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ABSTRACT

Land use and cover changes (LUCC) have caused a major impact on tropical
ecosystems, increasing global greenhouse gas emissions and reducing the planet’s
biodiversity. Remote sensing and digital image processing are powerful tools to
measure and monitor LUCC effectively. Nowadays, with many Earth observation
satellite images freely available, image time series analysis brings new opportunities
and challenges for LUCC mapping over large areas. The use of remote sensing image
time series analysis and machine learning to produce LUCC information has greatly
increased. Machine learning using supervised techniques require a training step using
land use and cover samples labeled a priori. For this reason, it is necessary high-
quality samples to avoid negative effects in classification performance. Due to the
recent availability of open Earth observation data, methods using satellite image time
series still are a gap in the literature. This thesis contributes to Earth observation
field proposing two methods to assess the samples’ quality and reduce the noise in
the land use and cover reference datasets. The main idea is to identify mislabeled
samples, data with low discrimination when mixed with other classes, and explore
the samples’ spatiotemporal variability using satellite image time series. The first
method is based on unsupervised neural networks, the self-organizing map (SOM),
and Bayesian Inference. It provides measures to identify mislabeled samples and
assess the reliability of the samples. In the second method, the hierarchical clustering
is combined with SOM to generate subgroups to identify spatiotemporal patterns to
explore the samples’ intra-class variability. Both methods use satellite image time
series. It allows the Earth observation scientists to understand the sample’s behavior
over time, contributing to noise reduction in land use and cover reference databases.
These methods were applied in different case studies using samples in the Cerrado
biome in Brazil.The results indicated that the methods are efficient to reduce class
noise and to assess the spatio-temporal variation of satellite image time series training
samples.

Keywords: Satellite image time series. Spatiotemporal patterns. Self-organizing maps.
Land use and cover changes. class noise.
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AVALIAÇÃO E MELHORIA DE AMOSTRAS DE USO E
COBERTURA DA TERRA UTILIZANDO SÉRIES TEMPORAIS DE

IMAGENS DE SATÉLITE

RESUMO

Mudanças no uso e cobertura da terra têm causado grande impacto nos ecossistemas
tropicais, aumentando as emissões globais de gases de efeito estufa e reduzindo a
biodiversidade do planeta. O sensoriamento remoto e o processamento digital de
imagens são ferramentas poderosas para medir e monitorar mudanças no uso e
cobertura da terra. Atualmente, com uma grande quantidade de imagens de satélite
de observação da Terra disponíveis gratuitamente, a análise de séries temporais de
imagens traz novas oportunidades e desafios para o mapeamento das mudanças de
uso e cobertura em grandes áreas. O uso de análise de séries temporais de imagens de
sensoriamento remoto para produzir informações de mudança da terra tem aumentado
bastante. Diversas abordagens de aprendizado de máquina com o foco em técnicas
supervisionadas têm sido aplicadas para gerar mapas classificados de uso e cobertura
da terra. Uma vez que esses métodos exigem amostras de treinamento rotuladas,
elas devem possuir alta qualidade para evitar efeitos negativos no desempenho da
classificação. No cenário de Observação da Terra, os métodos que utilizam séries
temporais ainda são uma lacuna na literatura devido à recente disponibilidade de
dados abertos de observação da Terra, principalmente métodos para a qualidade
das amostras de treinamento. Esta tese contribui para o área de observação da
Terra propondo métodos para avaliar a qualidade das amostras com o intuito de
reduzir o ruído nos conjuntos de dados de observação da terra. A ideia principal
é identificar amostras rotuladas de forma errônea, dados que apresentam baixa
discriminação quando misturados com outras classes e explorar a variabilidade
espaço-temporal dentro de cada classes utilizando séries temporais de imagens de
satélite. O primeiro método apresentado nesta tese é baseada em redes neurais não
supervisionadas, o mapa de auto-organização combinado com inferência bayesiana.
Esta abordagem fornece medidas para identificar amostras com rótulos incorretos e
avaliar a confiabilidade das amostras. No segundo método, o agrupamento hierárquico
é combinado com o mapa auto-organizável para gerar padrões espaço-temporais
de subgrupos com o intuito de explorar e identificar a variabilidade intraclasse das
amostras. Ambos os métodos utilizam séries temporais de imagens de satélite. Isto
permite que os cientistas de observação da Terra entendam o comportamento da
amostra ao longo do tempo, contribuindo para a redução de ruído nos conjuntos de
dados de amostras de uso e cobertura da terra. Os métodos abordados nesta tese
foram aplicados em diferentes estudos de caso utilizando amostras no bioma Cerrado
no Brasil.

Keywords: Séries temporais de imagens de satélite. Padrões espaço-temporal. Mapas
auto-organizáveis. Mudança de uso e cobertura da terra. ruído de classe.

xi





LIST OF FIGURES

Page

2.1 LUCC information from EO Data Cubes. . . . . . . . . . . . . . . . . . . 11
2.2 (a) A dimensional array of satellite images, (b) vegetation index time

series at pixel location (x,y). . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Structure of SOM with two attributes. . . . . . . . . . . . . . . . . . . . 14
2.4 Samples Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Grids generated for each case. . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Confusion among the classes. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 a. Cerrado location relative to Brazil and South America. b. Land use
and cover map of the Cerrado. Source: TerraClass (INSTITUTO NACIONAL

DE PESQUISAS ESPACIAIS - INPE, 2013). . . . . . . . . . . . . . . . . . . . 24
3.2 Reference data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 A method for class noise reduction in satellite image time series reference

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Self-Organizing Maps structure. . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Assignment of classes to neurons. . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Update neuron j for class k1. . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Applying Bayesian Inference in neuron 3. . . . . . . . . . . . . . . . . . . 35
3.8 SOM grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Confusion between the classes. . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Time series of ground samples for natural vegetation classes in the Cerrado

Biome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 NDVI time series samples labeled as Rocky-Savanna. . . . . . . . . . . . 42
3.12 NDVI time series samples labeled as Millet-Cotton. . . . . . . . . . . . . 43
3.13 Different patterns in the Soy-Corn class because of the agricultural calen-

dar in different regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Land use samples dataset of Cerrado biome. . . . . . . . . . . . . . . . . 53
4.2 The method for exploratory analysis using time series is based on clus-

tering methods. In step 1, the clusters are created using SOM. In step
2, the neurons labeled as the same category are selected. In step 3, the
weight vectors are extracted from selected neurons. In step 4, the hier-
archical clustering is applied to weight vectors. In step 5, the number of
sub-clusters for each category is defined. In step 6, the subclusters are
created. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii



4.3 Clustering output. The red lines in the SOM grid represent the subgroups
that were generated from the neurons labeled as Class Z. For each sample
of the dataset, an id and label of the neuron, and an id and label of
subgroups are assigned to each one. . . . . . . . . . . . . . . . . . . . . . 59

4.4 SOM grid. Each line inside the neurons is a weight vector generated by
SOM to represent a set of sample in low dimensional space. . . . . . . . 61

4.5 Mapping samples in SOM grid. Each dot represents a sample. . . . . . . 62
4.6 Dendrogram partitioned into ten groups for Cropland. . . . . . . . . . . 63
4.7 Clusters of cropland. (a) SOM grid with subclusters of Cropland. (b)

Weight vectors of each subcluster. Each line represent a neuron. . . . . . 65
4.8 Clusters of cropland. Spatial location, by cluster, where the samples are. 65
4.9 The cluster of Soy-Fallow: Subgroups of Cropland 1. (a) SOM grid with

Soy-Fallow subgroups.(b) Spatial location. (c) MODIS time series of point
(-12.8875, -45.8769). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 The cluster of Soy-Corn: Subgroups of Cropland 7, 9, and 10. (a) SOM
grid with Soy-Corn subgroups.(b) Weight vectors of each neuron. (c)
Spatial location where the samples allocated by the neurons 106, 189 and
195 are respectively. (d) NDVI time series and the number of samples by
assigned to these neurons of Soy-Corn. . . . . . . . . . . . . . . . . . . . 68

4.11 The cluster of Cropland 6 (a) SOM grid. (b) Weight vectors of neurons
that belong to Cropland 6.(c) Spatial location. (d) NDVI time series and
the number of samples by assigned to these neurons of Cropland 6. . . . 69

4.12 Dendrogram for Pasture partitioned in two clusters. . . . . . . . . . . . . 70
4.13 Cluster of pasture. (a) SOM grid with subclusters of pasture. (b) Weight

vectors of each subcluster. Each line represent a neuron. (c) Spatial
subclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 Samples originally labeled as cropland that were assigned to clusters of
Pasture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



LIST OF TABLES

Page

2.1 Quality of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Input dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Result of class noise detection. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Overall samples removed before and after the analysis indicated by the

conditional and posterior probabilities. . . . . . . . . . . . . . . . . . . . 45
3.4 Producer’s and user’s accuracy for original and filtered datasets. . . . . . 46

4.1 Number of training samples by cluster . . . . . . . . . . . . . . . . . . . 73
4.2 Confusion Matrix - The Cropland samples mapped in Pasture were kept

in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Confusion Matrix - The Cropland samples mapped in Pasture were

removed from the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Confusion Matrix - Original Dataset . . . . . . . . . . . . . . . . . . . . 75

xv





LIST OF ABBREVIATIONS

BMU – Best Matching Unit
CCDC – Continuous Change Detection and Classification
DTW – Dynamic Time Warping
EO – Earth Observation
EVI – Enhanced Vegetation Index
GNU – General Public License
IBGE – Instituto Brasileiro de Geografia e Estatística
INPE – Brazilian Institute for Space Research
JRC – Joint Research Centre
LAI – Leaf Area Index
LSTM – Long Short-Term Memory
LUCC – Land Use and Cover Changes
MIR – Mid Infrared
MODIS – Moderate Resolution Imaging Spectroradiometer
NDVI – Normalized Difference Vegetation Index
NIR – Near Infrared
ODC – Open Data Cube
RF – Random Forest
SITS – Satellite Image Time Series
SOM – Self-Organizing Maps
SVM – Support Vector Machine
TWDTW – Time-Weighted Dynamic Time Warping
WSAS – Web Sample Assessment Service
VI – Vegetation Index

xvii





CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Our proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 SELF-ORGANIZING MAPS IN EARTH OBSERVATION
DATA CUBE ANALYSIS1 . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Land use and cover change information from Earth observation data cubes 10
2.1.1 Earth observation satellite image time series . . . . . . . . . . . . . . . 11
2.1.2 Vegetation indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Using SOM to improve the quality of land use and cover samples . . . 13
2.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 QUALITY CONTROL AND CLASS NOISE REDUCTION OF
SATELLITE IMAGE TIME SERIES2 . . . . . . . . . . . . . . . . . 21

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Training samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Using SOM for dimensionality reduction . . . . . . . . . . . . . . . . . 29
3.2.5 Using Bayesian inference to assess the influences of the SOM neighbor-

hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.6 Removing and analyzing class noise . . . . . . . . . . . . . . . . . . . . 35
3.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Detecting noisy and outlier samples . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Identifying mislabelled samples . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Outlier analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1This chapter is based on the paper: Santos, L., Ferreira, K. R., Picoli, M. and Camara, G.,
2019. Self-organizing maps in earth observation data cubes analysis. In: International Workshop
on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization
(WSOM), Vol. 13, Barcelona, Spain, pp. 70–79

2This chapter is based on the paper: Santos, L., Ferreira, K. R., Picoli, M. and Camara, G. and
Simoes R,. Quality control and class noise reduction of satellite image time series. (Under review
by the ISPRS Journal of Photogrammetry and Remote Sensing)”

xix



3.3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 IDENTIFYING SPATIOTEMPORAL PATTERNS IN LAND
USE AND COVER SAMPLES OF SATELLITE IMAGE TIME
SERIES USING CLUSTERING METHODS3 . . . . . . . . . . . 49

4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Clustering Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Creating Clusters Using SOM . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Revealing the Patterns of Cropland . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Revealing the patterns of Pasture . . . . . . . . . . . . . . . . . . . . . 70
4.2.4 Assessing the performance of the training samples . . . . . . . . . . . . 72
4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 FINAL REMARKS AND CONCLUSION . . . . . . . . . . . . . 79
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ANNEX A - EVALUATING DISTANCE MEASURES FOR IM-
AGE TIME SERIES CLUSTERING IN LAND USE AND COVER
MONITORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3This chapter is based on the paper: Santos, L.A.; Ferreira, K.; Picoli, M.; Camara, G.; Zurita-
Milla, R.; Augustijn, E.-W. Identifying Spatiotemporal Patterns in Land Use and Cover Samples
from Satellite Image Time Series. Remote Sens. 2021, 13, 974.

xx



1 INTRODUCTION

Due to growing pressures for food and energy production promoted by increasing
population, humans have rapidly modified Earth’s environment. Recently, land use
and cover changes (LUCC) have caused a major impact on tropical ecosystems,
increasing global greenhouse gases emissions and reducing the planet’s biodiversity
(FOLEY et al., 2005; HANSEN; LOVELAND, 2012). Land cover is the (bio)physical
material at the Earth’s surface, e.g., tropical forest, snow, desert, savannas, and
water, while land use is how the humans utilize the land, e.g., agriculture, cattle
ranching, and wood extraction (COMBER et al., 2008). Land use is the set of activities
performed for humans on the land cover (LAMBIN et al., 2001), such as urban and
agricultural. The characterization and mapping of these changes are essential for
planning and managing natural resources.

Remote sensing and digital image processing allow to identify and map land use
and cover changes (CHEN et al., 2015; GOMEZ et al., 2016). According to Kennedy et
al. (2014), traditional remote sensing literature views ecosystems as static entities,
with occasional disruptions causing dramatic contrasts in two images, taken before
and after the change. However, it is difficult to detect the mapping of abrupt
transformation with only two images. Change in land ecosystems is a continuous
process. Instead of using only two dates, the best situation is to obtain a sequence of
images that show change events as they happen.

Good quality datasets with the best possible temporal and spatial resolution are
crucial to developing remote sensing analysis methods that enable a continuous view
of ecosystem dynamics (KENNEDY et al., 2014). Integrating the temporal component
with spatial and spectral dimensions results in richer datasets that improve LUCC
monitoring. Progress on this area depends on the availability of spatial high-resolution
dense time series analysis capable of capturing subtle and long-term change patterns
(HOSTERT et al., 2015). According to Pasquarella et al. (2016), time series derived
from Earth Observation (EO) satellite images allow us to detect complex underlying
processes that would be difficult to identify using bi-temporal or other traditional
change detection approaches. Camara et al. (2016) use the term time-first, space-later
to refer to approaches that exploit the benefits of remote sensing time series for
change detection.

Besides that, vegetation indices derived from spectral information of EO satellite
images are widely used to generate LUCC information. According to Huete et al.
(2002), vegetation indices are spectral transformations of two or more bands designed
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to enhance vegetation properties. They provide spatial and temporal comparisons
of global vegetation conditions that can be used to monitor and capture abrupt
and long-term vegetation trends across large areas. Two examples of the most used
vegetation indices are NDVI (Normalized Difference Vegetation Index) and EVI
(Enhanced Vegetation Index). Some space agencies provide these vegetation indices
as products derived from their satellite images. An example is the product MOD13Q1
of MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provided by
NASA with a temporal resolution of 16 days and spatial resolution of 250 meters
(HUETE et al., 2002; FENSHOLT et al., 2015).

Nowadays, with a large amount of EO satellite images freely, the use of image time
series brings new opportunities and challenges for LUCC mapping over large areas
(GOMEZ et al., 2016). To support the satellite image time series analysis, EO Data
Cubes infrastructures have been created. They model Analysis-Ready Data (ARD)
generated from remote sensing images as multidimensional cubes (space, time, and
spectral properties) (NATIVI et al., 2017; LEWIS et al., 2017). Besides that, these
infrastructures take advantage of big data technologies and methods to store, process,
and analyze the big amount of Earth observation satellite images (GOMES et al.,
2020). Recent initiatives have made great strides towards creating EO data cubes for
specific countries such as Australian Data Cube (LEWIS et al., 2017), Africa Regional
Data Cube, Swiss Data Cubes (GIULIANI et al., 2017), Catalan Data Cube, and
Brazilian Data Cube (FERREIRA et al., 2020). EO data cubes’ purpose is to organize
and provide data for simple and intuitive use to broadly the use of open EO data.

The Brazilian National Institute for Space Research (INPE) is developing the Brazil
Deata Cube (BDC) initiative to create ARD and EO data cubes for all Brazilian
territory. Besides datasets, software products and web services have been developed by
the BDC project to create, access, discover, analyse and process EO data cubes. Big
data technologies, cloud computing environments, and machine learning techniques
have also been explored extensively in the BDC project.

The BDC project has four main objectives: (1) create ARD image collections from
medium resolution remote sensing images (10 to 64 m) for all the Brazilian territory;
(2) model these ARD images as multidimensional data cubes with three or more
dimensions that include space, time and spectral-derived properties, mainly to
support image time series analysis; (3) use, propose and develop big data technologies
to create, store, and process these data cubes; and (4) create land use and cover
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information from these EO data cubes for Brazil, using satellite image time series
analysis, machine learning methods, and image processing procedures.

The processing of large amounts of data requires advanced computational techniques,
for this reason the use of machine learning to produce LUCC information has greatly
increased in recent years (GOMEZ et al., 2016; AGUIAR et al., 2010; ARVOR et al., 2011;
MAUS et al., 2016; SPERA et al., 2014; PICOLI et al., 2018; SIMOES et al., 2020). Aguiar et
al. (2010) identify pasture land and its different levels of degradation in Mato Grosso
do Sul state, Brazil, using MODIS NDVI time series and a J48 classifier with wavelet
technique. Arvor et al. (2011) use MODIS EVI time series to quantify the evolution
of the agricultural area from 2000 to 2006 in Mato Grosso state, Brazil. Maus et
al. (2016) propose an algorithm called Time-Weighted Dynamic Time Warping
(TWDTW), based on the classical Dynamic Time Warping (DTW) method, for land
cover and land use classification and present a case study using MODIS time series
in the Porto dos Gaúchos municipality in Mato Grosso state, Brazil. Spera et al.
(2014) use MODIS EVI time series to examine patterns of cropland expansion in
Mato Grosso from 2001 to 2011 using a decision-tree algorithm. Picoli et al. (2018)
and Simoes et al. (2020) use MODIS time series to provide information about crop
and pasture expansion over natural vegetation in the Mato Grosso state from 2001
to 2017 using Support Vector Machine (SVM).

Most of the approaches for LUCC mapping use supervised learning techniques.
However, when these techniques are applied, the biggest challenge is the necessity
of the large training data labeled a priori with good quality. In supervised machine
learning methods, training samples are also called reference databases. They must
properly represent the land use and cover classes that are supposed to be identified by
the classifier. The quality of training samples is crucial in the supervised classification
process because it leads to results with better accurate maps and decreases the
computational complexity and training time (ZHU; WU, 2004a; GOMEZ et al., 2016;
PELLETIER et al., 2017).

The task of getting well-labeled land use and cover samples is also a challenge. The
dataset requires many samples to describe the variability mainly over larger areas
(PELLETIER et al., 2017). Usually, the main ways to collect the samples are through the
interpretation of high-resolution satellite images or land use and cover maps and field
collection. However, these sources of data are plausible for errors. The publication
of new maps can be long due to the long production, the field collection can be an
expensive process, and sometimes, the experts can introduce errors when the classes
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contain small differences. Several approaches have applied semi-supervised learning
and active learning to support the training samples acquisition (DEMIR et al., 2010;
TUIA et al., 2011; HUANG et al., 2015; LU et al., 2017). However, these methods are not
suitable for large areas due to the large number of samples necessary to characterize
each class (RADOUX et al., 2014), and they require good quality preexisting labeled
training data (VIANA et al., 2019).

Although much research on big data and machine learning is increasing, there is a
knowledge gap for EO scientists (ELMES et al., 2020) because of the recent availability
of open EO data. For this reason, the methods for satellite image time series are
still maturing, and the literature to deal with the problem to improve the quality of
training data for large areas in multiples years is limited (PELLETIER et al., 2017).
Different approaches have been proposed to improve the reference data quality
(PENGRA et al., 2020). Such strategies include best practices in collecting training
data (OLOFSSON et al., 2014; ELMES et al., 2020; PENGRA et al., 2020; HUANG et al.,
2020) and refinement methods of samples using satellite image time series (VIANA et

al., 2019; SIMOES et al., 2020; BELGIU et al., 2021). However, most studies are limited
to small areas, and inter-annual extents (PENGRA et al., 2020). Besides that, the intra-
class variability of land use and cover data is intrinsic to different regions and periods
due to distinct factors, such as different agricultural practices and climatological
variations (HOSTERT et al., 2015). For this reason, it is necessary to develop methods
considering a big EO database and the high intra-class variability considering the
spatiotemporal variations, mainly in large areas and multiple years.

1.1 Our proposal

As part of the BDC initiative, this thesis contributes to assess and improve the
quality of land use and cover samples used to produce LUCC maps using machine
learning and image time series.

This thesis addresses the research question: How to improve the quality of big EO
reference data using satellite image time series to produce more accurate land use and
cover change maps? The hypothesis is that methods based on time series clustering
are useful when dealing with high-variability data or incomplete information. Satellite
image time series have high intra-annual variability, and observations of the same
land cover can differ yearly. For such datasets, non-supervised clustering is useful to
assign similar observations to the same cluster.
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The methods proposed in this thesis are based on Self-Organizing Maps (SOM)
neural network (KOHONEN, 1982) combined with other methods such as Bayesian
Inference and Hierarchical clustering. The SOM was chosen due to its two fundamental
properties, (1) dimensionality reduction and (2) topological preservation. SOM has
the capability of mapping from a high-dimensional input space to a low-dimensional
map space (usually two-dimensional grids), generating clusters of similar patterns in
the output space. Due to these properties, SOM is a suitable tool for exploratory
analysis of remote sensing time series. In the SOM method, each sample is allocated
in a neuron. The clusters are composed of neurons with similar characteristics. Similar
patterns tend to stay close in the output space. Hence, SOM is a suitable tool for
outliers identification in the training samples. Several approaches have applied SOM
in the spatiotemporal analysis due to its properties (ASTEL et al., 2007; AUGUSTIJN;

ZURITA-MILLA, 2013; CHEN et al., 2018; QI et al., 2019), it can help to deal with the
variability of vegetation phenology better than other methods that do not have these
properties. Due to climatic phenomena, the vegetation phenology suffers variations
over time. Phenological patterns can vary spatially across a region and are strongly
correlated with climate variations over time (SUEPA et al., 2016). For example, rainy
years may have a pattern for pasture different from a non-rainy year. It is impossible
to have a set of samples that capture all phenological variations over time. Therefore,
it is necessary methods that can take into account these variations.

The main contributions of this thesis are: (1) the proposed methods to improve
the quality of the samples. The first method uses SOM combined with Bayesian
inference to provide measures indicating the reliability of the samples. In the second
method, the SOM is combined with hierarchical clustering to assess spatiotemporal
patterns to explore the sample’s intra-class variability; (2) the implementation of
these methods as part of an R package, sits (Satellite Image Time Series), available
on GitHub1; and (3) good-quality land use and cover samples dataset created using
the proposed methods. These samples were used to create LUCC maps for the state
of Mato Grosso, Brazil, from 2001 to 2017, based on MODIS image time series
(collection 6) (SIMOES et al., 2020) available at PANGAEA repository (CAMARA et al.,
2019).

1.2 Document structure

The structure of this thesis is based on three papers:

1https://github.com/e-sensing/sits.
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a) Santos, L., Ferreira, K. R., Picoli, M. and Camara, G., 2019. Self-organizing
maps in earth observation data cubes analysis. In: International Workshop
on Self-Organizing Maps and Learning Vector Quantization, Clustering
and Data Visualization (WSOM), Vol. 13, Barcelona, Spain, pp. 70–79,
doi:10.1007/978-3-030-19642-4_7.

b) Santos, L., Ferreira, K. R., Picoli, M. and Camara, G. and Simoes R,.
Quality control and class noise reduction of satellite image time series. (The
first version was submitted in July, 2020 and an updated version, based on
the reviewers comments, was submitted on November, 2020 to the ISPRS
Journal of Photogrammetry and Remote Sensing).

c) Santos, L.A.; Ferreira, K.; Picoli, M.; Camara, G.; Zurita-Milla, R.; Au-
gustijn, E.-W. Identifying Spatiotemporal Patterns in Land Use and Cover
Samples from Satellite Image Time Series. Remote Sens. 2021, 13, 974.
doi:https://doi.org/10.3390/rs13050974

Chapter 2 presents an overview of LUCC mapping using remote sensing image
time series and how EO data cubes have been applied to generate this information.
This chapter also introduces an initial experiment about the utility of SOM to
extract LUCC information from EO Data Cubes infrastructures using image time
series analysis. In this context, SOM is used to assess land use and cover samples
and evaluate which spectral bands and vegetation indices are best suitable for the
separability of land use and cover classes. A case study is described in this work and
shows the potential of SOM in this application.

Chapter 3 describes the method proposed to assess and improve satellite image time
series training data quality. The method uses SOM to produce time series clusters
and Bayesian inference to assess intra-cluster and inter-cluster similarity. Consistent
samples of a class will be part of a neighborhood of clusters in the SOM map. Noisy
samples will appear as outliers in the SOM. Using Bayesian inference in the SOM
neighborhoods, we can infer which samples are noisy. To illustrate the methods,
we present a case study in a large training set of land use and cover classes in the
Cerrado biome, Brazil. The results prove that the method is efficient in reducing
class noise and assessing the spatiotemporal variation of satellite image time series
training samples. The code used in this chapter to generate the results presented in
Section is provided under the GNU General Public License v3.0. It is available in
(SANTOS, 2020). The 50,160 samples used in chapter 3 are also available in (SANTOS,
2020).
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Chapter 4 presents a method to identify and explore spatiotemporal patterns in
land use and cover samples from satellite image time series. The proposed method
recognizes intra-class variability to different regions and periods, mainly in large
areas and multiple years. The method is based on self-organizing maps to reduce
the large data dimensionality and hierarchical clustering to evaluate the intra-class
variability. We present a case study using pasture and agriculture samples over the
Cerrado biome in Brazil. The results show that the proposed methods are suitable for
identifying spatiotemporal patterns in land use and cover samples and, consequently,
improving the training samples’ quality.

Chapter 5 presents the final discussions and future works.
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2 SELF-ORGANIZING MAPS IN EARTH OBSERVATION DATA
CUBE ANALYSIS2

Earth Observation Data Cubes (EO Data Cubes) are emergent infrastructures that
model analysis-ready data generated from remote sensing images as multidimensional
cubes, especially for satellite image time series analysis (NATIVI et al., 2017). Such
data cubes have three or more dimensions that include space, time, and properties.
EO Data Cubes can be defined as a set of time series associated with spatially aligned
pixels ready for analysis.

EO Data Cubes infrastructure is an innovative way to organize the big amount of
Earth observation satellite images freely available nowadays and take advantage of
big data technologies and methods to store, process, and analyze time series extracted
from these images. Examples of computational platforms for EO Data Cubes are
the Open Data Cube (ODC) (LEWIS et al., 2017), the Joint Research Centre (JRC)
Earth Observation Data and Processing Platform (JEODPP) (SOILLE et al., 2018)
and the System for Earth Observation Data Access, Processing and Analysis for
Land Monitoring (SEPAL) (FOOD AND AGRICULTURE ORGANIZATION - FAO, 2020).

A typical application that benefits from EO Data Cubes infrastructures and satellite
image time series analysis is LUCC monitoring. Characterizing and mapping changes
in the land surface is essential for planning and managing natural resources. The
growing pressures for food and energy production promoted by increasing population
make humans modify the Earth’s environment rapidly. LUCC can affect hydrological
and biological process causing great impacts on tropical ecosystems (PASQUARELLA

et al., 2016).

Recently, EO Data Cubes infrastructures and satellite image time series analysis have
brought new opportunities and challenges for LUCC mapping over large areas. Time
series derived from Earth observation satellite images allow us to detect complex
underlying processes that would be difficult to identify using bi-temporal or other
traditional change detection approaches (PASQUARELLA et al., 2016). The use of
remote sensing image time series analysis to produce LUCC information has increased
greatly in recent years (GOMEZ et al., 2016).

2This chapter is based on the paper: Santos, L., Ferreira, K. R., Picoli, M. and Camara, G.,
2019. Self-organizing maps in earth observation data cubes analysis. In: International Workshop
on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization
(WSOM), Vol. 13, Barcelona, Spain, pp. 70–79
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Most classification techniques to create LUCC maps from satellite image time series
are based on supervised learning methods. Such methods require a training phase
using land use and cover samples labeled a priori. These training samples must
properly represent the land use and cover classes to be identified by the classifier.
The quality of these samples is crucial in the classification process. Representative
samples lead to good LUCC maps.

This chapter presents the utility of the Self-Organizing Maps (SOM) neural network
method to extract LUCC maps from EO Data Cubes infrastructures. SOM is a
clustering method suitable for time series datasets. It describes the use of SOM in
the training phase to produce metrics that indicate the quality of the land use and
cover samples and evaluate which spectral bands and vegetation indexes are best
suitable for the separability of land use and cover classes. A case study is described
in Section 2.2, and it shows the potential of SOM in this context.

In the LUCC domain, SOM has not been widely explored for image time series
analysis. The good review provided by Gomez et al. (2016) cites Bagan et al. (2005)
as the main reference in this context. However, Bagan et al. (2005) proposed an
approach to classify land cover from MODIS EVI time series using SOM. Besides
that, Lawawirojwong (2013) proposed the use of supervised SOM for pure and mixed
pixels, called soft supervised self-organizing map to improve the classification of
MODIS-EVI time series. Both references, Bagan et al. (2005) and Lawawirojwong
(2013), proposed the use of SOM to classify one agricultural year using only the EVI
attribute. Unlike them, our proposal uses SOM to explore the separability time series
using several attributes to improve the classification.

2.1 Land use and cover change information from Earth observation data
cubes

This section describes the process, illustrated in Figure 2.1, to extract LUCC infor-
mation from Earth Observation Data Cubes using image time series analysis and
the utility of SOM method in this process.

To perform LUCC classification using Earth observation image time series, machine
learning methods such as Support Vector Machine (SVM) and Random Forest (RF)
have been used quite frequently (PICOLI et al., 2018). Most of these methods are
based on supervised learning methods, which require a training phase using land use
and cover samples labeled a priori.
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Figure 2.1 - LUCC information from EO Data Cubes.

SOURCE: Author.

The selection of representative samples is crucial to obtain good classification accuracy.
The exploratory analysis using time series clustering techniques, such as the SOM
method, helps users improve the quality of land cover change samples.

2.1.1 Earth observation satellite image time series

Remote sensing satellites revisit the same place on Earth during their life cycle. The
measure of the same place can be obtained at different times. These measures are
mapped to three-dimensional array in space-time (MAUS et al., 2016), as shown in
Figure 2.2(a). The time series is made from values obtained of each pixel location
I(x, y) over time, as presented in Figure 2.2(b). From these time series, LUCC can be
extracted through vegetation phenology. Figure 2.2(b) shows an example of an area
covered by forest from 2000 to 2001, then it was deforested, and during three years
it was maintained as pasture. From 2006 to 2008, it was used for crop production.
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Figure 2.2 - (a) A dimensional array of satellite images, (b) vegetation index time series at
pixel location (x,y).

SOURCE: Maus et al. (2016).

2.1.2 Vegetation indices

Vegetation phenology is a biological event that indicates the stages of plants’ growth
and development during the life cycles. Remote sensing satellites are becoming
essential for remotely capturing phenological variations on a large scale and extract
phenological metrics from time series data of vegetation parameters. The most
common parameters used are the vegetation indices (VI) (ZHANG et al., 2003).

During plant growth periods, different vegetation styles can be distinguished by time
series vegetation indices (BOLES et al., 2004). Along with the VI, MODIS provides
surface reflectance bands as RED, BLUE Near Infrared (NIR), and Mid Infrared
(MIR). The VI are derived from these reflectance bands.

Limitations of the NDVI include sensitivity to atmospheric conditions, soil back-
ground, and saturation tendency in closed vegetation canopies with large leaf area
index values (BOLES et al., 2004). The EVI signal has improved sensitivity in high
biomass regions and improved vegetation monitoring. The blue band is used to
remove residual atmosphere contamination caused by smoke, and sub-pixel thin
cloud (UDELHOVEN et al., 2015). While NDVI is chlorophyll sensitive, EVI is more
responsive to canopy structural variations, including leaf area index (LAI), canopy
type, plant physiognomy, and canopy architecture (HUETE et al., 2002). The two
vegetation indices complement each other in global vegetation studies.
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2.1.3 Using SOM to improve the quality of land use and cover samples

In extracting LUCC information from EO Data Cubes, SOM is used to improve
the training step of the land cover change classification. It is used to assess the
quality of the land use and cover samples and evaluate which spectral bands and
vegetation indexes are best suitable for the separability of land use and cover classes.
This approach explores two main feature of SOM: (1) the topological preservation
of neighborhood, which generates spatial clusters of similar patterns in the output
space; and (2) the property of adaptation, where the winner neuron and its neighbors
are updated to make the weight vectors more similar to the input.

Besides that, multiples attributes such as combined vegetation indices and multiples
spectral bands can improve the patterns generated by SOM.

Instead of using only one vegetation index or spectral band, Wehrens and Buy-
dens (2007) implemented an approach suitable for the use of several attributes
simultaneously.

Considering a sample x(t)1 with two attributes, xA1 and xA2, for example, the vegeta-
tion indices NDVI and EVI, as shown in Figure 2.3. The input and weight vectors are
concatenated according to the number of attributes. For example, considering 16-days
of MODIS temporal resolution, each NDVI time series has 23 points representing a
year, therefore using two attributes, a sample has an input vector with 46 points.
Similarly, the weight vectors are initialized randomly with the same dimension of
the input vector.

Internally, the approach implemented by Wehrens and Buydens (2007) creates an
output layer consisting of a 2-D grid of neurons separately for each attribute. To
identify the most similar neuron for an input vector, the Best Matching Unit (BMU),
the distances between the input vector and all weight vectors, must be computed.
In this case, it is computed separately for each layer. Considering the example of
Figure 2.3, for the input x(t)1 16 distances are found for the attribute NDVI, and 16
distance for the EVI. To define a unique distance between the input x(t)1 and the
weight vector w1, the BMU’s found for each layer must be summed. The equation
2.1 shows how to calculate the distance for multiple attributes.

Dl =
nl∑

l=1
Dl(i, j). (2.1)

where l is the layer and nl is the number of layers.
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Figure 2.3 - Structure of SOM with two attributes.

SOURCE: Author.

After the SOM training step, to evaluate the separability of samples it is necessary
to label the neurons to create clusters. A cluster can be one neuron or a set of
neurons that belongs to the same class. In this step, each neuron is labeled using
the majority vote technique. Each neuron receives the label of the majority of the
samples associated with it. In some cases, no samples are associated with a neuron.
Then, this empty neuron receives the label ’Noclass’. To verify the quality of the
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clusters generated by SOM, the confusion matrix can be accessed. From the confusion
matrix, the percentage of the mixture within a cluster is calculated.

2.2 Case study

To show the potential of the SOM method in selecting good quality land use and
cover samples from satellite image time series, this section describes a case study
using VI time series of the product MOD13Q1 of the MODIS sensor from 2001 to
2016. The study area is the Mato Grosso State in Brazil, as shown in Figure 2.4.
Each sample has a spatial location (latitude and longitude), start and end date
that corresponds to agricultural year (from August to September), the class label
that corresponds to the sample, and a set of time series with multiple attributes.
In this case study, we used EVI, NDVI, NIR, MIR, BLUE, and RED. The ground
samples include natural vegetation and agricultural classes for the Mato Grosso state
of Brazil. The dataset includes 2215 ground samples divided into nine land use and
cover classes: (1) Cerrado, (2) Pasture, (3) Forest, (4) Soy-Corn, (5) Soy-Cotton, (6)
Soy-Fallow, (7) Soy-Millet, (8) Fallow-Cotton and (9) Soy-Sunflower. The ground
samples were collected by Picoli et al. (2018).

Figure 2.4 - Samples Dataset.

SOURCE: Author.
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To evaluate the separability of these classes using SOM, clusters combining spectral
bands and vegetation indices were generated in three cases: (1) Case I: NVDI and
EVI; (2) Case II: NDVI, EVI, NIR, and MIR; (3) Case III: NDVI, EVI, NIR, MIR,
RED, and BLUE. The SOM parameters that we used were: grid size = 25 × 25,
learning rate = 1, and number of iterations = 100.

Figure 2.5 shows the maps created for each case. As we have the label of samples, the
confusion matrix for each case was generated. Although the large variability within
the land use and cover classes and the similarity of the phenological patterns among
the classes, SOM separated these land use and cover classes with good accuracy.
For Case I the accuracy was 88%, the Case II was 93%, and the Case III was 90%.
Besides that, we can note that most of the neurons that belong to a neighborhood
are the same category, but the time series samples contain small variations.

Figure 2.5 - Grids generated for each case.

SOURCE: Author.

From the confusion matrix, we can evaluate the quality of each land use and cover
cluster generated by SOM. For each case, Table 1 shows the percentage of samples
assigned to the appropriate cluster, that is, the class associated with the sample is
the same class associated with the cluster. For example, the Cerrado cluster has
97.3% of samples labeled as Cerrado in Case II, 84% in Case I, and 93.3% in Case
III.
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In general, we can notice that in Case II, where the attributes MIR and NIR were
considered, the quality of clusters was improved. The separability had a significant
increase in the Cerrado and Fallow-Cotton clusters. There was a loss of separability
quality for Forest and Soy-Sunflower clusters, but it is not so significant. In the same
way, in Case III, the attributes BLUE and RED improved some clusters’ separability
compared with Case I but not so significantly.

Table 2.1 - Quality of clusters.

Cluster Case I Case II Case III
Cerrado 84% 97.3% 93.3%
Fallow-Cotton 72.2% 85.7% 78.9%
Forest 100% 99.3% 89.9%
Pasture 92.7% 97.3% 93.7%
Soy-Corn 82.0% 84.0% 85.4%
Soy-Cotton 94.6% 95.5% 93.5%
Soy-Fallow 97.8% 100% 98.9%
Soy-Millet 85.5% 90.3% 88.2%
Soy-Sunflower 77.1% 76.9% 72.9%

For Case II, each cluster’s confusion is shown in Figure 2.6. The clusters Fallow-
Cotton, Soy-Corn, and Soy-Sunflower, are the most confusing, that are crop classes.
Crop classes have similar phenological patterns. This confusion can be noted in
the maps of Figure 2.5 where there are neurons labeled as Fallow-Cotton and Soy-
Sunflower within the neighborhood of Soy-Corn. Some Cerrado and Pasture samples
have similar spectral curves, but the attributes MIR and NIR reduced the confusion
between these samples, as shown in Figure 2.6.

2.3 Final Remarks

This chapter presents the SOM method’s utility to improve LUCC classification
from satellite image time series using EO Data Cubes infrastructures. The proposed
approach uses SOM to evaluate which spectral bands and vegetation indexes are best
suitable for the separability of land use and cover classes and improve the quality of
the land use and cover samples.

It was presented a case study that evaluate the combination of six attributes, EVI,
NDVI, NIR, MIR, RED, and BLUE, using MODIS time series of land use and cover
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Figure 2.6 - Confusion among the classes.

SOURCE: Author.

samples in the Mato Grosso State in Brazil. The results show the potential of SOM
to identify the separability of land use and cover types.

Even though the general accuracy of separability using only NDVI and EVI attributes
was 88%, the classification in big scale areas can generate many errors. Including
the attributes MIR and NIR, we noticed a great improvement in the accuracy of
separability that was 93%. Considering that a neuron is a cluster, when the MIR and
NIR attributes were added, the percentage of samples assigned to the appropriate
clusters increased. A sample assigned to the appropriate cluster means that the class
associated with the sample is the same class associated with the cluster.

In the third case, when we used all attributes, including BLUE and RED, the accuracy
of separability was worse than in the second case, resulting in 90%. This analysis is
important because it is possible to conclude that adding more attributes does not
mean increasing the accuracy. Besides that, the computational cost is proportional
to the number of attributes used in the LUCC classification. It is crucial to identify
the minimal number of attributes that lead to the best results.

Finally, we have implemented our approach in R using the SOM method available in
the Kohonen R package (WEHRENS; BUYDENS, 2007). This package has the online
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and batch approaches of SOM. However, we use the online method for this work.
The Kohonen package was integrated with the Satellite Image Time Series (sits)
package. The package sits package was developed in the e-sensing project developed
by the Brazilian Institute for Space Research (INPE) to provide tools for working
with analyses, clustering, and classification of satellite image time series. Its source
code is available at github3.

3https://github.com/e-sensing/sits.
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3 QUALITY CONTROL AND CLASS NOISE REDUCTION OF
SATELLITE IMAGE TIME SERIES4

Humans are changing the Earth’s environment at a fast pace. In the last decades,
socio-economic and population growth in developing nations have increased the
removal of natural lands for food and energy production. Such fast changes in land
areas resulted in greater greenhouse gas emissions, and biodiversity loss (FOLEY et

al., 2005). In this context, mapping and monitoring of land use and cover change
(LUCC) are essential for planning and managing natural resources (GOMEZ et al.,
2016). Technologies and remote sensing image processing methods play a crucial role
in the identification, mapping, assessment, and monitoring of LUCC.

In this chapter, we deal with the problem of noise detection and quality improvement
in satellite image time series (SITS). The new generation of open access remote
sensing satellites has made petabytes of Earth observation (EO) data available online.
From repeated orbits of remote sensing satellites, we obtain a sequence of images
from the same area. After suitable calibrations, these images can be joined into a
time series to measure change. Time series derived from EO satellite images allow
us to detect complex underlying processes that would be difficult to identify using
bi-temporal, or other traditional change detection approaches (PASQUARELLA et

al., 2016). Satellite image time series are increasingly used in land use and cover
classification and change detection with good results (PETITJEAN et al., 2012; MAUS

et al., 2016; INGLADA et al., 2017; PICOLI et al., 2018; WOODCOCK et al., 2020).

Since machine learning methods have emerged as the best way to classify remote
sensing images for providing land information (ZHANG et al., 2003; MOUNTRAKIS et al.,
2011; BELGIU; DRAGUT, 2016), there is a natural interest in using machine learning
methods for SITS analysis. Recent results show that it is feasible to apply machine
learning methods to SITS analysis in large areas of 100 million ha or more (PICOLI et

al., 2018; SIMOES et al., 2020; PARENTE et al., 2019; GRIFFITHS et al., 2019). Experience
with machine learning methods has established that the limiting factor in obtaining
good results is the number and quality of training samples. Large and accurate
datasets are better, no matter the algorithm used (MAXWELL et al., 2018); increasing
the training sample size results in better classification accuracy (COMPARISON. . . , ).
Therefore, using machine learning for SITS analysis requires large and good quality
training sets.

4This chapter is based on the paper: Santos, L., Ferreira, K. R., Picoli, M. and Camara, G. and
Simoes R,. Quality control and class noise reduction of satellite image time series. (Under review
by the ISPRS Journal of Photogrammetry and Remote Sensing)”
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There are two main sources of noise and errors in satellite image time series (PEL-
LETIER et al., 2017). One effect is feature noise, caused by clouds and inconsistencies
in data calibration. The second effect is class noise, when the label assigned to the
sample is wrongly attributed. Class noise effects are common on large datasets. In
particular, interpreters tend to group samples with different properties in the same
category. For this reason, one needs good methods for quality control of large training
datasets associated with satellite image time series. Thus, our work addresses the
question: How to reduce class noise in large training sets of satellite image time
series?

The availability of big open EO data is recent and SITS analysis methods are still
maturing. For this reason, there is limited research dealing with the problem of how
to improve the quality of large sets of SITS training data (PELLETIER et al., 2017). In
this chapter, we propose a new method for class noise reduction in the SITS reference
database.

The proposed method creates a self-organizing map to reduce image time series
dimensionality. SOM presents a fundamental property of neighborhood topological
preservation. Time series samples with similar patterns tend to be close in the
SOM output space. Hence, the neighborhood can offer additional information for
outlier identification and intra-class and inter-class variability. Based on the SOM
neighborhood preservation feature, we use Bayesian inference to reinforce the intra-
class similarities evaluation and enhance the samples assessment quality. We present
how the proposed method improves land use and cover classification using a large
SITS dataset.

3.1 Related work

Class label noise refers to mislabeling or sample instances whose labels are different
from the ground truth labels (PELLETIER et al., 2017). The problem of class label
noise and its effects in supervised learning is widely discussed in the literature of
Neurocomputing, Artificial Intelligence and Machine Learning (ZHU; WU, 2004b;
FRÉNAY; VERLEYSEN, 2013; GARCIA et al., 2015).

In Machine Learning, techniques to identify and remove label noise include filter
approaches based on geometric, statistical, and structural measures extracted from
datasets (ZHU; WU, 2004b; GARCIA et al., 2012), based on Bayesian classifier (SUN et

al., 2007) or based on clustering methods (REBBAPRAGADA; BRODLEY, 2007). Filters
are applied before the learning process. Differently from filters, noise-tolerant variants
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of classifiers are proposed to be more tolerant and robust to noise, dealing with label
noise during learning or considering label noise in an embedded way (KHARDON;

WACHMAN, 2007; NATARAJAN et al., 2013; FRÉNAY; VERLEYSEN, 2013; PATRINI et al.,
2017). For example, one variant of the Support Vector Machine (SVM) method has
a parameter to be tuned during its training, called regularization or lambda, that is
responsible for identifying misclassified samples and replacing them with near ones
based on decision boundaries. Although these methods are robust, they are not still
free to be affected by noise (FRÉNAY; VERLEYSEN, 2013).

In Remote Sensing, many works have highlighted the importance of good quality
samples to train machine learning methods to produce land use and cover maps with
great accuracy from SITS analysis (OLOFSSON et al., 2014; GOMEZ et al., 2016; BELGIU;

DRAGUT, 2016; ELMES et al., 2020). However, few papers focus on the problem of
class label noise in large sets of SITS training (PELLETIER et al., 2017). Most of the
literature deals with the removal of feature noise focusing on cloud removal and
smoothing (HIRD; MCDERMID, 2009; ATZBERGER; EILERS, 2011; ATKINSON et al.,
2012). For class label noise, most papers evaluate the impact of mislabeled training
data for land cover mapping using classical classifiers as SVM and Random Forest
and show that their performance drops down for higher noise levels (JIANG et al.,
2008; MELLOR et al., 2015; PELLETIER et al., 2017). There is a lack of solutions to
identify and remove class label noise in large sets of SITS training samples.

This chapter addresses the class label noise problem in large sets of SITS training
samples and presents a solution for it. We propose a novel method for class label
noise reduction in large SITS data and present how it improves land use quality and
cover samples. In land use and cover applications, label noise is common and occurs
during field works mainly due to the lack of consensus in land cover definitions and
the subjectivity of human judgment (PELLETIER et al., 2017). The proposed method
is useful for land use and cover applications, helping users identify and remove label
noise in large SITS training datasets.

3.2 Material and methods

3.2.1 Study area

Our case study uses a dataset of classes in the Cerrado biome in Brazil, the second
largest biome in South America with an area of more than 2 million km (∼ 22%
of Brazil) (see Figure 3.1) (BRASIL. MINISTÉRIO DO MEIO AMBIENTE, 2019). The
Cerrado is a global biodiversity hotspot due to the abundance of endemic species; it
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has undergone a significant habitat loss in recent decades (STRASSBURG et al., 2017).
The advance of agricultural and livestock activities has caused intense land change
(SOTERRONI et al., 2019). Only 8.21% of the Cerrado is legally protected by conser-
vation units (BRASIL. MINISTÉRIO DO MEIO AMBIENTE, 2019), and it is estimated
that 88 Mha (46%) of its natural vegetation cover has been lost (STRASSBURG et al.,
2017).

Figure 3.1 - a. Cerrado location relative to Brazil and South America. b. Land use and
cover map of the Cerrado. Source: TerraClass (INSTITUTO NACIONAL DE
PESQUISAS ESPACIAIS - INPE, 2013).

SOURCE: Adapted from INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE
(2013).

3.2.2 Training samples

The training samples were collected by ground surveys and high-resolution image
interpretation by experts from the Brazilian National Institute for Space Research
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(INPE) team and partners. This set ranges from 2000 to 2017 and includes 50,160
land use and cover samples divided into 12 classes: (1) Dunes, (2) Fallow-Cotton, (3)
Millet-Cotton, (4) Soy-Corn, (5) Soy-Cotton, (6) Soy-Fallow, (7) Pasture, (8) Rocky
Savanna (in Portuguese cerrado rupestre), (9) Savanna, (10) Dense Woodland (in
Portuguese cerradão), (11) Savanna Parkland (in Portuguese savana parque) and
(12) Planted Forest. The class labels of natural classes of the Cerrado follow the work
of (RIBEIRO; WALTER, 2008) who provide a taxonomy of classes for the biome. The
samples number for each class is presented in Table 3.1.

Table 3.1 - Input dataset.

Class Count Frequency
Dunes 550 1.1%
Fallow-Cotton 630 1.26%
Millet-Cotton 316 0.63%
Soy-Corn 4971 9.9%
Soy-Cotton 4124 8.22%
Soy-Fallow 2098 4.1%
Pasture 7206 14.4%
Rocky Savanna 8005 16%
Savanna 9172 18.3%
Dense Woodland 9966 19.9%
Savanna Parkland 2699 5.3%
Planted Forest 423 0.84%

As shown in Figure 3.2, each sample has a spatial location (latitude and longitude),
an interval (start and end dates) that corresponds to an agricultural year, a LUCC
class, and a satellite image time series for each band or attribute. The time series
were extracted from the MODIS sensor (MOD13Q1 product, collection 6) of the
NASA’s Terra satellite, available on a 16-day time interval with a 250-meter spatial
resolution. We used a multidimensional time series with four MODIS bands: Normal-
ized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), and
the original bands near-infrared (NIR) and mid-infrared (MIR). Figure 3.2 illustrates
the four satellite image time series, one for each attribute (NDVI, EVI, NIR, and
MIR), associated with samples of Savanna and Soy-Cotton classes.

25



Figure 3.2 - Reference data set.

SOURCE: Author.

Multi-dimensional time series help in distinguishing the different land classes. The
dry season occurs from May to September and the rainy season from October to
April in the Cerrado biome. The variability of EVI values during the rainy season
helps to distinguish between natural vegetation cover types (LIESENBERG et al., 2007).
For crop classes, the NDVI and EVI values are high during vegetation growth and
start to decrease during the harvest. Spectral bands NIR and MIR also contribute
to class discrimination, and they are related to the structure of the leaves, and soil
(ADAM et al., 2010). Areas with forests and woodlands have high NIR values because
of their leaf structures; they also have low MIR due to absorption of water (ADAM et

al., 2010).
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3.2.3 General description

Many factors lead to class noise in SITS. One of the main problems is the inherent
variability of class signatures in space and time. When training data is collected over
a large geographic region, natural variability of vegetation phenology can result in
different patterns being assigned to the same label. Phenological patterns can vary
spatially across a region and are strongly correlated with climate variations (SUEPA et

al., 2016). A related issue is the limitation of crisp boundaries to describe the natural
world. Class definition use idealized descriptions (e.g., "a savanna woodland has tree
cover of 50% to 90% ranging from 8 to 15 meters in height "). However, in practice,
the boundaries between classes are fuzzy and sometimes overlap, making it hard
to distinguish between them. Class noise can also result from labeling errors. Even
trained analysts can make errors in class attributions. Although machine learning
techniques are robust to errors and inconsistencies in the training data (GOMEZ et al.,
2016; PELLETIER et al., 2017), quality control of training data can make a significant
difference in the resulting maps.

The main steps of our proposed method for quality assessment of satellite image
time series is shown in Figure 3.3. The method uses self-organizing maps (SOM)
(KOHONEN, 1990) to perform dimensionality reduction while preserving the topology
of original datasets. Since SOM preserves neighborhoods’ topological structure in
multiple dimensions, the resulting 2D map can be used as a set of clusters. Training
samples that belong to the same class will usually be neighbors in 2D space. The
neighbors of each neuron of a SOM map provide additional information on intra-
class and inter-class variability. We apply Bayesian inference to the SOM map
neighborhoods to improve the evaluation of each time series sample’s quality.
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Figure 3.3 - A method for class noise reduction in satellite image time series reference data.

SOURCE: Author.
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3.2.4 Using SOM for dimensionality reduction

SOM is an unsupervised neural network that maps a high-dimensional input dataset
to a low-dimensional one, usually a 2D grid. As Figure 3.4 shows, the grid is composed
by units called neurons. Each neuron has a weight vector with the same dimension
as the training samples. At the start, neurons are assigned a small random value
and then trained by competitive learning. The algorithm computes the distances
of each member of the training set to all neurons and finds the neuron closest to
the input, called the best matching unit (BMU). The weights of the BMU and its
neighbors are updated to preserve their similarity (KOHONEN, 2013). This mapping
and adjustment procedure is done in several iterations. At each step, the extent
of the change in the neurons diminishes until a convergence threshold is reached.
The result is a 2D mapping of the training set, where similar elements of the input
are mapped to the same neuron or nearby ones. The resulting SOM grid combines
dimensionality reduction with topological preservation.

To project a multidimensional set of time series onto a SOM map, each neuron j is
associated a random vector of weights wj = [wj1, . . . , wjn], with the same length of
each time series sample x(t)i = [xt1 , . . . , xtn ]. Each time a sample is allocated to its
best matching unit (BMU) b, which is the neuron with the smaller distance between
the time series and its vector of weights. To compute the distance Dj between a
time series x(t)i and a neuron j we compared three metrics (Euclidean, Manhattan,
and Dynamic Time Warping) in a previous work (FERREIRA et al., 2019). We found
out that the Euclidean metric provides reliable and robust results. Therefore, our
method uses Euclidean distances to find the BMU, db, as shown in Equation (3.1)
and Equation (3.2).

Dj =
n∑

i=1

√
(x(t)i−wj)2. (3.1)

db = min {D1, . . . , Dj} . (3.2)

The next step is to update the weights of the BMU and its neighbors. The weights
are adjusted to approximate the input vector, as shown in Equation (3.3).

wj = wj+α× hb,j[x(t)i−wj], (3.3)
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Figure 3.4 - Self-Organizing Maps structure.

SOURCE: Author.

The parameter α is the learning rate and hb,j is the neighborhood function. They are
updated at each iteration of SOM. The learning rate controls how the weight vector
changes. It must be set as 0 < α < 1. The neighborhood function hb,j determines
which neurons must be updated and the intensity of the readjustment of each one
(NATITA et al., 2016).

Our approach uses a unique vector composed of all attributes, including spectral
bands and vegetation indices, to represent the input samples. Consequently, the
weight vectors are initialized with the same dimension as the input vectors. Although
all attributes are put together in a unique vector, the distance between the input
and weight vectors is computed separately for each attribute. Then, the distances of
all attributes are summed to obtain a unique distance value used to find the BMU.
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At the end of the SOM training phase, each time series is associated with a neuron j
in a 2D grid. Since each time series class is known, we assign a class to a neuron using
majority voting. As an example, Figure 3.5 presents a grid with a set of neurons;
the samples associated with neuron 1 are presented. We then compute the class
frequencies of the samples linked to the neuron. In this example, since four samples
belong to Class 1 and one to Class 2, the neuron is assigned to Class 1 with 80%
probability and Class 2 with 20% probability. These probabilities will be used in the
next phase of the method.

Figure 3.5 - Assignment of classes to neurons.

SOURCE: Author.

3.2.5 Using Bayesian inference to assess the influences of the SOM neigh-
borhood

After all time series are assigned to a neuron, the SOMmap is used to assess the quality
of each element of the training set. Each neuron will be associated with a discrete
probability distribution. More homogeneous neurons (those with a single class of high
probability) are composed of good quality samples. Heterogeneous neurons (those with
two or more classes with significant probability) are likely to contain noisy samples.
Furthermore, we consider that the neuron class probability is not the best measure

31



of class noise. It represents the prior probability P (ClassNeuron/ClassSample). In
fact, what we need is the inverse probability P (ClassSample/ClassNeuron). To
obtain this inverse (also called posterior) probability, we use Bayesian inference.

Bayesian inference estimates the conditional probability f(θj,k|yj,k) where θj,k is the
random variable associated to the occurrence of a class k in a neuron j and yj,k is
the value of probability of neuron j being of class k. Bayes’ Rule is given by:

f(θj,k|yj,k) ∝ f(yj,k|θj,k)f(θj,k). (3.4)

Where f(θj,k) is the prior probability distribution of θj,k, that is, what we know
about the samples of class k that are part of neuron j before the SOM mapping. The
conditional probability f(yj,k|θj,k) represents the probability of a neuron j belonging
to a class k, given the samples of class k that are associated to it. It is called the
likelihood in Bayesian inference.

Since there is not enough information to compute the probabilities associated to the
prior f(θj,k) and the likelihood f(yj,k|θj,k), we need to make some assumptions. First,
we consider these probabilities to be modeled by Gaussian distributions. Second, we
consider that the prior f(θj,k) can be estimated using the neighborhood of neuron j.
This assumption is based on the SOM properties of topological consistency. Given
how SOM works, we expect similar samples to be close together in SOM 2D space.
Such a strategy of "borrowing strength from the neighbors" is commonly used in
Bayesian inference (ASSUNCAO et al., 2005).

The approach is illustrated in Figure 3.6, where the neuron j has a prior probability
of 52% of belonging to class k1. Since most of its neighbors have a high probability
of belonging to the class k1, the posterior probability of the neuron j belonging to a
class k1 increases due to the neighborhood effects.
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Figure 3.6 - Update neuron j for class k1.

SOURCE: Author.

To estimate the prior distribution of θj,k, we consider it to be expressed as a Gaussian
distribution:

θj,k ∼ N(mj,k, s
2
j,k). (3.5)

Where mj,k is the mean of the probability of values for class k, and s2
j,k is the variance

for class k. We estimate the means and variances considering the neighborhood of
neuron j. Let Vj be the neighborhood of neuron j, and #(Vj) be the number of
elements in Vj. We then have:

mj,k =
∑

(i)∈Vj
yi,k

#(Vj,t)
, (3.6)

s2
j,k =

∑
(i)∈Vj

[yi,k −mj,k]2

#(Vj)− 1 . (3.7)
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For the likelihood f(yj,k|θj,k), we also consider a normal distribution given by:

yj,k|θj,k ∼ N(θj,k, σ
2
j ) (3.8)

where σ2
j is an unknown hyper-parameter that controls the smoothness level. Given

these estimates, according to Bayesian statistics the expected conditioned mean for
θj,k is given by:

E[θj,k|yj,k] =
mj,k × σ2

j + yj,k × s2
j,k

σ2
j + s2

j,k

(3.9)

Rewriting this equation we have:

E[θj,k|yj,k] =
 s2

j,k

σ2
j + s2

j,k

× yj,k +
 σ2

j

σ2
j + s2

j,k

×mj,k (3.10)

When the neighborhood variance s2
j,k for class k is high, Equation (3.10) gives more

weight to the prior probability of yj,k. Otherwise, if the neighborhood variance s2
j,k

is small, the posterior estimate is controlled by the neighborhood mean mj,k. This
reflects the intuition that samples in areas of low variance are similar, while they
differ in regions of high variance.

The value of the hyper-parameter σ2
j should be set so as to balance the neighborhood

effects. A high value of yj,k signals a strong confidence that all samples in neuron j
belong to class k. In general, as the value of yj,k increases, the smoothing σ2

j should
decrease. To maintain the σ2

j adjusted according to the class variance of neuron j,
we define σ2

j as:
σ2

j =| 0.999999−max(yj,k) | (3.11)

Figure 3.7 shows how the Bayesian inference is applied in our context. Given the
prior probabilities of neuron 3 and its neighbors, initially, neuron 3 belongs to a Class
2. However, all neurons of its neighborhood belong to Class 1. When the Bayesian
inference is applied, the probability of this neuron belongs to a Class 2 decreases
due to the neighbors’ strength. Therefore, sample 1, labeled as Class 2, inherits the
neuron’s probability belonging to Class 2.
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Figure 3.7 - Applying Bayesian Inference in neuron 3.

SOURCE: Author.

3.2.6 Removing and analyzing class noise

Our method uses the probabilities calculated in the previous step to evaluate the
quality of the samples. Using these probabilities, we identify outlier neurons as those
whose classes are distinct from their neighbourhood. Identifying outlier neurons
is a key part of our method. Our experiments show there are two possible causes
for an outlier neuron: (a) its samples may be mislabelled or of bad quality; (b)
due to the different patterns of land use and cover classes in space or time. Case
(a) arises from class noise, and the associated samples should be discarded. By
contrast, case (b) results from variability; thus, the associated samples should not be
removed automatically from the dataset and need to be flagged for later analysis. To
distinguish between these situations, we proposed the following rule, which includes
thresholds τc for the prior probability and τp for the posterior probability:

a) If the prior probability is < τc then, the sample is removed from dataset;

b) If the prior probability is ≥ τc and the posterior probability is ≥ τp, then,
the sample is kept in the dataset;
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c) If the prior probability is ≥ τc and the posterior probability is < τp, the
samples will be flagged for further inspection.

3.3 Results and discussions

As a proof of concept, this section presents a study that evaluates the quality of a
time series sample set associated with land use and cover classes and shows how to
identify class noise in this set and improve the accuracy of the resulting classification.

3.3.1 Detecting noisy and outlier samples

In what follows, we show how to apply our method to analyze and improve sample
quality. Figure 3.8 shows the SOM grid map generated for the training data. The
parameters used in SOM are: grid size = 20× 20, learning rate = (0.50, 0.01), 100
iterations, and Euclidean distance for finding the BMU. Each sample is associated
with its BMU neuron; after that, each neuron is labeled with its majority class.

To define the SOM grid size, (VESANTO; ALHONIEMI, 2000) suggest about 5 ∗
√
N

neurons, where N is the number of observations or samples. However, based on
empirical tests, we got a good result using around 5∗

√
N

2 neurons. Regarding learning
rate, too small values can lead to twisted maps, and big values to a non ordered
map (TAN; GEORGE, 2004). We suggest using a decreasing learning rate, starting
at 0.5 to 0.1. The number of iterations is related to the convergence of SOM, that
is when additional iterations do not update the weight vectors. We tested our data
set and reached the convergence with 100 iterations. To select the distance measure,
we evaluated three metrics and concluded that Euclidean and Manhattan are more
accurate than Dynamic Time Warping for image time series clustering in land use
and cover application (FERREIRA et al., 2019).

Because of the variability among time series of the same land use and cover class,
samples of the same class can be mapped into different neurons. However, due
to the SOM properties, time series samples of the same class are expected to be
similar and so neighbors in the output map. The map also contains potentially
mislabeled and outlier samples. Mislabeled samples are those that have been mapped
to neurons whose majority class is different from their own label. Outlier neurons are
those whose majority class is different from that of their neighbors. We hypothesize
that mislabeled samples and outlier neurons are indicators of class noise. Thus, by
examining them and identifying incorrect samples, we can improve the training set’s
quality.
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Figure 3.8 - SOM grid.

SOURCE: Author.

Based on the rules presented in 3.2.6 to identify good samples and class noise, we
set the threshold as 60% to both prior and posterior probabilities to decide if each
sample is to be kept or removed from the training set. Table 3.2 shows the percentage
of samples by class that have been kept, removed, or flagged for analysis.
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Table 3.2 - Result of class noise detection.

Samples by class Keep Remove Flagged
Savanna Parkland 89.67% 4.63% 5.70%
Dense Woodland 86.70% 8.04% 5.24%
Savanna 88.25% 9.33% 2.40%
Rocky Savanna 86.55% 5.82% 7.62%
Dunes 100% - -
Fallow-Cotton - 24.76% 75.24%
Millet-Cotton - 67.40% 32.60%
Pasture 85.89% 11.89% 2.22%
Planted Forest - 19.85% 80.15%
Soy-Corn 86.70% 9.31% 3.98%
Soy-Cotton 94.23% 4.58% 1.19%
Soy-Fallow 58.19% 29.93% 11.87%

As shown in Table 3.2, our method identifies noisy samples. Some should be removed,
and others need to be analyzed to decide whether to keep or remove them. There
are classes with a large percentage of noisy samples, such as Millet-Cotton. Other
classes have many samples flagged for further analysis, such as Planted Forest and
Fallow-Cotton. Noisy samples can arise due to high intra-class variability or due to
confusion between class signatures. Whatever the case, the SOM-based analysis helps
to identify them. The SOM-based method also allows measuring confusion between
classes, as shown in Figure 3.9. As the figure shows, almost 20% of the Planted Forest
samples are confused with those from the Dense Woodland class. Also, 19% of the
Soy-Fallow samples have been mixed with samples from the Soy-Corn class. Such
information helps experts to have a detailed view of class noise in their samples.
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Figure 3.9 - Confusion between the classes.

SOURCE: Author.

The confusion between classes in the Cerrado arises because its natural vegetation is
a continuous mix of grasslands and trees. The boundaries between classes such as
Savanna Parkland, Savanna, Rocky Savanna are fuzzy, and there are many transitional
regions. According to (RIBEIRO; WALTER, 2008), areas of Savanna have trees whose
height is between 3 and 8 meters and cover range from 20% to 50% of the area.
Savanna Parkland areas have trees between 3 and 6 meters tall, and the tree cover
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between 5% and 20% of the area. Rocky-Savannas occur in regions with rock outcrops,
where the tree cover ranges from 5% to 20% and the trees are between 2 and 4
meters tall. Dense Woodlands have a continuous canopy and the tree cover range
from 50% to 90%, and trees between 7 and 15 meters of height (RIBEIRO; WALTER,
2008). In a complex biome such as the Cerrado, these labels are approximations of a
continuous gradient of changes in the tree and grassland mix (RIBEIRO; TABARELLI,
2002). Thus, some degree of confusion between the natural vegetation classes in the
Cerrado biome is to be expected.

Outside transitions areas, one can distinguish these classes using vegetation indices,
Figure 3.10a and 3.10b. The values of NDVI, EVI, and NIR for Dense Woodlands
samples are higher than for samples of Savanna. Samples of Savanna Parkland and
Rocky Savanna classes have NDVI values lower than Savanna and Dense-Woodland.
Although the NDVI values for Savanna Parkland and Rocky-Savanna can be similar,
the EVI and NIR values for Savanna Parkland are more constant during the year
than those of Rocky-Savanna (Figures 3.10c and 3.10d). In our dataset, the samples
of Savanna Parkland are located close to riverbanks. Therefore the vegetation does
not have significant leaf loss during the dry season (LIESENBERG et al., 2007). This
explains the constant values of EVI and NIR during the year. The Rocky-Savanna
and Savanna Parkland classes are more difficult to confuse with Dense-Woodland
class because of the different NDVI values. This is confirmed in the SOM map (Figure
3.8), where the Dense Woodland neurons are far from Rocky Savanna and Savanna
Parkland ones. Therefore, in general, these classes show different time series signals.
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Figure 3.10 - Time series of ground samples for natural vegetation classes in the Cerrado
Biome.

SOURCE: Author.

3.3.2 Identifying mislabelled samples

We now consider how our method helps to identify wrongly labelled samples. Figure
3.11 shows the NDVI signature of two different clusters of Rocky-Savanna class
samples, identified in the SOM map. In our assessment, the time series samples
presented in Figure 3.11a are consistent with the Rocky Savanna class’s expected
response. The posterior probability of these samples belonging to the Rocky Savanna
class is 100%. By contrast, the samples presented in Figure 3.11b were removed from
the dataset; their posterior probability of belonging to the Rocky Savanna class is
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18.5%. These samples have been actually mapped to neurons whose label is Dense
Woodland. These samples have likely been mislabelled.

Figure 3.11 - NDVI time series samples labeled as Rocky-Savanna.

SOURCE: Author.

We now consider the sources of confusion between natural vegetation and crops and
between crop samples. In general, as seen in Figure 3.9, natural classes and crop
classes do not mix. There are exceptions, such as the confusion between Planted
Forest and Dense Woodland samples. These classes have similar time series patterns
due to the coarse spatial resolution of MODIS. As for confusion between crop samples,
we identified many problems with Millet-Cotton and Fallow-Cotton samples (see
Table 3.2). Analyzing the SOM clusters, we found many mislabelled samples. Figure
3.12 shows two sets of NDVI values of Millet-Cotton samples. Clearly, samples shown
in Figure 3.12a are correct, while those in Figure 3.12b are not. The latter set of
samples had a posterior probability of 20% of belonging to the Millet-Cotton class.
They were removed from the training set.
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Figure 3.12 - NDVI time series samples labeled as Millet-Cotton.

SOURCE: Author.

3.3.3 Outlier analysis

This subsection considers the case of outliers on the SOM maps. Those outliers do
not necessarily result from labeling errors but are more likely to arise from the ground
data variability. Figure 3.13 shows that most Soy-Corn class patterns are neighbors
in the SOM map. However, there is an outlier neuron (Neuron 14) of the same class.
Comparing one of the Soy-Corn neighborhood neurons (Neuron 240) with Neuron
14, we find out Neuron 240 has prior and posterior probabilities of 96% and a and
91%. By contrast, Neuron 14 has prior and posterior probabilities of 81% and 39%
and has been flagged for analysis. Looking in more detail at their spatial location,
we discover that the samples mapped to Neuron 14 come from different areas that
samples mapped to Neuron 240. Neuron 14 samples come from the Brazilian states
of Tocantins and Maranhão (about 7S), while the cluster of samples close to Neuron
240 come from the state of Mato Grosso (about 12S). The climatological variations
lead the agricultural calendar to be different in these two areas. For this reason, the
spectral response over time of the same class is different in the two areas. Figure 3.13
displays the temporal signatures of the samples in both regions. These signatures
show that the corn cycle is shorter in Tocantins and Maranhão than in Mato Grosso.
This example illustrates the value of detecting and analyzing outliers in the training
set.
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Figure 3.13 - Different patterns in the Soy-Corn class because of the agricultural calendar
in different regions.

SOURCE: Author.

Table 3.3 presents the percentage of samples by class that was removed from the input
dataset after the outlier analysis. All samples from the Savanna Parkland, Savanna,
Planted Forest, Soy-Corn, and Soy-Cotton classes were kept in the dataset. Other
classes analyzed had samples removed following the analysis. The Fallow-Cotton
samples have the most noise. Given the thresholds set to evaluate sample quality,
24.8% of Fallow-Cotton samples were automatically removed from the dataset and
76.2% flagged for analysis, as shown in Table 3.2. After analysis, a further 56.2% of
Fallow-Cotton samples were removed from the dataset, totaling 81.10% of samples
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removed. The input dataset contains 50,160 samples, whereas the filtered dataset
includes 44,040. This means that 14% of the samples were removed due to class
noise.

Table 3.3 - Overall samples removed before and after the analysis indicated by the condi-
tional and posterior probabilities.

Samples by class Before Analysis After Analysis
Savanna Parkland 4.6 % 4.6 %
Dense-Woodland 8 % 9%
Savanna 9.3 % 9.3 %
Rocky-Savanna 5.8 % 11.5 %
Dunes - -
Fallow-Cotton 24.8 % 81%
Millet-Cotton 67.4 % 67.4 %
Pasture 11.9 % 13.6 %
Silviculture 19.9% 19.9%
Soy-Corn 9.3 % 9.4%
Soy-Cotton 4.6 % 4.6%
Soy-Fallow 29.9 % 41.8%

3.3.4 Validation

We did a 5-fold cross-validation test to assess our proposed methods, comparing the
original training set (50,160 samples) with the filtered set (44,040 samples). We used
a Random Forest algorithm due to its robustness, and proven results on handling big
data (BELGIU; DRAGUT, 2016). The number of trees used in our study was 2000, and
the split rule for each node was the Gini index. The overall accuracy for the original
dataset and the filtered dataset were respectively 94.3% and 98.4%. Table 3.4 presents
producer’s and user’s accuracy for both datasets. The producer’s accuracy improved
for all classes; the largest increase occurred in noisy classes such as Fallow-Cotton
and Millet-Cotton. The results corroborate our initial hypothesis that SOM-based
clustering combined with Bayesian inference can improve the quality of large training
samples of satellite image time series.
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Table 3.4 - Producer’s and user’s accuracy for original and filtered datasets.

Producer’s Accuracy User’s Accuracy
Classes Original Filtered Original Filtered

Dense Woodland 97,4 % 98,9 % 87,1 % 96 %
Savanna Parkland 98,5 % 98,7 % 99,3 % 99,5 %
Rocky Savanna 90,9 % 96,3 % 99,2 % 99,7 %
Savanna 97,5 % 98,9 % 96,6 % 98,3 %
Dunes 100 % 100 % 100 % 100 %
Pasture 91,6 % 99,5 % 96,5 % 98,9 %
Planted Forest 75,4 % 76,9 % 98,7 % 99,2 %
Soy-Corn 97,5 % 98,8 % 91,1 % 98,9 %
Soy-Cotton 98,2 % 98,9 % 97,9 % 99,5 %
Fallow-Cotton 89,3 % 93,3 % 95,2 % 100 %
Millet-Cotton 85,1 % 97 % 96,7 % 100 %
Soy-Fallow 79,6 % 99,5 % 97,4 % 98,7 %
Total 91,7 % 96,3 % 96,3 % 99,0 %

3.4 Conclusion

Machine learning methods are now established as a useful technique for remote
sensing image analysis. Despite the well-known fact that the quality of the training
data is a key factor in the accuracy of the resulting maps, the literature on detecting
and removing class noise in SITS training sets is limited. To contribute to solving
this challenge, this chapter proposed a new technique. The proposed method uses
the SOM neural network to group similar samples in a 2D map for dimensionality
reduction. Each sample is mapped to a neuron on the 2D SOM map; these neurons
are then labeled with their majority class. Using the SOM property of topological
preservation property, the algorithm uses Bayesian inference to evaluate the neuron
neighborhoods’ classes. As a result, the method identifies both mislabeled samples
and outliers that are flagged to further investigation.

The proposed refinement process of SITS training data improves the accuracy of
the classification results. In the case study described in this chapter, the mislabeled
samples and part of the outliers identified by the proposed method were removed from
the training set. Two classifications were then performed, one using the original SITS
training set and the other using the filtered set. The results demonstrate the positive
impact on the overall classification accuracy. Although the class noise removal adds
an extra cost to the entire classification process, we believe it is essential to improve
the accuracy of classified maps using SITS analysis, mainly for large areas.
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One of the challenges of using machine learning techniques for analyzing large areas
is the adequacy of sample data to the natural variations of classes in space and time.
In our case study, each time series has a spatial location and a time period. Since
our method associates different clusters of the same class in the SOM map to such
space-time variations, it helps to deal with the problem of selecting good training
samples over large areas.

Despite the usefulness of our proposed method, organizing a good quality training
data set remains one of the toughest problems in remote sensing data analysis. Natural
land cover occurs in a continuum in spacetime. Transitions between ecosystems are
rarely abrupt. Complex biomes such as the Brazilian Cerrado contain subtle mixtures
of trees and grasslands, which defy crisp class definitions. As from pasture and
croplands, agricultural practices vary from region to region and from year to year.
For this reason, our method is an aid but not a substitute for an in-depth local
understanding of ecosystem behavior. Despite recent progress in machine learning,
local knowledge continues to be irreplaceable when using remote sensing data for
land use and cover classification.

Although we present a case study in land use and cover classification in this chapter,
the proposed method is generic for class noise identification in any kind of time series
reference database. Broadly, the method returns the probability of the time series t
labeled as class k actually belonging to the class k, based on similarities among time
series. Figure 3.3 describes, in general, the method steps for class noise reduction in
time series reference data.
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4 IDENTIFYING SPATIOTEMPORAL PATTERNS IN LAND USE
AND COVER SAMPLES OF SATELLITE IMAGE TIME SERIES US-
ING CLUSTERING METHODS5

The large amount of remote sensing images freely available nowadays with improved
temporal and spatial resolution brings new opportunities for land use and cover
mapping over large areas (GOMEZ et al., 2016). Many authors propose a paradigm
shift, where change detection is replaced with continuous monitoring (WOODCOCK et

al., 2020). To achieve this goal, researchers need access to satellite image time series
to detect complex underlying processes (PASQUARELLA et al., 2016).

The use of machine learning methods has been the preferred approach for satellite
image time series analysis to map land use and cover changes (LUCC) (GOMEZ et

al., 2016). These methods are supervised approaches that require a training phase
using samples labeled a priori. Comparative analysis of different machine learning
methods shows that the quality of training samples has a large impact on classification
accuracy (MILLARD; RICHARDSON, 2015; GOMEZ et al., 2016; PELLETIER et al., 2017;
MAXWELL et al., 2018). These results motivate our work, which aims to answer the
following question: How can training samples be assessed to improve the accuracy of
LUCC maps produced by machine learning classification methods that use them?

Different approaches have been proposed to improve the quality of training sam-
ples (PENGRA et al., 2020). Such strategies include best practices in collecting training
data (OLOFSSON et al., 2014; ELMES et al., 2020; PENGRA et al., 2020; HUANG et al.,
2020) and refinement methods of samples using satellite image time series (VIANA

et al., 2019; SIMOES et al., 2020; BELGIU et al., 2021). Other approaches such as
semi-supervised learning and active learning have been applied to support training
sample acquisition (DEMIR et al., 2010; TUIA et al., 2011; HUANG et al., 2015; LU et al.,
2017; SOLANO-CORREA et al., 2019). However, most studies are limited to small areas
and inter-annual extents (PENGRA et al., 2020), not being suitable for large areas due
to the need for a large number of samples to characterize each class (RADOUX et al.,
2014).

In large areas, the variability of land use and cover classes is high and intrinsic to
different regions and periods due to heterogeneous biodiversity as well as distinct
climatic conditions and management practices (HOSTERT et al., 2015; COMBER;

5This chapter is based on the paper: Santos, L.A.; Ferreira, K.; Picoli, M.; Camara, G.; Zurita-
Milla, R.; Augustijn, E.-W. Identifying Spatiotemporal Patterns in Land Use and Cover Samples
from Satellite Image Time Series. Remote Sens. 2021, 13, 974.
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WULDER, 2019; ALENCAR et al., 2020; MERONI et al., 2021). Therefore, it is essential
to explore ways to obtain samples that properly represent high intra-class variability
considering spatiotemporal variations in large areas and multiple years.

In many situations, experts use generic labels for training samples (e.g., “forest”,
“cropland”, and “grassland”). In practice, the actual spatiotemporal variability of the
time series data does not match such generic labels. For this reason, it is useful to
distinguish subclasses of high-level labels that correspond to regions of separability on
the attribute space. Based on this, this paper presents a method to identify subclasses
in training samples of satellite image time series. The method distinguishes different
types of land use and cover classes over large areas in a more detailed granularity
than user-provided labels. Using phenological and spectral information provided by
satellite images time series, the method refines the generic labels and improves the
accuracy of resulting LUCC maps.

The proposed method is based on time series clustering. In general, time series
clustering has been applied for exploratory analysis (LIAO, 2005; AGHABOZORGI et

al., 2015; PAPARRIZOS; GRAVANO, 2015), characterization of spatiotemporal patterns
(BIRANT; KUT, 2007; ANDRIENKO et al., 2010; AUGUSTIJN; ZURITA-MILLA, 2013; LIU
et al., 2018; QI et al., 2019), and to soften the lack of discriminated data of land use
and cover types (XIONG et al., 2017; SOLANO-CORREA et al., 2019; WANG et al., 2019).
It is a promising approach to exploit spectral and phenological information and
refine training samples to ensure an acceptable level of quality (VIANA et al., 2019;
SOLANO-CORREA et al., 2019; BELGIU et al., 2021; ALENCAR et al., 2020). Spectral
and phenological information can be considered to discriminate different types of
land use and cover classes during the sample collecting and labeling, contributing to
improving the quality of training data sets. However, time series clustering results
can be difficult to interpret and visualize, especially when the training data have a
high dimension (HALLAC et al., 2017).

Our algorithm uses self-organizing maps (SOMs) (KOHONEN, 1990) combined with
a hierarchical algorithm (KAUFMAN, 1990; EVERITT et al., 2011). SOMs have been
applied in spatiotemporal data analysis (ZURITA-MILLA et al., 2012; AUGUSTIJN;

ZURITA-MILLA, 2013; CHEN et al., 2018; QI et al., 2019; GUO et al., 2006; ASTEL et al.,
2007; ANDRIENKO et al., 2010; LIU; WEISBERG, 2011) mainly due to two properties.
SOMs map high-dimensional data into a low bi-dimensional grid, representing the
input data in low dimension. They also preserve neighborhood information; similar
patterns in attribute space tend to stay close in the 2D SOM space. After mapping
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the samples from the high-dimensional attribute space to the 2D SOM space, we
apply a hierarchical algorithm to the SOM clusters. The resulting subclusters refine
the original training data into subclasses. These subclasses have lower intra-class
variability and higher inter-class variability than the original SOM clusters. Given
the SOM proprieties, they provide refinement of the original training samples.

As a proof of concept, we present a case study using Moderate Resolution Imaging
Spectroradiometer (MODIS) image time series of 7 years (2010–2017) associated
with samples of cropland and pasture classes over the Cerrado biome in Brazil. The
results show that the proposed method is suitable for identifying spatiotemporal
patterns in land use and cover samples that can be used to infer subclasses mainly
for crop-types.

4.1 Material and methods

4.1.1 Data

The case study presented in this paper uses samples of the Cerrado biome in Brazil.
Cerrado is a large and dynamic landscape with an area of approximately 204 million
hectares (Mha), covering almost 22% of the central area in Brazil. It is one of
the largest and most diverse tropical savannas in the world (DICKIE et al., 2016;
SOTERRONI et al., 2019). However, half of the biome has been changed and deforested
due to advanced agricultural production and livestock (KLINK; MACHADO, 2005).

The dataset is a merge of samples collected by remote sensing specialists through
visual interpretation of high-resolution images, samples collected by the specialist in
field observations, and farmer interviews provided by the Brazilian National Institute
for Space Research (INPE) team partners.

Figure 4.1 illustrates the dataset used in our case study. The dataset includes 15,794
samples spread over the Cerrado biome from 2010 to 2017 and is divided into two
classes: (1) cropland and (2) pasture. Most of the cropland samples are in the same
locations associated with different years.

Each sample has a spatial location, a period containing the start date and end
date according to an agricultural calendar (from August to September), a label
describing the sample class, and the satellite image time series for each attribute
(bands and vegetation indexes) associated with it. The time series were extracted
from the product MOD13Q1 (Collection 6) of the MODIS sensor. The images were
collected on an interval of 16 days with 250 m spatial resolution. For this dataset, we
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used two vegetation indices and two bands available in MOD13Q1: the Normalized
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), and
near-infrared (NIR) and and mid-infrared (MIR).

The MOD13Q1 product is created by considering the best available pixel from all
acquisitions of MODIS images in a 16-day period. This approach selects the best
pixel available in 16 days, avoiding cloud, shadow, or low-quality pixels. We obtained
the time series from the MOD13Q1 product without performing further processing.

The Cerrado biome has distinct soil and weather over its area. Thus, it has great
and heterogeneous types of land use and cover classes. However, it is not trivial
to separate these types using 250 m and 16-day MOD13Q1 data. For this reason,
we decided to use only the cropland and pasture classes to show how the proposed
method works.
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Figure 4.1 - Land use samples dataset of Cerrado biome.

SOURCE: Author.

4.1.2 Overview

Clustering methods are useful to extract spatiotemporal information from satellite
image time series samples (LIAO, 2005). There are methods of clustering that use the
approach of spatial clustering objects and spatial and temporal objects. Although
our time series have a geo-location, we used only the time series points as a similarity
measure to identify the clusters (ANSARI et al., 2019; WU et al., 2020). Then, the geo-
localization and period of each time series were used to explore the spatiotemporal
patterns.
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Figure 4.2 illustrates the proposed method to identify and analyze spatiotemporal
patterns. Given a dataset of satellite image time series samples, we applied SOMs to
group similar time series. SOMs map the input data (high dimensionality) onto a
bi-dimensional grid (low dimensionality), keeping the topology of the neighborhood;
that is, a similar time series tends to be close in 2D space (KOHONEN, 1990). The
SOM grid contains units called neurons, where each neuron has a weight vector
associated with it. At the end of the SOM process, each time series from the input
dataset was assigned to a neuron. In this way, from the output of SOM, the clusters
can be recognized and created. Once the class label of each sample was known, each
neuron was labeled using the majority technique. To explore each cluster, the neurons
with the same category were selected. The hierarchical method (JOHNSON, 1967)
was then applied to the weight vectors of these neurons to extract subclusters. Due
to the high intra-class variability, the hierarchical method, as secondary clustering,
was applied to the neurons’ weight vectors with the same category. The use of
hierarchical clustering allows visualization through dendrogram, which can be cut
in a specific height to define the number of subclusters. Our method suggests the
number of the cluster through an inter-cluster validation index. However, specialists
can apply different numbers of groups and explore them according to their necessities.
The subclusters were grouped through the time series similarity. However, since all
samples have the spatial location and the period containing the start date and end
date, these subclusters can indicate patterns in space or time.
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Figure 4.2 - The method for exploratory analysis using time series is based on clustering
methods. In step 1, the clusters are created using SOM. In step 2, the neurons
labeled as the same category are selected. In step 3, the weight vectors are
extracted from selected neurons. In step 4, the hierarchical clustering is applied
to weight vectors. In step 5, the number of sub-clusters for each category is
defined. In step 6, the subclusters are created.

SOURCE: Author.

SOM is an unsupervised learning method based on competitive learning that reduces
a high-dimensional feature input space onto a lower-dimensional feature output space.
A large dataset can be mapped and represented by a set of neurons through the
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weight vectors. An important characteristic of SOM is preserving the neighborhood
topology; thus, similar input data are mapped to the same neuron or a nearby one.

Each neuron j of the output space has a weight vector wj = [wj1, . . . , wjn] containing
the same dimension n of the input data x(t) = [x(t)1, . . . , x(t)n]. The weight vectors
can be initialized randomly or according to some heuristic. The algorithm has two
main steps. First, the distances Dj between a sample and each neuron of the SOM
grid is computed. The neuron containing the smallest value of the distance db is
selected as the best matching unit (BMU) for this sample. The equations to compute
the distance and BMU are given by

Dj =
n∑

i=1

√
(x(t)i−wji)2. (4.1)

db = min {D1, . . . , Dj} . (4.2)

The second step is the adjustment of the weight vector of the BMU and its neighbors
so that the neurons have similar characteristics. The equation of adjustment is given
by

wji = wji+α× hb,j[x(t)i−wji]. (4.3)

where the parameters α is the learning rate and hb,j is the neighborhood function.
The learning must be set as 0 < α < 1, and it controls the change level of the BMU
and its neighbors during the training step. The neighborhood function limits the size
of the BMU’s neighborhood that must be updated. The diversity of neighborhood
functions can be seen in (KOHONEN, 1990; NATITA et al., 2016).

These steps are performed T times for neurons to organize themselves to have a
similar neighborhood between them. Then, each sample from the dataset is assigned
to a neuron.

The use of a secondary clustering directly on the SOM grid is not well suited in our
case. It can generate confusion between the classes because of the high variability
of patterns in a specific class; therefore, the neurons were labeled previously. For
this reason, we labeled the neurons before splitting the clusters through hierarchical
clustering. According to Kohonen (2013), when an input dataset has a specific number
of classes, we can assume that each neuron belongs to one of these classes. The
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neurons were categorized according to the majority class label that occurs in each one.
In cases of the tiebreaker, the neuron received the label of the majority neighborhood.

Kohonen et al. (2000) argue that when the neurons are labeled according to the
majority, the quality of the organization of the final map can be measured through
the external criteria of clustering validation. In our approach, we consider a cluster
as a set of neurons labeled with the same category. We use purity as the external
criteria of cluster validation. Purity assesses the clusters according to the number of
the most representative class assigned to them.

4.1.3 Hierarchical Clustering

Once all the neurons were labeled, we applied the hierarchical clustering on the
weight vectors of neurons with the same category. This aids in extracting useful
information, analyzing the spatiotemporal dynamics, and avoiding confusion between
different classes’ samples.

Hierarchical clustering is a method where the data are partitioned successively,
building a hierarchy of clusters (EVERITT et al., 2011). This type of representation
facilitates the visualization in each step where the level similarity occurs. There
are two types of hierarchical clustering, agglomerative and divisive. In the divisive
algorithm, the entire dataset starts in one cluster, and then it is split into two more
similar clusters. In the agglomerative method, as illustrated in Figure 4.2 (step
4), each weight vector (w2, w3, w4, w6, w7, w8) starts in its own cluster, a similarity
matrix is computed, and the two most similar groups are identified. At each step,
the clusters are merged, and the hierarchy is built based on linkage criteria.

The linkage criteria present the distance measures between the clusters. There
are several linkage criteria proposed in the literature. The most common methods
are single, complete, and average linkage (KAUFMAN, 1990). This paper uses the
Euclidean distance and the average linkage to build the hierarchical clustering. The
average linkage computes the mean distance from each element of a cluster to all the
elements of the other cluster (KAUFMAN, 1990; EVERITT et al., 2011).

The hierarchical algorithms build a binary tree called a dendrogram. This structure
represents the order of how the clusters were merged. A dendrogram divides the
data into an internally homogeneous group. Through the hierarchy of the tree, it is
possible to visualize the variability of the data. The dendrogram aims to explore and
define the suitable number of clusters according to the analysis level. Figure 4.2 (step
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5) illustrates a dendrogram and how the cluster can be defined. The dendrogram
was cut at the height where three clusters were created. In our method, the internal
cluster validity, the C-Index (HUBERT; LEVIN, 1976) criteria, were applied to define
the number of cluster for each class from the dendrogram. It is defined by:

CIndex = Sd− Sdmin

Sdmax − Sdmin

(4.4)

where Sd is the summed distance between the neurons within the same cluster,
Sdmin is the sum of the smallest distance between the pair of objects within the same
cluster, and Sdmax is the sum of the largest distance. Finally, the new subclusters of
class Z can be created, as shown in Figure 4.2 (step 6). The weights w3, w4 and w5

were merged in cluster 1, w6 and w7 in cluster 2, and w8 in cluster 3.

4.1.4 Clustering Output

After the clustering process, an interpretation and comparison of the clusters are
necessary to identify the data’s features. Generally, the amount of data used in
remote sensing analysis is large; therefore, interpreting and analyzing the data in
an aggregated way can facilitate the analysis. In general, our method performs
the computational processing that allows the summarization of the input data to
facilitate searching for knowledge, information, and pattern discovery. Besides the
spatial location and time available in each dataset sample, the clustering result
provides information that is useful in further analysis. After obtaining the identifiers
for each subcluster and the information of the neurons associated with it, a specialist
can identify, in an easy way, patterns that need to be interpreted. Moreover, to
facilitate the analyses, interactive visual tools can process the output information
generated by the clustering methods and jointly with the input data that contain
the spatial location and period, providing spatial and temporal information.

Figure 4.3 illustrates an example of output after the clustering methods. For each
sample (presented in Section 4.1.1), the result of clustering methods provides identi-
fiers of neurons and subclusters and their labels generated by SOM and hierarchical
clustering, respectively. Three samples of class Z were assigned to different neurons.
However, these neurons were labeled as class Z because of the majority class. Although
these samples belong to the same category’s neurons, we can notice in neurons 1, 4,
and 13 distinct patterns through the weight vector. When the hierarchical clustering
was applied to the weight vectors of class Z, these samples were assigned to three
different subclusters. Furthermore, through the SOM grid neighborhood, we notice
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that neuron 4 is an outlier within the neurons of the subcluster of class Z. However,
it is necessary to understand whether this neuron is an error or represents a different
pattern, e.g., in space or time, within the class Z.

Figure 4.3 - Clustering output. The red lines in the SOM grid represent the subgroups
that were generated from the neurons labeled as Class Z. For each sample of
the dataset, an id and label of the neuron, and an id and label of subgroups
are assigned to each one.

.

SOURCE: Author.

To evaluate the relative performance of the original and refined training data sets,
we used 5-fold cross-validation (ARLOT et al., 2010). We split the training dataset
into training and test sample sets to avoid overfitting and biased data (BENGIO;

GRANDVALET, 2004; ARLOT et al., 2010). Using the 5-fold approach, we estimated
the classification accuracy (overall, producer, and user accuracy). We chose the
random forest classifier due to its robustness on land use and cover mapping (BELGIU;

DRAGUT, 2016; PELLETIER et al., 2017) to evaluate the training datasets generated
from the cluster analysis.
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4.2 Results

This section presents a case study to show how the method presented in this
paper works.

4.2.1 Creating Clusters Using SOM

Figure 4.4 presents the SOM results for the vegetation indices and spectral bands
used in the training step. The parameters used in SOM to generate the maps were
Euclidean distance as similarity metric, grid size = 14× 14, learning rate initial = 0.5
and final = 0.1, number of iteration = 100 and the neurons were labeled according
to majority technique voting. The vegetation indices and spectral bands were chosen
based on the study conducted by Santos et al. (2019). While the input parameters
of SOM were defined based on empirical experiments, the start points, such as the
size grid and learning rate, were suggested by Vesanto and Alhoniemi (2000).

Figure 4.4 illustrates the primary clustering generated by SOM. The 15,794 samples,
shown in Section 4.1.1, are represented by a set of 196 neurons, where 139 neurons
represent the cluster of cropland, and the cluster of pasture is represented by 57
neurons. Only by analyzing the grid generated by SOM do we notice the high
variability of the patterns, mainly in cropland neurons. Moreover, the single and
double cropping groups can be identified in the cropland neurons, and some neurons
of pasture are considerably similar to neurons of cropland with single cropping types.
The similarity between these neurons can be investigated by an expert in more detail
considering the spatial and temporal information provided by the samples. Some
hypotheses can also be created, indicating whether these samples are separable or not
due to noise, i.e., clouds, type of sensor used (spatial resolution, temporal resolution),
or mislabeled samples.
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Figure 4.4 - SOM grid. Each line inside the neurons is a weight vector generated by SOM
to represent a set of sample in low dimensional space.

SOURCE: Author.

Figure 4.5 shows how the samples are spread over the SOM grid, identifying whether
they are nearest or farthest of their neighborhood. Although the neurons are labeled
as a specific class, they are not 100% pure. Samples of different types were associated
with neurons for which the majority belong to other classes. Overall, the purity for
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cropland and pasture is, respectively, 99.6% and 99.4%. Most of the confusion occurs
near the class boundary. We can identify where these samples were mapped through
the SOM grid. For instance, the cropland neurons with single cropping patterns are
neighbors of the pasture neurons. In addition, the grids show precisely where the
cropland samples were mapped in neurons labeled as pasture and vice-versa.

Figure 4.5 - Mapping samples in SOM grid. Each dot represents a sample.

SOURCE: Author.

4.2.2 Revealing the Patterns of Cropland

The hierarchical clustering was applied to 139 weight vectors of cropland. Then, the
C-Index suggested 10 clusters for cropland, as illustrated in Figure 4.6.
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Figure 4.6 - Dendrogram partitioned into ten groups for Cropland.

SOURCE: Author.

Figures 4.7 and 4.8 give an overview of the cropland clusters’ characteristics.
Figure 4.7a illustrates the cropland’s neurons partitioned into ten groups in the
SOM grid. Note that the neighborhood within each subcluster tends to be similar.
Each neuron contains a set of samples, and they are represented by a weight vector.
Figure 4.7b illustrates the neurons weight vectors for each subcluster. Figure 4.8
shows the geographical location of samples mapped in each cluster. The samples
are spread over the Cerrado biome in the states of Mato Grosso (MT), Bahia (BA),
Tocantins (TO), and Maranhão (MA).

From the patterns generated by the subclusters and geographical location provided
by the samples, an initial analysis that experts conducted to infer subclasses for
Cropland suggests the following:

a) Cropland 1 represents samples of soy–fallow. These samples are mapped
only in the state of Bahia. This region is known due to the mostly single
cropping regimes (SANCHES et al., 2018). Some samples are spread over
Goiás and Tocantins states; however, they are originally labeled as pasture.
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b) Cropland 2 represents samples of fallow–cotton. This type of crop is mapped
in the states of Mato Grosso and Bahia. The patterns of this group are
well defined.

c) Croplands 3,4, and 8 represent samples of soy–cotton. In this study, this
type of crop is mapped only in the state of Mato Grosso. Through the
temporal patterns (Figure 4.7b), we can notice small variations, particularly
during the first cycle (soy crop). This difference may be due to the soybean
variety. The soybean varieties planted in Brazil can be of early, medium,
and late maturity. The average cycle ranges from 99 to 128 days (ZITO et

al., 2018).

d) Cropland 5 represents samples of millet–cotton. In this study, this type of
crop is mapped only in the state of Mato Grosso.

e) Croplands 7, 9, and 10 represent samples of soy–corn. This type of crop
is spread over the Cerrado biome. The variability of this class can be
noticed through the temporal patterns extracted by SOM. It occurs due to
the climatological and soil variations leading to differences in each area’s
agricultural calendar.

f) Cropland 6 is not well defined. Notice in the SOM grid (Figure 4.7a) that
most of the neighbors of Cropland 6 belong to other groups. The temporal
signatures can be confounded between soy and millet during the first cycle
due to noise, likely caused by clouds. It is necessary to look at these samples
in more detail. In contrast, in the second cycle, we can notice patterns of
cotton and corn. Additionally, this cluster contains samples initially labeled
as pasture.
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Figure 4.7 - Clusters of cropland. (a) SOM grid with subclusters of Cropland. (b) Weight
vectors of each subcluster. Each line represent a neuron.

SOURCE: Author.

Figure 4.8 - Clusters of cropland. Spatial location, by cluster, where the samples are.

SOURCE: Author.
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Some examples are presented throughout this section, detailing how knowledge
extraction can be obtained from the output clustering methods.

Figure 4.9 presents the temporal variability between the patterns of a single crop-
ping soy–fallow. All the crop samples from Cropland 1 are mapped only in the
west of Bahia state, a region with tradition in planting the single cropping system
(SANCHES et al., 2018) (Figure 4.9b). Figure 4.9 shows the temporal dynamics of
a point (−12.8875,−45.8769) named single cropping over four harvests from 2010
to 2014. According to the agricultural calendars of the National Supply Company
(CONAB) and the Brazilian Institute of Geography and Statistics (IBGE), soybean
planting in this region varies from October to January. For rained systems, soybean
planting is linked to the rainy season (ABRAHAO; COSTA, 2018). Therefore, the
planting season varies from year to year, and this can be seen in Figure 4.9c. It can
be observed that the period in which the crop was planted in the soil also varied,
and this may be an indication of the variety of soybean that was planted in this
region (with early, medium, or late maturation).
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Figure 4.9 - The cluster of Soy-Fallow: Subgroups of Cropland 1. (a) SOM grid with
Soy-Fallow subgroups.(b) Spatial location. (c) MODIS time series of point
(-12.8875, -45.8769).

SOURCE: Author.

In Figure 4.10, we highlighted different neurons (Figure 4.10b) that belong to these
clusters with distinct spatial location, agricultural calendar, and patterns affected by
clouds (Figure 4.10c) to illustrate the variability between the patterns of soy–corn.
In neuron 189, some samples belong to the states of Tocantins and Maranhão (7◦ S).
The first cycle of these samples starts later than in Mato Grosso’s state (neurons 106
and 195). This occurs because these regions have a different agricultural calendar.
Despite the pattern of neuron 189 indicating a later beginning of cycle compared to
samples in Mato Grosso, it also presents samples located in Mato Grosso. However,
it likely happened because of the noise caused by clouds in Mato Grosso’s sample,
causing a pattern similar to that observed in Maranhão.
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Figure 4.10b,d present the weight vectors and the NDVI time series samples associated
with each neuron. In addition to the differences at the beginning of the first cycle, the
biggest difference is in the cycle’s harvest period. The samples assigned to neuron 189
were harvested late. This indicates that the soybean planted there has worse variety
than those planted in samples assigned neurons 106 and 195. In the second cycle, we
observe the opposite behavior. Most of the corn samples attributed to neuron 189 are
shorter than in neurons 106 and 195. This may have occurred because most samples
of neuron 12 are located in western Bahia, Tocantins, and Maranhão states, where
corn crops are shorter (early maturing variety) than in the state of Mato Grosso.
Moreover, the corn crop in these regions was affected due to the negative weather
conditions in 2017.

Figure 4.10 - The cluster of Soy-Corn: Subgroups of Cropland 7, 9, and 10. (a) SOM
grid with Soy-Corn subgroups.(b) Weight vectors of each neuron. (c) Spatial
location where the samples allocated by the neurons 106, 189 and 195 are
respectively. (d) NDVI time series and the number of samples by assigned to
these neurons of Soy-Corn.

SOURCE: Author.
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Figure 4.11 illustrates in more detail the cluster of Cropland 6. This cluster has
three neurons; however, the weight vectors (see Figure 4.11b) and the time series
assigned to each neuron (see Figure 4.11d) indicate that neuron 103 contains samples
of soy–corn. In contrast, neurons 61 and 75 contain samples of soy–cotton. Neurons
61 and 75 are distant from the clusters that represent soy–cotton (Cropland 3,4, and
8) and near the neurons of pasture and soy–corn and millet–cotton (Figure 4.11a).
This occurs because of the peaks caused by clouds that impact the soybean patterns,
causing a decrease in the pattern’s average values. This can lead to confusion with
millet. Moreover, this confusion can occur mainly when pasture is planted (notice in
Figure 4.11c, samples of pasture mapped in neurons 61 and 75), since its planting
period is between September and March, often coinciding with millet’s planting
period. Furthermore, millet is often used as pasture in the crop–livestock integration
system (ALONSO et al., 2017).

Figure 4.11 - The cluster of Cropland 6 (a) SOM grid. (b) Weight vectors of neurons that
belong to Cropland 6.(c) Spatial location. (d) NDVI time series and the
number of samples by assigned to these neurons of Cropland 6.

SOURCE: Author.
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4.2.3 Revealing the patterns of Pasture

In the SOM grid, there are 57 neurons classified as pasture. However, the samples
of pasture do not have a high variability like those of cropland. We separated the
dendrogram (Figure 4.12) into two clusters, as suggested by the C-index. Although
the C-Index suggests only two clusters, small variations can be found in cluster 2.
However, an expert can explore these variations if necessary.

Figure 4.12 - Dendrogram for Pasture partitioned in two clusters.

SOURCE: Author.

Figure 4.13 illustrates an overview of the pasture cluster. In Pasture 1, the weight
vectors (Figure 4.13b) present patterns that can be confounded with single cropping.
This type of confusion may occur due to October to April belonging to the rainy
season (EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA, 2020),
and, as such, the spectral profiles in these months are low due to the noise of clouds
and rain. Furthermore, it can be observed in the SOM grid in Figure 4.13a that the
neighbors of the neurons labeled as Pasture 1 are classified as cropland.

The group of Pasture 2, on average, presents similar spectral patterns. Furthermore,
this cluster has proportionally less confusion with cropland. In addition, there are
some patterns with the lowest spectral values, e.g., NDVI values below 0.5. NDVI is
an index related to biophysical variables that control vegetation productivity, such
as net primary productivity and the leaf area index (JENSEN, 2009). Therefore, there
is a probability of these samples representing areas with lower productivity.
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Figure 4.13 - Cluster of pasture. (a) SOM grid with subclusters of pasture. (b) Weight
vectors of each subcluster. Each line represent a neuron. (c) Spatial subclusters

SOURCE: Author.

Figure 4.14 illustrates the cropland samples mapped in Pasture clusters. These
samples belong to the states of Mato Grosso and Bahia. The NDVI time series
of the cropland samples assigned to Pasture 1 present a high incidence of clouds
from September to February. Due to these peaks, it is not easy to distinguish which
specific type of crop these samples belong to or if they really are pasture. It would
be necessary to check each region’s agricultural calendar and their respective years
or high-resolution images in detail. The NDVI time series of cropland’s samples
mapped in Pasture 2 are noisy, and their temporal signatures are similar to those of
pasture. These samples may have been affected by noise, or they may be mislabeled.
In addition, in the work of Picoli et al. (2018), the authors presented a pattern of 370
samples of pasture in the state of Mato Grosso, also using time series of the product
MOD13Q1, where it is also possible to observe much noise caused by clouds, similar
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to the patterns presented in the samples labeled as cropland that were assigned in
Pasture 2.

Figure 4.14 - Samples originally labeled as cropland that were assigned to clusters of
Pasture.

SOURCE: Author.

4.2.4 Assessing the performance of the training samples

After the cluster analysis, we evaluate the performance of two datasets generated by
the clusters. First, using the entire dataset which the samples mapped in Pasture
neurons keep the label as Cropland. Second, we remove from the dataset samples of
Cropland that were mapped in Pasture’s clusters. Besides that, we partitioned the
Cropland 6 into Soy-Corn and Soy-Cotton (see figure 4.11). Table 4.1 presents the
number of samples associated with each cluster and the classes that were assigned to
each one.
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Table 4.1 - Number of training samples by cluster

Cluster Count Frequency Class
1. Cropland_Pasture 41 0.26% Cropland
2. Cropland_1 563 3.5% Soy-Fallow
3. Cropland_2 348 2.2 % Fallow-Cotton
4. Cropland_3_4_6_8 3866 24.5 % Soy-Cotton
5. Cropland_5 429 2.8 % Millet-Cotton
6. Cropland_6_7_9_10 5331 34.5% Soy-Corn
7. Pasture_1 90 0.58% Pasture_1
8. Pasture_2 4926 31.2% Pasture_2

Tables 4.2 and 4.3 present the confusion matrix for the samples relabeled according to
the analysis provided by the clusters. For the entire dataset the overall accuracy was
97% (Table 4.2), and for the filtered dataset the overall was 98% (Table 4.3). Although
the producer’s accuracy to Cropland, presented in Table 4.2, is low, few samples were
classified as Pasture. Both confusion matrices indicate the majority confusion among
Soy-Corn, Soy-Cotton, and Millet-Cotton, as highlighted in Cropland 6 analysis.
Soy-Cotton and Soy-Fallow mix each other; it can happen because the first cycle is
the same, and small variations during the second cycle can affect the separability
between them. The producer’s accuracy to Millet-Cotton is also low, and it probably
happens because the noise caused by clouds during the first cycle of soybean becoming
the separability between soybean and Millet difficult. The confusions between Fallow-
Cotton and Soy-Cotton can occur because of some land variation during the Fallow
cycle, and the same occurs to confusions between Soy-Fallow and Soy-Corn. Although
we removed Cropland samples mapped in Pasture neurons (Table 4.3), the confusion
between Pasture 2 and the double-cropping types still occurs due to clouds’ noise
affecting the separability between them.
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Table 4.2 - Confusion Matrix - The Cropland samples mapped in Pasture were kept in the
dataset

1 2 3 4 5 6 7 8 UA
1. Cropland 5 0 0 0 0 0 0 0 100%
2. Soy-Corn 23 5372 33 63 1 7 6 1 97%
3. Soy-Cotton 0 50 3912 27 11 0 1 1 97%
4. Millet-Cotton 0 1 4 339 0 0 1 0 98%
5. Fallow-Cotton 6 1 2 0 334 0 0 0 97%
6. Soy-Fallow 2 13 0 0 1 552 0 0 97%
7. Pasture_2 5 6 3 0 1 4 4978 61 98%
8. Pasture_1 0 0 0 0 0 0 0 27 100%
PA 12% 98% 98% 79% 95% 98% 99% 30% 98%

Table 4.3 - Confusion Matrix - The Cropland samples mapped in Pasture were removed
from the dataset

1 2 3 4 5 6 7 UA
1. Soy-Corn 5365 31 68 1 7 6 1 97%
2. Soy-Cotton 58 3913 28 9 0 1 0 97%
3.Millet-Cotton 1 3 333 0 0 1 0 98%
4. Fallow-Cotton 1 3 0 336 0 0 0 98%
5. Soy-Fallow 13 0 0 1 551 0 0 97%
6. Pasture_2 5 4 0 1 5 4918 61 98%
7. Pasture_1 0 0 0 0 0 0 28 100%
PA 98% 98% 77% 96% 97% 99% 31% 97%

In addition, we evaluate the original dataset without the relabeled samples, as shown
in Table 4.4. As expected, the training data performance is much better with non-
discriminated data. Despite the confusion between crop and Pasture, the overall
accuracy was 99%. When the labels are specified, the confusion is spread among the
same types. However, we can see where the most significant confusion happens, such
as Pasture 2 and double-cropping, and Pasture 1 and single-cropping.
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Table 4.4 - Confusion Matrix - Original Dataset

Pasture Cropland UA
Pasture 4980 17 99%
Cropland 36 10761 99%
PA 99% 99% 99%

4.3 Discussions

In this study, we show how the proposed method can be applied. The aim is to assess
the clusters provided by SOM combined with hierarchical clustering to analyze the
possibility of generating subclasses. The method suggests ten subclusters for Cropland
and two subclusters for Pasture. We relabeled the samples that were initially labeled
as Cropland into five subclasses according to the spatial, temporal, and phenological
information . Besides the subclasses, it also possible to identify mislabeled or noisy
samples in the training dataset contributing to dataset enhancement. For instance,
in Cropland 1 there are some samples of Pasture. In this case, an analysis by experts
could be done to verify why these samples are not well separated. It can be done
using phenological metrics, checking high resolution images or maps of agriculture
and pasture. This analysis is essential to verify if the samples are not separable due
to the sensors’ spatial and temporal resolution, noise such as clouds, or mislabeled.

The output table provided by the clustering methods, illustrated in Figure 4.3, allows
quantifying the samples’ information, such as the number of Pasture samples mapped
in neurons labeled as Cropland 1. As shown in Table 4.4, the original dataset presents
confusion between Pasture and Cropland. However, when the subclasses are inferred
through the subclusters, the reason for this type of confusion becomes clearer. In
our dataset, there is a confusion between samples with single-cropping and Pasture.
It occurs due to the similarity between their temporal patterns. Notice it in more
details in Cropland 2 (Figure 4.7b) and Pasture 1 (Figure 4.13b). Since the method
indicates exactly which samples are being confounded, and their information such as
spatial location (longitude and latitude) and time, an expert could check through
high resolution or LUCC maps the real label. Thus, future errors can be avoided in
the classification.

In general, the samples’ patterns presented in the results section help significantly
distinguish the types of Agriculture and Pasture. Nevertheless, it is important to note
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that small variations within the subclusters can still be observed in Cropland 1. It is
possible to note the different temporal patterns in each neuron of Cropland 1 and
consequently the samples assigned to them, indicating variation in soybean maturity.
This type of variation could be captured through the hierarchical clustering using the
MODIS sensor if the number of subclusters provided by the dendrogram was higher
than 10. Once we have 139 neurons to represent Cropland samples, the number of
subcluster provided by hierarchical clustering could be 139 if the dendrogram in
presented in Figure 4.6 was cut when the height = 0. In our case study, the C-index
was applied to define the number of subcluster for Cropland, but it could be defined
manually according to the final user’s real goal.

In contrast to Soy-Fallow, Soy-Corn and Soy-Cotton were distributed among different
groups. The number of Soy-Corn and Soy-Fallow samples cause an unbalance in
the dataset. For this reason, the differences between the Soy-Corn and Soy-Fallow
neurons are quite small. The most significant differences are attributed to more
distant neurons in the SOM grid. In this way, considering the cut in the dendrogram,
the significant intra-class variations, such as spatial location, agriculture calendar,
are pointed in different subclusters. In addition, phenological metrics could be used
as thresholds to distinguish the clusters and capture crop variations.

Although the neurons present intra-class variations, since identifying soybean vari-
ability until the crop separability, it is important to highlight that the sensor’s choice
may present different results than what was shown in this paper due to the spatial
and temporal resolution. In addition, the choice of the similarity measure used in
the clustering methods can also omit or highlight these variations (FERREIRA et al.,
2019).

4.4 Conclusion

There is a lack of high-quality training samples in the remote sensing field, mainly
when it is driven for change monitoring in large areas and multiples years due to the
high intra-class variability of land use and cover types. A way to improve sample
acquisition task is through temporal patterns. The use of satellite image time series
provides phenological and spectral information that can be considered during the
collecting samples or labeling process.

The focus of this paper was to present the method and show how it can be applied.
The proposed method combined SOM with hierarchical clustering to identify spa-
tiotemporal patterns through exploratory analysis in training samples dataset. The
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method works well to infer subclasses using MODIS images of 250 meters and 16 days,
mainly for Cropland classes presented in this dataset. From the subclusters, we were
able to identify mislabeled samples and refine the generic labels to infer subclasses.
The method is not free of generating uncertain labels; however, the phenological,
spectro-temporal, and spatial information provided by the satellite image time series
samples identified through the subclusters patterns assists the experts during the
labeling process.

We explored Cropland and Pasture samples over the Cerrado biome in Brazil using
MODIS because of their high variability in different regions and years. An initiative
called Brazil Data Cube (FERREIRA et al., 2020) is producing Analysis-Ready Data
(ARD) and multidimensional data cubes from medium-resolution satellite images
for all Brazilian territory. Using these data cubes, we intend to apply the proposed
method to 10-20 meters and five days Sentinel 2 image time series in order to separate
all distinct types of land use and cover classes in Cerrado.
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5 FINAL REMARKS AND CONCLUSION

LUCC information is essential for understanding relationships between natural
phenomena and human activities in order to improve resource management and
decision-making (FOLEY et al., 2005; UDELHOVEN et al., 2015). Recently, time series
from big data sets of EO satellite images and machine learning methods have been
widely used to effectively map LUCC (ELMES et al., 2020).

This thesis contributes to the EO field, addressing the challenge of obtaining good
quality land use and cover samples to train machine learning methods and producing
accurate LUCC maps from big data sets of image time series. The approach proposed
is based on SOM, and it has been applied in spatiotemporal datasets with significant
results because its properties of dimensionality reduction and topology preservation
generating spatial clusters in its attribute space. It motivated the use of SOM as the
main method in this thesis.

This document presented two methods. The first method, described in Chapter 3, is
based on SOM combined with Bayesian Inference to provide measures that assess each
sample’s level of reliability. The second method, described in Chapter 4, presented
SOM combined with hierarchical clustering to identify and explore spatiotemporal
patterns in training samples dataset to evaluate the intra-class variability in large
areas and multiples years. Although not present in Chapter 4, the method to identify
spatiotemporal patterns embraces the measures provided by SOM and Bayesian.
Both proposes can be used together by an EO scientist to help filter high-quality
land use and cover samples.

Two additional works that complement this thesis’s content were carried out. The
first study explores different distance measures for time series clustering (FERREIRA
et al., 2019) (see annex A). The second study analyses the Growing Self-Organizing
Maps (GSOM) algorithm for clustering satellite image time series as an alternative
to SOM (ADEU et al., 2020). In the GSOM method, users do not have to define a
grid size a priori. The GSOM presented satisfactory results for clustering time series
samples presented in the Mato Grosso state. However, the neighborhood topology
must be evaluated carefully when GSOM is implemented because the neighborhood
is an important characteristic of this thesis’s methods.

From the case studies presented in this thesis, satisfactory results were obtained by
proposed methods to improve the quality of the land use and cover samples. In the
first method, mislabeled samples and part of the outliers were identified and removed
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from the training dataset through probabilities provided by the method. In the second
method, sub-classes were inferred from the clusters because of temporal patterns and
different spatial locations. Mislabeled samples were also identified, contributing to the
improvement of the sample dataset. Classifications were performed to validate both
proposes using the new datasets provided by the methods. The results demonstrated
a positive impact on the overall classification accuracy.

5.1 Future work

Based on the case studies results of this thesis, some points for future work are
described:

a) Exploit techniques to avoid and handle unbalanced classes.

b) Assess the sample’s quality using phenological metrics instead of the raw
time series.

c) Investigate the internal cluster validation indices and the use of auxiliary
datasets (such as climatological datasets) to provide a start point for the
EO scientists to choose the best number of clusters to explore the intra-class
variability according to their necessity.

d) Implement a Web Sample Assessment Service (WSAS) that consumes the
method in the SITS R package to evaluate the quality of the training
samples stored in BDC infrastructure using different data cubes.

e) Develop a web interface combining both methods to facilitate the samples’
exploratory analysis.
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Abstract. Time series derived from Earth observation satellite images
have been widely used for land use and cover classification and change
detection. Clustering is a common technique performed to discovery in-
trinsic patterns on time series data sets, by grouping similar time se-
ries together based on a certain similarity measure. This short paper
describes an ongoing work on evaluating distance measures for remote
sensing image time series clustering using Self-Organizing Maps (SOM),
specifically to land use and cover monitoring. We present an experiment
to evaluate three similarity measures, Dynamic Time Warping (DTW),
Euclidean (ED) and Manhattan (MD). In this experiment, we show that
ED and ED are more accurate than DTW for remote sensing image time
series clustering in land use and cover application.

Keywords: remote sensing image time series, time series clustering,
similarity measures, land use and cover monitoring

1 Introduction

Nowadays, the big amount of Earth observation satellite images freely available
has motivated the use of time series analysis for land use and cover classification
and change detection [3]. Time series derived from remote sensing images have
been widely used for detecting agricultural intensification [8], forest disturbance
[4], ecological dynamics [7], and phenological change detection [10].

Clustering is a common technique performed to discovery intrinsic patterns
on time series data sets [1]. Time series clustering is a unsupervised method
that groups similar time series together into homogeneous collections based on
a certain similarity measure. According to Ding et al. [2], the similarity measure
is a key aspect for achieving effectiveness in time series analysis. Time series
represent sequences of values ordered over time. Thus, the distance between
time series needs to be carefully defined in order to reflect the fundamental
similarity of these sequences. Ding et al. [2] evaluated 9 similarity measures and
their variants, testing their effectiveness on 38 time series data sets from different
application domains, and concluded that on small data sets, elastic measures,
e.g. Dynamic Time Warping (DTW), can be significantly more accurate than
Ln-norm, e.g. Euclidean and Manhattan distances.
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This paper presents an ongoing work on evaluating similarity measures for re-
mote sensing image time series clustering using the Self-Organizing Maps (SOM)
neural network [6]. In a previous work, we describe the use of SOM method with
Euclidean distance to assess land use and cover samples and to evaluate which
time series of spectral bands and vegetation indexes are best suitable for the sep-
arability of land use and cover classes [9]. However, more studies are necessary
to evaluate which distance measure has the best accuracy for clustering such
time series using SOM. Thus, in this work, we analyse the SOM method with
three distinct distance measures, the Manhattan distance (MD), the Euclidean
Distance (ED) and the elastic measure DTW. Differently from Ding et al. [2],
our experiment shows that ED and MD distances are more accurate than DTW
for remote sensing image time series clustering in land use and cover application.

2 Similarity measures for time series

Distance metrics aid to identify how the data is similar or dissimilar with each
other. Given two time series x = [x1, . . . , xi, . . . , xn] and y = [y1, . . . , yi, . . . , yn],
the Euclidean distance (ED) between these two time series is:

ED =

√√√√
N∑

i=1

(xi−yi)2 (1)

The Manhattan distance (MD) between these two time series is:

MD =
N∑

i=1

|xi−yi| (2)

The elastic DTW measure aligns similar sequences in time series that match
even if they are out of phase in the time axis [5]. The first step of DTW is to
compute a cost matrix Ψ , n × n, given by the squared distance between each
point of the two time series:

Ψi,j = (xi−yj)2. (3)

From Ψ ,the best matching between two time series can be found, and the an
optimal path that minimizes the cost warping is obtained. The warping path is
a contiguous set of matrix elements that defines a mapping between the time
series:

di,j = Ψi,j+min





di−1,j

di−1,j−1

di,j−1

(4)

Figure 1 shows two time series X and Y . The distance measures between
these two time series are: DTW = 0, ED = 4.242 and MD = 6. We can note that
DTW measure considers that, even though the time series are out of phase in
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time axis, X and Y are matching and the distance between them is zero (DTW
= 0). On the other hand, ED and MD distances reveal a significant difference
between these two time series.

Fig. 1. Time series: X = {1,1,1,4,4,4,4,4,1,1} and Y = {1,1,4,4,4,4,4,1,1,1}. The dis-
tance measures between X and Y are: DTW = 0; ED = 4.242 and MD = 6.

3 Experiment and results

In this work, we performed an experiment using 2115 ground samples located in
the Mato Grosso state, Brazil, as shown in Figure 2. These samples are divided in
nine land cover classes: (1) Forest, (2) Cerrado, (3) Pasture, (4) Soybean-fallow,
(5) Fallow-cotton, (6) Soybean-cotton, (7) Soybean-corn, (8) Soybean-millet, and
(9) Soybean-sunflower. For each sample, we extracted six time series associated
to its location from the MODIS sensor images (MOD13Q1 product) of NASA,
provided every 16 days at 250-meter spatial resolution. The six time series are
the original spectral bands (1) BLUE, (2) RED, (3) Near-Infrared (NIR), and
(4) Mid-Infrared (MIR), and the vegetation indexes (5) Normalized Difference
Vegetation Index (NDVI) and (6) Enhanced Vegetation Index (EVI).

The main goal of this study is to evaluate which distance measure, ED, MD or
DTW, has the best accuracy for clustering the time series of the nine land cover
classes using the SOM method. SOM is an unsupervised neural network suit-
able for time series clustering [6] [1]. It allows mapping from a high-dimensional
space to a low-dimensional space, preserving the data topology while reducing
computational cost. It is composed by input and output layers, where the input
layer is the sample data to be clustered and the output layer is a set of neurons.

To evaluate the separability of the clusters, we performed SOM for each
distance metric combining different time series of spectral bands and vegetation
indices. We tested three combinations: (1) Case I: NVDI and EVI; (2) Case
II: NDVI, EVI, NIR and MIR; (3) Case III: NDVI, EVI, NIR, MIR, RED and
BLUE.
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Fig. 2. Remote sensing image time series associated to land use and cover ground
samples in Mato Grosso state, Brazil.

Figure 3 shows the spectral-temporal patterns and the amplitudes of the
EVI index time series of the ground samples of four land use and cover ground
samples: soybean-corn, soybean-cotton, soybean-sunflower and soybean-millet.
It shows the spectral-temporal patterns of these time series during the Brazilian
crop season that begins at September and spans to August of the next year. We
can observe that these agricultural crops have a very similar spectral-temporal
response. This similarly is due to the plant’s own phenology and to the agricul-
tural calendar of the state of Mato Grosso that relates the planting periods to
the rainy season, and the harvest periods with the dry season.

Table 1 presents the cluster accuracy generated by SOM for each distance
measure and for each set of time series (Cases I, II and II). To generate these
clusters, we created a 2D SOM grid of neurons and initialized their weight vec-
tors randomly. The SOM parameters that we used were: grid size = 25 × 25,
learning rate = 1, and number of iterations = 100. Then, for each time series,
the algorithm finds the 2D grid neuron which has the smallest distance to the
time series, based on its weight vector. After the match, the neuron’s weight
vector and those of its neighbors are then updated. After all time series are as-
sociated with neurons, each neuron is labelled using a majority vote, taking the
most frequent class from the time series associated with it. A neuron labelled as
class X is part of the cluster X. The accuracy of the cluster X is calculated based
on the percentage of time series associated to the class X in neurons labelled as
class X.

We can observe in Table 1 that the best general accuracy is 93% generated
by the Euclidean and Manhattan distances both in Case II, using the time series
NDVI, EVI, NIR and MIR. Because the spectro-temporal patters of the crops
are very similar, as shown in Figure 3, DTW distance can not distinguish them
well and so can not produce clusters with good accuracy.
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Fig. 3. Spectro-temporal patterns of the EVI index time series.

Table 1. Cluster accuracy for each distance measure and for each case (I, II and III)

Euclidean Manhattan DTW
I II III I II III I II III

Cerrado 84 97.3 93.3 92.8 97.2 95.6 88 97.5 98.0
Fallow-Cotton 72.2 85.7 78.9 69 80.9 73.9 66 73.68 76.1
Forest 100 99.3 89.9 99.2 99.2 97.1 98 98.5 96.5
Pasture 92.7 97.3 93.7 94.9 95.9 96.9 92.1 98.9 98.9
Soy-Corn 82.0 84.0 85.4 84.6 84.9 86.5 70.1 74.3 80.2
Soy-Cotton 94.6 95.5 93.5 95.45 97.3 96.82 74.8 85.7 92.0
Soy-Fallow 97.8 100 98.9 100 97.7 100 73.6 88.8 98.9
Soy-Millet 85.5 90.3 88.2 87.5 92.8 88.5 72.2 85.1 100
Soy-Sunflower 77.1 76.9 72.9 73.21 86.0 75.9 - 50 63.2
Accuracy 88.1 93 90 91.2 93 92.9 80.8 88.5 91.1

In Table 1, we can observe that DTW in Case I can not distinguish the crop
Soy-Sunflower from the others. That is, it is not able to create a group or cluster
to represent the Soy-Sunflower crop. The confusion matrix of DTW in Case I is
shown in Table 2 where we can observe the confusion between the classes Soy-
Sunflower (9) and Soy-Corn (5). In this case, the majority of time series of the
Soy-Sunflower class is in the cluster of the class Soy-Corn class.

To perform this experiment, we used the Kohonen R package [11] and ex-
tended it with the DTW distance. The experiment presented in this work shows
that Euclidean and Manhattan distances are more accurate than DTW for re-
mote sensing image time series clustering in land use and cover application.
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Table 2. Confusion Matrix - Case I - DTW

1 2 3 4 5 6 7 8 9
Cerrado 379 0 1 20 0 0 0 0 0
Fallow_Cotton 0 2 0 0 3 19 5 5 0
Forest 8 0 130 0 0 0 0 0 0
Pasture 36 1 1 330 0 0 0 2 0
Soy_Corn 1 0 0 3 289 73 2 30 0
Soy_Cotton 0 0 0 1 33 343 15 7 0
Soy_Fallow 0 0 0 0 0 0 81 7 0
Soy_Millet 2 0 0 4 51 16 6 156 0
Soy_Sunflower 0 0 0 0 36 7 1 9 0
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