%. Colors represent the wave age of observations (see Table 1).

A comparison between εt derived from the SAR images with the BPM model and the wave
dissipation rate Sds integrated over all wavenumbers resolved by WW3 model is presented in Figure 8.
The observed σwb were grouped into 1 dB bins, where circles with vertical bars are mean values and
percentiles of 5% and 95% respectively. The wave age is indicated by the color scale, ranging from
young wind-sea waves to old swell waves [47].

In wind-sea wave conditions (WA . 40) the relationship between εt and Sds proved to be
approximately linear. In swell-dominated conditions (WA & 40), it is possible to observe that in
general εt was much higher than Sds by almost an order of magnitude, and showed a much greater
scattering around the 1:1 line.

The relationship between εt and U10 estimated from the SAR data is shown in Figure 9.
For comparison, two parameterizations of the energy dissipation rate as a function of U10 are shown,
which are taken from Hanson and Phillips [18] (HP99, red curve) and Hwang and Sletten [12] (HS08,
blue curves). The α parameter used in HS08 parameterization corresponds to young stages of wave
development or swell-dominated seas (lower, α = 3.7) and at fully developed seas (upper, α = 5.7).
Field estimation measurements reported by Felizardo and Melville [17] (FM95, white squares) and
Banner and Morison [19] (BM18, red triangles) are also included.

Comparing the results obtained in this work with the field estimates, we can observe that there is
a good agreement between εt values, especially when compared to the measurements of FM95 and
BM18. The methodology used was also able to identify the variability associated with different sea
states for the same wind speed range. At wind speeds below 10 m s−1, our estimates were below
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the maximum value expected in peak conditions of saturated seas (upper curve HS08), while the
parametrization of HP99 proved to be a lower limit for the estimated values. It is important to note
that the local wind history was not taken into account in the present study, and therefore the effects of
wind time variation on the contribution of εt could not be assessed, as suggested by [18,48].

Figure 8. Comparison between total energy dissipation rate derived from SAR images (εt) and wave
dissipation rate calculated by WW3 model (Sds). The observed σwb were grouped into 1 dB bins,
where the circles with vertical bars are mean values and percentiles of 5% and 95%. Colors represent
the wave age of observations (see Table 1).

Figure 9. Relationship between total energy dissipation rate estimated from the SAR data versus
U10, averaged in 0.5 m s−1 wind speed bins. Blue circles with vertical bars are mean values and
percentiles of 5% and 95%. Two parameterizations of εt as a function of wind speed are shown, taken
from [18] (HP99, red curve) and [26] (HS08, blue curves). Field estimation measurements taken from [17]
(FM95, white squares) and [19] (BM18, red triangles) were also included.
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5. Discussion

5.1. Sensitivity of εt in Relation to pB Determination

Comparing the results here obtained with those obtained by [32,49], we observe that the percent
contribution of σwb in the VV-polarization shows a similar decreasing behavior in relation to the angle
of incidence, while the contribution for HH-polarization tends to stabilize at incidence angles above
30◦. Differently from mean values obtained by [32], simplified TSM model underestimated the NP
contribution when compared to the BPM model. This difference might be due to the approximate
model that does not take into account second order Bragg-scattering effects [27,31]. Several studies
confirm that empirical models of the Bragg polarization ratio tend to overestimate pB when dependent
only on the angle of incidence [49,50] (see [32] Figure 1a).

We can also consider the hypothesis that the lower values of εt obtained using the simplified
TSM model correspond to the lower than average values observed in [32]. Since no information
was presented by the authors regarding the marine and meteorological conditions associated with
these values, this hypothesis cannot be confirmed. As noted by [51], at low incidence angles specular
reflection can lead to an increase in the NP component. Moreover, Mouche et al. [39] pointed out that
in low wind speed conditions (U10 < 5 m s−1) discrepancies between measured and predicted values
can be observed by the used different backscattering models due to a series of assumptions, and that
in this case can dominate the modeled return caused by breaking waves.

Another possible source of error in the estimation of σwb can be the influence of NESZ. A parameter
widely used to measure the impact of noise on the measured return is the signal-to-noise ratio
(SNR) [52–54]. Espeseth et al. [54] suggests that the SNR must exceed a certain value (of the order of
10 dB) before any polarimetric analysis be performed, as the decomposition of the backscattering return
done in this study. The analysis of NESZ is therefore necessary to guarantee that the NP contribution
in co-polarized components is not affected by noise. For this analysis, regions of interests (ROIs) were
extracted from each SAR scene and the same number of pixels (=900) were selected at random within
from each ROI. The SNR was then calculated using the mean value of σ0 and the mean value of NESZ
of the pixels extracted from each ROI, as SNR = (σ0 − NESZ)/NESZ.

Figure 10 shows the variation of the mean value of the σ0 for HH and VV polarizations as a
function of the SNR (left) and mean incidence angle (right). It is possible to observe that the values
of SNR in VV-polarization were above 10 dB in all ROIs, and that none of the ROIs had σ0 values
below the NESZ (SNR equal to 0 dB), the smallest difference corresponding to approximately 10 dB
at high incident angles (>42◦). Regarding the HH-polarization, most ROIs have SNR above 10 dB
while a few fall below this value. These ROIs are within scenes for which wind speed conditions
had magnitude of 3 m s−1 at high angles of incidence, where backscatter returns are expected to be
low and the noise is higher [54]. However, the measured signal remained 6 dB above of noise floor,
which can be considered an adequate value and under minimum influence of noise [53]. Therefore,
we can conclude that the differences in σwb are not caused by noise and should be exclusively due to
the methodology used to determinate pB.

5.2. Comparison of εt with Wave Model Outputs

Two main factors may suggest the discrepancy of εt estimates on different wave conditions:
(1) wave breaking may not be the dominant mechanism for wave dissipation, or (2) there was an
overestimation of the σwb, and consequently of the εt for old-sea waves. Another possible source of
uncertainty in the εt estimation comes from the estimation of α parameter, given the large uncertainty
associate with this quantity that could in some cases be on the order of 100% [12].

Banner and Morrison [19] obtained similar results in the comparison between the contribution of
the breaking wave dissipation rate to the total energy dissipation rate (Figure 8), when reanalyzing
Sutherland and Melville [24] data set to investigate the relative contribution of microscale breakers to
εt. The authors found that wave breaking is responsible for almost all energy dissipation during the
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development of waves, and that in old seas the breaking of waves contributes only to a small fraction
of εt. The greatest contribution to the total energy dissipation rate would then be related mainly to
other hydrodynamic processes, which include the influence of surface waves on the Reynolds shear,
turbulence and the transfer of energy between waves at different scales [19].

(a) VV-polarization.

(b) HH-polarization.

Figure 10. (Left) Mean σ0 values versus the SNR in dB for VV (a) and HH (b) polarizations. (Right) Mean
σ0 values and percentiles of 5% and 95% versus the mean incidence angle in each ROI for VV (a) and
HH (b) polarizations. Red lines represent the estimated NESZ as function of mean incidence angle.

There are not many studies that estimate the impact of the presence of swell waves on the
value of σ0 measured in different polarizations. Durden and Vesecky [55] evaluated the impact of
the presence of swell in the HH and VV polarizations, at different SAR frequencies, and concluded
that the effects are more significant at low frequencies (L band) and low incidence angles. At high
frequencies (for example, Ku band) and high incidence angles, the effects were almost negligible.
Hwang and Plant [40] analyzed the effect of waves at low-to-moderate incidence angles for different
SAR frequencies, using their empirical wave spectrum, and found that the effect of swell on σ0 is less
than 3 dB for wind speeds above 4 m s−1, for HH and VV polarizations (C-band).

Results presented in [56] showed a strong correlation between the Bragg polarization ratio and
wave steepness and significant wave height. When the steepness increases, the polarization ratio also
increases. Still according to [56], the polarization difference has a very low correlation with the wave
parameters. The pB estimates in [40] (see their Figure 5) also indicate an increase in the polarization
ratio in the presence of swell. The main effect of this increase in the polarization ratio, however,
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corresponds to a greater variance in the NRCS measurements, as can be seen in the distribution of
the values of the NP contribution in Figure 5. The combined results then indicate that swell is mainly
responsible for the greatest variance in our estimates of εt, and that the discrepancy between the values
of εt and Sds are expected since in these cases the contribution to total energy dissipation comes from
mechanisms other than the wave breaking.

6. Conclusions

In this study, we investigated the use of the SAR co-polarized data to estimate the energy
dissipation rate associated with wave breaking processes in the ocean surface, particularly for the
low to moderate wind conditions (U10 below 10 m s−1). The dissipation source term estimated using
numerical wave model (WW3) was adopted as a reference for energy dissipation due to the breaking
of waves, while the SAR data set considers different imaging configurations and environmental
conditions. Under prevailing swell conditions, there was a greater variance in the estimate of the NP
contribution, and consequently in the rate of energy dissipation. This results can mean that: (i) previous
results have found a low dissipation rate during swell, or (ii) the method overestimates the dissipation
rate during swell, and these variations may be associated with the variation in the backscatter return
due to the presence of the swell. However, this latter process was not quantified in the present work.
We obtained satisfactory results in all sea conditions when compared with previous measurements
reported in the literature, although in swell waves conditions was not possible to associate energy
dissipation only with wave breaking processes.

The estimation of the Bragg polarization ratio proved to be one of the most important steps in this
approach. The choice of an electromagnetic model that does not calculate properly the co-polarized
backscatter tends to underestimate the NP contribution, and consequently the total energy dissipation
rate. The present published models can adequately represent the VV-polarization, but generally are
not as good in the HH-polarization. Electromagnetic models capable of more accurate estimates may
require more computational time to process each image. The model adopted in this work, which was
run on a normal desktop computer, was able to process the entire methodology with a low processing
time (less than 10 min per scene).

The estimates of εt here derived were of the same order of magnitude as previous measurements
published in the literature derived from in situ methods, with the advantage of being able to cover
large areas of the ocean surface. With the increase in the number of satellites carrying polarimetric SAR
sensors, this methodology offers one another possibility for an extensive estimation of wave breaking
and energy dissipation from space.
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Abbreviations

The following abbreviations are used in this manuscript:

AOI Angle of incidence
BPM Boundary perturbation model
CSA Canadian Space Agency
dB Decibel
ECMWF European Center for Medium-Range Weather Forecasts
HH horizontal transmit-horizontal receive
MDA MacDonald Dettwiler and Associates
MSS Mean square slope
NESZ Noise-equivalent sigma zero
NP Non-polarized
NRCS Normalized radar cross section
NCEP National Centers for Environmental Prediction
NDBC National Data Buoy Center
NOAA National Oceanic and Atmospheric Administration
PD Polarized difference
PNBOIA National Buoy Program of the Brazilian Navy
RS-2 RadarSAT-2
ROI Region of interest
SAR Synthetic aperture radar
SLC Single-look complex
SST Sea surface temperature
TSM Two-scale model
VV Vertical transmit-vertical receive
WW3 WAVEWATCH III

Appendix A

Kudryavtsev et al. [27] showed that at moderate incidence angles (θ > 25◦) and for small MSS of
the tilting waves (waves with wavelength longer than a few times the Bragg wavelength), the Bragg
polarization ratio can be significantly simplified to:

pB =
|GHH |2

|GVV |2
×

1 + gHHs2
i

1 + gVVs2
i

(A1)

where Gpp are scattering coefficients for co-polarized components, s2
i is the MSS of tilting waves in the

incidence plane direction, and gpp are polarization coefficients accounting for the impact of the tilting
waves in the second order. Scattering coefficients for the sea surface (in C-Band) can be calculated from:

|GVV |2 =
cos4 θ(1 + sin2 θ)

(cos θ + 0.111)4
(A2)

|GHH |2 =
cos4 θ

(0.111 cos θ + 1)4
(A3)

assuming that the dielectric constant of seawater is large, in particular equal 81 [57]. Polarization
coefficients, evaluated from (A2) and (A3), are defined as:

gVV =
tan4 θ

2|GVV |2
∂2

∂θ2

(
|GVV |2

tan4 θ

)
(A4)

gHH =
tan4 θ

2|GHH |2
∂2

∂θ2

(
|GHH |2

tan4 θ

)
+

2
sin2 θ

∣∣∣∣GVV
GVV

∣∣∣∣ (A5)

Assuming that the slopes of the waves with small MSS are almost isotropic [32], and using the
empirical formulation described in [58], we can calculate the MSS by:
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s2
i = 2.25× 10−3ln(β−2kbrU2

10/4g) (A6)

where U10 is the wind speed from ERA5 data set, g is the gravity acceleration, kbr is the Bragg
wavenumber, β = U10(kp/g)1/2 is the inverse wave age, and kp = g/U2

10 is the spectral peak
wavenumber [59].
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