
sid.inpe.br/mtc-m21c/2021/02.21.20.48-TDI

CONOPS2M: CONCEPT OF OPERATIONS
MODELLING FOR CUBESAT-BASED SPACE MISSIONS

Danilo Pallamin de Almeida

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs. Maria
de Fátima Mattiello Francisco, and
Fabiano Luis de Sousa, approved
in January 29, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/447TRJB>

INPE
São José dos Campos

2021

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21c/2021/02.21.20.48-TDI

CONOPS2M: CONCEPT OF OPERATIONS
MODELLING FOR CUBESAT-BASED SPACE MISSIONS

Danilo Pallamin de Almeida

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs. Maria
de Fátima Mattiello Francisco, and
Fabiano Luis de Sousa, approved
in January 29, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/447TRJB>

INPE
São José dos Campos

2021

http://urlib.net/xx/yy

Cataloging in Publication Data

Almeida, Danilo Pallamin de.
Al64c Conops2M: Concept of operations modelling for CubeSat-

based space missions / Danilo Pallamin de Almeida. – São José
dos Campos : INPE, 2021.

xxii + 77 p. ; (sid.inpe.br/mtc-m21c/2021/02.21.20.48-TDI)

Dissertation (Master in Engineering and Space
Technology/Space Systems Engineering and Management) –
Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2021.

Guiding : Drs. Maria de Fátima Mattiello Francisco, and
Fabiano Luis de Sousa.

1. Concept of operations. 2. Modelling & Simulation. 3. Model
based systems engineering. 4. CubeSat. I.Title.

CDU 629.783

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

10/02/2021 SEI/MCTI - 6451029 - Ata de Reunião

https://sei.mctic.gov.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=7224162&infra_sistema… 1/1

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS
Serviço de Pós-Graduação-SEPGR

Pós-Graduação em ETE/Engenharia e Gerenciamento de Sistemas Espaciais.

DEFESA FINAL DE DISSERTAÇÃO DE DANILO PALLAMIN DE ALMEIDA

No dia 29 de janeiro de 2021, às 10h, por videoconferência, o aluno mencionado acima defendeu seu trabalho final
(apresentação oral seguida de arguição) perante uma Banca Examinadora, cujos membros estão listados abaixo. O aluno
foi APROVADO pela Banca Examinadora, por UNANIMIDADE, em cumprimento ao requisito exigido para obtenção do
Título de Mestre em Engenharia e Tecnologia Espaciais/Eng. Gerenc. de Sistemas Espaciais. O trabalho precisa da
incorporação das correções sugeridas pela Banca Examinadora e revisão final pelos ORIENTADORES.

Título novo: “Conops2M: Concept of Opera�ons Modelling for CubeSat-Based Space Missions”

Eu, Walter Abrahão dos Santos, como Presidente da Banca Examinadora, assino esta ATA em nome de todos os
membros.

Membros da Banca

Dr. Walter Abrahão dos Santos Presidente INPE.
Dra. Maria de Fá�ma Ma�ello Francisco Orientador(a) INPE.
Dr. Fabiano Luis de Sousa Orientador(a) INPE
Dra. Ana Maria Ambrosio Membro da Banca INPE.
Dr. András Vörös Convidado(a) BME.

Documento assinado eletronicamente por Walter Abrahão dos Santos, Tecnologista, em 03/02/2021, às
17:24 (horário oficial de Brasília), com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro
de 2015.

A auten�cidade deste documento pode ser conferida no site h�p://sei.mc�c.gov.br/verifica.html,
informando o código verificador 6451029 e o código CRC FDA1C286.

Referência: Processo nº 01340.000741/2021-35 SEI nº 6451029

“We are a way for the cosmos to know itself”.

Carl Sagan
em “Cosmos”, 1980

v

A meus pais Maria Inês e José Sérgio, e à minha
irmã Juliana

vii

ACKNOWLEDGEMENTS

Agradeço à meus pais Inês e Sérgio e à minha irmã Juliana por toda a incomparável
estrutura que me deram ao longo desses anos todos, e o imenso incentivo aos estudos.
Sou muito privilegiado por ter vocês. Vocês são a base de tudo.

À minha orientadora Dra. Fátima, por ter me aceitado como aluno e me mostrar
o caminho desde 2016. Obrigado por toda a orientação e conhecimento passado ao
longo destes anos, pelo tempo investido e confiança depositada em mim. Obrigado
pelas oportunidades únicas que a Sra. possibilitou e ofereceu.

Ao meu orientador Dr. Fabiano, por trazer o projeto para o ambiente do fantástico
CPRIME e abrir um novo horizonte trazendo toda sua experiência e conhecimento.
Obrigado pelo tempo, paciência, disponibilidade e por toda a orientação.

Ao Dr. Otávio Durão, por ter me confiado a incrível oportunidade em 2016 de fazer
parte da missão NanosatC-Br2 e aberto as portas para o INPE e o setor espacial.

Ao Dr. Ronan pela abertura da excelente ferramenta ForPlan e toda a ajuda e apoio
dado, sempre com incrível disposição.

Aos meus professores, que me permitiram enxergar mais longe.

Ao Carlos pela parceria diária (e muitas vezes noturna) na sala, no lab e nas ativi-
dades do Br2 e do SPORT.

A todos da equipe do NanosatC-Br2, pelo incrível projeto que realizamos.

À Dra. Jenny e o pessoal do LIT pelo apoio na campanha de AIT do Br2.

Aos colegas do CEI, em especial à Lídia, por todo o apoio e compartilhamento.

À Denise, por todo o trabalho neste processo desde 2018 que me ajudou a voltar a
alcançar pelo cosmos.

Ao INPE e todos os funcionários, por terem provido toda a infraestrutura necessária
para a realização deste trabalho.

A special thanks to Bence and Vince from the BME FTSRG for the huge contribu-
tion to this work through ADVANCE.

This work has been partially supported by the project ADVANCE - Ad-

ix

dressing Verification & Validation Challenges in Future Cyber-Physical Systems
(https://www.advance-rise.eu/) - call H2020-MSCA-RISE-2018, number 823788 -
with contribuitions of Graics Bence and Molnár Vince from BME, during 1 month
period of secondment at INPE.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior – Brasil (CAPES) - Finance Code 001.

x

ABSTRACT

The increasing accessibility to space provided by small satellites, especially the Cube-
Sat standard, with lower costs and shorter development time, has stimulated many
new missions and possibilities. As a measure to reduce CubeSat mission failure rates,
which are comparatively high, there is a need to tailor Systems Engineering prac-
tices and methodologies to fit the time and cost budgets of these kinds of missions.
Throughout the entire life-cycle of space missions, modelling and simulation play a
large role in supporting the engineering and operation activities. Early stage design
activities, such as feasibility and performance analyses, trade-off studies, and re-
quirement specifications, are commonly performed based on concurrent engineering
practices in design offices, such as Concurrent Engineering Centers, and benefit from
modelling and simulation. In this dissertation, the author proposes and demonstrates
a modelling process, called Conops2M, that guides the construction of an initial mis-
sion architecture focused on the concept of operations, preparing for the simulation
of operation scenarios to be used in early phase design trade-studies, through au-
tomatic model transformation and code generation. Conops2M transforms mission
operation objectives and requirements into functions realized by the mission’s Space
and Ground Segments, highlighting the interactions and dependencies among them.
Conops2M is demonstrated through an instantiation for a generic CubeSat mission,
and then applied for the NanosatC-Br2, a scientific CubeSat mission developed by
Brazil’s National Institute for Space Research (INPE) and the Federal University
of Santa Maria (UFSM). An example trade study analysis is conducted comparing
the simulation of different operation scenarios generated using Conops2M, and the
results are discussed.

Keywords: Concept of Operations. Modelling & Simulation. Model Based Systems
Engineering. CubeSat.

xi

CONOPS2M: MODELAGEM DO CONCEITO DE OPERAÇÕES
PARA MISSÕES ESPACIAIS BASEADAS EM CUBESATS

RESUMO

A crescente acessibilidade ao espaço providenciada por pequenos satélites, em espe-
cial do padrão CubeSat, com menores custos e períodos de desenvolvimento mais
curtos, tem estimulado várias novas missões e possibilidades. Como uma medida para
reduzir as taxas de falhas em missões CubeSat, que são comparativamente altas, há
uma necessidade de adaptar as práticas e metodologias de Engenharia de Sistemas
para as adequar às disponibilidades de recursos financeiros e cronogramas deste tipo
de missão. Ao longo de todo o ciclo de vida de missões espaciais, modelagem e si-
mulação têm um grande papel em apoiar as atividades de engenharia e operações.
Atividades de projeto iniciais, como análises de viabilidade e performance, estudos
de trade-off, e especificação de requisitos, são comumente feitos baseados em práticas
de engenharia simultânea em escritórios de projetos, como Centros de Engenharia
Simultânea, e se beneficiam de modelagem e simulação. Nesta dissertação, o autor
propõe e demonstra um processo de modelagem, denominado Conops2M, que guia
a construção de uma arquitetura inicial de missão focada no conceito de operações,
preparando para a simulação de cenários operacionais ser utilizada em estudos de
trade-off em estágios iniciais de projeto, através de transformação automática de
modelo e geração automática de código. Conops2M transforma objetivos e requisi-
tos operacionais de missão em funções realizadas pelos segmentos Espacial e Solo da
missão, destacando as interações e as dependências entre eles. Conops2M é demons-
trado através de uma instanciação para uma missão CubeSat genérica, e em seguida
é aplicado para o NanosatC-Br2, uma missão CubeSat científica desenvolvida pelo
Instituto Nacional de Pesquisas Espaciais (INPE) e pela Universidade Federal de
Santa Maria (UFSM). Um exemplo de análise de um estudo de trade-off é con-
duzido comparando a simulação de diferentes cenários ope-racionais gerados usando
Conops2M, e os resultados são discutidos.

Palavras-chave: CONOPS. Modelo. MBSE. CubeSat.

xiii

LIST OF FIGURES

Page

1.1 The PMTE Elements and Effects of Technology and People. 7
1.2 ARCADIA Engineering Levels. 8
1.3 Overview of the Capella Interface . 10
1.4 Capella Methodological Activity Browser. 10

2.1 CubeSat Size Comparison. 14
2.2 1U CubeSat Example Illustration. 14
2.3 ForPlan Main GUI Window . 18
2.4 ForPlan Functions/Interfaces Capella Diagram. 19
2.5 CRM Activity Simulation Steps Example. 22
2.6 CRM Modelling and Simulation Tools Integration. 23
2.7 CubeSat Reference Model Scope. 23
2.8 CubeSat Mission Element Logical Architecture. 24
2.9 Uplink Spacecraft Command Sequence Activity 24
2.10 Space Systems Concept Study Main Disciplines. 25
2.11 Concurrent Engineering Centers. 28
2.12 Brazilian Environment Data Collection System CONOPS Example -

High Level Data Flow. 30

3.1 Conops2M Abstraction Levels and Steps. 32
3.2 Conops2M Steps and Model Artifacts. 34
3.3 Example Model Operational Capabilities Diagram. 36
3.4 Example Model Operational Activity Interaction Diagram. 37
3.5 Example Model Operational Architecture Diagram. 37
3.6 Example Model System Data Flow Diagram. 38
3.7 Example Model System Architecture Diagram. 39
3.8 Example Model Logical Data Flow Diagram. 40
3.9 Example Model Logical Architecture Diagram. 41
3.10 Example Model Space Segment Physical Data Flow Diagram. 42
3.11 Example Model Space Segment Physical Architecture Diagram. 42
3.12 Example Model Ground Segment Physical Data Flow Diagram. 43
3.13 Example Model Ground Segment Physical Architecture Diagram. 43
3.14 Example Model Operation Scenario Example Exchange Scenario. 44

4.1 Simulation Configuration Class Diagram Blank. 45

5.1 NanosatC-BR2 moments after the successful AIT campaign - Dec 2020 . 50

xv

5.2 Instantiated Model Operational Capabilities Diagram. 52
5.3 Instantiated Model Operational Activities Interaction Diagram. 53
5.4 Instantiated Model Operational Architecture Diagram. 53
5.5 Instantiated Model System Architecture Diagram. 54
5.6 Instantiated Model Logical Data Flow Diagram. 54
5.7 Instantiated Model Logical Architecture Diagram. 55
5.8 Instantiated Model Space Segment Physical Data Flow Diagram. 55
5.9 Instantiated Model Space Segment Physical Architecture Diagram. . . . 56
5.10 Instantiated Model Simulation Configuration Class Diagram Diagram. . . 57
5.11 First Scenario Configuration Class Diagram. 58
5.12 First Scenario Simulation Results. 59
5.13 Second Scenario Configuration Class Diagram. 60
5.14 Second Scenario Simulation Results . 60
5.15 Third Scenario Simulation Results . 61

xvi

LIST OF TABLES

Page

5.1 Maximum Energy Demand & Data Volume Generation and Existing
Budgets . 51

5.2 Trade Scenarios Operation Functions Summary. 60
5.3 Trade Scenarios Main Pros and Cons. 61

xvii

LIST OF ABBREVIATIONS

AIT – Assembly, Integration and Test
C2F – Capella To ForPlan
CDB – Class Diagram Blank
CE – Concurrent Engineering
CEC – Concurrent Engineering Center
CONOPS – Concept of Operations
COTS – Commercial Off-The-Shelf
CPRIME – Space Missions Integrated Design Center
CRM – CubeSat Reference Model
DSML – Domain Specific Modeling Language
ECSS – European Cooperation for Space Standardization
ESA – European Space Agency
INCOSE – International Council on Systems Engineering
INPE – National Institute For Space Research
LEO – Low Earth Orbit
MBSE – Model-Based Systems Engineering
NASA – National Aeronautics and Space Administration
NCBR2 – NanosatC-Br2
OMG – Object Management Group
ROI – Region of Interest
SE – Systems Engineering
SysML – Systems Modeling Language
V&V – Verification and Validation

xix

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Problem formulation . 4
1.2 Dissertation objectives . 5
1.3 Methodology . 6
1.3.1 Method . 8
1.3.2 Process . 9
1.3.3 Tool . 9
1.3.4 Environment . 11
1.4 Document structure . 11

2 THEORETICAL BACKGROUND 13
2.1 CubeSats . 13
2.2 Modelling and simulation in space systems 15
2.2.1 Modelling . 16
2.2.2 Simulation . 17
2.2.3 INPE/CPRIME’s ForPlan simulator 18
2.3 Model-Based Systems Engineering (MBSE) 20
2.4 The CubeSat reference model . 21
2.5 Space missions concurrent engineering centers and concept studies 25
2.6 Concept of operations . 29

3 THE CONOPS2M MODELLING PROCESS 31
3.1 Modelling process description . 31
3.1.1 Generating the simulation script . 35
3.2 Example model - Generic CubeSat mission 35
3.2.1 Operational Analysis . 36
3.2.2 System Analysis . 38
3.2.3 Logical Architecture . 38
3.2.4 Physical Architecture . 39

4 THE CAPELLATOFORPLAN (C2F) ECLIPSE PLUGIN 45

5 MODEL INSTANTIATION CASE STUDY: NANOSATC-BR2 49

xxi

5.1 Mission description . 49
5.2 The NanosatC-Br2 CONOPS model . 51
5.2.1 Operational Analysis . 52
5.2.2 System Analysis . 52
5.2.3 Logical Architecture . 53
5.2.4 Physical Architecture . 54
5.2.4.1 Generating the simulation script . 56
5.3 Simulation trade studies . 57

6 CONCLUSION . 63
6.1 Future work . 64

REFERENCES . 65

APPENDIX A - Example C2F Output ForPlan Configuration
Script . 71

xxii

1 INTRODUCTION

The human space exploration endeavour has been immensely benefited by the tech-
nological advances of humankind, while being a key driver for research and devel-
opment in countless fields of science and engineering. From the early space race
to interplanetary exploration, humanity has developed numerous applications with
many different motivations, resulting in a consolidated and still growing global space
industry. Besides the direct impact of each application, such as remote sensing and
connectivity satellites for example, human civilization benefits from many appli-
cations that were made possible in other areas and industries due to technologies
developed for the space industry, which are called spin-offs.

To escape the pull of Earth’s gravity and launch anything into space, an immense
amount of energy is required to get each gram of mass up to the altitude and
velocity required, not to mention beating the drag effects of the resistances of Earth’s
atmosphere. Up to today, the way humans have achieved this is through the use of
rockets, which have limited payload volume and mass they can take. Each unit of
mass and volume has a high cost and value for each launch.

Since getting into space is hard and expensive, spacecrafts are traditionally devel-
oped with a very high reliability, to guarantee as much as possible they will operate
as expected once they reach their destination. This is assured through extensive
amount of testing, verification, and validation, from components up to system level.
Also, the space environment is extremely hazardous. The radiation and temperature
levels outside Earth’s atmosphere can damage the sensitive electronics, so they need
to be shielded. In addition, the rocket launch itself is very violent and harsh. The
combustion of rocket fuel generates vibration in the rocket, which is propagated
mechanically through the structure of the rocket up to the nose cone, where the
payloads are stored. The nose cone also interacts at high speeds with the gases of
Earth’s atmosphere, generating vibrations. These vibrations and acceleration are
unfortunately transmitted to the payloads, resulting in high forces and stress the
payloads have to endure. This requires spacecrafts to have structures much more
resistant than what would be required for operation, just to survive the launch. All
these factors contribute to the high complexity and cost of space systems.

Modern electronics and materials have revolutionized the space industry, allowing
the development of smaller and lighter equipment. For the past 20 years, a meaning-
ful amount of nanosatellite-class spacecrafts have been developed and launched, and
this is largely due to the CubeSat standard, which has been highly adopted world-

1

wide both commercially and academically. The launch of over 1000 CubeSats over
the last 10 years has sparked the development of a global industry with over 500
companies (KULU, 2019) that provide solutions based on the standard. CubeSats
have brought a paradigm shift in the space industry, providing relatively simple and
cost-effective access to space.

As a cost-reduction strategy, CubeSats typically are made with Commercial Off-
The-Shelf (COTS) components, which commonly do not have space-grade ratings
and consequently have a lower life-expectancy and robustness. Design teams (espe-
cially in university-class missions) commonly have little experience, and it is also
common to see teams skipping some Systems Engineering, AIT and V&V procedures
due to schedule constraints and cost budget limitations. Along with many other pos-
sible contributing reasons, CubeSat missions have high failure rates (SWARTWOUT;

JAYNE, 2016) (VENTURINI et al., 2017).

To shorten development cycles while reducing failure rates, it is evident there is
a need to tailor SE practices and methodologies in order to better fit and benefit
from characteristics from the CubeSat standard such as platforming and reusabil-
ity. Traditional approaches for large satellite development may not be suitable for
CubeSats, therefore teams around the world are developing modern SE approaches
such as Asundi and Fitz-Coy (2013), Waseem and Sadiq (2018) and Fischer et al.
(2017).

Modelling and Simulation (M&S) have become essential throughout the entire life
cycle of space missions. It is applied heavily from conception to operation, and even
disposal (EICKHOFF; HENDRICKS, 2005) (EICKHOFF, 2009). Models help provide an
understanding of the system, exchange of information and drive discussions among
design team members. M&S can be used to allow customers to monitor and shape
the evolution of the project, and to support the design, development and testing
of the system. Customers can deliver part of the system specification as models,
and the primary contractor can deliver models back as part of the review process
(ECSS, b). This permits faster communication and reduces cost in reaching a better
understanding of the system among stakeholders. Efforts are being made by many
organizations to create an M&S infrastructure to permit reuse, technology evolution,
and minimize costs (ECSS, b).

Regarding the application of models in the early stage design activities of space
mission, teams from Concurrent Engineering Centers (CEC) around the world are
bringing the formalized use of modeling to their processes of mission analysis at

2

Phase 0/A, often performed based on an optimized Concurrent Engineering (CE)
approach (EICKHOFF, 2009). Model-Based Systems Engineering (MBSE) is a disci-
pline that supports systems engineers in developing system models integrating design
information from multiple domains. It evidences interfaces and overall system ar-
chitectures, enabling the whole team to visualize concurrent activity and identify
conflicts more efficiently (IWATA et al., 2015).

Regarding the application of simulation tools to support Phase 0/A, Kranz et al.
(KRANZ et al., 2015) elaborate on the definition and contributions of a System Con-
cept Simulator on the rapid evaluation of system design concepts, assisting in trade
studies. System models such as those developed by Raif et al. (RAIF et al., 2010) can
be used to simulate dynamic behaviour of the satellite.

Mission objectives, requirements and constrains express the expected behavior of
satellite in operation, from the stakeholders point of view, driving the processes of
mission analysis at Phase 0/A. The Concept of Operations (CONOPS) discipline
plays an important role in the mission requirements analysis, because it traverses
both ground and space segments, aiming to highlight dependencies among mission
elements and the space environment to meet the mission operation requirements
(WERTZ et al., 2011). Usually CONOPS models take into account major elements
of the mission such as data and power budgets. Designing the mission CONOPS
including multiple operation scenarios may reveal requirements and needed design
functions. Simulating the operation of a satellite and the associated ground segment
can be very useful for the design team and other stakeholders to improve the un-
derstanding of how the system solution achieves mission objectives. It can assist in
trade-off studies, power and data budget analyses, and validating design choices.

Studies using modelling and simulation in early stage space mission design have
shown positive impacts, such as the Virtual Satellite project (SCHAUS et al., 2010)
by the German Aerospace Center (DLR) supporting their Concurrent Engineering
Facility (CEF). The European Space Agency (ESA) has developed a highly inte-
grated MBSE process related to systems modelling and simulation supporting the
generation and maturation of system requirements, architectures and system bud-
gets (ESTABLE et al., 2017). Also, the European Cooperation for Space Standard-
ization (ECSS) has issued a technical memorandum defining the recommendations
for model based data exchange for early phases of engineering design (ECSS, c).
DLR has also developed executable models for early spacecraft design verification
(FISCHER et al., 2013) and to check space mission feasibility in early design phases

3

(AKHUNDOV et al., 2016).

The International Council on Systems Engineering Space Systems Working Group
began investigating the applicability of MBSE for designing CubeSats in 2011, devel-
oping a SysML model for a CubeSat mission (SPANGELO et al., 2012). Their approach
has then been extended into developing a reference model for CubeSat-based mis-
sions, called the Cubesat Reference Model (CRM) (KASLOW et al., 2018). The CRM
is to be a starting point for design teams, and will serve as the Object Manage-
ment Group’s specification for modelling CubeSat missions. The CRM developed
an approach to modelling and simulating the operation of a CubeSat using SysML
integrated with simulation tools (SPANGELO et al., 2013).

At the Brazilian National Institute for Space Research (INPE), the team at INPE’s
CEC Space Missions Integrated Design Center (CPRIME) intends to transition to
the adoption of MBSE, inspired by CEC’s around the world (IWATA et al., 2015).
The product of this dissertation originates from the effort to expand CPRIME’s
M&S infrastructure, laying groundwork for the adoption of MBSE into their design
processes. The product is a modelling process, called Conops2M, for CubeSat-based
missions that guides the construction of a primary mission architecture focused on
the mission concept of operations, in order to simulate operation scenarios, assisting
in early-stage design. Along with the modelling process, a plugin for the modelling
tool was developed to integrate the modelling with the operation scenario simulation,
automatically transforming the model into an input for the Satellite Simulator tool
Forplan developed and used at CPRIME (CHAGAS et al., 2018).

The contribution of Conops2M is to guide the construction of the CONOPS model,
based on the functionalities the system shall perform to reach the stakeholder ob-
jectives. It follows a top-down flow in abstraction levels translating the stakeholder
objectives into functions each equipment aboard the spacecraft will realize, to de-
termine when the equipment shall operate, resulting in a simulatable architecture.

Conops2M was applied to an example study to support the creation of a CONOPS
model for INPE’s NanosatC-Br2 CubeSat mission, generating operation scenarios
to be simulated using ForPlan for an example trade study.

1.1 Problem formulation

In space mission design, it is common for new requirements and dependencies to
show up when the operations analysis is made only after the early stage design

4

phases, leading to large rework efforts, power and data budget issues, equipment
redesign or replacement in late stages of the mission, or even partially compromise
the mission if the problem cannot be solved in time. This is especially true with
CubeSat missions, where the standardized form factor and interfaces of equipment
facilitate the equipment selection process, giving a false "plug-and-play" notion. It
is common for scientific missions to fit as many experiments/payloads inside the
spacecraft as possible to make use of all the available interior space and mass budget,
in an effort to minimize costs with other launches. This is done without considering
the CONOPS at this point, which may lead to future problems in coordinating the
operation of the payloads and issues regarding power and data budgets.

During design analysis activities conducted at CPRIME, the use of operation scenar-
ios simulation for trade studies in the early stages of design contributes significantly
to the reduction of the appearance of these unexpected dependencies, resulting in
initial versions of mission designs less prone to later stages rework.

In order to simulate operation scenarios, it is needed to configure the simulation tool
with the parameters that describe the mission, requiring the team to share a same
mental model of the system. It is seen that developing a modelling infrastructure
with a guided methodology to develop a system model centralizing information from
multiple areas with a focus on the concept of operations, and using that model as an
input for a simulator tool to simulate the operation scenarios can be very beneficial.

There is research being developed in many places around the world on Model-Based
System Engineering practices to develop reference models for space missions and
simulate certain aspects of them (with some focused on CubeSats). The author
proposes an approach to a modelling process to develop early-stage design concept of
operations for CubeSat-based missions, preparing for operation scenario simulation.

1.2 Dissertation objectives

The primary objective of this dissertation is:

• Propose a modelling process developed to guide the modelling of CubeSat-
based missions and their CONOPS for early-stage design studies.

The secondary objectives of this dissertation are:

• Present the model transformation plugin for Forplan simulation.

5

• Exemplify the application of the modelling process through an instantia-
tion for a real CubeSat mission, with an example simulation trade study.

1.3 Methodology

This section details the methodology in which the work presented in this dissertation
inserts itself into.

The International Council on Systems Engineering (INCOSE) defines methodology
as a collection of related processes, methods and tools (ESTEFAN et al., 2007). This
study from INCOSE defines each part as:

• A Process (P): "is a logical sequence of tasks performed to achieve a partic-
ular objective. A process defines “WHAT” is to be done, without specifying
“HOW” each task is performed. The structure of a process provides several
levels of aggregation to allow analysis and definition to be done at various
levels of detail to support different decision-making needs."

• A Method (M): "consists of techniques for performing a task, in other
words, it defines the “HOW” of each task. (In this context, the words
“method,” “technique,” “practice,” and “procedure” are often used inter-
changeably.)"

• A Tool (T): "is an instrument that, when applied to a particular method,
can enhance the efficiency of the task; provided it is applied properly and
by somebody with proper skills and training. The purpose of a tool should
be to facilitate the accomplishment of the “HOWs.” In a broader sense, a
tool enhances the “WHAT” and the “HOW"". Most tools used to support
systems engineering are computer- or software-based, which also known as
Computer Aided Engineering (CAE) tools.

Associated with an Environment (E), which is all the surroundings, external objects
and conditions that influence on the group or individual. Figure 1.1 illustrates these
elements and their relationships and effects on people and technology.

By reviewing INCOSE standards (INCOSE, 2019), recent published studies in jour-
nals and conferences such as (SPANGELO et al., 2012), (WASEEM; SADIQ, 2018),
(LANGE et al., 2018), and the MBSE methodology survey by INCOSE (ESTEFAN

et al., 2007), the most common approach for MBSE applications is to use OMG’s

6

Figure 1.1 - The PMTE Elements and Effects of Technology and People.

Source: Estefan et al. (2007).

SysML language supported by software tools such as MagicDraw (NoMagic), Ratio-
nal Rhapsody (IBM), or Enterprise Architect (Sparx Systems).

However, these approaches have considerable barriers to entry, such as a lack of
methodological guidance, a large initial effort with the structure, and subscription
requirements for the tools.

Driven by the previous experiences and recommendations of previous student col-
leagues in the Systems Engineering academic department at INPE that employed
MBSE in their projects ((CERQUEIRA, 2018) and (BURGER,)), the author has
adopted an approach to use the Capella tool, developed by engineers at Thales
Alenia, which is an open-source MBSE tool that incorporates the Arcadia method
and a domain-specific modeling language very close to SysML (ROQUES, 2017). The
main reasons for adopting Capella/Arcadia are:

• Capella is an open-source software, requiring no license and allowing for
customized modifications, which resulted in C2F.

• Being an open-source software there are less barriers for peers to replicate,
use and expand this work.

• Capella features a Domain-Specific Modelling Language (DSML) which is
similar to SysML, yet the author found it to be more intuitive to learn.

• The methodological guidance of Arcadia fit well the purpose of a modelling
process to guide users in the development of their own model, which is the
object of this work.

7

By adopting Capella and Arcadia, the author considers the aforementioned barri-
ers to entry are significantly reduced, and making the end product accessible is of
essential value to the author.

The four parts of the methodology of this work are explained in the following sub-
sections:

1.3.1 Method

ARCADIA is a structured engineering method aimed at defining and validating the
architecture of complex systems developed by Thales Alenia between 2005 and 2010
(ROQUES, 2017). It has a Domain Specific Modeling Language (DSML) that is in-
spired by UML/SysML and shares many concepts with these languages. ARCADIA
is based on functional analysis and function allocation to components (ROQUES,
2016).

It follows an approach structured on successive engineering phases that first tackles
need understanding, and then the solution architectural design, illustrated by Figure
1.2.

Figure 1.2 - ARCADIA Engineering Levels.

Source: Roques (2016).

The highest level of the method is theOperational Analysis, which captures "what
the users of the future system need to accomplish". At this level, the focus is on what

8

roles the users will have to perform to capture their needs.

The second level is the System Analysis, that involves the identification of the
Capabilities and Functions of the system that will satisfy the operational needs,
which captures "what the system must accomplish for the users".

The third level is the Logical Architecture, which captures "how the system will
work to fulfill expectations" and aims to identify Logical Components inside the
system, their relations and their content, independently of any considerations of
technology or implementation.

The fourth level is the Physical Architecture. The objective of this level is similar
to the third level except defining the final architecture of the system ("how the system
will be built")

The final level is the End Product Breakdown Structure (EPBS), which
deduces the conditions each component must satisfy ("what is expected from the
provider of each component").

1.3.2 Process

The Process of the methodology is the modelling process product of this dissertation,
detailed in chapter 3. The process is composed of a series of steps to take in order to
model the CubeSat mission and its concept of operations, and prepare the operation
scenarios simulations.

1.3.3 Tool

Capella is an open-source Eclipse application that follows ARCADIA and imple-
ments their DSML. The workspace (Figure 1.3) provides a navigation throughout
the diagrams through a tree diagram called the "Project Explorer", a "Properties"
tab that describe properties of the model elements, a "Semantic Browser" which al-
lows the user to browse through the model presenting the references surrounding the
item, relations and diagrams it appears in, and an "Activity Browser" which exposes
the user to the steps in the ARCADIA method used to create the diagrams in each
phase.

The Activity Browser guides the user throughout the method providing access to all
the key activities of Capella and creation of all main diagrams, level by level, which
can be seen in Figure 1.4.

9

Figure 1.3 - Overview of the Capella Interface

.
Source: Roques (2017).

Figure 1.4 - Capella Methodological Activity Browser.

Source: Roques (2016).

Because Capella is open-source, the development of a plugin enhancing the tool
to convert resulting models into ForPlan simulator input configuration scripts was
possible, and resulted in a significant part of the end product of this dissertation.
The plugin is detailed in chapter 4.

10

1.3.4 Environment

The environment for the methodology is INPE’s Concurrent Engineering Center
CPRIME. This work was originated to expand CPRIME’s Modelling and Simulation
infrastructure and lay the groundwork for the adoption of MBSE into CPRIME’s
design processes.

1.4 Document structure

The remainder of this document is structured in the following manner:

• Chapter 2: Theoretical Background. In this chapter the main concepts that
underlie and drive the work done in this dissertation are discussed. These
concepts are: CubeSats; Modelling & Simulation; The ForPlan Simulator
Tool; Model-Based Systems Engineering; The CubeSat Reference Model;
Concurrent Engineering Centers; and Concept of Operations.

• Chapter 3: The Conops2M Modelling Process. In this chapter the mod-
elling process is detailed. It is initially detailed through a general descrip-
tion, and then followed with an example application of the model for a
generic CubeSat mission.

• Chapter 4: The CapellaToForPlan (C2F) Plugin. In this chapter, the plugin
developed to transform the resulting model into the ForPlan simulator
input is detailed.

• Chapter 5: Case Study. In this chapter the case study application of the
modelling process is shown. Initially a description of the NanosatC-BR2
mission is provided, then the generated model is detailed, and finally some
example simulation trade studies are shown.

• Chapter 6: Conclusion. This chapter discusses the results of the simulations
in the different scenarios and how the modelling process affects the mission
design; presents the future work for Conops2M and C2F envisioned by the
author; and concludes the dissertation.

11

2 THEORETICAL BACKGROUND

2.1 CubeSats

CubeSats are satellites typically in the nanosatellite class (from 1 to 10 kg) that
follow the design specifications determined by the CubeSat standard. The standard
was initially proposed in the late 1990s in a joint collaboration between Stanford
University and the California Polytechnic Institute at San Luis Obispo, CA, as an
effort to establish a reference design for the universities’ small satellite programmes
(HEIDT et al., 2000), helping students have experience in satellite missions, which
are traditionally expensive. The first six CubeSats were launched together in 2003
(DAVID, 2004), and since then over 1200 have been launched (KULU, 2019), includ-
ing the first two interplanetary CubeSats (AERONAUTICS; NASA, 2019). The stan-
dard proved itself effective for low-cost missions including: technological validation;
dedicated "simple" science missions; and low-bandwidth communications, establish-
ing itself among universities, institutes and governmental agencies. Subsequently, a
niche market evolved with over 500 companies focused on CubeSats created world-
wide (KULU, 2019). Future applications in high-speed communication networks and
remote sensing are gaining interest of the industry.

The basic design of a CubeSat is a 10-centimeter cube, referred to as a 1-Unit (1U)
structure. The cubes can be stacked together forming 2, 3 or 6-unit structures and
so on, as seen in Figure 2.1.

The intent of the CubeSat Project was to "reduce cost and development time, in-
crease accessibility to space, and sustain frequent launches" (MEHRPARVAR et al.,
2014). The CubeSat standard reduces costs of space missions in many ways. The
standardized form factors and equipment design parameters allow manufacturers to
produce equipment in higher volumes, reducing individual cost. The standard al-
lows design teams to opt for equipment from different manufacturers with reduced
complications by having standardized interfaces among them.

CubeSat equipment typically follow the PC/104 form factor, stacked vertically
through the 104-pin CubeSat Kit Bus (CSKB) connectors. Through these connec-
tors, most of the inter-module electrical interfaces are provided, such as power supply
and digital communication (typically I2C). Figure 2.2 shows an example illustration
depicting a 1U CubeSat, it’s internal equipment stacked through the CSKB connec-
tors, a top-mounted solar panel, and the UHF/VHF antennas.

13

Figure 2.1 - CubeSat Size Comparison.

Source: Radius Space (2018).

Figure 2.2 - 1U CubeSat Example Illustration.

Source: NanosatC-Br1, accessed (2014).

In comparison to traditional satellite missions, CubeSat missions have much lower
costs, shorter schedules and smaller teams. Because of the smaller teams, schedule
constraints and low financial budgets, it is common that some development teams
skip some systems engineering, AIT and V&V procedures developed in the tradi-
tional space industry to guarantee a high mission reliability, and therefore CubeSat
missions present high failure rates (SWARTWOUT; JAYNE, 2016) (VENTURINI et al.,
2017). To assist developers with little experience, NASA has developed a technical
report called "CubeSat 101: Basic Concepts and Processes for First-Time CubeSat

14

Developers", to guide the developers through the main processes involved concerning
CubeSat Missions (NASA, 2017).

There are some downsides to the mass, volume and cost constraints. Due to these
constraints, and also to reduce complexity, CubeSats generally have either static
solar panels on the external surfaces and don’t have Sun-pointing to maximize energy
conversion, or have small deployable solar panel arrays. Either way, electrical power
generation is limited generally to a couple of Watts per U. The form factor also limits
the size of the battery packs available for each mission. The limited power generation
and storage limits the equipment power consumption, which consequently impacts
other design variables such as equipment processing power and other performance
parameters. This limits the power available for radio communications, limiting the
rate and volume of data that can be downloaded, which finally limits the amount
of data the payloads can generate. Mass and volume also have a direct impact
on equipment limitations. For example, in large Earth observation satellites, high
resolution cameras may require large and heavy lenses and optic components that
are virtually impossible to equip into a CubeSat.

This means CubeSats do not replace traditional large satellites.

2.2 Modelling and simulation in space systems

With the advances and evolution of information technology and development of more
modern and precise tools, modelling and simulation (M&S) has become essential
throughout the entire life-cycle of space missions, from conception through design
and operation (EICKHOFF; HENDRICKS, 2005) (EICKHOFF, 2009).

M&S can be used to allow customers to monitor and shape the evolution of the
project, and to support the design, development and testing of the system. Cus-
tomers can deliver part of the "system specification" as models, and the prime con-
tractor can deliver models back as part of the review process (ECSS, b). This permits
faster communication and reduces cost in reaching a better understanding of the sys-
tem among stakeholders. Efforts are being spent by many organizations to create
an M&S infrastructure to permit reuse, technology evolution, and minimize costs
(ECSS, b).

Throughout the entire development phase, M&S is heavily employed in space mis-
sions in many disciplines for equipment sizing, performance verification and design
validation (BODIN et al., 2012) (LOWE; MACDONALD, 2014) (EICKHOFF, 2009) (EICK-

15

HOFF; HENDRICKS, 2005) (WANG et al., 2017). Each discipline relies on specific Com-
puter Assisted Design (CAD) / Computer Assisted Engineering (CAE) softwares to
support their activities.

In the early stages of the space system life-cycle (phase 0 and phase A), where the
basic system characteristics are elaborated and defined, M&S is mainly used for
requirement specification and trade-off analyses to develop the system concept and
configuration alternatives, including budget and orbit analyses. At these stages, a
System Concept Simulator (SCS) can be used to allow the rapid evaluation of system
design concepts, assisting in trade studies (ECSS, b).

Phase 0/A analyses often are performed based on an optimised, Concurrent En-
gineering (CE) approach in design offices such as Concurrent Engineering Centers
(CEC) (EICKHOFF, 2009). System simulation can significantly impact these activi-
ties, as shown by Kranz et al. (KRANZ et al., 2015) with a System Concept Simulator
(SCS). Raif et al. show simulation of the dynamic behaviour of small satellites from
a System Model and how that can benefit the design (RAIF et al., 2010).

2.2.1 Modelling

A model is a simplified representation of reality.

A consensual definition in literature given by (ROTHENBERG et al., 1989) is: “Model-
ing, in the broadest sense, is the cost-effective use of something in place of something
else for some cognitive purpose. It allows us to use something that is simpler, safer
or cheaper than reality instead of reality for some purpose. A model represents re-
ality for the given purpose; the model is an abstraction of reality in the sense that
it cannot represent all aspects of reality. This allows us to deal with the world in a
simplified manner, avoiding the complexity, danger and irreversibility of reality.”

Modeling is one of the most fundamental processes of the human mind. It underlies
our ability to think and imagine, to use signs and language, to communicate, to use
patterns, to predict, to describe and understand. For instance, numbers are models
to represent quantities, and equations are models to describe natural phenomenons.

In engineering, each discipline has their own domain-specific models to represent
different perspectives of the system. For instance, mechanical engineers use 3D CAD
models to represent the physical design and layout of components, and thermal
models to describe the propagation of heat and temperature distribution.

16

When correctly modeling a behaviour of the system, it is possible to predict the
future outcome of the real operation within the accuracy of the model. By modeling
the orbital dynamics of a satellite, for example, one can predict its location at any
given point in time.

Designing complex systems often demands employing multiple models to represent
different perspectives and phenomenons. Integrating the information held within
these models is one of the key tasks system engineers perform.

2.2.2 Simulation

Simulation is the imitation of the operation of a real-world process or system over a
period of time (BANKS, 2005). Eickhoff and Hendricks (2005) provide a definition for
Simulation as: "Simulation is an approach for analyzing a dynamic system for gaining
an insight to its dynamic behavior. Simulation implies conducting experiments on a
model of the system."

When one provides a set of assumptions that define how a system or process works,
and mathematically describes the phenomena involved (modelling), one can predict
the state of the system or process at a given time by solving the equations. By
solving the equations at multiple and incremental time steps, one can observe the
variations caused in the system. By changing inputs and observing the resulting
outputs, valuable insight may be obtained into which variables are most important
and how variables interact.

Modern computers handle computations with precision and at extremely high
speeds, and therefore computer simulations are getting faster and more faithful to
reality with every advance in computation. Computer simulations are used in many
ways, from graphical animations to gaming. Simulation software is applied in all
domains of engineering and is a large part in modern engineering. Simulating engi-
neering designs can save a lot of investment and effort by verifying and validating
design choices without having to develop physical prototypes.

In space systems engineering, simulators are used along the entire life cycle of mis-
sions, assisting in the design phase, operation phase, and disposal. Simulation is an
important form of validation in every step. For the early stage design phase, INPE
has developed a satellite simulator to simulate the space environment with a satellite
operation to verify and validate system design choices. The engineering team at the
concurrent engineering center CPRIME perform trade-off studies by changing the

17

design choices and analyzing the simulation outputs. The simulator is described in
the following Section 2.2.3.

2.2.3 INPE/CPRIME’s ForPlan simulator

INPE’s Concurrent Engineering Center, the Space Missions Integrated Design Cen-
ter (CPRIME), has developed a satellite simulator with the main objective of per-
forming a functional simulation of satellites and associated ground segment to reflect
operational scenarios of the mission under analysis, called ForPlan Simulator (CHA-

GAS et al., 2018).

Designed for verification of mission concept of operations during studies carried out
mainly in Pre-Phase A at CPRIME, it is a simulation tool focused on the dynamics
of data and power usage, and data exchanged between the satellite and the ground
stations (CHAGAS et al., 2016).

The simulator is divided into a simulation core and the graphical user interface
(GUI). The simulation core handles all of the simulation computations. The result-
ing data of the computations are then displayed to the user in a user-friendly way
through the GUI, which can also handle inputs to the simulation, such as adjust-
ing the time-step of each iteration. Figure 2.3 shows the main GUI window of the
simulator.

Figure 2.3 - ForPlan Main GUI Window

Source: CPRIME (2020).

The simulation core is composed of the following features:

• A Space Environment module, responsible for orbit propagation, deter-
mining the Sun position, determining the satellites position and attitude,
and checking if the satellite is above a specific country and if it’s inside the
visibility circle of the configured ground stations.

18

• An Equipment module, responsible for simulating the behaviour of the
satellite equipment in terms of electrical power consumption and data vol-
ume generation.

• A Power Subsystem module, that calculates the generated power by the
solar panel array, factors the power consumption of all the on-board equip-
ment, and calculates the resulting battery charge.

• The On-Board Data Handling and TT&C Modules, which calculate the
on-board mass memory usage and data transfer to the ground stations.

The simulation core is written in Julia language (JULIA. . . , 2020) and is based on
a toolbox developed by Chagas (CHAGAS et al., 2018) called Satellite Toolbox, de-
veloped to aid in CPRIME studies with orbit analyses. Figure 2.4 shows a Capella
diagram developed by the author while studying ForPlan’s source code to understand
how each module works and their interfaces with the user. It shows the functions
each module and the user must perform, and the interfaces among them.

Figure 2.4 - ForPlan Functions/Interfaces Capella Diagram.

Source: Author.

To define a mission and prepare it for simulation on ForPlan, users (who will run a
simulation using the software) must write a Julia language configuration script where
all of the simulation parameters (associated to the User in Figure 2.4) are declared.
The definition and declaration of simulation parameters follow predetermined rules
and methods/functions according to the development of ForPlan’s software, and for
this reason, it is preeminent that the users must have a working knowledge of this

19

part of the source code, and be able to write the functions themselves.

Therefore, in order to make ForPlan a more accessible tool for distribution, it could
be of great advantage to have a graphical, user-friendly tool to define the parameters
and automatically generate the Julia script. This is the main driver for the last step
of the modelling process shown in this dissertation, described in Section 3.1.1 and
Chapter 4.

2.3 Model-Based Systems Engineering (MBSE)

In traditional Systems Engineering (SE), documents are used to record and store
mission information, such as requirements, concept of operations, interfaces and
other specifications. This results in creating, updating, reviewing and managing
several different documents and their configurations, which for complex systems can
become numerous.

Model-Based Systems Engineering is a SE approach that brings models as the pri-
mary source of information, transitioning from a document-centric to a model-centric
methodology. The International Council on Systems Engineering (INCOSE) defines
it as "the formalized application of modeling to support system requirements, de-
sign, analysis, verification and validation activities beginning in the conceptual design
phase and continuing throughout development and later life cycle phases." (INCOSE,
2007). In other words, it is an approach that aims to synthesize the many documents
that can be generated throughout the SE process into an integrated System Model
(SM), which can result in a more modern, efficient and organized medium to record
and store information of the referenced system.

Due to the trend in engineering disciplines in model-centric approaches, in the 2007
INCOSE International Workshop, the MBSE Initiative was initiated to "Promote,
advance, and institutionalize the practice of MBSE to attain the MBSE 2020 Vision
through broad industry and academic involvement in Research; Standards; Processes,
Practices and Methods; Tools & Technology; and Outreach, Training & Education"
(INCOSE,).

Implementing MBSE in small satellite missions is a relatively new topic, with the
first found study from the INCOSE team in 2012 (SPANGELO et al., 2012), teams
around the world are contributing to the topic using different methods and tools such
as the ones shown by Guo et al. (2014), Fischer et al. (2017) and Waseem and Sadiq
(2018). They show MBSE to be a promising approach for increased productivity and

20

quality, and lower development risk in these types of missions. Artifacts developed
can be used as "single-source-of-truth" and therefore can lower the complexity of
managing multiple documents and disperse information.

Following the platforming trend, a recent study regarding reuse with MBSE in space
systems development (LANGE et al., 2018) shows a systematic approach for enhancing
reuse with MBSE in space systems. It also raises a reuse infrastructure that MBSE
provides with its possible benefits and some example applications.

For an ESA mission called e.Deorbit, Estable et al. (2017) developed an integrated
and collaborative MBSE process to support the development and maturation of
system requirements, architectures and system budgets. This work shows an example
application of systems modelling integrated with analytical modelling and simulation
tools using simulation execution to perform trade off studies.

2.4 The CubeSat reference model

This section introduces the line of work from the INCOSE working group that is
structuring MBSE into the CubeSat domain and served as a reference and starting
point for this dissertation.

As a measure to reduce the failure rate of CubeSat missions, which is around 50%
for university-class missions, when launch failures are factored out (SWARTWOUT;

JAYNE, 2016), the INCOSE Space Systems Working Group (SSWG) began investi-
gating the applicability of MBSE for designing CubeSats in 2011. They began by
demonstrating MBSE in a CubeSat mission by creating a SysML model of a Cube-
Sat and applying it to the Radio Aurora Explorer (RAX) mission (SPANGELO et al.,
2012).

Further studies from this group employed parametric simulation of CubeSat mis-
sions and operational scenarios, integrating system models with simulation software
such as Matlab and STK (KASLOW et al., 2014) (SPANGELO et al., 2013). This in-
tegrated M&S environment enables users to extract feasibility, performance and
robustness metrics by visualizing representations of physical and functional states.
The system modelling was performed using SysML in the MagicDraw tool, where
the behavioural diagrams are made. The parametric modelling and integration with
external tools was made using ModelCenter’s MBSE Analyzer. Figure 2.5 shows an
example of the steps taken from executing the behavioural models in SysML to the
parametric models calling the external simulation tools, which is the process the

21

authors implemented.

Figure 2.5 - CRM Activity Simulation Steps Example.

Source: Kaslow et al. (2014).

The relationship between the modelling and simulation tools to execute the system
models and perform the analyses is shown in Figure 2.6. MBSE Analyzer calls the
updates on the analytical models of the external simulators and integrate the results
with each step on the behaviour SysML models. These simulations are very helpful
in defining performance characteristics, budgets and constraints in subsystems and
components specifications.
Further phases of this project have investigated the application of MBSE on defining
the behaviour of CubeSats (KASLOW et al., 2017), and on the concept lifecycle phase
(KASLOW, 2015).

The end product of this group is the under development CubeSat Reference Model
(CRM), which they intend to release to the public as a reference model for other
missions to use when defining the mission-specific model so teams can have a starting
point when designing a mission, which will also serve as an Object Management
Group (OMG) specification (KASLOW et al., 2018).

The developers define their objective as: "The purpose of the CubeSat Reference

22

Figure 2.6 - CRM Modelling and Simulation Tools Integration.

Source: Kaslow et al. (2014).

Model is to provide a logical architecture, which serves as a guide and provides the
building blocks for any CubeSat mission. The goal is to provide an object-oriented
architecture framework so that teams can easily compose their CubeSat system and
mission from the elements and objects found in the reference model" (KASLOW et al.,
2016). The scope of the CRM is displayed in Figure 2.7, showing its relations with
modelling and mission design elements.

Figure 2.7 - CubeSat Reference Model Scope.

Source: Kaslow (2015).

The CRM consists essentially of a framework of multiple SysML packages and di-
agrams to describe the Logical and Physical Architecture of a standard CubeSat
mission, along with behavioural models. An example of one of the diagrams pro-
vided by the CRM can be seen in Figure 2.8 that shows the logical architecture
mission element of a generalized CubeSat system.

23

Figure 2.8 - CubeSat Mission Element Logical Architecture.

Source: Spangelo et al. (2012).

Activity diagrams as shown in Figure 2.9 are used to determine specific activities of
the system. Together with Modes & States and Sequence diagrams, the behaviour
of the system given determined scenarios can be modelled.

Figure 2.9 - Uplink Spacecraft Command Sequence Activity

Source: Kaslow et al. (2017).

24

The CRM is still in development and is not yet available to the public. The papers
provide good insight to the development process and the work shows to be very
useful in the demonstrated applications. However, along with the barrier of entry
of commercial software tools used, the author considers the project could benefit of
open-source modelling and simulation tools and a guided methodological guidance
for the m&s process. The author hopes the work of this dissertation can be beneficial
in this sense.

2.5 Space missions concurrent engineering centers and concept studies

Space mission development typically begins with an initial phase called "Concept
Studies". As stated by NASA’s Systems Engineering Handbook (KAPURCH, 2010), it
describes the study of stakeholder needs, demonstrates the feasibility of the desirable
mission, and provides analyses of future resource allocation. These concept studies
aim to establish mission goals, high-level requirements and functional descriptions,
along with the concept of operations.

Concept studies are multidisciplinary studies and require exchange of information
between specialists from many different disciplines that compose a space mission
(WERTZ et al., 2011). The main disciplines are shown in Figure 2.10. The exchange
of information between each discipline can become very complex since many pa-
rameters have multiple dependencies in different disciplines, raising the difficulty of
design choices at the early stages and leading to multiple trade studies and design
iteration loops.

Figure 2.10 - Space Systems Concept Study Main Disciplines.

Source: Cerqueira (2018).

25

Because of the elevated complexity and necessity of information exchange, concept
studies are usually performed in facilities called Concurrent Engineering Centers
(CEC). CECs provide the necessary infrastructure and team disposition to support
the concept studies using the Concurrent Engineering approach.

Concurrent Engineering (CE) is a systematic approach by diverse specialists collabo-
rating simultaneously in a shared environment, real or virtual, to yield an integrated
design (HIHN et al., 2011). The approach was first applied to space system designs in
1995 JPL and since then it has been widely adopted in the aerospace industry and
in government agencies due to its many benefits.

The Concurrent Engineering approach provides a collaborative, co-operative and
simultaneous working environment (ESA, 2018) which by ESA standards is based on
five key-elements (SCHUMANN et al., 2008):

• a process

• a multi-disciplinary team

• an integrated data/design model

• an appropriate facility

• a software/hardware infrastructure

Concurrent Engineering Centers are facilities that allow a physical allocation of a
multidisciplinary team of experts along with tools and equipment that allow for
rapid development of complex systems designs, based on the concurrent engineering
approach. The co-location permits faster design iterations and better communication
between the team members in comparison with separate offices, which shortens the
decision making cycle and the overall design time (IWATA et al., 2015).

The facilities generally have a main room equipped with a network of computer
stations, multimedia devices, whiteboards and software tools. The computers are
dedicated to each discipline with their specific CAD tools and disciplines that are
closely related and exchange more information (for example Thermal and Structural)
are located closer to improve communication.

Many agencies and companies around the world have adopted the concept and built
their own CEC, each having their own focuses and differences. Some examples are:

• ESA - Concurrent Design Facility (CDF)

26

• NASA/JPL - Team X, Team Xc, and Product Design Center (PDC)

• NASA/GSFC - Integrated Design Center (IDC)

• NASA/GRC - COMPASS

• The Aerospace Corporation - Concept Design Center (CDC)

• RAL Space - Concurrent Design Facility (CDF)

• INPE - Space Missions Integrated Design Center (CPRIME)

Figures 2.11 (a) and 2.11 (b) show studies being conducted at ESA’s Concurrent
Design Facility’s (CDF) and INPE’s CPRIME main rooms with team members
allocated at their work stations.

Studies conducted in CECs are generally in the early stage of development (Phase
0), focusing on the conceptual design where there is a higher range of freedom and
uncertainty and consequently a greater need for exchange of information between
the disciplines. The studies generally last a couple of weeks, which is a dramatic
reduction in cost and time in comparison with traditional concept studies which
could take up to several months.

It is common for customers to participate in CEC sessions in order to provide inputs
such as requirements and desired operation characteristics. Typical outputs from
CEC studies are lists of diverse concepts, trade studies analysis, a more refined or
detailed design, a set of requirements for a proposal, or even an evaluation of a
specific concept.

Models are heavily employed in CECs to represent many different parts and sub-
system of the system being designed (IWATA et al., 2015). Models help provide un-
derstanding of the system, exchange of information and drive discussions among
the team members. Essentially, each discipline has their domain-specific model, and
to group all the information there is an Integrated Design Model (IDM), which
generally consists of spreadsheets.

Although Systems Engineering (SE) encompasses the entire life cycle of the system
while CECs are tailored to focus on the early phases, the similarities between SE
and CE allow for the advances in SE disciplines such as Model-Based Systems En-
gineering (MBSE) to make their way into CEC practices, as seen in the MBSE-CE
integration survey by Iwata et al. (2015). This study shows that CECs are gradually
adopting MBSE as the methodology and its tools evolve.

27

Figure 2.11 - Concurrent Engineering Centers.

(a) ESA CDF.

(b) INPE CPRIME.

At ESA’s European Space Technology and Research Centre (ESTEC), the engineers
have developed a system simulator to assist at early stage design studies at the CDF,
called the System Concept Simulator (SCS) Kranz et al. (2015). By simulating
the functional architecture of the system, it supports the trade-off studies for the
system concept in an iterative manner, providing a quantitative assessment of the
performance of the system for different mission and spacecraft concepts (ECSS, b).

28

2.6 Concept of operations

The Concept of Operations (CONOPS) is a description of the system’s character-
istics from an operational perspective. It describes how the system will operate to
meet stakeholder expectations.

Defining the mission CONOPS in the early stages of development include: an initial
physical and logical architecture of the space and ground segments; the interfaces
between the elements of the architecture; mission objectives and constraints analysis;
operation timelines, modes and scenarios; end-to-end communications strategy and
data-flow; and especially power and data-budgets analysis. Addressing these items
at this point is important to capture stakeholder expectations and elaborate system
requirements.

Different institutions use different methods to construct the mission CONOPS.
For the ECSS, the CONOPS is consolidated in the operations engineering process
through a series of documents (ECSS, a). In the early stages, the CONOPS elements
we desire to describe are addressed in the Operations Concept Document (MOCD),
the Mission Analysis Report (MAR), and the Space Segment User Manual (SSUM).

Figure 2.12 shows an example CONOPS architecture of the Brazilian Data Collec-
tion System (SBCD) describing how the data retrieved from the multiple platforms
across the Brazilian territory flows, starting by a UHF up-link to the spacecraft
when in line-of-sight, that re-sends the mission data to the two Ground Stations
at Alcântara and Cuiabá (the latter also receiving platform (housekeeping) data)
through an S-band down-link. Mission data is then sent through the internet to the
Integrated Environment Data System (SINDA) which archives and distributes the
data to the end-users. The Cuiabá Ground Station is also remotely connected to the
Satellite Control Center (CCS) at INPE in São José dos Campos, for satellite con-
trol purposes. Commands scheduled into the flight plan are uploaded during satellite
visibility over that ground station.

Although in Figure 2.12 is presented an overview of the CONOPS, to describe it
completely it is still necessary to describe its operation modes and scenarios, and
other system characteristics, which are important in the design phase. This is often
described through multiple figures with different and sometimes redundant view-
points, and a large volume of text generated through many documents. The unifica-
tion power of models provide an appealing approach to consolidate the information
in a centralized manner, which is a key driver to the study of this dissertation.

29

Figure 2.12 - Brazilian Environment Data Collection System CONOPS Example - High
Level Data Flow.

Source: Mattiello-Francisco (2019).

The satellite mission conception and definition guided by CONOPS is very useful for
trade studies in Pre-Phase A and Phase A studies to establish spacecraft expected
behaviour and initial design parameters and requirements, such as in the example
study shown by Chagas et al. (2018) where INPE’s Space Missions Integrated Design
Center (CPRIME) counts on a simulation software that supports the engineering
team to clarify some CONOPS aspects of the mission under analysis.

In the MBSE applications studied for this dissertation, such as (ESTABLE et al., 2017)
and (KASLOW et al., 2014), among others, the concept of operations is generally
modelled through use cases, activity, sequence and other behavioural diagrams. The
implementations studied using SysML do not intuitively connect the equipment
selection to the functions and capabilities performed, allowing for direct analysis in
simulation trade-off studies. This is the direction explored in the approach of this
study.

30

3 THE CONOPS2M MODELLING PROCESS

This chapter describes the modelling process Conops2M, the main product of this
dissertation.

3.1 Modelling process description

The Conops2M modelling process consists of a set of sequential steps to be followed
in order to generate a model of space mission concept of operations and prepare
operation scenarios for simulation. The general idea behind the process is to begin
at a high level of abstraction defining the mission, and then decompose activities and
functions iteratively into lower levels of abstraction, reaching the equipment level
aboard the spacecraft and ground stations. The steps are separated into different
levels representing abstraction levels. The steps and levels can be seen in Figure 3.1,
along with the external dependencies. The process requires as inputs the mission
objectives, requirements and constraints, along with the operational requirements.
The process requires a modelling tool with a modelling language to be executed. The
simulation requires a simulation tool. The tool choices are left to the user, since the
process is tool-independent. However, it is important to select both tools together
in the beginning of the process in order to understand the interfaces between them
and consequently how to export the model into the simulator.

Conops2M (especially the final level of abstraction) was developed on top of the
"simplicity" and facilities provided by the CubeSat standard, bringing into context
the functionalities of general subsystems common in CubeSats. However, the process
could be applied for any class of single spacecraft space mission.

In the highest level of abstraction, the goal is to describe the mission itself, modelling
as operational activities the events and phenomena that will happen for the mission
to be achieved. The first step is to represent the mission & stakeholder objectives
(1.1), inserting them into the modelling environment. Next, the user must derive
and describe operational capabilities (1.2), what needs to be done in order to reach
the mission/stakeholder objectives. The user must then define the actors and enti-
ties involved (1.3) in the operational capabilities and then define and allocate the
operational activities (1.4) which the actors and entities perform to achieve them,
describing the interfaces. Entities are things that have effects on the mission and
will interact with the system, but do not have human elements (as Actors), such as
the Earth, Sun, etc.

31

Figure 3.1 - Conops2M Abstraction Levels and Steps.

Source: Author.

In the second level of abstraction, the goal is to define the scope of the system
solution and understand which of the operational activities of the previous steps
will be converted to functions the system will perform, and model the interfaces
to the external environment and end users. First the user must define the system’s
boundaries (which operational activities the system will perform – from data col-
lection to data distribution, considering both space and ground segments together
- 2.1), describe the system’s external interfaces (how the system interacts with the
world and the users - 2.2), and then allocate system functions (2.3) to the system
by decomposing the relevant operational activities and creating new ones.

In the third abstraction level, the objectives are to separate and define the functions
each of the space and ground segments will perform, and have an initial represen-
tation of how the mission data will be obtained and distributed. Initially the user
separates the system into space and ground segments (3.1) and then must breakdown
and distribute system functions into functions according to each segment (3.2). At
this stage, the user must describe when/where the space (and/or ground) segment

32

will collect the data relevant to the mission, or in other words, define conditions to
obtain mission data (3.3).

The purpose of the fourth level of abstraction is to reach a representation of the
space segment with all the equipment aboard and the functions they realize, a rep-
resentation of the ground segment divided into the mission control center and the
ground stations along with the functions they realize, and then model the sequence
and conditions all of the functions will be performed routinely, describing operation
scenarios. First, the user must decompose the space segment functions into functions
individual equipment or subsystems will perform (4.1), depending on the grouping
level the user wants to define and simulate the equipment. This step is usually it-
erative, leading to raising necessity of adding new equipment to handle unforeseen
functions. The ground segment functions are then decomposed into functions for a
mission control center and ground stations (4.2). The user must then connect all of
these functions defining the information exchanged among them in order to obtain
the complete flow of information involved in the functions sequences (4.3), from data
collection to data distribution to the system users. This way, the user can finally
model operation scenarios, describing sequences and conditions the functions are
performed to meet the mission objectives (4.4).

In the last level of the process, the goal is to represent the final mission elements
relevant to CONOPS simulation, transform the model into an input for a satellite
simulator and then simulate the operation scenarios. The user may then create an
architecture diagram (5.1) listing the spacecraft equipment along with other mis-
sion architecture elements that compose the mission CONOPS. At this point, the
user should be able to configure the chosen simulator with the mission architecture
elements according to the previously described operation scenarios. In the specific
application shown in this paper, the author developed a plugin for the modelling
tool that automatically transforms the created model’s architecture diagram into a
configuration script (5.2) for the chosen simulator considering each operation sce-
nario, following the simulator’s specific parameters and interfaces. The user can then
finally simulate the operation scenarios (5.3) in order to validate the power and data
budgets, equipment selection and usage, and other elements regarding the concept
of operations.

The author’s choice for modelling tool was the open-source software Capella
(ROQUES, 2016), which comes with an embedded modelling method called Arca-
dia. Conops2M works very well within Capella/Arcadia since it follows a similar

33

Figure 3.2 - Conops2M Steps and Model Artifacts.

Source: Author.

abstraction level structure, allowing for separate diagrams for each abstraction level
to be made. The process is adapted to the Arcadia method and is inserted into the
four main steps of Arcadia, described by Roques (ROQUES, 2017). The author also
finds the structured methodological guidance of Arcadia to have a good combination
with the general facilitating idea of the CubeSat standard.

Capella comes with a domain-specific modelling language. Capella runs on Eclipse,
and because it is open-source, the development of a plugin enhancing the tool to
transform the model into the simulator configuration script was possible, and is
described in 3.1.1. If another user decides to use another modelling tool, they will
have to adapt the modelling process to use the diagrams enabled by the tool and
language of choice. The artifacts that are generated inside Capella/Arcadia by fol-
lowing Conops2M can be seen in Figure 3.2, where each artifact is separated by
the Arcadia steps where it is created. The artifacts are detailed in Section 3.2, and
they are named following their names defined by Capella. The terms used to refer
to Capella elements follow the definitions used by the Capella developers and can
be found in the reference book (ROQUES, 2017).

34

3.1.1 Generating the simulation script

After the model is created, the user may proceed to simulate the operation scenarios.
In order to do so, the user must configure the chosen simulator with the parameters
that describe the mission, the spacecraft and its operation. In step 5.1 of Conops2M,
the user generates an architecture diagram with the mission architecture elements
based on the elements of the mission that are relevant for the simulation, so the
diagram must be designed according to the inputs required for the chosen simulator.
In our case, we create a Class Diagram with the mission elements modelled as
Class instances, and translate it into a Julia language (JULIA. . . , 2020) script that
is structured according to the input parameters needed for the ForPlan simulator.

Capella is built upon Eclipse, an open integrated development environment (IDE)
which conveniently supports the development of plug-ins to extend the environment.
To generate the simulation script, the author have developed, in partnership with the
Fault Tolerant Systems Research Group (FTSRG) from the Budapest University of
Technology and Economics (BME), through the ADVANCE project (LARANJEIRO

et al., 2019), an Eclipse plugin for the Capella tool, called CapellaToForPlan (C2F).
The plugin works by generating the configuration file and Julia code from specified
Class instances inside the Capella Project, which are created using SysML-based
Class diagrams.

Each mission architecture element is created as a Class instance, and has rules and
internal elements that are detailed in Chapter 4. The plugin converts the classes
along with their parameters, functions and properties into specific lines of codes
according to how ForPlan is supposed to be initialized, when the file is executed.
When the plugin is executed inside Capella, the configuration Julia language file for
ForPlan is generated into a destination folder.

To create the class instances, we must use the Class Diagram Blank [CDB] in
Capella. The reference template for a class diagram blank to configure ForPlan
through C2F is shown in Figure 4.1.

3.2 Example model - Generic CubeSat mission

To illustrate the usage of Conops2M, in this section the author goes through the
modelling of an example generic CubeSat mission, with the main traits of common
missions of this type. The following subsections are divided according to each layer
of the Arcadia method and show the resulting artifacts expected by following each

35

step of the modelling process.

3.2.1 Operational Analysis

In the first step, the Operational Analysis, the objective is to raise the operational
goals of the stakeholders involved, or, in other words, "what the users of the system
need to accomplish" (ROQUES, 2017). In this step, three diagrams are used: Oper-
ational Capabilities Blank [OCB], Operational Activities Interaction Blank [OAIB]
and Operational Architecture Blank [OAB].

Figure 3.3 - Example Model Operational Capabilities Diagram.

Source: Author.

In the OCB, the goal is to translate the mission objectives and list them as Oper-
ational Capabilities (OC), and link them to whichever actors and entities involved.
In the generic model OCB, shown in Figure 3.3, four example OCs are provided,
representing common LEO CubeSat missions: scientific (Study Scientific Objective
OC), technological validation (Validate Technological Equipment OC), communica-
tion (Relay Communication OC) and remote sensing / imaging (Capture Images
from Regions of Interest OC). It is important to represent the end-users, mission
operator and other stakeholders involved, along with external entities that influence
the phenomena under investigation or exploited.

After listing the OCs, the user must create and connect the operational activities,
which are activities that will be carried out by the actors and entities previously
listed, and then allocate them to the actors and entities using the OAIB and OAB di-

36

agrams, respectively. The operational activities and their interfaces should represent
the flow of events of the phenomena of interest.

Figure 3.4 - Example Model Operational Activity Interaction Diagram.

Source: Author.

For the example model, Figures 3.4 and 3.5 show some activities common in LEO
CubeSat missions, allocated to entities and actors. The Sun and the Earth are mod-
elled as the entities which provide the interactions to be investigated. The activities
which are not done by external entities or by the end users, are then allocated to
the figure/Actor of the Mission Operator. This is the way which functions may be
assigned to the system are defined for the next steps.

Figure 3.5 - Example Model Operational Architecture Diagram.

Source: Author.

37

3.2.2 System Analysis

The second step is a conversion from the operational activities to define the scope
and borders of the system. The objective is to identify the functions the system will
perform, and their interfaces with the external environment. To create the functions,
the System Data Flow Blank [SFDB] diagram is used. The functions are then al-
located to the system and actors using the System Architecture Blank [SAB]. The
system is still treated as a black-box. In the example model, the System must collect
mission data coming from interactions with the Earth environment, Sun, or ground-
based sensors, and then distribute it to the end users, shown in Figures 3.6 and 3.7.
The System is what we will begin describing in the next chapter.

Figure 3.6 - Example Model System Data Flow Diagram.

Source: Author.

3.2.3 Logical Architecture

In the logical architecture step, we begin to open up the black-box system to identify
how the system will work to fulfil stakeholder expectations. Initially, the system is
separated into Space Segment and Ground Segment. If the user decides to accept the
ForPlan built-in functions to use in C2F (detailed in Section 4), the user now must
identify which "data collection" or other functions will be done periodically, and
which will be done over regions of interest (ROI). Otherwise, the user must detail
the functions that will follow the simulator operation functions they will create.
At this point, it is important to identify which functions of the space segment will
need attitude control / pointing. The LDFB and LAB for the example model are
shown in Figures 3.8 and 3.9, with the functions and the segments to which they

38

Figure 3.7 - Example Model System Architecture Diagram.

Source: Author.

are allocated. In an instantiated mission model, each function of collecting a form of
data or running an experiment/payload, for example, shall be declared individually,
expanding the "Collect Mission Data" function in yellow in Figure 3.8, which is
displayed as an intention to summarize functions of that kind.

3.2.4 Physical Architecture

In the Physical Architecture step, the final layer of abstraction, the concrete com-
ponents of the system are defined. For each segment, functions are broken down
into the relevant level of abstraction at this conception phase using the Physical
Data Flow Blank [PDFB], which are then allocated to the equipment declared as
behaviour components in a Physical Architecture Blank [PAB]. For the Space Seg-
ment, the functions must be broken down to the level of the equipment that will be
on-board the spacecraft. For the Ground Segment, the functions will be assigned to
either Ground Stations, or the Mission Control Center.

In the Space Segment PDFB, it is important to represent details such as how the
spacecraft will detect when it enters operation regions of interest of periods (manage
time & position), how it will determine and control it’s attitude, how it will generate
and supply electrical power, how it will receive and transmit operation commands,
and other basic platform functions. In this diagram, the user must break down the
"collect mission data" functions into lower level functions by describing the payload
operation to the equipment level. Figure 3.10 shows an example set of equipment-

39

Figure 3.8 - Example Model Logical Data Flow Diagram.

Source: Author.

level functions for a CubeSat mission.

The PAB for the Space Segment is then used to create components for each equip-
ment and allocate to them the functions previously created. This can lead to an
iterative process while discovering the need to break functions into lower levels to
assign them to individual equipment. In the end, the objective is to have a visual
layout / architecture of the equipment and which functions they will perform. An
example architecture artifact of a basic CubeSat platform is shown in Figure 3.11.

A second PDFB is then created to represent the ground segment functions. This
step is important in order to understand how the commands are generated and sent
to the space segment, and how the telemetry is received and distributed to the end
users.

The Ground Segment PDFB is used to create the functions, and the Ground Segment
PAB is used to allocate these functions to the Ground Stations or Mission Control
Center components. Figures 3.12 and 3.13 show an example PDFB and PAB with
basic functions of a Mission Control Center and Ground Station relevant for this
level of analysis for a CubeSat Mission.

As a last element to model how the system will operate, an Exchange Scenario [ES]

40

Figure 3.9 - Example Model Logical Architecture Diagram.

Source: Author.

is proposed to describe the sequence of functions for each operation scenario ex-
pected. The user should include the relevant elements for the operation scenario,
and detail sequentially the functions and the interactions among them. The idea
is to represent how the spacecraft would operate routinely along the multiple or-
bits, with respect to platform and payload operation. An example ES is shown in
Figure 3.14. The ES should show the complete flow of information in an operation
scenario, beginning in the ground segment by generating the operation schedule,
passing through the spacecraft alternating between payload operation depending on
which region of interest or operation period is reached, and then all the way back to
the ground segment to be retrieved from the database by the end user. By creating
an ES as such, sequential and/or temporal constraints of equipment or payloads can
be described and better understood.

41

Figure 3.10 - Example Model Space Segment Physical Data Flow Diagram.

Source: Author.

Figure 3.11 - Example Model Space Segment Physical Architecture Diagram.

Source: Author.

42

Figure 3.12 - Example Model Ground Segment Physical Data Flow Diagram.

Source: Author.

Figure 3.13 - Example Model Ground Segment Physical Architecture Diagram.

Source: Author.

43

Figure 3.14 - Example Model Operation Scenario Example Exchange Scenario.

Source: Author.

44

4 THE CAPELLATOFORPLAN (C2F) ECLIPSE PLUGIN

This chapter describes the way the CapellaToForPlan (C2F) plugin processes the
Capella artifacts and transforms the model into the Julia language configuration
file. As aforementioned, C2F searches for Class-type instances inside the project.
The Class instances must be inside the Data folder under the Physical Architecture
step, and are separated into specific data packages.

Each package is dedicated to a specific set of configuration parameters for the For-
Plan Simulator which must be declared in the configuration file. In order to create
the class instances, a Class Diagram Blank [CDB] is used. Inside the CDB, each data
package must be created with the predefined hard-coded names. Using hard-coded
names is a limitation due to Capella not supporting multiple meta-levels for mod-
elling. The best choice would have been to define a metamodel where these kinds
of elements (types) could be defined, and then these elements could be instantiated
with the appropriate attribute values (instances). This is not supported in Capella,
therefore we are unable to include selection of previously defined packages, classes
and properties, obligating the user to create each object with the hard-coded names.

The data packages can be seen in Figure 4.1 as the larger objects containing the
class elements. A template Class Diagram to use to configure ForPlan, showing all
the data packages and classes with their respective properties, is shown in Figure
4.1. The user must simply instantiate all the equipment and other classes, following
the guidelines provided.

Figure 4.1 - Simulation Configuration Class Diagram Blank.

Source: Author.

45

Each class has a set of specific properties, also with hard-coded names. The value of
each property is defined in its Default Value parameter. To guide user instantiation,
the template comes with pre-defined units for each of the physical quantities used,
as seen in Figure 4.1. For example, all power consumption properties should be
declared in Watts (W), angles in degrees (deg), and so on. These units are the units
used in the ForPlan simulator. If changed, the user might find errors.

Every equipment on-board the spacecraft, must be declared inside the Equip-
ment List data package, either in the Platform, or in the Payloads data pack-
age. The equipment has properties which define: power consumption when turned
on (PowerOn); data generation when turned on (MemoryOn); power consump-
tion when idle (PowerIdle); data generation when idle (MemoryIdle); if equipment
works when exposed in sunlight (OnSunlight); if equipment works when in eclipse
(OnEclipse); if equipment works on ascending part of orbit (OnAscending); if equip-
ment works on descending part of orbit (OnDescending).

Each equipment also has an OperationFunction. This function, which is the cen-
tral piece of defining the spacecraft’s operation, defines when the equipment will
be turned on, consuming electrical power and generating mission data. The simula-
tor has four built-in operation functions from which the user can choose to define
the equipment. If one of these functions does not satisfy the specific operation of
an equipment, the user with access to the simulator source code can create their
own specific function to better define that operation. These functions are generally
defined internally in the equipment models of the simulator. However, it is possi-
ble to define new functions in the configuration script, which access to the variable
workspace of the current state of the simulation. For the C2F plugin to add new
user-defined functions, at this point it would be necessary to write them into the
C2F plugin’s source code.

The built-in functions are described as following:

• AlwaysOn Equipment is always turned on in a constant state.

• OnGroundStation Equipment is turned on whenever above the ground
stations listed as parameters. If no parameters are listed, then all ground
stations are used.

• TimedOp Equipment is periodically turned on. Parameters define on-time
and off-time.

• RoiOP Equipment is turned on whenever above regions of interest, which

46

are defined as a parameter array of ROIs defined in the ROIs data package.

The Regions Of Interest (ROIs) are defined as classes inside the ROIs data package.
For now, ROIs can only be defined as "box" areas defined by maximum and minimum
latitudes and longitudes properties. Future implementations are expected to expand
this functionality by adding interfaces with map APIs, for example.

The Solar Panel Array data package is where the solar panels must be instantiated.
Each panel must be instantiated through an individual class with properties such as
SurfaceArea, conversion Efficiency, its Type (defining if it’s static or rotating). If the
panel is static, its plane is defined by its NormalVector with respect to the satellite’s
reference frame. If the panel is defined as Rotating, it is defined by RotatingVector,
which in this case the simulator positions the panel to maximize Solar incidence
respecting the vector of rotation.

Each Ground Station is defined as a class instance inside the Ground Stations data
package. Their properties are Latitude, Longitude, Altitude, minimum elevation an-
gle for satellite visibility (MinElevationAngleSatVis), and data transfer baud rate
(TransferRate).

The amount of mass memory available in the spacecraft to store on-board data is
defined as a single class with a single property TotalAvailableMemory in the Mass
Memory package.

The spacecraft’s battery is defined in the Battery Pack package. A single class
instance is used. Its properties are the cells’ capacity, the number of cells in parallel
and in series, the charge and discharge efficiency, and the degradation factors and
periods. In future developments, it will be possible to define parameters for the
battery charge & discharge functions (which is already editable in the simulator
source code). In the meantime, it is limited to a common lithium-ion type function
described in (CHAGAS et al., 2018), since this is a very common type of battery used
in CubeSat-based platforms.

Finally, the Orbit package is where the Orbit class is defined, where the orbital
elements and initial simulation time are inserted as properties.

After all the configuration elements are instantiated and their property values are
filled in, the user may generate the Julia file for the simulator configuration script
through a button in the Eclipse Project Explorer generated by the C2F plugin.

47

Trade-off studies can be made by generating different configuration scripts for dif-
ferent equipment or properties under analysis. For example, if an analysis on the
relationship between the amount of data that is generated by a payload and the
amount that can be downloaded to earth if required, we can define different oper-
ation scenarios by determining different regions of interest or operation periods for
that specific payload, where each of these operation scenarios will result in different
values for the operation function parameters (different ROIs or on-time/off-time).
For each condition in the trade-off analysis, the user defines these parameters in the
CDB.

48

5 MODEL INSTANTIATION CASE STUDY: NANOSATC-BR2

5.1 Mission description

NanosatC-BR2 (NCBR2) is the second satellite of the NanosatC-Br program,
developed at INPE in cooperation with the Federal University of Santa Maria
(UFSM) (SCHUCH et al., 2017). NCBR2 is a 2U CubeSat that will carry three scien-
tific/technological payloads (SLP, SDATF & SMDH).

NCBR2 is a scientific and technological mission, aiming to:

• collect data to better understand the Magnetic Anomaly of the Southern
Atlantic (SAMA) (SLP Payload & Magnetometer)

• collect data to better understand the formation of plasma bubbles in the
ionosphere (SLP Payload)

• validate in-orbit a fault tolerant attitude determination system (SDATF
Payload)

• validade in-orbit a radiation tolerant FPGA and ASIC system (SMDH
Payload)

• develop human resources with experience in space mission development

The mission will reuse the ground segment infrastructure inherited from INPE’s
NCBR program, which is a ground station at Santa Maria, providing UHF/VHF
downlink and uplink capabilities, and a mission control center. The mission will
also include a ground station at Natal, offering the same capabilities to act as an
additional channel for data download and command upload.

Figure 5.1 shows a picture of the NanosatC-BR2 moments after completing the
Assembly, Integration and Tests (AIT) campaign at INPE’s AIT facility LIT, with
some of the team members. Shortly after, it was sent to the launch service provider
for preparation and future integration on the launch vehicle.

The spacecraft is divided into two modules: the Bus module and the Payload mod-
ule. The Bus module contains all the subsystems necessary for the operation of
the spacecraft, such as: the On-Board Computer (OBC), Electrical Power Supply
(EPS), Telecommunications (Transceiver + UHF/VHF Antennas), and the Attitude
Determination and Control Subsystem (ADCS). The Payload module contains the
three physical payloads, which are: a Langmuir Probe (SLP), a Fault-Tolerant Atti-
tude Determination System (SDATF), and an experiment board carrying a rad-hard

49

Figure 5.1 - NanosatC-BR2 moments after the successful AIT campaign - Dec 2020
From Left to Right: Carlos Batista, Dr. Jenny Asencio (LIT), Lucas Hein, Danilo
Pallamin de Almeida (Author), and Dr. Fatima Mattiello (Mission Manager).

Source: Author.

ASIC chip and a fault-tolerant FPGA (SMDH Payload). The two software payloads
on-board the OBC are a telecommunications protocol and service for the Brazilian
amateur radio community, and the attitude stabilization algorithm.

In CubeSat missions, the power and data budgets are common bottlenecks for equip-
ment design and operations due to the constraints brought by the standard’s simpli-
fications: CubeSats typically have limited size solar panels on the external surfaces
of the spacecraft, instead of sun-pointing deployable arrays, limiting the amount of
power harvested from the Sun. With respect to communications, CubeSats typically
use amateur radio frequencies, limiting the baud rate capabilities.

The NCBR2 mission has 6 solar panels, 1 on each side of the spacecraft (4 2U
side panels and 2 1U top/bot panels). The 2U side panels generate a maximum of
4.8W with the expected incidence of Solar Radiation, while the top and bottom
solar panels generate a maximum of 2.4W. With all equipment and payloads turned
on, NCBR2 consumes 4W of electrical power, which would demand 6Wh of energy

50

considering a 90 minutes orbit which is expected for the NCBR2 (LEO polar).
Considering an average 60 minutes of Solar exposure time for each 90 minute polar
orbit, at peak generation (which is highly unrealistic considering spacecraft rotation
and NCBR2 does not have Solar pointing capability) the spacecraft would harvest
4.8Wh of energy, leading to a negative power balance and raising the necessity
of specific operations for the payloads, and therefore the simulation of operation
scenarios to reach a viable solution, especially considering the rotation of the satellite
leading to different incidence angles of Solar radiation on the solar panels.

Regarding the data budget, NCBR2 can produce per orbit over 600KB of data
with maximum generation of all payloads and housekeeping telemetry. Considering
90 minutes LEO orbits, that would result in 9.6 MB of data per day. An initial
estimate for downlink capability can be made considering a LEO polar orbit, which
would have per day around 4 overpasses with an average time of 10 minutes each
above INPE’s ground station at Santa Maria - Brazil, based on the similar orbit of
NCBR1. NCBR2’s transmitter can operate at 1200, 2400, 4800 or 9600 bps, leading
to a maximum of 2.8MB per day that theoretically could be downloaded to a single
ground station. Considering the mission’s other ground station at Natal, they would
have overlapping zones, so it is important to simulate operation scenarios to limit
payload data generation and generate an estimate of data to be downloaded.

Table 5.1 - Maximum Energy Demand & Data Volume Generation and Existing Budgets

Full Operation Daily Energy Demand [Wh] 6
Max Daily Energy Generation [Wh] 4.8
Full Operation Data Generation [KB] 9600

Max Daily Downlink Volume - 1 GS [KB] 2800

Table 5.1 shows the comparison between expected energy demands for an operation
considering all payloads turned on with the expected data generation (Full Opera-
tion), and expected maximum daily power generation and maximum daily downlink
volume. Since the budgets aren’t met, it is needed to balance payload operation to
see if the budgets can be met considering the stakeholder objectives.

5.2 The NanosatC-Br2 CONOPS model

In this section, the model for the NCBR2 mission generated following Conops2M is
described. The model was created with the purpose of generating trade studies an-

51

alyzing viable operation duration of each payload regarding power and data budget
constraints.

5.2.1 Operational Analysis

We begin by creating the Operational Capabilities Blank (OCB), shown in Figure
5.2, where we represent the four mission objectives that use the physical payloads,
and the actors and entities involved. Since the attitude control and amateur radio
software payloads are only secondary objectives and are not relevant to the main
objectives of the mission, we leave them out of this model for simplification purposes.

Figure 5.2 - Instantiated Model Operational Capabilities Diagram.

Source: Author.

We then model the activities expected from the actors and entities and their inter-
faces using an Operational Activities Interaction Blank, shown in Figure 5.3.

The activities are then allocated to the entities and actors using the Operational
Architecture Blank (OAB), as shown in Figure 5.4.

5.2.2 System Analysis

The mission operational activities are converted into system functions in the second
step, using the System Data Flow Blank (SDFB). We allocate the functions to
the actors, entities and components involved using the System Architecture Blank,
shown in Figure 5.5. We now have the boundaries delimiting what functions the
system will perform, and the interfaces with the external environment.

52

Figure 5.3 - Instantiated Model Operational Activities Interaction Diagram.

Source: Author.

Figure 5.4 - Instantiated Model Operational Architecture Diagram.

Source: Author.

5.2.3 Logical Architecture

In the third step, we describe the logical functions the system will perform using
the Logical Data Flow Blank (LDFB) shown in Figure 5.6. It is important to show
which functions will be executed periodically and which will be through regions of
interest. This is done by connecting them to the "Reach Operation Period" or "Reach
Region of Interest" functions.

The functions are then allocated into to space and ground segments, using the
Logical Architecture Blank (LAB), shown in Figure 5.7.

53

Figure 5.5 - Instantiated Model System Architecture Diagram.

Source: Author.

Figure 5.6 - Instantiated Model Logical Data Flow Diagram.

Source: Author.

5.2.4 Physical Architecture

In the Physical Architecture step, the functions are broken down to the level each
equipment will realize using the Physical Data Flow Blanks (PDFB), one for each
segment. In the space segment, we evidence how time and position will be managed.
This was especially important for this mission, since at this point it raised the
awareness of having to implement a robust method of correlating the spacecraft’s
position with its on-board time. Since the NCBR2 does not have a GPS or any other
means to detect its relative position and velocity in space, it will be necessary to
predict on ground when it will enter the target regions of interest, and then generate
a command list based on time, and have a reliable time keeping method on-board.

54

Figure 5.7 - Instantiated Model Logical Architecture Diagram.

Source: Author.

Figure 5.8 - Instantiated Model Space Segment Physical Data Flow Diagram.

Source: Author.

Since ForPlan does not yet have the attitude control module implemented, we have
suppressed the attitude control functions for this example. By using Functional
Chains, a Capella functionality, the flow of information to collect each type of mission

55

data can be made clearer, as can be seen in the Space Segment PDFB in Figure 5.8.
It can be seen that two types of mission data are collected by the same payload, by
running in different conditions.

The functions are then allocated to the created components for each piece of equip-
ment, using the Physical Architecture Blanks (PAB). The end result for the physical
architecture can be seen in Figure 5.9. We have simplified the internal operation of
each payload as a single black-box function, since at this point we are not concerned
with their complex individual operations. Representing the payload operation this
way is enough to determine when they will operate, their interfaces with other equip-
ment, inputs and outputs.

Figure 5.9 - Instantiated Model Space Segment Physical Architecture Diagram.

Source: Author.

For this mission, the ground segment functions and components are considered ex-
actly the same as the generic example model, seen in Figure 3.13.

5.2.4.1 Generating the simulation script

Finally, we proceed to the Class Diagram Blank (CDB) to generate the simulation
configuration file. All of the classes are instantiated into the data packages and the
result can be seen in Figure 5.10. The equipment has been defined with only a few
properties, since the ones omitted have the same values as the default values for

56

those properties. The On-board Computer (OBC), Receiver and Electrical Power
Supply (EPS) will always remain turned on, so we instantiate their Class Operation
as AlwaysOn(). The transmitter will work above both of the ground stations, so it’s
function is OnGroundStation(). For the simulation configuration shown, we want to
simulate the operation of the Magnetometer and SLP only when over the South-
ern Atlantic Magnetic Anomaly (SAMA / AMAS in portuguese), therefore, their
operation function is RoiOp() with an input parameter that points to the AMAS
ROI class. The SMDH and SDATF have periodic operation through the TimedOp()
function with on- and off-time parameters, along with a StandByTime parameter
which is a way to declare initial off-time.

Figure 5.10 - Instantiated Model Simulation Configuration Class Diagram Diagram.

Source: Author.

The resulting ForPlan configuration script generated running C2F with this config-
uration is attached as Appendix A.

5.3 Simulation trade studies

During the period this dissertation was developed, NCBR2 had already passed the
early design phase, and is a direct example to what was mentioned in the beginning
of the problem formulation: the mission stakeholders prioritized the usage of the

57

available internal volume without analyzing the mission conops, leading to power
and data budget issues. This section presents a trade-study simulating operation
scenarios using parameters that were still flexible at the time, with a later discussion
on how the impact could be different if the study was carried out earlier.

For this analysis, the author used the resulting model created through Conops2M
along with C2F to generate different operation scenarios comparing different payload
operation periods and regions so that the simulation can assist in defining scenar-
ios where the power and data budgets can be closed out with different ROIs and
operation periods for the payloads.

In the first scenario, we take a first look at how the system operation would turn
out with all payloads constantly operating at maximum rates. For that we set their
operation function as "AlwaysOn()", and the configuration diagram is set as shown
in Figure 5.11, which is then converted to the Julia script and executed by the
simulator.

Figure 5.11 - First Scenario Configuration Class Diagram.

Source: Author.

After running the simulation it can be see in the output Figure 5.12 that the batteries
do not charge as much as they are being demanded, and after 34 hours they fall
below 40% of charge, for which the simulator then considers as depleted. In this

58

scenario, data collection from all payloads would be maximized, but would not be
able to be downloaded, since it is much higher than the downlink capability. Figure
5.12 shows the mass memory usage for this scenario where it can be seen that the
memory usage hardly ever lowers until it reaches the on-board capacity after 45
hours.

Figure 5.12 - First Scenario Simulation Results.

(a) Battery Charge (b) Memory Usage
Source: Author.

For the second scenario, we operate the payloads separately and one every orbit,
alternating evenly and sequentially through them. We configure the payload classes
with TimedOp() functions in the class diagram and generate another Julia script to
be executed, as seen in Figure 5.13.

This time, the power balance is met, as can be seen in Figure 5.14. However, the
amount of data generated still exceeds what can be downloaded, as can be seen in
the rising mass memory usage in Figure 5.14.

After a couple of iterations balancing operation time prioritization and the data
generation rate of each payload, it is possible to reach a scenario by operating the
SLP over its regions of interest and adjusting the other two payloads’ data generation
rate, compromising the total amount of data generated by the three payloads, but
managing to meet the power and data budgets, as can be seen in Figures 5.15 A
and B.

Table 5.2 shows a summary of the three scenarios, comparing the different operation
functions for each of the three payloads. Table 5.3 shows the main pros and cons for
each scenario.

59

Figure 5.13 - Second Scenario Configuration Class Diagram.

Source: Author.

Figure 5.14 - Second Scenario Simulation Results

(a) Battery Charge (b) Memory Usage
Source: Author.

Table 5.2 - Trade Scenarios Operation Functions Summary.

Scenario SLP SDATF SMDH
1 AlwaysOn() AlwaysOn() AlwaysOn()
2 TimedOp(1on/2off) TimedOp(1on/2off) TimedOp(1on/2off)
3 RoiOP(AMAS) TimedOp(1on/1off) TimedOp(1on/1off)

Reducing and adjusting operation periods of the payloads result in less data gener-
ated compared to initially though, which leads to a longer mission operation period
in order to obtain the data initially planned. The mission objectives will still be met,

60

Figure 5.15 - Third Scenario Simulation Results

(a) Battery Charge (b) Memory Usage
Source: Author.

Table 5.3 - Trade Scenarios Main Pros and Cons.

Scenario Pros Cons
1 Maximum operation time Too high power consumption and data generation
2 Evenly balanced operation time Too high data generation
3 Power and data budgets met Low operation time

but it will take longer in order to do so, depending on a longer mission life.

If the definition of the concept of operations along with operation scenario simulation
were performed in the early design phase, the mission could use the modelling and
simulation to analyze, for example:

• the use of different communications equipment with higher bandwidth.

• limitations for payloads and request hardware/software alterations.

• the adoption of a different form factor with larger solar panels for higher
power generation.

• the impact of using other partner ground stations.

• the impact of having a larger battery pack.

Trade studies considering these options could provide the information for the mission
directors to opt for alternatives in the mission architecture that would have better
impacts on the mission objectives.

61

6 CONCLUSION

In this dissertation a process to guide the modelling of the concept of operations of
space missions was introduced. Called Conops2M, it was developed in the context
of a Model-Based Systems Engineering methodology, to assist in early stage design
studies. A plugin (C2F) developed to automatically transform the model generated
by Conops2M, to an entry for a simulation tool (ForPlan), was also presented.
Finally, the usability of the modelling process was exemplified by its application
on the design and verification, by simulation, of operation scenarios of a CubeSat
mission.

Using the Conops2M modelling process, it was possible to model a primary ver-
sion of the concept of operations of the NanosatC-BR2 mission, and the simulation
trade studies were of high importance in defining the requirements for on-board and
ground-station software to prepare the operation of the system. Luckily the opera-
tion of the payloads were adjusted without major implications in the mission, only
an extended operation period. The trade studies provided insight into the limita-
tions regarding dedicated operation time and amount of data to be obtained, and
provided data for system-level decision making. Future missions with even more
flexibility on mission design parameters and equipment selection can benefit from
this process.

With the evolution of the NanosatC-BR2 mission, hardware limitations and software
implementation constraints were found which lead to differences in power consump-
tion, data generation and download volume. The resulting conops model was then
once again used to simulate the new operation scenarios to assist in the operations
planning and final on-board software development.

Conops2M provides a different approach from the behaviour modelling of the CRM
and other aforementioned system models by providing the user with a method-
ological guidance in decomposing the initial stakeholder and mission objectives into
functionalities that are tied to low-level equipment / subsystems, depending on how
far the user would like to decompose the functions. It is in a straight-forward and
intuitive way, facilitating the construction of an initial architecture for a "simple"
CubeSat mission and its concept of operations, and preparing it for simulation using
the ForPlan simulator, without requiring the user to understand ForPlan’s source
code or internal operation.

Using Conops2M for an initial concept system model highly reduces the barriers to

63

entry found in the CRM and other system models that all used commercial software
that require paid licenses, by using open-source tools such as Capella and soon-to-be
ForPlan. Capella’s modelling language is also simpler to use than SysML.

It is worth mentioning that generating the different trade study simulations using the
visual model was simpler than editing lines of code and manually altering functions
in the configuration script (that’s what automatic code generation is for!)

6.1 Future work

For future work, the author envisions:

• The use of Modes & States Diagrams along with Exchange Scenarios in-
side Capella to describe specific operation functions of equipment, and
then implement the automatic transformation in C2F to write the custom
functions into ForPlan.

• Transition from the use of hard-coded names in the Class Diagram Blanks
to pre-defined types in higher meta-levels. This would allow the users to
create the objects in a more direct and fail-proof manner. This would
require a change inside Capella.

• Implement Conops2M using other modelling tools and language, such as
ModelCenter using SysML for example, and compare the differences in the
resulting models and available resources.

• Adapt C2F to generate inputs for other mission design software, such as
AGI’s Systems Tool Kit (STK) or NASA’s General Mission Analysis Tool
(GMAT).

• Extend "Region of Interest" operation in ForPlan with regions different
than square boxes.

64

REFERENCES

AERONAUTICS, N.; NASA, S. A. MarCO (Mars Cube One). 2019. Available
from:
<https://solarsystem.nasa.gov/missions/mars-cube-one/in-depth/>. 13

AKHUNDOV, J.; WERNER, M.; SCHAUS, V.; GERNDT, A. Using timed
automata to check space mission feasibility in the early design phases. In: IEEE
AEROSPACE CONFERENCE, 2016. Proceedings... [S.l.]: IEEE, 2016. p. 1–9. 4

ASUNDI, S. A.; FITZ-COY, N. G. Cubesat mission design based on a systems
engineering approach. In: IEEE AEROSPACE CONFERENCE, 2013.
Proceedings... [S.l.]: IEEE, 2013. p. 1–9. 2

BANKS, J. Discrete event system simulation. [S.l.]: Pearson Education, 2005.
17

BODIN, P.; NYLUND, M.; BATTELINO, M. Satsim—a real-time multi-satellite
simulator for test and validation in formation flying projects. Acta
Astronautica, v. 74, p. 29–39, 2012. 15

BURGER, E. E. A conceptual MBSE framework for satellite AIT
planning. Thesis (PhD in Space Engineering and Technology - Space Systems
Engineering and Management) — Instituto Nacional de Pesquisas Espaciais
(INPE), São José dos Campos. 7

CERQUEIRA, C. S. Tangible collaboration applied into space systems
concurrent engineering concept studies. Thesis (PhD in Space Engineering
and Technology - Space Systems Engineering and Management) — Instituto
Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2018. 7, 25

CHAGAS, R. A.; SOUSA, F. L. de; LOURO, A. C.; SANTOS, W. G. dos.
Modeling and design of a multidisciplinary simulator of the concept of operations
for space mission pre-phase a studies. Concurrent Engineering, p.
1063293X18804006, 2018. 4, 18, 19, 30, 47

CHAGAS, R. A. J.; LOURO, A. C.; SOUSA, F. L. de; SANTOS, W. G. dos.
Satellite simulator for verification of mission operational concepts in pre-phase a
studies. In: INTERNATIONAL CONFERENCE ON SYSTEMS &
CONCURRENT ENGINEERING FOR SPACE APPLICATIONS, 7., 2016.
Proceedings... [S.l.], 2016. 18

65

https://solarsystem.nasa.gov/missions/mars-cube-one/in-depth/

DAVID, L. Cubesats: tiny spacecraft, huge payoffs. 2004. Available from:
<https:
//www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html>.
Access in: 15/03/2021. 13

EICKHOFF, J. Simulating spacecraft systems. [S.l.]: Springer Science, 2009.
2, 3, 15, 16

EICKHOFF, J.; HENDRICKS, R. The significant role of simulation in satellite
development and verification. Aerospace Science and Technology, v. 9, n. 3, p.
273–283, 2005. 2, 15, 16, 17

ESA, E. S. A. What is concurrent engineering. May 2018. Available from:
<https://www.esa.int/Our_Activities/Space_Engineering_Technology/
CDF/What_is_concurrent_engineering>. 26

ESTABLE, S.; GRANGER, T.; LOCHOW, T.; ZOEBELEIN, T.; BRAUER, N.;
TOLCHINSKY, I.; GENERÉ, S.; KONING, H. de. Systems modelling and
simulation of the esa e.deorbit space debris removal mission. 2017. Available from:
<https://www.phoenix-int.com/tech-papers/
systems-modelling-simulation-esa-e-deorbit-space-debris-removal-mission/>.
3, 21, 30

ESTEFAN, J. A. et al. Survey of Model-Based Systems Engineering (MBSE)
methodologies. Incose MBSE Focus Group, v. 25, n. 8, p. 1–12, 2007. 6, 7

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.
ECSS-E-ST-10C: Space engineering: ground systems and operations. [S.l.]. 29

. ECSS-E-TM-10-21A: space engineering: system modelling and
simulation. [S.l.]. 2, 15, 16, 28

. ECSS-E-TM-10-25a: space engineering: engineering design model data
exchange (cdf). Netherlands. 3

FISCHER, P.; LÜDTKE, D.; LANGE, C.; ROSHANI, F.-C.; DANNEMANN, F.;
GERNDT, A. Implementing model-based system engineering for the whole
lifecycle of a spacecraft. CEAS Space Journal, v. 9, n. 3, p. 351–365, 2017. 2, 20

FISCHER, P. M.; LÜDTKE, D.; SCHAUS, V.; GERNDT, A. A formal method for
early spacecraft design verification. In: IEEE AEROSPACE CONFERENCE,
2013. Proceedings... [S.l.]: IEEE, 2013. p. 1–8. 3

66

https://www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html
https://www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html
https://www.esa.int/Our_Activities/Space_Engineering_Technology/CDF/What_is_concurrent_engineering
https://www.esa.int/Our_Activities/Space_Engineering_Technology/CDF/What_is_concurrent_engineering
https://www.phoenix-int.com/tech-papers/systems-modelling-simulation-esa-e-deorbit-space-debris-removal-mission/
https://www.phoenix-int.com/tech-papers/systems-modelling-simulation-esa-e-deorbit-space-debris-removal-mission/

GUO, J.; GILL, E.; FIGARI, S. Model-based systems engineering to support the
development of nano-satellites. In: INTERNATIONAL ASTRONAUTICAL
CONGRESS, 2014. Proceedings... [S.l.]: IAC, 2014. v. 10, p. 6991–7003. 20

HEIDT, H.; PUIG-SUARI, J.; MOORE, A.; NAKASUKA, S.; TWIGGS, R.
Cubesat: a new generation of picosatellite for education and industry low-cost
space experimentation. In: ANNUAL USU CONFERENCE ON SMALL
SATELLITES. Proceedings... [S.l.], 2000. 13

HIHN, J.; KARPATI, G.; CHATTOPADHYAY, D.; MCGUIRE, M.; BORDEN,
C.; PANEK, J.; WARFIELD, K. Aerospace concurrent engineering design teams:
current state, next steps and a vision for the future. In: AIAA SPACE 2011
CONFERENCE & EXPOSITION. Proceedings... [S.l.], 2011. 26

INCOSE. Vision 2020 (incose-tp-2004-004-02). 2007. 20

. INCOSE MBSE standards. 2019. Available from:
<https://www.omgwiki.org/MBSE/doku.php?id=mbse:standards>. 6

INCOSE, I. C. O. S. E. MBSE initiative. Available from:
<http://www.omgwiki.org/MBSE/doku.php>. 20

IWATA, C.; INFELD, S.; BRACKEN, J. M.; MCGUIRE, M.; MCQUIRCK, C.;
KISDI, A.; MURPHY, J.; COLE, B.; ZARIFIAN, P. Model-based systems
engineering in concurrent engineering centers. In: AIAA SPACE CONFERENCE
AND EXPOSITION, 2015. Proceedings... [S.l.], 2015. 3, 4, 26, 27

JULIA Homepage. June 2020. Available from: <https://julialang.org/>. 19,
35

KAPURCH, S. J. NASA systems engineering handbook. [S.l.]: Diane
Publishing, 2010. 25

KASLOW, D. Cubesat model based system engineering (mbse) reference
model-application in the concept lifecycle phase. In: AIAA SPACE 2015
CONFERENCE AND EXPOSITION. Proceedings... [S.l.], 2015. 22, 23

KASLOW, D.; AYRES, B.; CAHILL, P. T.; HART, L.; YNTEMA, R. A
model-based systems engineering (mbse) approach for defining the behaviors of
cubesats. In: IEEE AEROSPACE CONFERENCE, 2017. Proceedings... [S.l.],
2017. 22, 24

67

https://www.omgwiki.org/MBSE/doku.php?id=mbse:standards
http://www.omgwiki.org/MBSE/doku.php
https://julialang.org/

KASLOW, D.; AYRES, B.; CAHILL, P. T.; HART, L.; LEVI, A. G.; CRONEY,
C. Developing an mbse cubesat reference model–interim status# 4. In: AIAA
SPACE AND ASTRONAUTICS FORUM AND EXPOSITION, 2018.
Proceedings... [S.l.], 2018. 4, 22

KASLOW, D.; AYRES, B.; CHONOLES, M.; GASSTER, S.; HART, L.; MASSA,
C.; YNTEMA, R. Cubesat model-based systems engineering (mbse) reference
model–model distribution and application–interim status# 2. In: AIAA SPACE
AND ASTRONAUTICS FORUM AND EXPOSITION, 2016. Proceedings...
[S.l.], 2016. 23

KASLOW, D.; SOREMEKUN, G.; KIM, H.; SPANGELO, S. Integrated
model-based systems engineering (mbse) applied to the simulation of a cubesat
mission. In: IEEE AEROSPACE CONFERENCE, 2014. Proceedings... [S.l.],
2014. 21, 22, 23, 30

KRANZ, S.; GUTIERREZ, B. G.; MATTHYSSEN, A.; FIJNEMAN, M. System
concept simulation for concurrent engineering. In: WORKSHOP ON
SIMULATION FOR EUROPEAN SPACE PROGRAMMES, 2015.
Proceedings... [S.l.], 2015. 3, 16, 28

KULU, E. Cubesat database. 2019. Available from:
<https://www.nanosats.eu>. 2, 13

LANGE, C.; GRUNDMANN, J. T.; KRETZENBACHER, M.; FISCHER, P. M.
Systematic reuse and platforming: application examples for enhancing reuse with
model-based systems engineering methods in space systems development.
Concurrent Engineering, v. 26, n. 1, p. 77–92, 2018. 6, 21

LARANJEIRO, N.; GOMEZ, C.; SCHIAVONE, E.; MONTECCHI, L.;
CARVALHO, M. J.; LOLLINI, P.; MICSKEI, Z. Addressing verification and
validation challenges in future cyber-physical systems. In: LATIN AMERICAN
SYMPOSIUM ON DEPENDABLE COMPUTING. Proceedings... [S.l.], 2019. 35

LOWE, C.; MACDONALD, M. Rapid model-based inter-disciplinary design of a
cubesat mission. Acta Astronautica, v. 105, n. 1, p. 321–332, 2014. 15

MATTIELLO-FRANCISCO, F. Addressing verification and validation
challenges in future cyber-physical systems (ADVANCE). 2019. Available
from: <https://www.advance-rise.eu/>. 30

68

https://www.nanosats.eu
https://www.advance-rise.eu/

MEHRPARVAR, A.; PIGNATELLI, D.; CARNAHAN, J.; MUNAKAT, R.; LAN,
W.; TOORIAN, A.; HUTPUTANASIN, A.; LEE, S. Cubesat design specification
rev. 13. 2014. Available from: <https://blogs.esa.int/philab/files/2019/
11/RD-02_CubeSat_Design_Specification_Rev._13_The.pdf>. 13

NASA. CubeSat 101: basic concepts and processes for first-time CubeSat
developers. [S.l.], 2017. 15

RAIF, M.; WALTER, U.; BOUWMEESTER, J. Dynamic system simulation of
small satellite projects. Acta Astronautica, v. 67, n. 9-10, p. 1138–1156, 2010. 3,
16

ROQUES, P. Mbse with the arcadia method and the capella tool. In: 8TH
EUROPEAN CONGRESS ON EMBEDDED REAL TIME SOFTWARE AND
SYSTEMS, 2016. Proceedings... [S.l.], 2016. 8, 10, 33

. Systems architecture modeling with the Arcadia method: a
practical guide to Capella. [S.l.]: ISTE Press - Elsevier, 2017. 7, 8, 10, 34, 36

ROTHENBERG, J.; WIDMAN, L. E.; LOPARO, K. A.; NIELSEN, N. R. The
nature of modeling. [S.l.: s.n.], 1989. 16

SCHAUS, V.; FISCHER, P.; LÜDTKE, D.; BRAUKHANE, A.; ROMBERG, O.;
GERNDT, A. Concurrent engineering software development at german aerospace
center-status and outlook. In: INTERNATIONAL WORKSHOP ON SYSTEM &
CONCURRENT ENGINEERING FOR SPACE APPLICATIONS, 4., 2010.
Proceedings... [S.l.], 2010. 3

SCHUCH, N. J.; DURãO, O. S. C.; SILVA, M. R. da;
MATTIELLO-FRANCISCO, F.; SILVA, A. L. da. Nanosatc-br status - a joint
cubesat-based program developed by inpe and ufsm. In: IAA CONFERENCE ON
UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP, 2017, 4.
Proceedings... [S.l.], 2017. 49

SCHUMANN, H.; BRAUKHANE, A.; GERNDT, A.; GRUNDMANN, J.;
HEMPEL, R.; KAZEMINEJAD, B.; ROMBERG, O.; SIPPEL, M. Overview of
the new concurrent engineering facility at dlr. In: WORKSHOP ON SYSTEM &
CONCURRENT ENGINEERING FOR SPACE APPLICATIONS, 2008, 3., 2008.
Proceedings... [S.l.], 2008. 26

SPANGELO, S. C.; KASLOW, D.; DELP, C.; COLE, B.; ANDERSON, L.;
FOSSE, E.; GILBERT, B. S.; HARTMAN, L.; KAHN, T.; CUTLER, J. Applying

69

https://blogs.esa.int/philab/files/2019/11/RD-02_CubeSat_Design_Specification_Rev._13_The.pdf
https://blogs.esa.int/philab/files/2019/11/RD-02_CubeSat_Design_Specification_Rev._13_The.pdf

model based systems engineering (mbse) to a standard cubesat. In: IEEE
AEROSPACE CONFERENCE, 2012. Proceedings... [S.l.], 2012. 4, 6, 20, 21, 24

SPANGELO, S. C. et al. Model based systems engineering (mbse) applied to radio
aurora explorer (rax) cubesat mission operational scenarios. In: IEEE
AEROSPACE CONFERENCE, 2013. Proceedings... [S.l.], 2013. 4, 21

SWARTWOUT, M.; JAYNE, C. University-class spacecraft by the numbers:
Success, failure, debris.(but mostly success.). In: SMALL SATELLITE
CONFERENCE, 2016, 2016. Proceedings... [S.l.], 2016. 2, 14, 21

VENTURINI, C. C.; BRAUN, B.; HINKLEY, D.; BERG, G. Improving mission
success of cubesats. El Segundo: Aerospace Corporation, 2017. 2, 14

WANG, K.; ZHANG, B.; XING, T. Preliminary integrated analysis for modeling
and optimizing space stations at conceptual level. Aerospace Science and
Technology, v. 71, p. 420–431, 2017. 16

WASEEM, M.; SADIQ, M. U. Application of model-based systems engineering in
small satellite conceptual design-a sysml approach. IEEE Aerospace and
Electronic Systems Magazine, v. 33, n. 4, p. 24–34, 2018. 2, 6, 20

WERTZ, J. R.; EVERETT, D. F.; PUSCHELL, J. J. Space mission
engineering: the new SMAD. [S.l.]: Microcosm Press, 2011. 3, 25

70

APPENDIX A - Example C2F Output ForPlan Configuration Script

using SatelliteToolbox
using Pkg

Pkg.activate("../")

using ForplanSimulatorCore

const deg2rad = pi / 180
const Kib = 1024
const Mib = 1024 * 1024
const Gib = 1024 * 1024 * 1024

function inside_ROIs(ROI_list, lat, lon)
for ROI in ROI_list
minLat = ROI[1] * deg2rad
maxLat = ROI[2] * deg2rad
minLon = ROI[3] * deg2rad
maxLon = ROI[4] * deg2rad
if (lat > minLat) && (lat < maxLat) && (lon > minLon) && (lon < maxLon)
return true
end
end
return false
end

function TimedOp(equip, sim_workspace)
params = equip.params
deltaT = sim_workspace.deltaT
#conditions = params[8]
eclipse = sim_workspace.eclipse
OnTime = params[6]
OffTime = params[7]

Wait for the initial stand-by time.

71

if params[1] > 0.0
params[1] -= deltaT
return false, 0.0, 0.0
end

if params[2] > 0.0 #On time
params[2] -= deltaT
if params[2] <= 0.0
params[3] = OffTime
end
return true, params[4], params[5]
end

if params[3] > 0.0 #off time
params[3] -= deltaT
if params[3] <= 0.0
params[2] = OnTime
end
return false, 0.0, 0.0
end

#default
return false, 0.0, 0.0
end

function RoiOp(equip, sim_workspace)
params = equip.params
deltaT = sim_workspace.deltaT
ROI_list = params[4]
lat = sim_workspace.lat
lon = sim_workspace.lon
eclipse = sim_workspace.eclipse

Wait for the initial stand-by time.
if params[1] > 0.0
params[1] -= deltaT
return false, 0.0, 0.0

72

end

#if (check_conditions(conditions, eclipse))
if inside_ROIs(ROI_list, lat, lon)
return true, params[2], params[3]
end
#end

#default
return false, 0.0, 0.0
end

1. Initial orbital parameters
==

orb = Orbit(
DatetoJD(2020, 01, 01, 12, 0, 0),# Initial simulation time.
6974408.0,# Semi-major axis [m].
0,# Eccentricity.
97.910 * deg2rad,# Inclination [rad].
280.932 * deg2rad,# RAAN [rad].
0.0 * deg2rad,# Argument of perigee [rad].
0.0 * deg2rad) # True anomaly [rad].

torb = period(orb)

2. Equipment list
==

equip_1= ForplanSimulatorCore.Equipment{Float64}(
name = "OBC",
f! = ForplanSimulatorCore.equip_always_on!,
params = [torb, 0.0, 0.383, 30.0])
equip_2= ForplanSimulatorCore.Equipment{Float64}(
name = "Receiver",
f! = ForplanSimulatorCore.equip_always_on!,

73

params = [torb, 0.0, 0.193, 0.0])
equip_3= ForplanSimulatorCore.Equipment{Float64}(
name = "Transmitter",
f! = ForplanSimulatorCore.equip_on_ground_station!,
params = [torb, 0.0, 0.0, 1.078, 0.0, 0.0, 0])
equip_4= ForplanSimulatorCore.Equipment{Float64}(
name = "Magnetometer",
f! = RoiOp,
params = [torb, 0.016, 96.0,
[[-60.0, 0.0, -90.0, -20.0]]])
equip_5= ForplanSimulatorCore.Equipment{Float64}(
name = "EPS",
f! = ForplanSimulatorCore.equip_always_on!,
params = [torb, 0.0, 0.250, 0.0])

payload_1= ForplanSimulatorCore.Equipment{Float64}(
name = "SLP",
f! = RoiOp,
params = [torb, 0.873, 800.0,
[[-60.0, 0.0, -90.0, -20.0]]])
payload_2= ForplanSimulatorCore.Equipment{Float64}(
name = "SMDH",
f! = TimedOp,
params = [torb, torb, torb, 1.00, 5.0, torb, torb])
payload_3= ForplanSimulatorCore.Equipment{Float64}(
name = "SDATF",
f! = TimedOp,
params = [2*torb, 1*torb, 1*torb, 0.264, 512, 1*torb,*torb])

equipment_list = [
equip_1
equip_2
equip_3

74

equip_4
equip_5
payload_1
payload_2
payload_3
]
equipment_group = [
create_equipment_group("Platform", 1:1:5)
create_equipment_group("Payloads", 6:1:8)
]

3. Solar panels
==

sag = [
Solar Panel X+
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[1.0, 0.0, 0.0],# Normal Vector of the solar panel.
[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
Solar Panel Y+
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[0.0, 1.0, 0.0],# Normal Vector of the solar panel.
[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
Solar Panel Z+
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[0.0, 0.0, 1.0],# Normal Vector of the solar panel.
[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
Solar Panel X-
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[-1.0, 0.0, 0.0],# Normal Vector of the solar panel.

75

[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
Solar Panel Y-
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[0.0, -1.0, 0.0],# Normal Vector of the solar panel.
[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
Solar Panel Z-
create_static_solar_panel(0.01804,#Solar panel area [m].
0.161,# Solar panel efficiency.
[0.0, 0.0, -1.0],# Normal Vector of the solar panel.
[0.0],# Transient efficiency.
[0.0]),# Transient times [s].
]
4. Batteries
==

battery = create_battery_pack(
2,# Num. of cells in series.
1,# Num. of cells in parallel.
1.0,# Charging efficiency.
1.05,# Discharge efficiency.
[1.0,0.8,0.5],# Degradation factors.
[50*torb,300*torb]) # Degradation periods.

5. Ground stations
==

NatalGS = GroundStation{Float64}(
"NatalGS",
-0.2644 * deg2rad,
-37.0403 * deg2rad,
0,
5 * deg2rad,
4800,
[(0.0, 24.0)]

76

)
SantaMariaGS = GroundStation{Float64}(
"SantaMariaGS",
-29.7124 * deg2rad,
-53.7174 * deg2rad,
113,
5 * deg2rad,
4800,
[(0.0, 24.0)]
)
ground_stations = [NatalGS, SantaMariaGS]
6. Mass memory
==

total_memory = 2000000000

7. Simulation configuration
==

conf = SimulationConfiguration(tf = 60*60*24.0*8,
orb = orb,
prop = :J4,
deltaT = 20.0,
standalone = false,
ground_stations = ground_stations,
equipment_list = equipment_list,
equipment_groups = equipment_group,
sag = sag,
battery = battery,
total_memory = total_memory)

run_simulation(conf)

77

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Problem formulation
	1.2 Dissertation objectives
	1.3 Methodology
	1.3.1 Method
	1.3.2 Process
	1.3.3 Tool
	1.3.4 Environment

	1.4 Document structure

	2 THEORETICAL BACKGROUND
	2.1 CubeSats
	2.2 Modelling and simulation in space systems
	2.2.1 Modelling
	2.2.2 Simulation
	2.2.3 INPE/CPRIME's ForPlan simulator

	2.3 Model-Based Systems Engineering (MBSE)
	2.4 The CubeSat reference model
	2.5 Space missions concurrent engineering centers and concept studies
	2.6 Concept of operations

	3 THE CONOPS2M MODELLING PROCESS
	3.1 Modelling process description
	3.1.1 Generating the simulation script

	3.2 Example model - Generic CubeSat mission
	3.2.1 Operational Analysis
	3.2.2 System Analysis
	3.2.3 Logical Architecture
	3.2.4 Physical Architecture

	4 THE CAPELLATOFORPLAN (C2F) ECLIPSE PLUGIN
	5 MODEL INSTANTIATION CASE STUDY: NANOSATC-BR2
	5.1 Mission description
	5.2 The NanosatC-Br2 CONOPS model
	5.2.1 Operational Analysis
	5.2.2 System Analysis
	5.2.3 Logical Architecture
	5.2.4 Physical Architecture
	5.2.4.1 Generating the simulation script

	5.3 Simulation trade studies

	6 CONCLUSION
	6.1 Future work

	REFERENCES
	 APPENDIX A - Example C2F Output ForPlan Configuration Script

