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Water cooled toroidal field coil
Forced convection turbulent flow regime

G.O. Ludwig1,2 E-mail address: gerson.ludwig@inpe.br
1National Institute for Space Research, 12227-010 São José dos Campos, SP, Brazil

2National Commission for Nuclear Energy, 22294-900 Rio de Janeiro, RJ, Brazil
(Dated: 30 May 2020)

A one-dimensional pipe flow model is used to address the steady-state cooling requirements for
the toroidal field copper coil of a compact tokamak. The report focuses on the forced convection
turbulent flow regime in the liquid phase, which may extend to the superheated regime of the
coolant. The largest values of the toroidal magnetic field that can be attained within reasonable
limits of temperature rise, pressure drop and pumping power are considered.

I. INTRODUCTION

There has been considerable interest in compact, usually low-power, tokamak reactors for quite some
time [1–8]. Compact tokamaks have been considered as an alternative route for the commercial viability
of nuclear fusion [1, 2, 7, 8], besides allowing the early use of fusion neutrons [3, 5, 6]. Spherical tokamaks
with increased magnetic field seem to be a suitable choice for these applications. Moreover, a main
purpose in developing low-power reactors is to reduce the first-wall load to levels that can be handled
with currently available technologies [4]. Clearly, it is important to assess the technological limits in the
development of compact reactors; in particular, the largest toroidal magnetic field values that can be
reasonably attained.

The required toroidal magnetic field can be obtained using a replaceable copper center post [1, 3, 6].
However, the cooling of the central column puts great limitations in the design of the toroidal field coil
(TF coil). The heat removal from the center post must be balanced with the spacing constraints and the
admissible mechanical stress limit, for a given value of the magnetic induction at the plasma center. This
will be eased only with the use of high-temperature superconductors, still a technological challenge [8],
although low-temperature superconducting TF coils have also been considered [2, 7].

This report examines the forced water cooling of the TF coil for a compact tokamak using a simple
one-dimensional pipe flow model. In general, the simulation of flow and heat transfer along a cooling
channel requires a computationally expensive tridimensional representation. However, the ratio of length
over diameter in the TF system is large; and the flow inside each cooling channel can be considered fully
developed. This allows using one-dimensional pipe flow equations, greatly increasing the computational
efficiency. The problem can be further simplified introducing an effective transverse distance for heat
conduction out off the copper. This effective distance defines in a simple way the boundary layer heat
transfer conditions on the tube wall.

Section II presents the simplified central column and TF coil geometry of a small, compact tokamak.
Section III concerns the cooling requirements for a TF coil producing a central magnetic field in the range
1.0 ∼ 3.0 T. Conclusions and comments are given in Section IV. Appendix A reviews some correlations of
the convective heat-transfer coefficient and friction factor for water in turbulent flow. The thermophysical
properties of water are listed in the Appendix B. A few geometric configurations for the center post
cooling channels are presented in the Appendix C.

II. SIMPLIFIED TOROIDAL FIELD COIL GEOMETRY

This section presents the basic parameters of a compact tokamak focusing on the center post geometrical
constraints. A preliminary design is made of the center post of a TF copper magnet for a small device
with major radius R0 = 0.5 m and minor radius a = 0.3 m (the plasma aspect ratio is A = R0/a = 1.667).
The plasma shape definition is completed with the elongation κ = 2.0 and the triangularity δ = 0.4.

The plasma shape is used merely to set the size of the device. The schematic figures displayed in this
section include simplified cross-sectional views of the plasma, vacuum vessel and TF coil. They are used
to examine the spacing between the main components of the tokamak in the central region. The main
geometrical parameters of the tokamak, and the TF coil in particular, are either defined or evaluated in
this section. The final choice of dimensions depends mostly on the divertor configuration, not yet defined.
Two basic configurations for the central post are presented: a small diameter center post with sufficient
clearance for either a thin inboard shield or a transformer solenoid; and a relatively large diameter center
post with vanishing clearance between the TF coil and the vacuum vessel.
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FIG. 1. Schematic representations of the TF coil (elastic line with variable width), simplified vacuum vessel
centerline and enclosed plasma boundary: the left and right-hand pictures show the poloidal and equatorial
cross-sections, respectively. The points on each turn of the TF coil indicate the half-length positions along the
centerline.

The plasma boundary is defined by the parametric equations

R (θ) = R0 + a

(
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)
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(
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(1)

where Cδ and Cκ are the coefficients of triangularity and elongation, respectively, given in terms of the
triangularity δ and elongation κ by
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(2)

Figure 1 shows the outlines of the contained plasma, vacuum vessel and TF coil.
A basic vacuum vessel is formed by top and bottom torispherical heads closed by inner and outer

cylindrical walls. The torispherical heads are characterized by the average diameter Dv, the average
radius of dish Rv, and the average outer and inner knuckle radii, rv,o and rv,i, respectively. The Klöpper
torispherical head or decimal head is defined by Rv = Dv and rv,o = 0.1Dv, while the standard Korbbogen
torispherical head used in this report is defined by Rv = 0.8Dv and rv,o = 0.154Dv. The average diameter
of the torispherical head is taken equal to Dv = 2.000 m and the thickness of the outer cylindrical wall is
∆v = 0.010 m. The values of the inner cylindrical wall parameters are assumed to be: average diameter
dv = 0.360 m; total height hv = 1.700 m; average knuckle radius rv,i = rv,o/2 = 0.154 m; and thickness
δv = ∆v. These dimensions are chosen in order to accommodate the plasma and possible divertors. The
angle between the horizontal plane and the inner edge of dish (supplement of the angle included by the
inner knuckle) is

βv = arccos

(
dv/2 + rv,i
Rv − rv,i

)
= 1.3377 rad. (3)

The dish center is located on the vertical axis at (0,−Zv) where

Zv = (Rv − rv,i) sinβv −
hv
2

= 0.5569 m. (4)
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The angle between the horizontal plane and the outer edge of dish (angle included by the outer knuckle)
is

αv = arccos

(
Dv/2− rv,o
Rv − rv,o

)
= 1.0056 rad, (5)

and the total height of the outer cylindrical wall is

Hv = 2 [(Rv − rv,o) sinαv − Zv] = 1.0683 m. (6)

The vacuum vessel is symmetric with respect to the equatorial plane. The upper half of the vacuum vessel
centerline is represented in graphical form by: (1) a line joining the points (Dv/2, 0) and (Dv/2, Hv/2)
(outer cylindrical wall); (2) a circular arc of radius rv,o centered at the point (Dv/2− rv,o, Hv/2), with
starting angle 0 and ending angle αv (outer knuckle); (3) a circular arc of radius Rv centered at the point
(0,−Zv) with starting angle αv and ending angle βv (upper dish); (4) a circular arc of radius rv,i centered
at the point (dv/2 + rv,i, hv/2) with starting angle βv, and ending angle π (inner knuckle); and (5) a line
joining the points (dv/2, hv/2) and (dv/2, 0) (inner cylindrical wall). The lines and arcs from (1) to (4)
have a relative thickness ∆v/∆R and the line (5) has a relative thickness δv/∆R, where ∆R = 1.5 m sets
the scale of the graphics. The vacuum vessel centerline is displayed in Fig. 1.

The design of the center post of the TF coil involves various geometrical parameters defined as follows.
First, the number of turns in the TF coil is taken equal to Nt = 12, dividing the center post in Nt sectors,
and the inner radius of the central post is assumed equal to rmin = 0.050 m. The outer radius of the
center post, with small external clearance for a thin inboard shield is rrmax = 0.150 m. For a bare center
post the outer radius can take the maximum value rmax = 0.170 m. The minimum radius of the median
(elastic) line of the TF coil for a shielded center post is

Rmin =
rmin + rmax

2
= 0.10 m, (7)

and the total cross-sectional area of each sector of the central column is

As =
π

Nt

(
r2
max − r2

min

)
= 0.005236 m2. (8)

The cross-sectional area of each of the Nt trapezoidal copper bars that form the central column (including
the area of the cooling holes) is

Ab =

[
rmax cos

(
π

Nt

)
− (rmin + t)

] [
rmax cos

(
π

Nt

)
+ rmin

]
tan

(
π

Nt

)
−t
[
rmax − (rmin + t) sec

(
π

Nt

)]
= 0.004513 m2,

(9)

where t = 0.003 m is the thickness of the insulation layer between bars. The outer width of each trape-
zoidal copper bar is

b = 2

[(
rmax −

t/2

cos (π/Nt)

)
sin

(
π

Nt

)
− t/2

cos (π/Nt)

]
= 0.07374 m. (10)

Considering the thickness t1 = 0.002 m of the external insulation layer of the central column, the spacing
between the TF coil and the vacuum vessel (TF coil – vacuum vessel clearence) is

s1 =

(
dv
2
− δv

2

)
− (rmax + t1) = 0.023 m. (11)

Finally, the spacing between the vacuum vessel and the plasma (vacuum vessel to plasma clearence) is

s2 = (R0 − a)−
(
dv
2

+
δv
2

)
= 0.015 m. (12)

Alternatively, the center post can be configured without a thin inboard shield, that is, a bare center
column enclosed by insulation layers only. The number of turns in the TF coil, Nt = 12, and the inner
radius, rmin = 0.050 m, maintain the previous values, but the outer radius increases to rmax = 0.170 m
giving a minimum median radius of the TF coil equal to

Rmin =
rmin + rmax

2
= 0.11 m. (13)
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FIG. 2. Left picture: Center post of the toroidal field coil with small TF coil – vacuum vessel clearance for either a
thin inboard shield or transformer solenoid. Right picture: Center post without an inboard shield. These pictures
show the central post without cooling channels.

Accordingly, the minimal spacing between the TF coil and the vacuum vessel (TF coil – vacuum vessel
clearance) is

s1 =

(
dv
2
− δv

2

)
− (rmax + t1) = 0.003 m, (14)

where the thickness t1 = 0.002 m of the external insulation layer has the same previous value. The
cross-sectional area of each of the trapezoidal copper bars becomes

Ab =

[
rmax cos

(
π

Nt

)
− (rmin + t)

] [
rmax cos

(
π

Nt

)
+ rmin

]
tan

(
π

Nt

)
−t
[
rmax − (rmin + t) sec

(
π

Nt

)]
= 0.006038 m2,

(15)

and the external width of each trapezoidal bar increases to

b = 2

[(
rmax −

t/2

cos (π/Nt)

)
sin

(
π

Nt

)
− t/2

cos (π/Nt)

]
= 0.08409 m. (16)

The cross-section of the center post of the TF coil is shown in Fig. 2 both for the thin inboard shield (left
picture) and bare central column (right picture) configurations. The central column geometry shown
in the right picture of Fig. 2, which corresponds to a center post without shield, will be considered
throughout the remainder of this report. The bare center post configuration presents a larger cross-
sectional copper area, adequate for the production of high toroidal magnetic fields in a small, low-power
compact device.

The cross-section of the outer segments of the TF coil, for the bare central column with equivalent
cross-sectional area, is formed by a rectangle of base b and height c given by

c =
Ab
b

= 0.07180 m. (17)

Assuming that both the outer (rectangular) and inner (trapezoidal) segments of the TF coil have the
same cooling holes area, they also have an equivalent copper area. This conditions the vanishing bending
moment at the joints, between the inner and outer segments of the TF coil, for identical material properties
and elastic line constants. Figure 3 illustrates one configuration where the cross-sections of the internal
and external segments of the TF coil have the same effective copper area. Defining a fraction of the area
that is copper by λ, the effective cross-sectional copper area of each segment is

Ac = λAb. (18)
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FIG. 3. Simplified cross-section representation of the inner (trapezoidal) and outer (rectangular) segments of
the TF coil. The inner and outer segments are formed by long trapezoidal and rectangular curved copper bars,
respectively, inserted in fitting copper enclosures and separated by long cylindrical copper rods. The conducting
walls and bars should be grooved to fit the rods, and both segments have equivalent areas and the same copper
fraction λ by design. The dimensions of the trapezoidal section must change continuously in the transition region
between the inner and outer segments, up to the junction at the highest point of the TF coil.

A detailed presentation of the internal geometry of the TF coil segments will be deferred to Section III.
The remaining of the present section is dedicated to a discussion of the overall geometry of the TF coil
and simple adiabatic heating calculations.

The size and the shape of the TF coil are determined by the minimum median radius Rmin =
(rmin + rmax) /2 = 0.11 m and the maximum median radius which is set as Rmax = 1.30 m. The
elastic line constant is

kt =
1

2
ln

(
Rmax

Rmin

)
= 1.2348, (19)

and the height of the central column is

Ht = 2πkt
√
RminRmaxI1 (kt) = 2.1793 m, (20)

where I1 is the modified Bessel function of the first kind and order one. The D-shaped centerline (elastic
line) of the TF coil is described by the parametric equations

Rt =
√
RminRmax exp (kt cos θ) ,

Zt = kt
√
RminRmax

∫ θ

0

exp (kt cos θ′) cos θ′ dθ′.
(21)

The left picture of Fig. 1 shows the TF coil represented by its centerline of variable width: the radial
width is rmax − rmin = 12.0 cm along the straight inner segment of total height Ht = 2.1793 m; and
the lateral width is c = 7.180 cm along the outer segment whose centerline is given by eq. (21). This
shape constitutes a moment-free TF coil, but the final design must incorporate supporting structures and
transitions between the inner and outer segments. The radius of curvature of the outer segment is

ρt = ktRt = kt
√
RminRmax exp (kt cos θ) , (22)

and the highest point of the TF coil centerline is located at the geometric mean radius

Rm =
√
RminRmax = 0.3782 m,

Zm =
π

2
ktRm

(
I1 (kt) + L1 (kt) +

2

π

)
= 1.2743 m,

(23)
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where L1 is the modified Struve function of order one. The total length of the TF coil centerline is

`t = 2πktRm [I0 (kt) + I1 (kt)] = 6.3429 m, (24)

where I0 is the modified Bessel function of the first kind and order zero. The half-length position is
defined by the root θ of the equation

` (θ) = ktRm

∫ θ

0

exp (kt cos θ′) dθ′ = `t/4, (25)

so that Rt (θ) = 0.5123 m and Zt (θ) = 1.2567 m. The half-length position along the centerline is indicated
by points on every turn of the TF coil in Fig. 1. The poloidal area enclosed by the TF coil (area delimited
by the centerline perimeter) is

At = 2πktR
2
m [I1 (2kt)− exp (−kt) I1 (kt)] = 2.4766 m2, (26)

and the inductance of the Nt turns toroid is (µ0 = 4π × 10−7 H m−1)

LTF = µ0ktRmN
2
t [ktI0 (kt) + (kt − 1) I1 (kt)] = 0.1628 mH. (27)

The mass of copper (not taking into account joints and leads) is estimated by (assuming λ = 0.78)

mc = ρcNt`tAc = 3202.0 kg, (28)

where ρc = 8933 kg m−3 is the density of copper.
The toroidal magnetic field ripple at the plasma edge (equatorial plane) can be estimated by

∆ =
[(R0 + a) /Rmin]

Nt

[(R0 + a) /Rmin]
Nt − 1

+
[(R0 + a) /Rmax]

Nt

1− [(R0 + a) /Rmax]
Nt
− 1 = 0.002958. (29)

For Rmax > R0 + a > Rmin and Nt � 1

∆ ∼=
(
R0 + a

Rmax

)Nt

= 0.002950. (30)

For producing a toroidal magnetic field B0 = 3 T (maximum design value) at the geometrical plasma
center (R0, 0) the total current in each turn of the TF coil is

It =
2πR0B0

µ0Nt
= 625 kA (NtIt = 7.5 MA turn) , (31)

and the current density for B0 = 3 T and λ = 0.78 is

jt =
It
Ac

= 132.7 MA m−2. (32)

Accordingly, the electromagnetic force of tension along the TF coil is

Ft =
µ0NtI

2
t

4π
kt = 578.8 kN, (33)

giving an average stress

σt =
Ft
Ac

= 122.9 MPa. (34)

The admissible stress for oxygen-free hard temper copper with yield strength σy = 274 MPa is σadm =
183 MPa. The design criterion is σadm ≤ (2/3)σy. The yield strength of oxygen free half-hard copper is
σy = 186 MPa and for Glidcop is σy = 310 MPa.

Assuming adiabatic heating of the TF coil, the temperature rise of the conductor during the current
pulse is governed by the equation

ρcCp,c
dTc
dt

= ηcj
2
t , (35)
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where Cp,c = 385 J kg−1 K−1 is the specific heat of copper at T0 = 25 ◦C. The resistivity of copper
corrected for temperature Tc is

ηc = η0 (1 + αTTc) , (36)

where η0 = 0.0159µΩ m is the resistivity at Tc = 0 ◦C and αT = 0.00423 K−1 is the temperature
coefficient. Integration of the temperature evolution equation gives∫ ∞

0

j2
t (t) dt =

ρcCp,c
η0

1

αT
ln

(
1 + αTT∞
1 + αTT0

)
. (37)

Defining the effective pulse length for adiabatic heating by

teff =
1

j2
t

∫ ∞
0

j2
t (t) dt, (38)

the conductor temperature Tc = T∞ at the end of the current pulse is calculated using the formula

T∞ =
1

αT

[
(1 + αTT0) exp

(
αT

η0

ρcCp,c
j2
t teff

)
− 1

]
. (39)

This expression indicates that for B0 = 3 T the effective pulse length must be limited to teff ∼ 2.1 s in order
to keep the conductor temperature below ∼ 300 ◦C (the melting temperature of copper, Tc = 1085 ◦C,
is reached in 4.7 s). Reducing the magnetic field to B0 = 1 T, the effective pulse length can be extended
to teff ∼ 19 s for Tc . 300. If the TF coil is pre-cooled to cryogenic temperature −196 ◦C the effective
pulse length can be extended, for B0 = 3 T, to ∼ 7.5 s. In all cases the temperature variation is limited
by the insulation heat resistance: RP-46 polyimide has high heat resistance from −101 to 393 ◦C (RP-46
polyimide/glass composite high-resistance insulation withstand a 3-hour gas-flame test at 871 ◦C).

The electric resistance of the TF coil, not taking into account joints and leads, can be estimated by

RTF = ηcNt
`t
Ac
, (40)

and the voltage drop at the beginning and end of a current pulse for B0 = 3 T and λ = 0.78 becomes

VTF = RTF It =

{
174.2 V (Tc = T0 = 20 ◦C)
364.4 V (Tc = T∞ = 300 ◦C)

(41)

The thermal calculations for adiabatic heating indicate that for significant pulse lengths the cooling
system of the TF coil (the center post in particular) must be designed for steady-state operation. The
requirements for cooling the TF coil are examined in the next section.

III. TOROIDAL FIELD COIL COOLING

This section addresses the limits imposed by cooling the TF coil, in the bare center post configuration
shown in the right picture of Fig. 2, for a toroidal magnetic field in the range 1.0 ∼ 3.0 T. The cooling
system consists of 2Nt = 24 independent parallel circuits formed by dividing each turn of the TF coil in
two equal-length circuits interrupted at the upper (and lower) positions indicated by the points in Fig. 1.
The coolant enters at the upper part and is collected at the lower end of each turn of the TF coil. Note
that the turns of the TF coil can be electrically connected in series at these same positions. Since the
inner and outer segments have the same length `t/2 = 3.1714 m, cross-sectional area Ab = 60.38 cm2, and
copper fraction λ, the analysis of the cooling system can be reduced to a single cooling channel.

The cooling channels geometry, for the outer segments of the TF coil, is shown in the right picture of
Fig. 3. As described in the caption of this figure, the outer segment is formed by long curved copper
bars of rectangular cross-section, separated by thin cylindrical copper rods. The interstitial rods are
represented in a simplified form, but should be wedged in the rectangular bars. The entire set of bars and
rods is inserted in a rectangular casing wall. Each rectangular inner bar has a width b − 2e and height
2e. Here, b = 8.409 cm is the previously calculated overall width of each rectangular outer segment of
the TF coil (cf. Section II). The overall height of the rectangular segments is c = Ab/b = 7.180 cm. The
wall thickness of the copper casing is also taken equal to e, not yet defined, and the diameter of each
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cylindrical rod is d. Assuming that there are Nc cooling channels (Nc = Integer), and taking into account
the copper fraction λ, these dimensions are related by:

d =
b

π − 2

1− Ab
Ncb2

−

√(
1 +

Ab
Ncb2

)2

− 2
Ab
Ncb2

[π − (π − 2)λ]

 ,
e =

b

2 (π − 2)

 Ab
Ncb2

(π − 1)− 1 +

√(
1 +

Ab
Ncb2

)2

− 2
Ab
Ncb2

[π − (π − 2)λ]

 . (42)

As will be shown later, a nearly optimal design is obtained with d = e, which corresponds to a copper
fraction

λ =
2

3
+

(4 + π)Ab
18Ncb2

. (43)

In particular, Nc = 3 gives

d = e = 7.978 mm and λ ' 0.780. (44)

The hydraulic diameter of the Nc cooling channels is given in terms of the cross-sectional area of the
flow, A, and the wetted perimeter of the cross-section, P , of each channel by

D =
4A

P
=

4 (1− λ)Ab
2Nc (b− 2e+ d+ πd)

=
2 (b− 2e) d− πd2

b− 2e+ d+ πd
. (45)

For Nc = 3 and λ = 0.780 the hydraulic diameter is D = 8.769 mm. The average distance to the nearest
cooling surface is approximately given by e = 7.978 mm, and the geometrical representation corresponding
to these values is shown in the right side of Fig. 3.

The geometry of the trapezoidal inner segments, shown in the left side of Fig. 3, can be calculated in
terms of the extreme points:

x1 = rmin +
t

2
,

y1 =

(
rmin +

t

2

)
tan

(
π

Nt

)
− t/2

cos (π/Nt)
,

x2 = rmax cos

(
π

Nt

)
− t

2
,

y2 =

(
rmax −

t/2

cos (π/Nt)

)
sin

(
π

Nt

)
− t/2

cos (π/Nt)
,

(46)

so that the external area of each trapezoidal copper bar is given by

Aext = (x2 − x1) (y1 + y2) , (47)

and the area of the internal trapezoid is (this is the area Aext reduced by the thickness e1 of the trapezoidal
containing wall)

Aint = (x2 − x1 − 2e1)

[
y1 + y2 − 2e1 sec

(
π

Nt

)]
. (48)

Furthermore, defining the extreme internal points

x3 = rmin +
t

2
+ e1,

y3 =

(
rmin +

t

2
+ e1

)
tan

(
π

Nt

)
− t/2 + e1

cos (π/Nt)
,

x4 = rmax cos

(
π

Nt

)
− t

2
− e1,

y4 =

(
rmax −

t/2 + e1

cos (π/Nt)

)
sin

(
π

Nt

)
− t/2 + e1

cos (π/Nt)
,

(49)

the total area of the N1 − 1 internal trapezoidal slabs of thickness 2e1 is given by (N1 is the integer
number of cooling channels in the trapezoidal segments of the TF coil)

Aslabs = 2 (N1 − 1) e1

[
2y4 −

(
N1d1 + 2e1 (N1 − 1)

y4 − y3

x4 − x3

)]
. (50)
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FIG. 4. Variation of the cooling channels width, d (thick line), and of the copper bands half-width, e (thin
line), as a function of the copper fraction πAb/

(
2Ncb

2
)
≤ λ ≤ 1 for Nc = 3 (left picture). Variation of the

hydraulic diameter, D, as a function of λ (right picture). The thin vertical lines indicate the value λ = 2/3 +
(4 + π)Ab/

(
18Ncb

2
)

for which d = e = Ab/ (3Ncb).

Finally, the total area of the 2N1 internal cylindrical separating rods of diameter d1 is

Arods = 2 (N1 − 1)
πd2

1

4
, (51)

so that the copper fraction of the inner trapezoidal segments is simply given by

λ1 =
(Aext −Aint) +Aslabs +Arods

Aext
. (52)

The above formulas allow to calculate d1 and e1 so that, for given N1 > Nc, the total number of inserts
cover the available space x4−x3 and the inner and outer segments have the same copper fraction λ1 = λ:

x4 − x3 = N1 (d1 + 2e1)− 2e1,
λ1 = λ.

(53)

The dimensions b and e, and the hydraulic diameter, D, are functions of the integer number of cooling
holes, Nc, and of the copper fraction, λ. Figure 4 shows, for Nc = 3, the variation of b, e and D as a
function of λ.

For Nc = 3, N1 = 5 and λ1 = λ = 0.780, the components of the outer and inner segments of the TF
coil have the following final dimensions, as shown in Fig. 3:

b = 84.09 mm , c = 71.80 mm,
d = 7.978 mm , e = 7.978 mm,
d1 = 9.099 mm , e1 = 6.571 mm.

(54)

Some additional adjustments can be made so that the inner and outer segments have cooling holes with
nearly the same hydraulic diameter, avoiding pressure drop unbalance, but this refinement is not presently
needed. The cooling requirement analysis in this report will be made based on the above reference design
of the outer segment of the TF coil. A few alternative configurations for the cooling holes geometry are
presented in the Appendix C.

Considering the local heat input density ηcj
2
t and the total copper volume of the TF coil, V = 2NtLAc,

where L = `t/2 is the length of the cooling channels, the total power (in W) deposited in the cooling
circuits is

W = ηcj
2
t V =

ηc`t
NtAbλ

(
2πR0B0

µ0

)2

, (55)

which depends on the average temperature Tc of the conductor. Note that the TF coil is formed by
2Nt hydraulic circuits in parallel. For cooling circuits with a cross-sectional area of the flow Ab − Ac =
Ab (1− λ), the total discharge (volume flow of water in m3 s−1) in the cooling circuits is given by

Q = 2NtAb (1− λ)u = 2NtAb (1− λ)
G

ρ
, (56)



10

where u is the mean velocity of the fluid, G = ρu is the mean mass flux in the channel, and ρ is the fluid
density (c.f. Appendix A). According to the definition of the mean temperature Tl of the fluid, given in
Appendix A, the steady-state fluid temperature rise along each cooling circuit is

∆Tl =
W

Cp
�
m
, (57)

where Cp is the specific heat capacity at constant pressure of the coolant, and
�
m = ρQ = 2NtAb (1− λ)G

is the total mass flow rate (in kg s−1) in the circuit. The fluid temperature along the cooling channel of
total length L increases linearly with distance z from the input

Tl = T0 + ∆Tl
z

L
. (58)

Now, considering the effective transverse distance for heat conduction `, the one-dimensional estimate
of the hot-spot temperature rise inside the conductor is

∆Tc =
ηcj

2
t `

2

2kc
=

W`2

2kcV
, (59)

where kc = 401 W m−1 K−1 is the thermal conductivity of copper at 20 ◦C. Assuming a parabolic
temperature profile, the average surface temperature of the conductor is

Ts = Tc −
2∆Tc

3
. (60)

Accordingly, the maximum temperature inside the conductor is estimated by

Tmax = Tc +
∆Tc

3
. (61)

The boundary layer temperature difference is ∆Tb = Ts − Tl, where Tl is the cooling fluid mean temper-
ature (Tl < Ts < Tc).

Taking into account the perimeter P = 2Nc [b− 2e+ (1 + π) d] and the total surface 2NtPL of the
cooling channels, the heat flux input (in W m−2) in each channel is

qi =
W

2NtPL
=
ηcj

2
tAc
P

, (62)

which depends on the geometry, magnetic field B0 and average temperature Tc of the conductor. The
heat flux output is

qo = h∆Tb, (63)

where ∆Tb = Ts − Tl is the previously defined boundary layer temperature difference, h is the convec-
tion heat transfer coefficient given by the Gnielinski correlation (A12) including the Petukhov property
correction factor (A17)

h =
k

D

(fD/8) (Re− 1000) Pr

1 + 12.7 (fD/8)
1/2
(

Pr2/3 − 1
) ( µ

µs

)0.11

, (64)

and the friction factor fD is calculated by the Churchill eq. (A16). The heat flux output depends on
geometry (including surface roughness ε), magnetic field B0, mean mass flux G, average temperature
Tc of the conductor, and mean fluid temperature Tl. The temperatures Tl and Tc can be determined
consistently, at each position 0 ≤ z ≤ L along the cooling channel, solving the equations{

Tl = T0 + ∆Tl
z

L
qi = qo

(65)

Accordingly, the average power deposited in the TF coil circuit is given by

W =
V

L

∫ L

0

ηcj
2
t dz = 2NtAc

∫ L

0

ηcj
2
t dz = 2NtP

∫ L

0

qi dz = 2NtP

∫ L

0

qo dz. (66)
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B0 (T) u0 (m/s) Ts (◦C) Tc (◦C) W (MW) W (MW) Q (m3/s) p0 (bar) ∆p (bar) Ph (kW)
1.0 1.608 127.3 129.9 17.29 15.42 0.05349 2.61 0.1210 0.6472
2.0 6.709 134.9 145.6 72.12 64.40 0.2231 4.56 1.651 36.83
3.0 15.87 140.1 165.3 170.6 152.6 0.5279 12.67 8.159 430.7

TABLE I. Cooling system parameters corresponding to the operating points indicated in Fig. 5, for both fixed
copper fraction λ = 0.780 and output average fluid temperature Tl = 100 ◦C.

The pressure drop along the central column of the TF coil is expressed by the Darcy-Weisbach equation
(c.f. Appendix A)

∆p =

(
1

2ρ0
+
fD
ρ

z

d

)
G2

2
[H (z)−H (z − L)] +

(
1

2ρ0
+

1

ρL
+
fD,L
ρL

L

d

)
G2

2
H (z − L) , (67)

where H (z) denotes the Heaviside step function and the L subscript refers to the conditions at the end
of the channel z = L = `t/2. The initial factor 1/2ρ0 corresponds to the full entrance head loss and the
additional factor 1/ρL to the exit loss. Accordingly, the pressure along the cooling channel varies as

p = p0 −∆p, (68)

where p0 is the input pressure. The ideal pumping power (not taking into account the pump efficiency)
is given by Bernoulli’s equation

Ph = Q∆p. (69)

Figure 5 shows the variation of the fluid temperature Tl and of the power W dissipated in the TF coil,
at the output of the cooling channels, as functions of the input flow velocity u0 and the copper fraction
varying from λ = 0.65 to λ = 0.85. The rows in Fig. 5 correspond, from top to bottom, to the magnetic
field values B0 = 1.0, 2.0 and 3.0 T, respectively, for flows in smooth pipes with absolute roughness ε = 0.
In each case, the central points displayed in the graphics correspond to the value of the input flow velocity
u0 compatible with an output temperature Tl = 100 ◦C for fixed copper fraction λ = 0.780. These values
are fixed to allow comparison of the cooling requirements and dissipated power for the different values
of the magnetic field. Note the change in scale for the flow velocity u0, in m/s, and the dissipated power
W , in MW. Note also that the value of the copper fraction λ = 0.780 corresponds approximately to
the minimum value of the dissipated power for Tl = 100 ◦C (a slight improvement main be obtained
for λ ' 0.80). Table I lists the operating conditions corresponding to the central points displayed in
Fig. 5, including the output values of the surface conductor temperature Ts and of the average conductor
temperature Tc, as well as the total average power W dissipated in the TF coil, output discharge Q, input
pressure p0, total pressure drop ∆p in each channel, and total pumping power Ph. The pumping power
includes the full entrance and exit head losses.

Figure 6 shows the variation of the fluid and conductor temperatures along the cooling channels of the
TF coil. The magnetic flux density is equal to B0 = 1.0, 2.0 and 3.0 T in the first, second and third
rows, respectively. The copper fraction is assumed equal to the near optimum value λ = 0.780, defined
by equation (43), and the constant mean mass flux G = ρu is defined by both the fluid temperature
T0 = 20 ◦C and the mean fluid velocity u0 at the cooling channels entrance. The first column gives the
results for smooth cooling ducts with ε = 0, while the second column gives the results for rough ducts with
ε = 10µm. The fluid temperature at the entrance is low and so is the heat transfer coefficient, but the
boundary layer temperature difference is relatively large. For approximately constant heat flux along the
channel wall (not exactly constant due to the change in the conductor resistivity) the fluid temperature
rises almost linearly along the channel, resulting in an increase in the heat transfer coefficient and a
corresponding decrease in the boundary layer temperature difference. The input flow velocity u0 in
Fig. 6 is adjusted so that the average fluid temperature reaches Tl = 100 ◦C at the end of the smooth
cooling pipes, as listed in Table I. In general, depending on fluid flow velocity and pressure, the fluid
temperature Tl can be maintained below the boiling point. However, in order to avoid boiling incipience
the surface temperature of the conductor Ts > Tl must be also below the saturation temperature. For
fixed mass flux input, this condition can be attained by increasing the input pressure. Between 100 ◦C
and the critical temperature 374 ◦C, liquid water is in the superheated regime with overpressure up to the
critical point 220 bar. As shown in Fig. 6, the saturation temperature decreases due to the pressure drop
along the channels. Moreover, this figure clearly shows that the input pressure p0 can be adjusted so that
the temperature, at the conductor surface, is less than the saturation temperature of water everywhere
inside the cooling channel, avoiding incipient boiling. Note that there is an initial head loss (not shown)
at the entrance of the cooling channels. Note also that the pressure drop is larger for rough channels with
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1.0T 2.0T 3.0T

ε = 0 Tl Ts Tc Tmax Tsat Tl Ts Tc Tmax Tsat Tl Ts Tc Tmax Tsat

z = 0.00 m 20.0 58.1 60.1 61.2 128.6 20.0 65.0 73.6 78.0 147.1 20.0 70.3 90.8 101.1 187.2
z = 3.17 m 100.0 127.3 129.9 131.2 127.3 100.0 134.9 145.6 150.9 134.9 100.0 140.1 165.3 177.9 157.2

ε = 10µm Tl Ts Tc Tmax Tsat Tl Ts Tc Tmax Tsat Tl Ts Tc Tmax Tsat

z = 0.00 m 20.0 56.1 58.1 59.1 128.6 20.0 59.3 67.8 72.0 147.1 20.0 60.6 80.5 90.5 187.2
z = 3.17 m 98.9 122.4 124.9 126.2 127.1 97.5 122.9 133.2 138.4 128.7 96.3 122.2 146.2 158.2 122.2

TABLE II. Distribution of temperatures in ◦C at the initial and end points of the cooling channels, for smooth
(ε = 0) and rough (ε = 10µm) pipes.

ε ∼ 10µm, resulting in a larger saturation temperature decrease. For relatively low flow velocities this
decrease is compensated by the larger value of the heat transfer coefficient, so that both the average fluid
and conductor surface temperatures remain below the saturation value along the channels. However,
for high flow velocities in rough channels, as illustrated in the last picture of Fig. 6 (B0 = 3.0 T), the
input pressure must be increased in order to have Ts ≤ Tsat at the end of the cooling channels. Figure 6
shows that the maximum temperature (hot-spot) in the conductor is also well below the temperature
limit allowed for the insulation.

Table II lists the average fluid temperature, Tl, the surface, average and maximum conductor temper-
atures, Ts, Tc and Tmax, respectively, and the saturation temperature, Tsat, at the initial and end points
of the cooling channels, both for smooth and rough pipes, as shown in Fig. 6. The input flow velocity is
adjusted in each case so that Tl = 100◦C at the end point of smooth channels, while the input pressure
is adjusted so that Ts ≤ Tsat for either smooth or rough channels, keeping the same value of the input
flow velocity.

Figures 7, 8 and 9 show the performance of the cooling system of the TF field coil, for λ = 0.780 and
B0 = 1.0, 2.0 and 3.0 T, respectively, as a function of the input fluid velocity u0. The fluid velocity is
the single most important quantity in the cooling system performance. The velocity varies weakly along
the length of the cooling channels, for constant mass flux, due to the weak dependence of the density
on the fluid temperature. The discharge is simply proportional to the fluid velocity for fixed geometry.
The total power varies with the conductor temperature, which depends mainly on the fluid velocity and
somewhat on the pipe roughness. According to the Darcy-Weisbach equation, the pressure loss due to
viscous effects depends on the product of the fluid density, the squared fluid velocity and the Darcy
friction factor, resulting in a nearly linear pressure drop along the channel. The pumping power is given
by the product of the discharge and the total pressure loss. These figures show that the performance can
be adjusted by modifying the indicated operating points. In particular, in the reduced magnetic field
operation (B0 ≤ 2.0 T) the dissipated power can be somewhat reduced by increasing the flow velocity. In
the high field case (B0

∼= 3.0 T) the flow velocity is already at a very high value. In all cases the cooling
requirements are within the pressure and discharge rates of single-stage centrifugal pumps.

In this report it was assumed that the inner and outer segments of the TF coil have equivalent areas,
leading to similar cooling requirements. Nevertheless, the dissipated power can be reduced by increasing
the copper area of the outer segments. Since, in the present configuration, the power is equally divided
in two segments, the power in the new configuration would be given by

W new =
W

2

(
1 +

1

Aext/Aint

)
, (70)

where Aext/Aint is the ratio of the cross-sections of external and internal segments. This indicates that the
total power can be substantially reduced by enlarging the cross-sectional area of the external segments.
In this case, the transition between the inner and outer segments requires a detailed stress analysis. Also,
the coils assembly could be simplified by considering a straight central column connected to the outer
legs by sliding joints. Nevertheless, the cooling requirements for the central post would be the same as
analyzed for the half-length TF coil, assuming that the length L = `t/2 is the same if cooling entrances
are included. Alternative configurations for the cooling channels in the center post are briefly discussed
in the Appendix C.

IV. CONCLUSIONS AND COMMENTS

The main conclusion is that the steady-state cooling requirements for the large diameter (bare) center
post can be attained with somewhat high values of the temperature (conductor temperature < 165◦C),
and quite demanding levels of input fluid flow velocity u0

∼= 16 m/s, input pressure p0
∼= 13 bar and
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pumping power Ph ∼= 431 kW for a 3.0 T magnetic induction at the plasma center. The total average
power dissipated in the TF coil is W ∼= 153 MW. The cooling system requisites are considerably reduced
for B0 = 2.0 T, namely Tc < 146◦C, u0

∼= 6.7 m/s, p0
∼= 4.6 bar and Ph ∼= 37 kW resulting in W ∼= 65 MW.

Of course, the electric power requirements to sustain the magnetic field are very high, so that true steady
state without superconducting coils is feasible only for low values of the field, possibly B0 ≤ 2 T with
optimized configuration of the TF coil. Nevertheless, a proper cooling system is necessary for long pulse
operation (cf. Section II).

In the bare center post configuration no space remains between the central column and the vacuum
vessel (a mere 3 mm gap remains). In this case there is practically no space available for joints and water
inlets near the center post. One possibility, advanced in the present report, is to displace the joints
outwards along the TF coil legs. The TF coils can be fabricated as single pieces, welding the vacuum
chamber afterwards inside the coil. The assembly of the vacuum vessel could be started welding a flared
cylinder tightly around the central column and then welding the outer pieces. Alternatively, for a straight
central column the outer legs of the TF coil could be connected trough sliding joints, with increased cross-
sectional area.

The analysis of the cooling system used correlations for the heat transfer coefficient in a simplified
geometry of the center post, and a one-dimensional approximation for heat conduction. This analysis
can be improved using a two-dimensional calculation of the transverse heat conduction in copper, and a
time dependent simulation. The copper properties dependence with temperature can also be improved
in the model.

A final comment concerns the analysis of the central column cooling problem developed in reference [1].
Although it is not expressly stated in the paper, the authors completely ignored the temperature dif-
ference across the boundary layer of the cooling fluid. In other words, they implicitly assumed that
the temperature on the surface of the cooling channel is equal to the average temperature of the fluid,
resulting in overall small temperature differences and low fluid velocity in the cooling system. Actually,
the temperature difference in the boundary layer corresponds to a substantial transverse contribution in
the problem at hand, as clearly shown in Fig. 6. The steady state operation of the central column is
feasible with large flow velocities, but a 9 T steady state magnetic field is ruled out in a water cooled
compact device: ∼ 3.5 T seems to be close to the limit, using high-strength materials and very-high
pumping capability, with a very-high total power dissipation in the central column only. A magnetic
field B0 = 4 T surpasses the admissible stress for hard temper copper, in the present geometry, requiring
Glidcop or other high-strength materials for compact design. The high-pressure operation is needed to
avoid boiling inside the channel, but this condition can be somewhat relaxed if the coolant is allowed to
flow in the forced convection boiling flow regime. But, this regime will be examined in a separate report.

Appendix A: Correlations of the convective heat-transfer coefficient and the friction factor for
water in turbulent flow

The analysis of heat transfer for turbulent flow conditions in a pipe involves three dimensionless quan-
tities:

Re = GD/µ,
Pr = Cpµ/k,
Nu = hD/k,

(A1)

the Reynolds, Prandtl and Nusselt numbers, respectively. Here, G = ρu is the mean mass flux in the
cooling channel (mean mass flow rate per unit cross-sectional area in kg m−2 s−1), u is the mean velocity
of the fluid (density-weighted average velocity over the cross section) and D is the hydraulic diameter
of the pipe. In general, the fluid density ρ, the specific heat capacity Cp, the dynamic viscosity µ, and
the thermal conductivity k are functions of the mean temperature T of the fluid. The convection heat
transfer coefficient at a position along the flow is h = (k/D) Nu.

The hydraulic diameter is given by

D =
4A

P
, (A2)

where A =
∫
A
dA is the pipe cross section area, and P is the wetted perimeter.

The mean velocity u is defined such that, when multiplied by the fluid density ρ and the cross-sectional

area of the pipe A, it gives the total rate of mass flow
�
m through the pipe

�
m = ρuA = GA. (A3)
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The total mass flow rate in the pipe is also expressed as the integral of the local mass flux (ρu) over the
cross section

�
m =

∫
A

(ρu) dA. (A4)

Hence

u =

∫
A

(ρu) dA

ρA
=

2πρ

ρπa2

∫ a

0

u (r, z) r dr =
2

a2

∫ a

0

u (r, z) r dr. (A5)

The last expression corresponds to the mean velocity for incompressible flow in a circular tube of radius
a and hydraulic diameter D = 2a.

The mean temperature is defined so that the product
�
mCpT is equal to the true rate of thermal energy

advection integrated over the cross section. This true advection rate is given by integrating the product
of the local mass flux (ρu) and the local thermal energy per unit mass (CpT ), over the cross section A of
the duct

T =

∫
A

(ρu) (CpT ) dA

ρuCpA
. (A6)

For flow in a circular tube with constant ρ and Cp it follows that

T =
2

ua2

∫ a

0

u (r, z)T (r, z) r dr. (A7)

The transverse (radial) heat transfer into the pipe is given by Newton’s law of cooling

q = h (Ts − T ) , (A8)

where q, the convective heat flux in W m−2, is proportional to the difference between the surface and
mean fluid temperatures, Ts and T , respectively. The value of T must vary in the flow direction z if heat
transfer is occurring, that is, dT/dz is never zero along the pipe. The convection heat transfer coefficient,
or film resistance h, is usually calculated from empirical correlations.

For fully developed (hydrodynamically and thermaly) turbulent flow in a smooth pipe, the local Nusselt
number may be obtained from the Dittus-Boelter correlation [9] for heating the fluid

Nu = 0.023Re4/5Pr2/5. (A9)

The range of validity is 0.6 ≤ Pr ≤ 160, Re ≥ 104 and L ≥ 10D, where L is the length of the pipe. This
equation is valid for smooth pipes and recommended only for moderate temperature differences between
the fluid and the pipe wall. All the properties are evaluated at the mean fluid temperature. Simplifying
eq. (A9) the convection heat transfer coefficient can be written as

h = 0.023ρ4/5k3/5

(
Cp
µ

)2/5
u4/5

D1/5
. (A10)

Using the thermophysical properties of water listed in Appendix B, a first order expansion in T gives

h ∼= 1.44× 103 (1 + 0.015T )
u4/5

D1/5
, (A11)

which is used in Ref. [15] for the design of solenoid magnets. Figure (10) shows a plot of the heat transfer
coefficient according to the Dittus-Boelter correlation versus the mean temperature of the fluid.

The Dittus-Boelter correlation may lead to errors as large as 25%. More recent correlations may reduce
such errors to less than 10%. The Gnielinski correlation [13] applies for either uniform surface heat flux
or uniform surface temperature

Nu =
(fD/8) (Re− 1000) Pr

1 + 12.7 (fD/8)
1/2
(

Pr2/3 − 1
) , (A12)

where fD is the Darcy friction factor (H. Darcy introduced the concept of the pipe roughness scaled
by the diameter in 1857). The correlation (A12) is valid for 0.5 ≤Pr≤ 2000 and 3000 ≤Re≤ 5 × 106
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and all properties should be evaluated at the mean fluid temperature T . The friction factor fD for fully
developed laminar flow and Re≤ 2300 is

fD =
64

Re
. (A13)

For fully developed turbulent flow and Re≥ 4 × 103 the friction factor is described by the Colebrook
formula [10]

1√
fD

= −2 log10

(
ε/D

3.70
+

2.51

Re
√
fD

)
, (A14)

where ε is the surface roughness. The friction factor can be expressed in terms of the Reynolds number
and the surface roughness using the principal value of the Lambert function W , which is the inverse
function of f (W ) = W expW

fD =


64

Re
(Re ≤ 2300)[

Re

2.51

ε/D

3.70
− 2

ln 10
W

(
ln 10

2

Re

2.51

√
10

Re
2.51

ε/D
3.70

)]−2 (
Re ≥ 4× 103

) . (A15)

The Moody diagram [11] shown in Fig. 11 is a plot of friction factor versus the Reynolds number, with
the relative roughness ε/D as parameter. In the transition region 2300 ≤ Re≤ 4×103, where the flow may
be either laminar or turbulent, the correlation for fully turbulent conditions overpredicts the convection
heat transfer coefficient. The Churchill equation for the friction factor [14] provides a transition between
the friction factor given by the Colebrook equation (A14) in the turbulent regime and the friction factor
fD = 64/Re in the laminar regime:

fD = 8

[(
8

Re

)12

+
1

(A′ +B′)
3/2

]1/12

,

A′ =

{
−2.457 ln

[(
7

Re

)9/10

+ 0.27
ε

D

]}16

,

B′ =

(
37530

Re

)16

.

(A16)

The right picture in Fig. 11 shows a comparison of the friction factor calculated using equations (A13)
and (A14), and using the Churchill eq. (A16). This equation applies to all three flow regimes – laminar,
transitional, and turbulent.

Figure 12 shows the turbulent flow heat transfer coefficient versus the mean temperature of water
calculated using the Gnielinski correlation (A12) with the friction factor given by the Churchill equation
(A16). The figure also compares results obtained with the Dittus-Boelter equation (A9) and the laminar
flow expression h = (48/11)k/D.

In single-phase convection the heat flux is linear with surface temperature as given by Newton’s law of
cooling. At the onset of boiling, when the surface temperature exceeds the saturation temperature, the
heat flux becomes nonlinear with respect to surface temperature. In high heat flux applications large
temperature gradients occur even without boiling. In these cases the variation of physical properties
with temperature over the flow cross section affects the heat transfer before saturation. For liquids far
from their critical point only dynamic viscosity varies greatly with temperature, and the heat transfer
coefficient is modified by a property correction factor recommended by Petukhov [12], which introduces
a slight nonlinearity with surface temperature. Introducing the Petukhov property correction factor in
the Gnielinski correlation (A12), the convection heat transfer coefficient can be written as

h =
k

D

(fD/8) (Re− 1000) Pr

1 + 12.7 (fD/8)
1/2
(

Pr2/3 − 1
) ( µ

µs

)0.11

, (A17)

where µ and µs are the values of the dynamic viscosity calculated at the mean fluid temperature T and
surface temperature Ts, respectively. The mean temperature T is used for all other fluid properties. The
Darcy friction factor fD is calculated using the Churchill eq. (A16).

The heat transfer for internal flows can be enhanced by increasing the convection coefficient and/or the
convection surface area. This can be achieved introducing coiled wire or twisted tape inserts in the tube,
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or machining helical grooves or longitudinal fins in the inner surface of the tube. The inserts or helical
grooves introduce a tangential velocity component which increases the speed of the flow, particularly in
laminar flow conditions and near the tube wall. However, in the turbulent flow regime the heat coefficient
is effectively increased by introducing surface roughness, as indicated in Figs. 11 and 12. Of course, this
increases the pressure drop and related pump power requirement.

The pressure drop due to friction along a given length of pipe L and hydraulic diameter D is expressed
by the phenomenological Darcy-Weisbach equation (written in the present form by J. Weisbach in 1845)

∆p = fD
L

D

ρu2

2
= fD

L

D

G2

2ρ
. (A18)

This equation refers to fully developed, steady-state and incompressible flow. Figure 13 shows the pressure
drop versus the mean temperature of the fluid along a pipe of given length and hydraulic diameter
calculated using eq. (A18). This figure refers to constant mass flux G showing the variation of the
pressure drop due to the combined variation of friction factor (Reynolds number) and density with
temperature, for fixed geometry of the pipe.

Appendix B: Thermophysical properties of water (liquid phase)

For high values of the toroidal magnetic field the center post cooling system may operate with water in
the superheated regime, between the usual boiling point 100◦C and near the critical temperature∼ 374◦C.
The correlations presented in this Appendix are fitted to tables for the thermophysical properties of
saturated water obtained from the National Institute of Standards and Technology (NIST) [22]. Excepting
vapor pressure and viscosity the correlations are limited to the range 0◦C ≤ T ≤ 360◦C to avoid large
order polynomial expansions and simplify the equations. In particular, the equations do not represent
the singular behavior of the specific heat capacity and thermal conductivity near the critical point.

Vapor pressure (0◦C ≤ T ≤ 373.946◦C): The vapor pressure of water is approximated using an
extended form of the Antoine equation

p (T ) = p0 + (pc − p0)

(
T − T0

Tc − T0

)[
1 + a

(
T + Tc

2Tc
− 1

)
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(
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− 1

)2
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− 1

)
+ d

(
T − Tc
Tc

)
+ e

(
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Tc

)2

+ f

(
T − Tc
Tc

)3
]
,

(B1)

where p0 = 611.213 Pa is the vapor pressure of water at T0 = 0◦C and pc = 22.064 MPa= 220.64 bar
is the critical absolute pressure at the critical temperature Tc = 373.946◦C. The fitting coefficients are
a = 4.05321, b = 10.1326, c = 23.5621, d = 13.2085, e = −6.38977 and f = 11.3147. Figure 14 shows the
comparison between the fitted eq. (B1) and NIST data.

Density (0◦C ≤ T ≤ 360◦C): The density of saturated water is approximated by the polynomial

ρ (T ) = ρ0

[
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(B2)

where T0 = 4◦C and ρ0 = 999.925 kg m−3. The critical density is ρc = 322.00 kg m−3 at the critical
temperature Tc = 373.946◦C. The fitting coefficients are a = −1.23266, b = 5.67161, c = −23.4734,
d = 58.8874, e = −84.1951, f = 62.9222 and g = −19.1647. Figure 15 shows the comparison between
the fitted eq. (B2) and NIST data.

Specific heat capacity (0◦C ≤ T ≤ 360◦C): The specific heat capacity of saturated water is approx-
imated by the rational function

Cp (T ) =
a+ bT + cT 2 + dT 3 + eT 4 + fT 5 + gT 6

1 + hT + iT 2
. (B3)

The fitting coefficients are a = 4220.33, b = 231.097, c = −0.639883, d = 0.000113674, e = 7.15687×10−7,
f = −1.25293× 10−9, g = −1.41173× 10−12, h = 0.0557337 and i = −0.000156793. Figure 16 shows the
comparison between the fitted eq. (B3) and NIST data.



17

Dynamic viscosity (0◦C ≤ T ≤ 373.946◦C): The dynamic viscosity of saturated water is approxi-
mated by the rational function

µ (T ) =
µ0

1 + a (T − T0) + b (T − T0)
2

+ c (T − T0)
3

+ d (T − T0)
4 , (B4)

where µ0 = 1002.0 × 10−6 Pa s is the standard viscosity of water at T0 = 20◦C. The fitting coefficients
are a = 0.0247453, b = 0.000126083, c = −5.57223× 10−7 and d = 1.06282× 10−9. Figure 17 shows the
comparison between the fitted eq. (B4) and NIST data.

Thermal conductivity (0◦C ≤ T ≤ 360◦C): The thermal conductivity of saturated water is approx-
imated by the polynomial

k (T ) = a+ bT + cT 2 + dT 3 + eT 4. (B5)

The fitting coefficients are a = 0.560941, b = 0.00216031, c = −0.0000119445, d = 2.47066 × 10−8 and
e = −3.11265× 10−11. Figure 18 shows the comparison between the fitted eq. (B5) and NIST data.

Prandtl (0◦C ≤ T ≤ 360◦C): The Prandtl number is defined by

Pr (T ) =
Cp (T )µ (T )

k (T )
. (B6)

Figure 19 shows a comparison between the Prandtl’s number given by eq. (B6) and data points obtained
from reference [23].

Saturation temperature (0.00061165 MPa ≤ p ≤ 22.064 MPa): The temperature of saturated water
as a function of pressure is approximated by a modified form of the Antoine equation

Tsat (p) = T0 + (T0 − Tc)
(

1− 1

ln [(pc/p0)
α

]

)(
1

1− ln [(p/p0)
α

]
− 1

)
, (B7)

where the vapor pressure of water at T0 = 0◦C is p0 = 611.213 Pa and the critical pressure is pc =
22.064 MPa = 220.64 bar at the critical temperature Tc = 373.946◦C. The fitting coefficient is α =
0.0581069. Figure 20 shows the comparison between the fitted eq. (B7) and NIST data. Using the
value of pressure p = 0.101325 MPa corresponding to the normal boiling point of water T = 99.9743◦C
gives α = 0.0586639. The standard IUPAC boiling point of water p = 0.1 MPa, T = 99.61◦C gives
α = 0.0586624.

Appendix C: Center post cooling channels configuration

The present study was carried out for a simplified configuration of the central column, consisting of
wedged trapezoidal sectors formed by trapezoidal or rectangular copper bars separated by copper rods.
Figure 21 shows diverse configurations for the TF coil central column. The simplest configuration consists
of a cylindrical post with cooling holes drilled along the length of the column. This is the most efficient
configuration for cooling purposes, but of difficult fabrication in a long-length column. Alternatively, the
hollow copper bars may be fabricated by extrusion, but care must be taken to obtain the final hard-
tempered product. The TF coil of constant rectangular or square cross-sections also shown in Fig. 21
could be fabricated as single pieces using stacked circular cables, or hollow conductors. These cables
would by under pure tension with only one interruption at the electrical leads. Unfortunately, these
constant cross-section coils do not make full use of the center post space, which is at a premium in
compact configurations.
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FIG. 5. The first and the second columns show the output average fluid temperature Tl and the dissipated power
W , respectively, as functions of the input flow velocity u0 and the copper fraction λ in smooth pipes (absolute
roughness ε = 0). The horizontal planes correspond, in the first column, to the constant temperature Tl = 100 ◦C
at the cooling channels output and, in the second column, to the power W dissipated in the output of the TF
coil. The rows correspond, from top to bottom, to the values B0 = 1.0, 2.0 and 3.0 T of the magnetic field. The
central black points indicate the operating points, which correspond to the input flow velocity compatible with
an output fluid temperature Tl = 100 ◦C and λ = 0.780. The parameters corresponding to these operating points
are listed in Table I. Note the change of the scale in the flow velocity u0 in m/s and in the power W in MW.
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FIG. 6. Fluid, Tl, and conductor, Tc, average temperatures change along the cooling channels. The rows cor-
respond, from top to bottom, to the values B0 = 1.0, 2.0 and 3.0 T of the magnetic field. In each picture, the
average fluid temperature is represented by the thick lower line. The thick upper line corresponds to the average
conductor temperature, bounded by the surface, Ts (lower thin line), and maximum, Tmax (upper thin line),
temperatures of the conductor. The first column in the figure corresponds to smooth pipes with ε = 0, and the
second column to rough pipes with ε = 10µm. The thin vertical lines indicate the entrance region 0 < z < 10D,
where the thermal condition is not fully developed. The input flow velocity u0 is adjusted, in each case, so that
Tl = 100 ◦C at the end of the smooth pipes. The thin horizontal line indicates the usual boiling point 100 ◦C at
atmospheric pressure, and the thin dashed line the saturation temperature Tsat for a given input pressure p0 and
consistent pressure drop along the channels. The input pressure is adjusted, in each case, so that Ts ≤ Tsat at the
end of the cooling channels, either for smooth or rough pipes depending on the pressure drop conditions.
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FIG. 7. Performance of the TF coil cooling system for B0 = 1.0 T as a function of the input flow velocity u0.
The sequence of pictures show: the average fluid temperature Tl, the average conductor temperature Tc, the
total discharge Q, the total dissipated power W , the total pressure loss ∆p, and the total pumping power Ph, for
smooth, ε = 0 (thin lines), and rough, ε = 10µm (thick lines) cooling channels. The copper fraction is λ = 0.780.
The thin vertical lines indicate the operating point u0 = 1.608 m/s listed in Table I.
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FIG. 8. Performance of the TF coil cooling system for B0 = 2.0 T as a function of the input flow velocity u0.
The sequence of pictures show: the average fluid temperature Tl, the average conductor temperature Tc, the
total discharge Q, the total dissipated power W , the total pressure loss ∆p, and the total pumping power Ph, for
smooth, ε = 0 (thin lines), and rough, ε = 10µm (thick lines) cooling channels. The copper fraction is λ = 0.780.
The thin vertical lines indicate the operating point u0 = 6.709 m/s listed in Table I.
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FIG. 9. Performance of the TF coil cooling system for B0 = 3.0 T as a function of the input flow velocity u0.
The sequence of pictures show: the average fluid temperature Tl, the average conductor temperature Tc, the
total discharge Q, the total dissipated power W , the total pressure loss ∆p, and the total pumping power Ph, for
smooth, ε = 0 (thin lines), and rough, ε = 10µm (thick lines) cooling channels. The copper fraction is λ = 0.780.
The thin vertical lines indicate the operating point u0 = 15.87 m/s listed in Table I.
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and the first-order expansion (A11) – thin line – versus the mean temperature of the fluid.
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FIG. 11. Friction factor for fully developed flow in a pipe. Left picture: Plot of equations (A13) and (A14). The
curves in the turbulent region Re ≥ 4 × 103 correspond, from bottom to top, to values of the relative roughness
ε/D = 0 (smooth pipe), 5× 10−4, 5× 10−3, and 5× 10−2, respectively. Right picture: Comparison of the friction
factor calculated using equations (A13) and (A14) (continuous lines), and using the Churchill eq. (A16) (dashed
lines).
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FIG. 12. Heat transfer coefficient as a function of the mean water temperature using the Gnielinski correlation
(A12) for fully developed turbulent flow. The hydraulic diameter is D = 1 cm and the mass flux is G = 104 kg
m−2 s−1 corresponding to a flow velocity u ∼= 10 m s−1 at T = 4◦C (maximum density of water). The solid
thin line corresponds to a smooth pipe with absolute roughness ε = 0 and the solid thick line to a pipe with
relative roughness ε/D = 0.001. The dashed thin line corresponds to the Dittus-Boelter equation (A9) and the
dotted thin line to its first-order approximation (A11). The thin dot-dashed curve corresponds to 100 times the
convective heat transfer coefficient for laminar flow, h = (48/11)k/D.
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FIG. 13. Pressure drop as a function of the mean water temperature according to the Darcy-Weisbach eq. (A18).
The pipe length is L = 3 m, the hydraulic diameter is D = 1 cm and the mass flux is G = 104 kg m−2 s−1

corresponding to a flow velocity u ∼= 10 m s−1 at T = 4◦C. The solid thin line corresponds to a smooth pipe with
absolute roughness ε = 0 and the solid thick line to a pipe with relative roughness ε/D = 0.001.
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FIG. 14. Absolute pressure of saturated water. The thick line corresponds to the fitted eq. (B1) and the circles
to NIST data points. The absolute pressure at T ∼= 100◦C is 1.01420 bar. The figures show that the absolute
pressure at T ∼= 180◦C is p = 10 bar, which is about the maximum pressure level intended for usual cooling
systems.
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FIG. 15. Density of saturated water. The thick line corresponds to the fitted eq. (B2) and the circles to NIST
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FIG. 16. Specific heat capacity of saturated water. The thick line corresponds to the fitted eq. (B3) and the circles
to NIST data points. At ambient temperature the constant-pressure heat capacity of water takes the approximate
constant value Cp

∼= 4186 J kg−1 K−1. The recommended value of the specific heat capacity of water at 15◦C
and a pressure p = 0.1 MPa is 4185.5 J kg−1 K−1. The specific heat capacity of ice at −10◦C is 2110 J kg−1 K−1

and at 0◦C is 1960 J kg−1 K−1. The specific heat capacity of steam at 100◦C is 2080 J kg−1 K−1.
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FIG. 17. Dynamic viscosity of saturated water. The thick line corresponds to the fitted eq. (B4) and the circles
to NIST data points. The standard viscosity of water at T0 = 20◦C is µ0 = 1002.0 × 10−6 Pa s.
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FIG. 18. Thermal conductivity of saturated water. The thick line corresponds to the fitted eq. (B5) and the
circles to NIST data points. The standard thermal conductivity of water at the nominal temperature T0 = 25◦C
and a pressure p = 1 bar is k0 = 0.6065 W m−1 K−1.
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FIG. 19. Prandtl’s number of saturated water. The thick line corresponds to eq. (B6) and the circles to data
points obtained from reference[23].

○○
○○
○○○○
○○○○○○
○○
○○○
○○○○
○○○○○○
○○○○
○
○○
○○
○○
○○○

○○○
○○○○

○○○○○
○○○○○

○○○○○○
○○○○○○○

○○○○

0 5 10 15 20
0

100

200

300

400

p (MPa)

T
s
a
t

(
°
C
)

○○
○
○○
○○
○○○
○○○○
○
○
○○

○○
○○○

○○○
○○○○

○○○

○

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

p (MPa)

T
s
a
t

(
°
C
)

FIG. 20. Temperature of saturated water as a function of pressure (liquid phase). The thick line corresponds to
the fitted eq. (B7) and the circles to NIST data points.
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FIG. 21. The upper row shows, in the left hand side, a center post with drilled cooling holes and, in the right
hand side, a central column formed by stacked, prefabricated bars. The lower row shows three examples of TF
coil with rectangular or square cross-sections.
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