
sid.inpe.br/mtc-m21c/2020/12.21.15.18-RPQ

EXTENDED GRAVITOELECTROMAGNETISM. II.
METRIC PERTURBATION

Gerson Otto Ludwig

URL do documento original:
<http://urlib.net/8JMKD3MGP3W34R/43QQMA2>

INPE
São José dos Campos

2020

http://urlib.net/8JMKD3MGP3W34R/43QQMA2


PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO
INTELECTUAL DO INPE - CEPPII (PORTARIA No 176/2018/SEI-
INPE):
Presidente:
Dra. Marley Cavalcante de Lima Moscati - Divisão de Modelagem Numérica do
Sistema Terrestre (DIMNT)
Membros:
Dra. Carina Barros Mello - Coordenação de Pesquisa Aplicada e Desenvolvimento
Tecnológico (COPDT)
Dr. Alisson Dal Lago - Divisão de Heliofísica, Ciências Planetárias e Aeronomia
(DIHPA)
Dr. Evandro Albiach Branco - Divisão de Impactos, Adaptação e Vulnerabilidades
(DIIAV)
Dr. Evandro Marconi Rocco - Divisão de Mecânica Espacial e Controle (DIMEC)
Dr. Hermann Johann Heinrich Kux - Divisão de Observação da Terra e Geoinfor-
mática (DIOTG)
Dra. Ieda Del Arco Sanches - Divisão de Pós-Graduação - (DIPGR)
Silvia Castro Marcelino - Divisão de Biblioteca (DIBIB)
BIBLIOTECA DIGITAL:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
EDITORAÇÃO ELETRÔNICA:
Ivone Martins - Divisão de Biblioteca (DIBIB)
Cauê Silva Fróes - Divisão de Biblioteca (DIBIB)



sid.inpe.br/mtc-m21c/2020/12.21.15.18-RPQ

EXTENDED GRAVITOELECTROMAGNETISM. II.
METRIC PERTURBATION

Gerson Otto Ludwig

URL do documento original:
<http://urlib.net/8JMKD3MGP3W34R/43QQMA2>

INPE
São José dos Campos

2020

http://urlib.net/8JMKD3MGP3W34R/43QQMA2


Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Li-
cense.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/


Extended gravitoelectromagnetism. II. Metric perturbation

G.O. Ludwig
National Institute for Space Research, 12227-010 São José dos Campos, SP, Brazil,

National Commission for Nuclear Energy, 22294-900 Rio de Janeiro, RJ, Brazil

(Dated: March, 2018 – June, 2020)

The perturbation in the metric tensor is obtained in terms of the flat-space total energy-
momentum tensor given by the sum of the consistent fully-relativistic fluid and gravitoelectro-
magnetic (GEM) field contributions. Expressions for the perturbed metric in the internal (fluid)
and external (vacuum) regions are given in terms of the fluid and field variables. This formulation
of gravitoelectromagnetism is compatible with the formation of gravitational waves. The geodesic
equation is obtained both in the internal and external regions, including new terms neglected in the
standard gravitomagnetic formulation.

I. INTRODUCTION

This paper picks up the extended gravitoelectromagnetic theory developed in the part I article (cf. the joint
paper “Extended gravitoelectromagnetism. I. Variational formulation”) [1]. A consistent set of equations of motion
for a fully-relativistic perfect fluid immersed in a gravitoelectromagnetic field was obtained, in part I, by means of a
variational formulation . The variational equations fully describe the dynamics of matter in the flat-space gravitational
field. This approach to the problem led to an extended version of the original gravitomagnetic theory developed by
Thirring [2–4].

In the present part II article the energy-momentum tensor derived in part I is used to obtain the space-time curvature
effects according to the weak field approximation of Einstein’s gravitational field equation. The gravitoelectromagnetic
terms, forming both the interaction and the free-field Lagrangian in the flat-space variational formulation, correspond
to a correction to first order, in the equation of motion, as measured by the strength G of the gravitational field.
In this sense, the extended gravitoelectromagnetic formulation already gives a consistent first order post-Minkowski
approximation. The total energy-momentum tensor formed by the sum of the fluid and gravitoelectromagnetic
tensors satisfies the energy-momentum conservation equation to first order. This flat-space energy-momentum tensor
forms a convenient source for the linearized Einstein equation. One may say that the equivalence between matter
and gravitational energy is reinstated in the theory, allowing matter to exchange energy and momentum with the
gravitational field. There is no conflict with Einstein’s theory since the gravitoelectromagnetic field does not generate
curvature, which is restricted to the mass portion of the tensor.

The paper is structured as follows. Section II reviews the equations which describe the dynamics of a fully relativistic
perfect fluid in the gravitoelectromagnetic context. After a brief review of the linearized gravitational theory, in
Section III, the total energy-momentum tensor formed by the sum of the consistent fluid and field tensors is taken
as a source in the linearized theory of general relativity. The corrections to the metric components inside the fluid
(Subsection III A) and in the vacuum outside the fluid (Subsection III B) can be obtained in a straightforward manner
using the linearized gravitational field equations. The geodesic equations both inside the fluid source and in vacuum
are derived in Section IV. Application of the geodesic equation is deferred to the final article in this three parts series.
Section V gives the final comments and conclusions.

The most important content of the paper is in Section III, which describes the consistent weak gravitational field
formulation of extended gravitoelectromagnetism.

II. FLUID DYNAMICS IN THE GRAVITOELECTROMAGNETIC FIELD

The variational procedure used in the part I article demonstrates that the equation for the evolution of the fluid
velocity u,

d

dt

[
γ

(
1 +

γA
γA − 1

γkBT

mc2

)
u

]
= −∇p

ρ
+Eg + u×Bg, (1)

describes the relativistic fluid flow under the action of a self-consistent gravitoelectromagnetic (GEM) field in flat
space. This equation shows the fully relativistic thermal motion effect on the fluid inertia, which increases the
magnetic reconnection rate in astrophysical plasmas [5] but also affects neutral fluid flow. The equation of motion is
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complemented by the equation of continuity (conservation of the number of particles)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

and by Maxwell’s source equations

∇ ·Eg = −4πGρ GE (gravitoelectric) Gauss’s law

∇×Bg = −4πG

c2
ρu+

1

c2
∂Eg
∂t

GEM Ampère’s law
(3)

The fluid pressure is denoted by p and the mass density ρ is given in terms of the number density n by ρ = mn. The
Lorentz factor is

γ =
1√

1− u2/c2
=

1√
1− β2

, (4)

and the “adiabatic” coefficient γA is a function of the fluid temperature [6]. The gravitational constant and the
velocity of light are denoted by G and c, respectively. The gravitoelectromagnetic field variables Eg and Bg are
related to the potentials φg and Ag by

Eg = −∇φg −
∂Ag

∂t
,

Bg = ∇×Ag,
(5)

which lead to the homogeneous Maxwell equations

∇×Eg +
∂Bg

∂t
= 0 GEM Faraday’s law

∇ ·Bg = 0 GM (gravitomagnetic) Gauss’ law
(6)

The pressure p is related to the temperature T according to the isentropic flow condition ds/dt = 0 (conservation of
energy). For a perfect fluid the equation of state p = nkBT relates the density n to the temperature T , closing the set
of fluid equations. In their weakly relativistic form, these equations of fluid motion in a gravitoeletromagnetic field
can be used to reproduce the observed shape of the galactic rotation curve without introducing dark matter [7].

Multiplying equation (1) by ρ and applying the continuity condition (2) gives the momentum density conservation
equation

∂

∂t

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
ρu

]
+ ∇ ·

[
γ

(
1 +

γA
γA − 1

γp

ρc2

)
ρuu+ pI

]
= ρEg + j ×Bg,

(7)

where the equation of state p = nkBT was used to eliminate the temperature T . Here j = ρu is the mass current

density and I denotes the unit dyadic. Scalar multiplication of this equation by u and use of the equations of
continuity and state leads to the energy density conservation equation

∂

∂t

[
γρc2 +

(
1

γA − 1
+ β2

)
γ2p

]
+ ∇ ·

[(
γρc2 +

γA
γA − 1

γ2p

)
u

]
= j ·Eg. (8)

The contravariant form of the mass current density four-vector is given by

jµ = (ρc, j) , (9)

so that the covariant equation of continuity becomes

∂µj
µ =

(
1

c

∂

∂t
,∇
)
· (ρc, j) =

∂ρ

∂t
+ ∇ · j = 0. (10)

Defining the gravitoelectromagnetic field tensor by

Fµνg =

(
0 Eg/c

−Eg/c ε ·Bg

)
, (11)
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where ε is the totally antisymmetric Levi-Civita tensor in three dimensions, the Maxwell source equations are written
as

∂νF
µν
g = −4πG

c2
jµ. (12)

In components form (
1

c

∂

∂t
,∇
)
·
(

0 Eg/c

−Eg/c ε ·Bg

)T
= −4πG

c2
(ρc, j) . (13)

Using ∇·
(
ε ·Bg

)T
=∇·

(
ε
T
·Bg

)
= −∇·

(
ε ·Bg

)
= −∇×Bg, where the superscript T denotes the transposed

tensor, the above equation corresponds to the gravitoelectromagnetic laws of Gauss and Ampère (3).
The anti-symmetric field tensor is given in terms of the four-vector potential

Aµg = (φg/c,Ag) (14)

as follows

Fµνg = ∂µAνg − ∂νAµg , (15)

that is,

(
0 Eg/c

−Eg/c ε ·Bg

)
=

(
−1

c

∂

∂t
∇

)(
φg
c

Ag

)
−

[(
−1

c

∂

∂t
∇

)(
φg
c

Ag

)]T

=

 0 −1

c

∂Ag

∂t
− 1

c
∇φg

1

c
∇φg +

1

c

∂Ag

∂t
∇Ag − (∇Ag)

T

 ,

(16)

which corresponds to the relations (5) between the fields Eg, Bg and the potentials φg, Ag.
The quantities Aµg (x) and Aµg (x)− ∂µf (x) are physically indistinguishable, so that Aµg can be required to satisfy

Lorenz’s condition

∂µA
µ
g =

(
1

c

∂

∂t
,∇
)
·
(
φg
c
,Ag

)
=

1

c2
∂φg
∂t

+ ∇ ·Ag = 0. (17)

The inhomogeneous field equations can be written in terms of the four-potential as

�2Aµg =
4πG

c2
jµ

{
�2φg = 4πGρ

�2Ag =
4πG

c2
j

(18)

Taking into account the momentum (7) and energy (8) density conservation equations, the energy-momentum tensor
of a perfect fluid can be defined by

Tµνf = pηµν +

(
◦
U + p

)
uµuν

c2
, (19)

where ηµν is the Minkowski (flat-space metric) tensor

ηµν =

( −1 0

0 I

)
= ηµν , (20)

uµ = γ (c,u) is the contravariant form of the fluid four-velocity, and
◦
U is the proper energy density, sum of the rest

mass and thermal energy densities,

◦
U =

◦
nmc2 +

p

γA − 1
=
ρc2

γ
+

p

γA − 1
. (21)
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The number density
◦
n in the rest frame, denoted by the upper circle label, is given in terms of the number density n

in the moving frame by
◦
n = n/γ. Accordingly, the temporal and spatial components of

∂νT
µν
f = jνF

µν
g (22)

correspond to the energy and momentum density conservation equations, respectively. Indeed,

(
1

c

∂

∂t
,∇
)
·

 γ2

(
◦
U + pβ2

) (
◦
U + p

)
γ2u/c(

◦
U + p

)
γ2u/c pI +

(
◦
U + p

)
γ2uu/c2


T

= (−ρc, j) ·
(

0 Eg/c

−Eg/c ε ·Bg

)T (23)

The energy conservation equation is given by the temporal component of the above equation

1

c

∂

∂t

[
γ2

(
◦
U + pβ2

)]
+ ∇ ·

[(
◦
U + p

)
γ2u

c

]
= j · Eg

c
, (24)

and the momentum conservation equation is given by the spatial components

1

c

∂

∂t

[(
◦
U + p

)
γ2u

c

]
+ ∇ ·

[(
◦
U + p

)
γ2uu

c2
+ pI

]
= ρEg + j ×Bg. (25)

Note that −j ·
(
ε ·Bg

)
= j × Bg. With some rearrangement these equations can be written in the form of the

momentum density (7) and energy density (8) conservation equations.
The thermodynamic potentials in the rest frame satisfy the second law

◦
Tds = d

( ◦
U/
◦
n

)
+ pd

(
1/
◦
n
)
, (26)

where s is the specific entropy and
◦
T = γT is the rest frame temperature.

In summary, the dynamics of a fully relativistic perfect fluid in the flat-space gravitoelectromagnetic field is governed
by the covariant set of equations

∂νT
µν
f = jνF

µν
g energy-momentum conservation

�2Aµg =
4πG

c2
jµ Maxwell’s source equations

puµ∂µs = 0 entropy conservation

(27)

with

Fµνg = ∂µAνg − ∂νAµg and ∂µA
µ
g = 0. (28)

This set of covariant equations gives a total of 9 equations in the 5 fluid (ρ,u, p) and 4 field (φg,Ag) variables.
Note that the continuity condition is automatically satisfied by Maxwell’s source equations constrained by Lorenz’s
condition for Aµg . Note also that the energy-momentum equation constrained by the second law of thermodynamics
satisfies the condition of isentropic flow [1]. Taking into account the second law (26) only one equation of state, the
perfect gas law in the present case, is needed to close the system of fluid-field equations. In general, the temperature
can be considered as defined by the second law.

The fluid energy-momentum tensor Tµνf can be written in components form as follows

Tµνf =

(
Uf cGf

cGf T f

)
, (29)

where the energy, momentum and stress densities for the fluid are defined by

Uf = γρc2 +

(
1

γA − 1
+ β2

)
γ2p energy density

Gf =

(
γρ+

γA
γA − 1

γ2p

c2

)
u momentum density

T f = γρuu+

(
I +

γA
γA − 1

γ2uu

c2

)
p stress density

(30)
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Using Maxwell’s source equations the four-current density jµ = (ρc, j) can be eliminated from the right-hand side
of the energy-momentum conservation equation by defining the energy, momentum and stress densities for the field

Ug = −
E2
g + c2B2

g

8πG
= T g : I energy density

Gg = − 1

4πG
(Eg ×Bg) =

Sg
c2

momentum density

T g = − 1

4πG

(
E2
g

2
I −EgEg

)
− c2

4πG

(
B2
g

2
I −BgBg

)
stress density

(31)

so that the gravitational field energy-momentum tensor can be defined by

Tµνg =

(
Ug cGg

cGg T g

)
. (32)

The vector of Poynting is denoted by Sg = c2Gg. The full energy-momentum equation which describes the flat space
dynamics of a fluid in the gravitoelectromagnetic field can be written in covariant form as follows

∂νT
µν = 0. (33)

where Tµν is the total energy-momentum tensor given by the sum of the fluid Tµνf and gravitoelectromagnetic Tµνg
tensors:

Tµν = Tµνf + Tµνg =

(
Uf + Ug c (Gf +Gg)

c (Gf +Gg) T f + T g

)
. (34)

The equation ∂νT
µν = 0 describes the exchange of energy between matter and the gravitoelectromagnetic field in

flat space. As shown in the part I article, the full set of variational fluid-field equations supports the formation
of gravitoelectromagnetic waves, as originally deduced by Heaviside [8]. These waves are based on a vector field,
reproducing many, but not all, of the general relativity features of the tensor-based gravitational waves [9]. Clearly,
the gravitoelectromagnetic is a vector field, constituting only part of the full tensorial solution to gravitational theory.
Nevertheless, the variational formulation gives a strong physical basis for the theory in flat space. The connection
between the gravitoelectromagnetic and gravitational theories is explored in the next section.

III. WEAK-FIELD APPROACH TO GRAVITOELECTROMAGNETISM

In the linearized gravitational field theory the metric tensor gµν is treated as a linear perturbation from the flat-space
metric ηµν defined by equation (20):

gµν (xµ) = ηµν + hµν (xµ) . (35)

Since both gµν and ηµν are symmetric, the metric perturbations hµν are symmetric functions of xµ = (ct, r), and
are assumed of small magnitude |hµν | � 1. By neglecting terms of second and higher order in |hµν |, the weak-field
approximation to Einstein’s field equation leads to the following set of equations [10–13], �2h̃µν = −16πG

c4
Tµν linearized Einstein equation

∂ν h̃µν = 0 harmonic gauge
(36)

where h̃µν is the trace-reversed metric perturbation

h̃µν = hµν −
1

2
ηµνh. (37)

The trace of h̃µν is

h̃ = ηµν h̃µν = ηµνhµν − 2h = −h, (38)
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which is the trace of hµν with the sign reversed. The actual metric perturbation hµν is given in terms of the trace-
reversed perturbation by

hµν = h̃µν −
1

2
ηµν h̃, (39)

and the linearized metric is given by

gµν = ηµν + h̃µν −
1

2
ηµν h̃. (40)

The linearized field equation (36) implies that the energy-momentum tensor must satisfy the consistency condition
(equivalent to the harmonic gauge)

∂νTµν = 0. (41)

In the weak-field approximation the indices of a quantity that is of order of magnitude of hµν can be raised or lowered
using the Minkowski metrics ηµν and ηµν , respectively, instead of gµν or gµν . Therefore, to order |hµν | � 1, the
harmonic gauge is equivalent to the flat space energy-momentum conservation equation in (33)

∂νT
µν = 0. (42)

The question is how to extend the definition of Tµν so that the exact Einstein’s field equation is satisfied, to all orders
of |hµν |, while the modified energy-momentum for a gravitational field plus the contained matter is conserved. This is
achieved, in a general form, by means of the pseudo-tensor reformulation of Einstein’s equation advanced by Landau
and Lifshitz [10]. In the present article it is proposed to define Tµν by (34), which may lead to a solution that differs
from the exact one by terms of second-Minkowski order G2. Eventual spurious terms or indefiniteness introduced in
the metric perturbations are of second Minkowski-order. They can be presumably corrected afterwards, by adjusting
boundary conditions. An example is given in Section IV for the derivation of the geodesic equation in the vacuum
region, where the far-field solution is adjusted to the correct energy limit.

Considering the formulation presented in Section II, the dynamics of a perfect fluid in the gravitational weak-field
approximation is governed by

�2h̃µν = −16πG

c4
Tµν field equation

∂ν h̃µν = 0 harmonic gauge
puµ∂µs = 0 specific entropy conservation

(43)

where Tµν already constitutes a consistent first Minkowski-order solution as given by equations (33) and (34). The field
equation (linearized Einstein equation) constitutes ten equations relating the ten components of the symmetric metric

tensor perturbation h̃µν to the energy-momentum tensor Tµν . The harmonic gauge gives four more equations for h̃µν .
Finally, the entropy conservation equation gives one equation relating the fluid variables (equation of state). Hence,

there is a total of fifteen equations for the ten components h̃µν of the metric and for the five fluid variables, namely,
mass density ρ, pressure p and components of the fluid velocity u. The full metric tensor is given by equation (40):

gµν = ηµν + h̃µν −
1

2
ηµν h̃. (44)

It remains to relate the fluid variables to the scalar φg and vector Ag potentials of the gravitoelectromagnetic field.
These four relations are provided by the energy-momentum conservation equation in flat space (33), which is required
for consistency of both the field equation and the harmonic gauge, at least to first order in |hµν |:

∂νT
µν = 0. (45)

According to the variational principle developed in the part I article, this equation describes the dynamics of a
relativistic fluid immersed in the gravitoelectromagnetic field in flat space. As reviewed in Section II, the total
energy-momentum tensor Tµν is given by the sum (34) of the fluid Tµνf and gravitoelectromagnetic Tµνg tensors:

Tµν = Tµνf + Tµνg =

(
Uf + Ug c (Gf +Gg)

c (Gf +Gg) T f + T g

)
. (46)
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Furthermore, the gravitoelectromagnetic field variables in Tµνg are given in terms of the scalar φg and vector Ag

potentials by the definitions (5), here repeated for convenience:

Eg = −∇φg − ∂Ag/∂t and Bg = ∇×Ag. (47)

In this form the field equation for the metric perturbation constitutes, combined with the harmonic gauge and the
conservation of specific entropy, a closed set of equations for describing the gravitational field and the fluid dynamics,
while preserving momentum-energy conservation in flat space.

One must keep in mind that in general relativity the exchange of energy and momentum is allowed only between mat-
ter and non-gravitational fields represented by Tµν . This exchange is not allowed between matter and the gravitational
field itself, which is governed by the exact Einstein’s field equations. In the present extended gravitoelectromagnetic

formulation it is assumed that h̃µν is generated by the total densities of energy and momentum in the flat-space,
fluid-field system. This non-standard assumption implies that mass and energy share the same role in establishing
gravity, and will be further clarified in Subsection III A. The difference between the two formulations involves second

order terms in the perturbation h̃µν , which can be possibly corrected by adjusting boundary conditions. Alternatively,

one may consider that in the limit of very small metric perturbations (
∣∣∣h̃µν∣∣∣ → 0) the fluid dynamics in flat space

is described by the gravitoelectromagnetic equations listed in Section II. The usual Newtonian limit corresponds to
weak-field, quasi-stationary and non-relativistic motions, while the gravitoelectromagnetic description includes the
weak-field effects of fast-varying, relativistic mass currents.

Note: The transformation

∂νhµν →
(
∂ν h̃µν

)′
= ∂ν h̃µν −�2ξµ (48)

shows that the harmonic gauge ∂ν h̃µν = 0 is preserved by a coordinate transformation xµ → xµ + ξµ with

�2ξµ = 0. (49)

If �2ξµ = 0, then also �2ξµν = 0, where

ξµν = (∂µξν + ∂νξµ)− ηµν∂ρξρ (50)

because the flat-space d’Alembertian �2 commutes with the ordinary derivatives ∂µ. Then, the transfor-
mation

hµν → h̃′µν = h̃µν − (∂µξν + ∂νξµ − ηµν∂ρξρ) (51)

shows that solutions of the homogeneous equation �2h̃µν = 0 (true vacuum solutions) can be modified
by the subtraction of the arbitrary functions ξµ, which satisfy the same equation �2ξµν = 0. This means
that the four arbitrary functions ξµν can be chosen so as to impose four conditions on the homogeneous

solutions h̃µν . These gauge conditions can not be imposed on the linearized Einstein equation either inside

the fluid source or in the near-field region, where Tµν 6= 0 and �2h̃µν 6= 0. Nevertheless, homogeneous
solutions can always be added inside the source, representing gravitational radiation coming from infinity.
As will be seen in Subsection III B, two of these gauge conditions can be applied in vacuum, both in the
near- and far-field regions, but the application of the full set of four gauge conditions is restricted to the
far-field (radiation) region.

A. Metric perturbation in the fluid region

The metric tensor perturbation inside the fluid can be written in terms of an effective scalar potential φeff and an
effective vector potential Aeff in the following form

h̃µν = 2

( −φeff/c
2 Aeff/c

Aeff/c −φeffI/c
2 +ψeff/c

2

)
. (52)
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Here the scalar φeff, the vector Aeff and the symmetric dyadic ψeff represent the ten components of the symmetric

tensor h̃µν . The harmonic gauge gives the following relations between the components of h̃µν :

∂ν h̃µν =

(
−1

c

∂

∂t
, ∇

)
· 2
( −φeff/c

2 Aeff/c

Aeff/c −φeffI/c
2 +ψeff/c

2

)T

= 2


1

c

(
1

c2
∂φeff

∂t
+ ∇ ·Aeff

)
1

c2

(
−∂Aeff

∂t
−∇φeff + ∇ ·ψeff

)
 = 0.

(53)

The time- and space-like components of this condition give
∇ ·Aeff +

1

c2
∂φeff

∂t
= 0

∇ ·ψeff = ∇φeff +
∂Aeff

∂t

(54)

Taking the curl and the divergence of the space-like component one obtains

∇×
(
∇ ·ψeff

)
=

∂

∂t
(∇×Aeff) ,

∇ ·
(
∇ ·ψeff

)
= ∇2φeff +

∂

∂t
(∇ ·Aeff) = ∇2φeff −

1

c2
∂2φeff

∂t2
= �2φeff.

(55)

The above relations are used to define the effective gravitoelectric and gravitomagnetic fields either in terms of the

tensor ψeff, or in terms of the potentials φeff and Aeff:

Eeff = −∇ ·ψeff = −∇φeff −
∂Aeff

∂t
,

∂Beff

∂t
= ∇×

(
∇ ·ψeff

)
=

∂

∂t
(∇×Aeff) .

(56)

The effective gravitoelectromagnetic field satisfies the consistency relations

∇×Eeff = −∂Beff

∂t
effective GEM Faraday’s law

∇ ·Beff = 0 effective GM Gauss’s law
(57)

Now, the field equation yields
(i) For µ = 0 and ν = 0:

�2h̃00 = −16πG

c4
T00 ∴ �2φeff =

8πG

c2
(Uf + Ug) . (58)

(ii) For µ = 0 and ν = i:

�2h̃0i = −16πG

c4
T0i ∴ �2Aeff = −8πG

c2
(Gf +Gg) . (59)

(iii) For µ = i and ν = j:

�2h̃ij = −16πG

c4
Tij ∴ �2

(
φeffI −ψeff

)
=

8πG

c2

(
T f + T g

)
. (60)

Thus the effective fields satisfy the set of inhomogeneous wave equations
�2φeff =

8πG

c2
(Uf + Ug) = 8πG

[
γρ+

(
1

γA − 1
+ β2

)
γ2p

c2
+
Ug
c2

]
�2Aeff = −8πG

c2
(Gf +Gg) = −8πG

c2

[(
γρ+

γA
γA − 1

γ2p

c2

)
u+

Sg
c2

]
�2ψeff =

8πG

c2

[
(Uf + Ug) I −

(
T f + T g

)] (61)
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which can always be integrated inverting the d’Alembertian operator. Accordingly, the effective scalar potential φeff

is given in terms of the total fluid and gravitoelectromagnetic energy density, U = Uf + Ug, by

φeff (r, t) = −2G

c2

∫
U (r′, t′)

|r − r′|
d3r′, (62)

where t′ = t−|r − r′| /c is the retarded time. Similarly, the effective vector potential Aeff and the tensor ψeff are given

in terms of the total momentum density G = Gf +Gg and of the total stress tensor T = T f + T g by, respectively,

Aeff (r, t) =
2G

c2

∫
G (r′, t′)

|r − r′|
d3r′,

ψeff (r, t) = φeff (r, t) I +
2G

c2

∫
T (r′, t′)

|r − r′|
d3r′.

(63)

In this way the metric tensor perturbations can be determined in terms of the fluid variables ρ, p and u, and of the
gravitoelectromagnetic field variables φg and Ag. The fluid and field variables satisfy the equation of momentum
conservation, the energy conservation equation, the equation of state for isentropic flow, and the equations of Poisson
and Ampère. In other words, the gravitoelectromagnetic field variables are determined in terms of consistent distri-
butions of mass and current by means of the Maxwell source equations; and the metric tensor perturbations depend

both on the mass and field distributions. The harmonic gauge condition ∂ν h̃µν = 0 is equivalent, at least up to first
order in |hµν |, to the energy-momentum conservation equation ∂νT

µν = 0, which must be consistently solved using
the equations listed in Section II. Note also that an order of magnitude comparison of the field equations for the
metric perturbations with dominant mass density contribution gives

�2h̃00 = −16πG

c2

[
γρ+

(
1

γA − 1
+ β2

)
γ2p

c2
+
Ug
c2

]
∼ −16πG

c2
γρ ∼ 1,

�2h̃0i = −16πG

c3

[(
γρ+

γA
γA − 1

γ2p

c2

)
u+

Sg
c2

]
0i

∼ −16πG

c2
γρ
ui
c
∼ β,

�2h̃ij = −16πG

c4

[
γρuu+

(
I +

γA
γA − 1

γ2uu

c2

)
p+ T g

]
ij

∼ −16πG

c2
γρ
uiuj
c2

∼ β2.

(64)

These relations clearly show that for dominant matter the time-space components are related to the relativistic mass
currents, and the space-space components are related to the fluid stresses.

In this form, by keeping the field contributions, the metric tensor perturbations inside the fluid source can be solved
consistently with the fluid motion in the gravitational field itself. Physically, the first-order Minkowski approximation
is applied in the space between the fluid particles (dust) where the motion is governed by mean Vlasov fields produced
by the same point-like particles. Otherwise, the fluid motion must be governed by extraneous non-gravitational fields,
or simply introduced in the form of given sources, not determined consistently. The same situation exists in the classic
problem of linear electromagnetism, where either the fields are calculated in terms of given sources, or the motion of
the particles is calculated for given fields. It is clear also that the field contributions to the metric are of the order
of G2.

As will be seen in the next subsection, in the vacuum region the metric perturbations depend on the field components
only, which are determined in terms of the internal motion of the fluid sources. Accordingly, one may consider the
fluid itself as a distribution of particles (dust) immersed in a “flat” vacuum (excepting boundary regions). Metric
perturbations due to microscopic motion cancel out, so that only macroscopic fluid motion produces significant
gravitational perturbations.

B. Metric perturbation in the vacuum region

In the vacuum region near a mass distribution the metric tensor perturbation depends on the gravitoelectromagnetic
field components only. The metric perturbation can be written as

h̃µν = 2

( −φg/c2 Ag/c

Ag/c −φgI/c2 +ψg/c
2

)
, (65)
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and the harmonic gauge leads to

∂ν h̃µν = 0


∇ ·Ag +

1

c2
∂φg
∂t

= 0 Lorenz gauge

∇ ·ψg = ∇φg +
∂Ag

∂t
= −Eg GEM field

(66)

where the second equation serves to confirm the definition of the gravitoelectromagnetic field Eg. Furthermore

∇×
(
∇ ·ψg

)
=

∂

∂t
(∇×Ag) =

∂Bg

∂t
,

∇ ·
(
∇ ·ψg

)
= ∇2φg +

∂

∂t
(∇ ·Ag) = ∇2φg −

1

c2
∂2φg
∂t2

= �2φg.
(67)

The harmonic gauge ∂ν h̃µν = 0 relates ψg to the gravitoelectromagnetic field according to the previous definition (cf.
equation 5)

∇ ·ψg = ∇φg +
∂Ag

∂t
= −Eg, (68)

and gives a straightforward relation in a region free of mass sources

∇ ·
(
∇ ·ψg

)
= �2φg = −∇ ·Eg = 0. (69)

In the Lorenz gauge the scalar potential φg and the vector potential Ag satisfy the homogeneous wave equations
(cf. equation (18)):

�2φg = 0 and �2Ag = 0. (70)

Hence

�2h̃µν = 2

(
0 0

0 �2ψg/c
2

)
. (71)

The symmetric tensor ψg may be formed by the juxtaposition of two vectors a and e = |e| ê, where ê denotes the
unit vector in the direction of e:

ψg =
ae+ ea

2
= a‖êê+ |e|

(
a⊥ê+ êa⊥

2

)
,

a · ê = a‖ = ψg : êê = ψg : I,
a⊥ · ê = 0,

a⊥ =
2

|e|

(
ψg · ê− a‖ê

)
=

2

|e|

(
ê ·ψg − a‖ê

)
.

(72)

The trace of the perturbation h̃µν in vacuum is

h̃ = ηµν h̃µν =

( −1 0

0 I

)
: 2

( −φg/c2 Ag/c

Ag/c −φgI/c2 +ψg/c
2

)
=

2

c2

(
ψg : I − 2φg

)
=

2

c2
(
a‖ − 2φg

)
.

(73)

Thus

�2h̃ =
2

c2
�2
(
a‖ − 2φg

)
=

2

c2
�2a‖. (74)

One verifies that �2h̃µν has vanishing time-time and vanishing mixed time-space components. But the space-space
components

�2h̃ij = 2�2ψg/c
2 = �2 (ae+ ea) /c2, (75)
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which correspond to the gravitational waves contribution, do not vanish in general.

As pointed out in the note at the end of the introductory Section III, the harmonic gauge ∂ν h̃µν = 0 is maintained
by a coordinate transformation xµ → xµ + ξµ with

�2ξµ = 0, (76)

and the solutions of the homogeneous equation �2h̃µν = 0 can be transformed as

hµν → h̃′µν = h̃µν − (∂µξν + ∂νξµ − ηµν∂ρξρ) , (77)

where the function

ξµν = (∂µξν + ∂νξµ)− ηµν∂ρξρ (78)

satisfies the same equation �2ξµν = 0. Therefore, the solutions of �2h̃µν = 0 can be modified by the subtraction of
the functions ξµν , that is, a total of four arbitrary functions ξµ can be chosen so as to impose four conditions on the

homogeneous solutions h̃µν . However, in the present problem only two functions defined by

ξ00 = (∂0ξ0 + ∂0ξ0)− η00∂ρξ
ρ = 2∂0ξ0 + ∂ρξ

ρ,
ξ0i = ξi0 = (∂0ξi + ∂iξ0)− η0i∂ρξ

ρ = (∂0ξi + ∂iξ0)− ∂ρξρ,
(79)

which satisfy the equations

�2ξ00 = 0 and �2ξ0i = 0, (80)

can be safely subtracted from �2h̃µν = 0 without modifying the solution in the vacuum region. Taking into account
this gauge freedom one can impose the following set of conditions on the metric tensor in vacuum:

h̃ = 0 traceless gauge condition
|e| = 1 normalization of the reference direction

(81)

Therefore, in the vacuum region the stress tensor ψg can be represented by

ψg = a‖êê+
a⊥ê+ êa⊥

2
= 2φgêê+

a⊥ê+ êa⊥
2

, (82)

so that

h̃ =
2

c2

(
ψg : I − 2φg

)
=

2

c2
(
a‖ − 2φg

)
= 0 =⇒ a‖ = 2φg, (83)

and ê establishes a reference direction (direction of propagation of the gravitational wave). The metric perturbation
in the vacuum region becomes

h̃µν = 2

 −φgc2 Ag

c
Ag

c
−φg
c2

(
I − 2êê

)
+
a⊥ê+ êa⊥

2c2

 . (84)

As stated previously, the harmonic gauge ∂ν h̃µν = 0 corresponds to the Lorenz gauge for φg and Ag, and to

a relation between ∇ · ψg and Eg. The Lorenz gauge for φg and Ag can be replaced by the equivalent condition

∇ ·
(
∇ ·ψg

)
= 0 so that

∂ν h̃µν = 0


∇ ·

(
∇ ·ψg

)
= ∇ ·

[
∇ ·

(
2φgêê+

a⊥ê+ êa⊥
2

)]
= 0

∇ ·ψg = ∇ ·
(

2φgêê+
a⊥ê+ êa⊥

2

)
= ∇φg +

∂Ag

∂t
= −Eg

(85)

Besides φg the symmetric tensor ψg is characterized by four components represented by a⊥ and ê (the unit vector
ê is described by two direction cosines). These components can, in principle, be determined in terms of φg and Ag
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using the four equations provided by the harmonic gauge for h̃µν , with Eg acting as a driving field. Moreover, φg and
Ag satisfy the homogeneous wave equations

�2φg = 0 and �2Ag = 0, (86)

which allow the solution of the problem in the vacuum region for given initial conditions at the free-boundary fluid-
vacuum interface. The metric gravitational waves are generated inside the fluid by the gravitoelectromagnetic waves
(fluid oscillations), due to the coupling provided by the metric perturbations. Inside the fluid the metric gravitational
waves are related to the gravitoelectromagnetic waves in an intricate way. Outside the fluid, but near the fluid-vacuum
interface, there are strong capacitive and inductive effects from the internal mass and mass current distributions that
affect both the non-propagating and propagating gravitoelectromagnetic components. Conversely, the gravitoelec-
tromagnetic field back-pressure affects the position of the free-boundary between the fluid and vacuum. Also, the
propagation of the radiating gravitoelectromagnetic components is affected by the field near the interface. One may
say that the gravitational waves suffer refraction or diffraction effects in the near-field region. Far from the interface
the gravitational waves become nearly plane waves transmitting net energy at large distances from the source. For a
fixed orientation ê = ẑ the stress tensor in the far-field region can be written in matrix form

ψg = 2φgêê+
a⊥ê+ êa⊥

2
=

 0 0 a⊥ · x̂/2
0 0 a⊥ · ŷ/2

a⊥ · x̂/2 a⊥ · ŷ/2 2φg

 . (87)

The components of a⊥ are related to the components of the gravitoelectromagnetic force ∂Ag/∂t which, in the high

frequency regime, are given in terms of the mass current density fluctuations in the source. The equations for ψg
describe the propagation of gravitational waves at the speed of light in the vacuum region. These equations must be

simultaneously solved with the equations for φg and Ag in order to determine the four components a⊥ and ê of ψg
which satisfy the boundary conditions at the fluid-vacuum interface.

Recall that the wave equation in the vacuum region gives

�2h̃µν =


0 0

0
2

c2
�2

(
2φgêê+

a⊥ê+ êa⊥
2

)
︸ ︷︷ ︸

ψg

 . (88)

One verifies that the homogeneous wave equation �2h̃µν = 0 can be fully satisfied if φg, a⊥ and ê are governed by
the wave equation

�2ψg = �2

(
2φgêê+

a⊥ê+ êa⊥
2

)
= 0, (89)

which gives additional constraints for a⊥ and ê taking notice that �2φg = 0. In the far-field region, for a fixed
direction ê (which can be identified as the propagation direction of the gravitational wave), this reduces to a wave
equation for a⊥ (with two independent polarizations)

�2a⊥ = 0. (90)

However, the additional constraints imposed by �2ψg = 0 cannot in general be satisfied in the near-field region. Only
in the far-field region the gravitational wave detaches from the source and propagates independently. The additional

condition �2ψg ∼ 0 can be used to formally separate the near- and far-field regions.
If gravitational waves are neglected, that is, a⊥ ∼ 0, the gauge freedom allows to impose the following set of four

conditions on the metric tensor in vacuum:

h̃ = 0 traceless gauge condition
∂Ag/∂t ∼ 0 non-radiating regime

(91)

This case corresponds to the low-frequency regime with the induction gravitoelectromagnetic fields vanishing in the
far-field region. Note that the gravitoelectromotive force −∂Ag/∂t is responsible for the gravitoelectromagnetic field
associated with metric gravitational waves. Note also that the non-radiating regime condition ∂Ag/∂t ∼ 0 breaks
the connection of the gravitational waves with the source. In this case the gravitoelectromagnetic fields Eg and Bg
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represent induction fields that do not radiate according to the Lorenz gauge condition (note that the fields are not
necessarily static, but slowly varying only):

∇ ·ψg = ∇φg +
∂Ag

∂t
= −Eg =⇒ Eg ∼ −∇φg

∇×
(
∇ ·ψg

)
=

∂

∂t
(∇×Ag) =

∂Bg

∂t
=⇒ ∂Bg

∂t
∼ 0

∇ ·
(
∇ ·ψg

)
= ∇2φg +

∂

∂t
(∇ ·Ag) = �2φg = 0 =⇒ ∇2φg ∼ 0

(92)

In general, the gravitoelectromagnetic field in vacuum must satisfy the boundary conditions at the fluid-vacuum
interface. Assuming that there are neither a surface mass density, σ = 0, nor a surface mass current density, K = 0,
the metric tensor perturbations must be continuous at the fluid-vacuum interface:

φg|s = φeff|s ,
Ag|s = Aeff|s ,
ψg

∣∣∣
s

= ψeff

∣∣∣
s
.

(93)

They must also satisfy the conditions at large distances from the mass source, where only gravitoelectromagnetic and
gravitational waves propagate.

The scalar potential φg and the vector potential Ag satisfy the wave equations in vacuum �2φg = 0 and �2Ag = 0.
Thus the scalar potential φg and the vector potential Ag near the fluid-vacuum interface are given in terms of the
retarded mass and mass current distributions inside the source

φg (r, t) = −G
∫
ρ (r′, t′)

|r − r′|
d3r′

Ag (r, t) = −G
c2

∫
j (r′, t′)

|r − r′|
d3r′

(94)

where t′ = t−|r − r′| /c is the retarded time. The gravitoelectromagnetic fields are determined, in the vacuum region,
by both the mass and mass current distributions inside the source, and by the conditions of field continuity at the fluid-
vacuum interface. If gravitational waves are neglected the gravitoelectromagnetic fields become induction fields (low-
frequency regime). In this case the scalar potential φg is given by the instantaneous Coulomb’s law. If gravitational
waves are neglected the vector potential Ag in the vacuum region is given by the instantaneous Biot-Savart law. The
scalar or Newtonian potential φg, in particular, can be approximately determined by solutions of Laplace’s equation
that fit the boundary conditions at the fluid-vacuum interface (φg = φeff at the boundary). Nevertheless, the fields
are governed by different equations in the regions inside and outside the source, with boundary conditions set at the
source-vacuum interface.

IV. GEODESIC EQUATION

An event in a defined point in space and instant of time along a worldline is characterized by the coordinates xµ (τ)
as a function of the proper time τ . The frame-independent space-time element is defined by

ds2 = gµνdx
µdxν , (95)

where xµ = (ct, r). The events registered by an inertial clock occur all at the same place, so that dxi = 0 and the
corresponding proper time element dτ is

c2dτ2 = −ds2 = −gµνdxµdxν . (96)

Thus

gµν
dxµ

dτ

dxν

dτ
= −c2. (97)

In terms of the four-velocity vµ = dxµ/dτ , this relation becomes

gµνv
µvν = −c2. (98)
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The worldline of a test particle in a gravitational field is obtained extremizing the action

S = −mc2
∫ τ2

τ1

dτ. (99)

This leads to the geodesic equation for xµ (τ), which is written in compact form using the Christoffel symbol [10–12]:

d2xσ

dτ2
+ Γσµν

dxµ

dτ

dxν

dτ
= 0. (100)

This is the equation of motion of a test particle according to general relativity. The Christoffel symbol is defined in
terms of the metric as

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (101)

Now, the space-time element ds2 = gµνdx
µdxν in the weak field approximation is calculated in terms of the

linearized metric tensor (40)

gµν = ηµν + hµν = ηµν + h̃µν −
1

2
ηµν h̃ , with

∣∣∣h̃µν∣∣∣� 1 (102)

and the metric tensor perturbation h̃µν is given by equation (52) in terms of the effective potentials inside the fluid:

h̃µν = 2

( −φeff/c
2 Aeff/c

Aeff/c −φeffI/c
2 +ψeff/c

2

)
. (103)

The trace of h̃ = −h is given by

h̃ =
2

c2

(
−2φeff +ψeff : I

)
=

2

c2

(
φeff +

2G

c2

∫
T (r′, t′) : I

|r − r′|
d3r′

)
, (104)

and the metric tensor becomes

gµν =

( −1 0

0 I

)
+ 2

( −φeff/c
2 Aeff/c

Aeff/c −φeffI/c
2 +ψeff/c

2

)
− 1

c2

(
−2φeff +ψeff : I

)( −1 0

0 I

)

=

 −1− 1

c2

(
4φeff −ψeff : I

) 2

c
Aeff

2

c
Aeff

(
1− 1

c2
ψeff : I

)
I +

2

c2
ψeff

 .

(105)

Thus

g00 = −1− φeff

c2
+

2G

c4

∫
T (r′, t′) : I

|r − r′|
d3r′,

gi0 = g0i =
2Aeff,i

c
=

4G

c3

∫
Gi (r′, t′)

|r − r′|
d3r′,

gij = gji =

(
1− φeff

c2
− 2G

c4

∫
T (r′, t′) : I

|r − r′|
d3r′

)
δij +

4G

c4

∫
Tij (r′, t′)

|r − r′|
d3r′,

(106)

where

φeff = −2G

c2

∫
U (r′, t′)

|r − r′|
d3r′. (107)

The space time element is simply

ds2 = g00c
2dt2 + 2g0icdtdx

i + gijdx
idxj . (108)



15

The test particle motion is described by the geodesic equation:


σ = 0 → c

d2t

dτ2
+ Γ0

µν

dxµ

dτ

dxν

dτ
= 0

σ = i → d2xi

dτ2
+ Γiµν

dxµ

dτ

dxν

dτ
= 0

(109)

Considering xi = xi [t (τ)]

d2xi

dt2
=

dτ

dt

d

dτ

(
dτ

dt

dxi

dτ

)
=

(
dτ

dt

)2
d2xi

dτ2
−
(
dτ

dt

)3
d2t

dτ2

dxi

dτ

= −
(
dτ

dt

)2

Γiµν
dxµ

dτ

dxν

dτ
+

(
dτ

dt

)3 Γ0
µν

c

dxµ

dτ

dxν

dτ

dxi

dτ
.

(110)

Hence, the equation of motion can be written as

d2xi

dt2
= −Γiµν

dxµ

dt

dxν

dt
+

Γ0
µν

c

dxµ

dt

dxν

dt

dxi

dt

= −c2Γi00 − 2cΓi0j
dxj

dt
− Γijk

dxj

dt

dxk

dt

+
1

c

(
c2Γ0

00 + 2cΓ0
0j

dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

)
dxi

dt
.

(111)

The linearized Christoffel symbols are

Γσµν
∼=

1

2
ησρ (∂µhνρ + ∂νhρµ − ∂ρhµν)

=
1

2
ησρ

[
∂µ

(
hνρ −

1

2
ηνρh̃

)
+ ∂ν

(
h̃ρµ −

1

2
ηρµh̃

)
− ∂ρ

(
h̃µν −

1

2
ηµν h̃

)]
.

(112)

In explicit time-time, time-space and space-space components

Γi00 =
1

c

∂

∂t
h̃0i −

1

2
∂i

(
h̃00 +

1

2
h̃

)
Γi0j =

1

2c

∂

∂t

(
h̃ji −

1

2
δjih̃

)
+

1

2

(
∂j h̃i0 − ∂ih̃0j

)
Γijk =

1

2
∂j

(
h̃ki −

1

2
δkih̃

)
+

1

2
∂k

(
h̃ij −

1

2
δij h̃

)
− 1

2
∂i

(
h̃jk −

1

2
δjkh

)
Γ0

00 = − 1

2c

∂

∂t

(
h̃00 +

1

2
h̃

)
Γ0

0j = −1

2
∂j

(
h̃00 +

1

2
h̃

)
Γ0
jk = −1

2

(
∂j h̃k0 + ∂kh̃0j

)
+

1

2c

∂

∂t

(
h̃jk −

1

2
δjkh

)
(113)

The metric tensor perturbations inside the fluid are given according to the definition (52) by



h̃00 = −2φeff

c2

h̃0i = h̃i0 =
2Aeff,i

c

h̃ij = h̃ji = −2φeff

c2
δij +

2

c2
ψeff,ij

h̃ = −4φeff

c2
+

2

c2
ψeff : I

(114)
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so that 

Γi00 =
2

c2
∂

∂t
Aeff,i +

1

2c2
∂i

(
4φeff −ψeff : I

)
Γi0j =

1

2c3
∂

∂t

[
2ψeff,ji −

(
ψeff : I

)
δji

]
− 1

c
(∂iAeff,j − ∂jAeff,i)

Γijk =
1

2c2
∂j

[
2ψeff,ki −

(
ψeff : I

)
δki

]
+

1

2c2
∂k

[
2ψeff,ij −

(
ψeff : I

)
δij

]
− 1

2c2
∂i

[
2ψeff,jk −

(
ψeff : I

)
δjk

]
Γ0

00 =
1

2c3
∂

∂t

(
4φeff −ψeff : I

)
Γ0

0j =
1

2c2
∂j

(
4φeff −ψeff : I

)
Γ0
jk =

1

2c3
∂

∂t

[
2ψeff,jk −

(
ψeff : I

)
δjk

]
− 1

c
(∂jAeff,k + ∂kAeff,j)

(115)

Neglecting the second and third-order corrections in the test particle velocity (non relativistic approximation for
the test particle only – the fluid velocity remains relativistic in general):

d2xi

dt2
∼= −c2Γi00 − 2cΓi0j

dxj

dt
+ cΓ0

00

dxi

dt
+ . . .

= −1

2
∂i

(
4φeff −ψeff : I

)
− 2

∂Aeff,i

∂t
+ 2 (∂iAeff,j − ∂jAeff,i)

dxj

dt

+
1

2c2
∂

∂t

(
4φeff −ψeff : I

) dxi
dt
− 1

c2
∂

∂t

[
2ψeff,ij −

(
ψeff : I

)
δij

] dxj
dt

+ . . .

(116)

This equation can be written in vector form as

dv

dt
∼= −1

2
∇
(

4φeff −ψeff : I
)
− 2

∂Aeff

∂t
+ 2v × (∇×Aeff)

+
1

2c2
∂

∂t

(
4φeff +ψeff : I

)
v − 2

c2
∂ψeff

∂t
· v +O[v2].

(117)

Replacing the tensor ψeff by its integrated form (63)

dv

dt
∼= −1

2
∇φeff − 2

∂Aeff

∂t
+ 2v × (∇×Aeff) +

3

2c2
∂φeff

∂t
v

+

(
∇ +

v

c2
∂

∂t

)(
G

c2

∫
T (r′, t′) : I

|r − r′|
d3r′

)

− 4

c2
∂

∂t

(
G

c2

∫
T (r′, t′)

|r − r′|
d3r′

)
· v +O[v2]

(118)

This expression describes the motion of a non relativistic test particle inside a fully relativistic gravitationally “polar-
ized” and “magnetized” fluid. Recall that the effective gravitational potentials are given in integral form by equations
(62) and (63)

φeff (−→r , t) = −2G

c2

∫
U (r′, t′)

|r − r′|
d3r′ and Aeff (r, t) =

2G

c2

∫
G (r′, t′)

|r − r′|
d3r′, (119)

with t′ = t − |r − r′| /c. Neglecting the stress contributions (T ∼ 0) and considering only the dominant mass
contributions, equation (118) in the quasi-static case (∂/∂t ∼ 0) corresponds to the equation of motion of a test
particle in the gravitomagnetic field obtained by Thirring [2][3].

Using the definitions of the effective gravitoelectric and gravitomagnetic fields in terms of the potentials φeff and
Aeff, and also using the harmonic gauge condition c−2∂φeff/∂t = −∇ ·Aeff, the previous equation of motion can be
written in a form similar to the Lorentz force law, which shows additional terms related to the vector potential and
to the stress tensor:

dv

dt
∼=

1

2
Eeff + 2v ×Beff −

3

2

(
∂Aeff

∂t
+ (∇ ·Aeff)v

)
+

(
∇ +

v

c2
∂

∂t

)(
G

c2

∫
T (r′, t′) : I

|r − r′|
d3r′

)

− 4

c2
∂

∂t

(
G

c2

∫
T (r′, t′)

|r − r′|
d3r′

)
· v +O[v2].

(120)
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In vacuum the metric tensor perturbations are given by the definition (84)

h̃00 = −2φg
c2

h̃0i = h̃i0 =
2Ag,i
c

h̃ij = h̃ji = −2φg
c2

(δij − 2eiej) +
2

c2

(
a⊥,iej + eia⊥,j

2

)
h̃ =

2

c2

(
a⊥ê+ êa⊥

2

)
: I = 0

(121)

and the linearized Christoffel symbols by

Γi00 =
1

c2
∂iφg +

2

c2
∂Ag,i
∂t

Γi0j =
1

c
(∂jAg,i − ∂iAg,j)−

1

c3
∂

∂t

[
φg (δji − 2ejei)−

(
a⊥,jei + eja⊥,i

2

)]
Γijk = − 1

c2
∂j

[
φg (δki − 2ekei)−

(
a⊥,kei + eka⊥,i

2

)]
− 1

c2
∂k

[
φg (δij − 2eiej)−

(
a⊥,iej + eia⊥,j

2

)]
+

1

c2
∂i

[
φg (δjk − 2ejek)−

(
a⊥,jek + eja⊥,k

2

)]
Γ0

00 =
1

c3
∂φg
∂t

Γ0
0j =

1

c2
∂jφg

Γ0
jk = −1

c
(∂jAg,k + ∂kAg,j)−

1

c3
∂

∂t

[
φg (δjk − 2ejek)−

(
a⊥,jek + eja⊥,k

2

)]

(122)

The equation of motion becomes

d2xi

dt2
= −∂iφg − 2

∂Ag,i
∂t
− 2 (∂jAg,i − ∂iAg,j)

dxj

dt
+

1

c2
∂φg
∂t

dxi

dt

+
2

c2
(∂jφg)

dxj

dt

dxi

dt
− 1

c2
(∂jAg,k + ∂kAg,j)

dxj

dt

dxk

dt

dxi

dt

+
2

c2
∂

∂t

[
φg (δji − 2ejei)−

(
a⊥,jei + eja⊥,i

2

)]
dxj

dt

+
1

c2
∂j

[
φg (δki − 2ekei)−

(
a⊥,kei + eka⊥,i

2

)]
dxj

dt

dxk

dt

+
1

c2
∂k

[
φg (δij − 2eiej)−

(
a⊥,iej + eia⊥,j

2

)]
dxj

dt

dxk

dt

− 1

c2
∂i

[
φg (δjk − 2ejek)−

(
a⊥,jek + eja⊥,k

2

)]
dxj

dt

dxk

dt

− 1

c4
∂

∂t

[
φg (δjk − 2ejek)−

(
a⊥,jek + eja⊥,k

2

)]
dxj

dt

dxk

dt

dxi

dt
.

(123)

This equation can be written in vector form as

dv

dt
= −∇φg − 2

∂Ag

∂t
+ 2v × (∇×Ag) +

1

c2
∂φg
∂t
v

+2 (∇φg) ·
vv

c2
− 2

v

c
· (∇Ag) ·

v

c
v

+
2

c2
∂

∂t

[
φg

(
I − 2êê

)
−
(
a⊥ê+ êa⊥

2

)]
· v

+2
v

c
·∇

[
φg

(
I − 2êê

)
−
(
a⊥ê+ êa⊥

2

)]
· v
c

−∇
[
φg

(
I − 2êê

)
−
(
a⊥ê+ êa⊥

2

)]
:
vv

c2

− 1

c2
∂

∂t

[
φg

(
I − 2êê

)
−
(
a⊥ê+ êa⊥

2

)]
:
vv

c2
v.

(124)
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Assuming non relativistic motion of the test particle

dv

dt
= −∇φg − 2

∂Ag

∂t
+ 2v × (∇×Ag) +

3

c2
∂φg
∂t
v

− 2

c2
∂

∂t

(
2φgêê+

a⊥ê+ êa⊥
2

)
︸ ︷︷ ︸

ψg

· v +O
[
β2
]
. (125)

Using the harmonic gauge conditions

∇ ·Ag +
1

c2
∂φg
∂t

= 0 and ∇ ·ψg = ∇φg +
∂Ag

∂t
= −Eg, (126)

the previous equation can be written as

dv

dt
= −∇φg + 2v × (∇×Ag)︸ ︷︷ ︸

Bg

− 3 (∇ ·Ag)︸ ︷︷ ︸
−c−2∂φg/∂t

v

+2

∇ ·
(
φgI −ψg

)
︸ ︷︷ ︸

−∂Ag/∂t

− 1

c2
∂ψg
∂t
· v

+O
[
β2
]
,

(127)

where

ψg = 2φgêê+
a⊥ê+ êa⊥

2
. (128)

In the quasi-static case the equation of motion of the test particle becomes simply

dv

dt
= −∇φg + 2v ×Bg +O

[
β2
]
. (129)

The dynamics of the fluid source is ruled by a free-boundary fluid-vacuum interface with emission (or absorption)
of gravitational energy. In the far-field region the test particle is subjected to a nearly plane gravitational wave with
fixed orientation ê. Hence

dv

dt
∼= ∇φg + 2v × (∇×Ag)− 4 (ê ·∇φg) ê

− (∇ · a⊥) ê− ê ·∇a⊥ −
ê · v
c2

∂a⊥
∂t
− ê

c2
v · ∂a⊥

∂t
+O

[
β2
]
.

(130)

Taking the scalar product with v

1

2

dv2

dt
∼= v · (∇φg − ê ·∇a⊥)− (ê · v)

(
4ê ·∇φg + ∇ · a⊥ +

2

c2
v · ∂a⊥

∂t

)
+O

[
β2
]
. (131)

Note that, as expected, the gravitomagnetic field Bg does not work directly, but the gravitoelectric field generated
by the changing gravitomagnetic field (the gravitoelectromotive force −∂Ag/∂t) can do work on the test particle.
Considering the Newtonian limit in the above equation, one verifies that the velocity v must be perpendicular to the
direction of propagation ê of the gravitational wave, that is, the condition ê · v = 0 gives the correct infinite-distance
limit

1

2

dv2

dt
∼= v · (∇φg − ê ·∇a⊥) , where ê · v = 0. (132)

The ê ·v = 0 condition corresponds to the last two gauge conditions that may be imposed in the far-field region. This
is also consistent with the generation of the vector potential A by the transverse matter currents in the source.

Alternatively, neglecting the interaction with the gravitational wave, i.e., taking a⊥ ∼= 0 with ∂φg/∂t ∼= 0 and
∂Ag/∂t ∼= 0 (non-radiating or low frequency regime) but keeping the relativistic corrections for the test particle, the
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general equation of motion in vacuum gives (note that
(

2êê− I
)
· v rotates the vector v through 180◦ about the

direction ê)

dv

dt
= −∇φg −∇

[
φg

(
I − 2êê

)]
:
vv

c2

+2
v

c
· (∇φg)

v

c
+ 2

v

c
·∇

[
φg

(
I − 2êê

)]
· v
c

+2v × (∇×Ag)− 2v
v

c
· (∇Ag) ·

v

c
.

(133)

Here ê corresponds to the reference direction of the intrinsic gravitational wave with negligible amplitude outside
the sources. For vanishing gravitational waves this direction can still be affected by refraction effects in the near
gravitoelectromagnetic field. Neglecting these effects and using ê · v = 0 gives

dv

dt
= −

(
1 +

v2

c2

)
∇φg + 4

v

c
· (∇φg)

v

c

+2v × (∇×Ag)− 2v
v

c
· (∇Ag) ·

v

c
.

(134)

This equation describes the perihelion precession rate of planetary orbits due to relativistic corrections of the test
particle motion, a topic that will be treated in the part III article.

V. COMMENTS AND CONCLUSIONS

A consistent set of hydrodynamic and Maxwell equations for the gravitoelectromagnetic field was obtained, in the
first article of a three parts work, applying Hamilton’s principle to a fully-relativistic perfect fluid, leading to an ex-
tended gravitoelectromagnetic model [1]. Then, in the present second part article, the total energy-momentum tensor
given by the sum of the fluid and field tensors is used to construct a novel form for the metric tensor perturbations,
both inside the fluid and in the external (vacuum) region. The perfect fluid energy-momentum tensor is modified
by the addition of the free-field tensor, in an approach similar to the Landau-Lifshitz pseudotensor proposition. The
combined fluid-field tensor correctly describes the fluid dynamics in flat space, satisfies the energy-momentum conser-
vation equation, and can be used to determine the metric perturbations according to linearized gravity. Since the full
gravitoelectromagnetic field tensor has vanishing trace it does not contribute directly to the time-space curvature, but
it affects the dynamics of the curvature generating matter. Besides the time-time and mixed time-space components,
usually associated with the gravitoelectromagnetic field, the metric perturbations include spatial components related
to the fluid stresses. These stresses act in the formation of gravitational waves, on a higher order in the relativistic
fluid velocity. It is argued that the energy carried by the fluid oscillations (gravity waves) and by the internal gravito-
electromagnetic waves modify the metric, forming gravitational waves that may propagate into vacuum. In vacuum,
the gravitoelectromagnetic field associated with the internal waves may affect the propagation of the gravitational
waves near the fluid-vacuum interface. Further out, in the far-field region, the gravitational waves decouple from the
gravitoelectromagnetic waves, transmitting net energy away from the source. The derived geodesic equation can be
used to describe the motion of a test particle both inside the fluid and in the external region. Application of the
geodesic equation is deferred in this series to the third part article entitled “Extended gravitoelectromagnetism. III.
Mercury’s perihelion precession”.

In retrospect, the article develops a theory of gravitoelectromagnetism which is compatible with the formation of
gravitational waves, that is, with a full set of field equations for the gravitoelectromagnetic fields interacting with a
fluid source. It must be pointed out that Faraday’s law for the fields follows naturally from the present formulation.
The metric perturbation includes time-time, mixed time-space and, in particular, purely spatial tensor components
which describe the formation of gravitational waves. The gravitoelectromagnetic force represented by the time rate
of change of the vector potential is responsible for driving the waves, providing the connection with the transverse
mass current fluctuations. An essential part of the theory is that only two gauge conditions are imposed on the metric
tensor perturbation in the vacuum region. These restricted set of conditions defines the near-field region, close to the
fluid-vacuum interface. The full vacuum gauge conditions are approximately satisfied by the gravitational waves in
the far-field region only. In fact, the imposition of four gauge conditions on the metric tensor perturbations in vacuum
breaks the connection between the gravitoelectromagnetic force and the gravitational waves, restricting the theory to
either quasi-static fields or pure gravitational waves in vacuum.

As a final comment, recall that the gravitoelectromagnetic waves considered in the part I article of the series can also
propagate away from the source into the radiation zone. The pure gravitoelectromagnetic waves are based on a vector
field and have different propagating characteristics, polarizations and radiation patterns compared to the gravitational
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waves associated with the tensorial field of metric perturbations [9]. Arguably, the pure gravitoelectromagnetic waves
correspond to a weakly relativistic stage of the gravitational waves (of the order of β in the source oscillations), and
the tensor related gravitational waves to a strong relativistic stage (of the order of β2). This is a topic that requires
further investigation.
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