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ABSTRACT

The Brazilian Savanna, also known as Cerrado, is considered one of the global
hotspots for biodiversity conservation and plays an important role as carbon stock,
due to its above and below-ground biomass. The Cerrado vegetation is composed
by a mosaic of ecosystems, which comprises since natural grasslands until dense
forests. There is a vegetation gradient with a wide variation in structure, density
and biomass, which generates several types of vegetation, known as physiognomies.
According to the Ribeiro and Walter classification system, there are three major
groups of ecosystems (Grassland, Savanna and Forest), which can be divided into
11 physiognomies and 14 additional sub-types of physiognomies, resulting in 25
physiognomic types. Monitoring the Cerrado vegetation cover in a large scale, using
Remote Sensing imagery, is still a challenge due to the high spatial and temporal
variability of the vegetation types and their spectral similarity. Two aspects of the
Cerrado physiognomies are relevant to create a novel classification method: its clas-
sification system hierarchy and the relative context where each physiognomy occurs.
Two classification techniques that considers the spatial context have been used in
the Remote Sensing field: GEOBIA and Deep Learning. Thus, the general objective
of this study is to develop and evaluate a novel method based on Deep Learning
to hierarchically classify the Cerrado physiognomies, according to the classification
system proposed by Ribeiro and Walter, in the Brasília National Park, a federal en-
vironmental Protected Area. Several spectral channels were tested as input datasets
to evaluate their importance and contribution in the classification task and all ex-
periments used a WorldView-2 multispectral image (2 meters spatial resolution). To
demonstrate the potential of Deep Learning techniques in the Cerrado vegetation
discrimination, hierarchical and non-hierarchical GEOBIA approaches were initially
performed to classify seven physiognomies. In addition to the spectral bands, five
vegetation indices, three fractions of the Linear Spectral Mixture Model, three com-
ponents of the Tasseled Cap transformation and six texture features were used as
features. Compared to a GEOBIA non-hierarchical approach, the GEOBIA hierar-
chical approach achieved an overall accuracy of 2.5 percentage points higher (66.4%
and 68.9%, respectively). In the Deep Learning approach, an adapted U-net archi-
tecture was used to hierarchically classify the physiognomies. The dataset composed
of RGB bands plus the 2-band Enhanced Vegetation Index (EVI2) achieved the best
performance and was used to perform the hierarchical classification. In the first level,
which identified Forest, Savanna and Grassland, the overall accuracy was 92.8%. For
detailed Savanna and Grassland physiognomies (second level of classification), the
overall accuracies were 86.1% and 85.0%, respectively. The Brasília National Park
final map obtained in this study has ten physiognomies: Gallery Forest, Woodland
Savanna, Typical Savanna, Shrub Savanna, Rupestrian Savanna, Vereda, Rupestrian
Grassland, Shrub Grassland, Open Grassland and Humid Open Grassland. The mis-
classified areas are mainly related to transition regions between the physiognomies.
Deep Learning techniques were able to understand and well represent the physiog-
nomy patterns. To the best of our knowledge, this work was the first one that used
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Deep Learning to discriminate the Cerrado physiognomies in this level of detail.
Besides, the accuracy rates obtained here outperformed other works that applied
traditional Machine Learning algorithms and GEOBIA for this task.

Keywords: Spatial context. High spatial resolution image. GEOBIA. Semantic seg-
mentation. Convolutional Neural Network. U-net.
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MAPEAMENTO HIERÁRQUICO DAS FITOFISIONOMIAS DA
SAVANA BRASILEIRA (CERRADO) BASEADO EM DEEP

LEARNING (APRENDIZAGEM PROFUNDA)

RESUMO

A Savana brasileira, conhecida como Cerrado, é considerada um hotspot global para
a conservação da biodiversidade, e exerce um importante papel como estoque de
carbono, devido à sua biomassa acima e abaixo do solo. A vegetação do Cerrado
é composta por um mosaico de ecossistemas, que abrange desde campos naturais
até densas florestas. Existe um gradiente de vegetação com ampla variação em es-
trutura, densidade e biomassa, que geram diferentes tipos de vegetação, chamados
de fitofisionomias. De acordo com o sistema de classificação proposto por Ribeiro e
Walter, existem três grupos principais de ecossistemas (Floresta, Savana e Campo),
que podem ser divididos em 11 fitofisionomias e 14 subtipos adicionais, resultando
em 25 tipos de fitofisionomias. O monitoramento da vegetação do Cerrado em larga
escala, usando imagens de sensoriamento remoto, ainda é um desafio devido à alta
variabilidade espacial e temporal e à similaridade espectral das fitofisionomias. Dois
aspectos da vegetação do Cerrado são relevantes para a criação de um novo mé-
todo de classificação: a hierarquia do sistema de classificação e o contexto espacial
em que cada fitofisionomia ocorre. Duas técnicas de classificação que consideram
o contexto espacial têm sido utilizadas na área de Sensoriamento Remoto: GEO-
BIA e Deep Learning. Assim, o objetivo geral deste trabalho é desenvolver e avaliar
um novo método baseado em Deep Learning para classificar hierarquicamente as
fitofisionomias do Cerrado, de acordo com o sistema de classificação proposto por
Ribeiro e Walter, existentes no Parque Nacional do Brasília, uma Unidade de Con-
servação federal. Várias bandas e atributos espectrais foram testados como dados
de entrada para avaliar suas contribuições na classificação e todos os experimentos
usaram uma imagem multiespectral WorldView-2 (resolução espacial de 2 metros).
Para demonstrar o potencial das técnicas de Deep Learning para discriminar a ve-
getação do Cerrado, inicialmente uma abordagem usando GEOBIA para classificar
sete fitofisionomias foi realizada. Além das bandas espectrais, cinco índices de ve-
getação, três frações do Modelo Linear de Mistura Espectral, três componentes da
transformação Tasseled Cap e seis atributos de textura foram usados como atributos.
Em comparação com uma abordagem não hierárquica de GEOBIA, a abordagem
hierárquica de GEOBIA obteve uma acurácia global 2,5 pontos percentuais maior
(66,4% e 68,9%, respectivamente). Na abordagem com Deep Learning, uma arquite-
tura U-net adaptada foi usada para classificar hierarquicamente as fitofisionomias. O
conjunto de dados composto pelas bandas RGB mais o 2-band Enhanced Vegetation
Index (EVI2) obteve o melhor desempenho e foi usado para realizar a classificação
hierárquica. No primeiro nível, que identificou Floresta, Savana e Campo, a acurácia
global foi 92,8%. Para as fitofisionomias detalhadas de Savana e Campo (segundo
nível de classificação), as acurácias globais foram de 86,1% e 85,0 %, respectiva-
mente. O mapa final do Parque Nacional de Brasília obtido neste trabalho possui
dez fitofisionomias: Mata de Galeria, Cerrado Denso, Cerrado Típico, Cerrado Ralo,
Cerrado Rupestre, Vereda, Campo Rupestre, Campo Sujo, Campo Limpo e Campo
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Limpo Úmido. As áreas classificadas incorretamente estão relacionadas principal-
mente a regiões de transição entre as fitofisionomias. As técnicas de Deep Learning
foram capazes de entender e representar bem os padrões das fitofisionomias. Até
onde sabemos, esse foi o primeiro trabalho que usou Deep Learning para discriminar
as fitofisionomias do Cerrado nesse nível de detalhamento. Além disso, as acurácias
aqui obtidas superaram as de outros trabalhos que aplicaram algoritmos tradicionais
de aprendizado de máquina e GEOBIA para essa tarefa.

Palavras-chave: Contexto espacial. Imagem de alta resolução espacial. GEOBIA.
Segmentação semantica. Rede neural convolucional. U-net.
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1 INTRODUCTION

The ecosystems of Savanna cover approximately 20% of the Earth’s terrestrial area.
In tropical regions, they are rich in biodiversity (STRASSBURG et al., 2017) and water
resources (FERREIRA et al., 2011) and play an important role in carbon stock, due
to their content of above and below-ground biomass (RIBEIRO et al., 2011). However,
many aspects of the Savannas (e.g., carbon cycles) are still not well understood
when compared to other tropical ecosystems, like the Amazon forest. This lack of
knowledge hinders the complete understanding of the global carbon cycle (ADUAN et

al., 2003; GWENZI; LEFSKY, 2014) and justifies the necessity of further investigations
in these topics.

The Brazilian Savanna, also known as Cerrado, is the second largest biome in the
country, occupying an area of 1,983,017 km2, approximately 23,3% of the national
territory. This biome comprises the entire Federal District and parts of the following
states: Goiás (98%), Tocantins (91%), Maranhão (65%), Mato Grosso do Sul (62%),
Minas Gerais (54%), Piauí (53%), Mato Grosso (37%), São Paulo (19%), Bahia
(18%), Paraná (2%) and Rondônia (1%) (IBGE, 2019). Considered one of the global
hotspots for biodiversity conservation (STRASSBURG et al., 2017), Cerrado’s flora has
more than 12 thousand species, of which almost 40% are endemic (i.e., they do not
occur in any other part of the planet) (JBRJ, 2015). Despite the ecological importance
of Cerrado, only 8.6% of its natural vegetation is in environmental Protected Areas
and just 3.1% in Protected Areas of Integral Protection (MMA, 2010).

Approximately 47% of the biome’s vegetation has already been converted to other
land uses, such as Planted Pasture (29%) and Annual Crop (9%) (Figure 1.1) (INPE,
2015). Moreover, deforestation rates in the Cerrado have been higher than those in
the Amazon in 9 of the 12 years in the period from 2008 to 2019 (INPE, 2020). This
heavy loss of native vegetation brings severe environmental consequences, such as
vegetation fragmentation, habitat loss (FRANÇOSO et al., 2015), reduction of water
yield and carbon stocks (GRACE et al., 2006; RESENDE et al., 2019) and several other
negative impacts in Cerrado ecosystem services (RESENDE et al., 2019). In this sce-
nario, accurate mapping of Cerrado vegetation is essential to support policies against
deforestation and consequently maintain the provision of ecosystem services, since
these maps are crucial for assessing biodiversity, improving Carbon stock estimation
within the biome and guiding conservation policies.

The conservation of the Cerrado vegetation is beyond the creation and implementa-
tion of laws against deforestation. It is necessary that the decision makers stimulate
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Figure 1.1 - Land use and land cover in Cerrado in 2013.

SOURCE: Adapted from INPE (2015).
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the proper management of the remaining natural vegetation areas, their biodiversity
and ecosystem services. In this scenario, in 2009, the National Policy on Climate
Change (Brazilian Law no 12.187) was created. It represents the Brazilian govern-
ment’s commitment to the United Nations to reduce the greenhouse gases emissions
through the development of a low carbon emission economy. One of the axes of this
Policy is the Action Plan for the Prevention and Control of Deforestation and Forest
Fires in the Cerrado (PPCerrado). This plan has three main lines of action: sustain-
able production; monitoring and control; and protected areas and land use planning
(MMA, 2014). To achieve them, many programs were created, including the Forest
Investment Program (FIP) Cerrado, which focuses on promoting sustainable land
use and improving forest management to reduce carbon emissions. The National In-
stitute for Space Research (INPE), together with the Federal Universities of Goias
and Minas Gerais (UFG and UFMG), are responsible for the execution of one of the
four objectives created by FIP Cerrado, which aims to implement a system for forest
fire prevention and Cerrado vegetation monitoring (THE WORLD BANK, 2016).

Monitoring the Cerrado vegetation cover in a large scale, using Remote Sensing (RS)
imagery, is still a challenge due to the high spatial and temporal variability of the
types of vegetation and their spectral similarity (JACON et al., 2017). The Cerrado
vegetation is composed by a mosaic of ecosystems, which comprises since natural
grasslands, with a predominance of herbaceous vegetation, until dense forests. There
is a gradient of vegetation with a wide variation in structure, density and biomass,
generating several types (classes) of vegetation. The types of vegetation are called
physiognomies and they have been characterized by a multi-level classification sys-
tem proposed by Ribeiro and Walter (2008). According to this system, there are
three major groups of ecosystems (Grassland, Savanna and Forest), which can be
divided into 11 physiognomies and 14 additional sub-types of physiognomies, result-
ing in a total of 25 physiognomic types.

The Ribeiro and Walter classification system (RIBEIRO; WALTER, 2008) may be ar-
ranged in a hierarchical structure, where the identification of more generalist classes
(Grassland, Savanna and Forest) in the first level of classification facilitates the iden-
tification of more detailed physiognomies in the next level. The Shrub Grassland, for
example, is a Grassland physiognomy usually misclassified as Shrub Savanna, which
is a Savanna physiognomy (FERREIRA et al., 2007; JACON et al., 2017). This confusion
occurs mainly due to the difficulty in identifying the boundaries of each physiog-
nomy in transition areas. Thus, a successful separation of Grassland and Savanna
in a first level of classification would reduce the physiognomies misclassification in
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the next hierarchical level. Furthermore, the patterns of the physiognomies in the
Ribeiro and Walter (2008) classification system were based on in situ observations
of vegetation structure and environmental aspects. Thus, their identification using
RS images relies on the existence of a proper environmental (spatial) context. Con-
sequently, classification methodologies based only on local (pixel) spectral features
may be inefficient to discriminate the Cerrado physiognomies.

In RS applications, among several techniques that take into account the spatial
context information in the image classification process, two have been widely used:
Geographic Object-Based Image Analysis (GEOBIA) (BLASCHKE, 2010) and Deep
Learning (LECUN et al., 2015). Compared to a per-pixel analysis, GEOBIA allows the
extraction of other features (e.g., spatial, textural and contextual) for each segment
or object in the image to perform the classification. However, most studies based on
GEOBIA to discriminate the Cerrado vegetation have not used the necessary level
of detail to properly identify the physiognomies and have not applied a hierarchical
approach (GRECCHI et al., 2013; OROZCO-FILHO, 2017).

In recent years, Deep Learning methods based on Convolutional Neural Networks
(CNNs) have thrived in some RS applications (MA et al., 2019). CNNs are able to
perform end-to-end classification, learning from an input dataset and extracting fea-
tures whose complexity increases in each layer of the network (LECUN et al., 2015).
CNN layers perform convolution operations on the image during training, which
enable to take into account a rich spatial context information in the classification
process (MA et al., 2019). The results achieved with such methods often outperform
those obtained with traditional Machine Learning algorithms, such as Random For-
est and Support Vector Machine (SVM) (GUIRADO et al., 2017; KUSSUL et al., 2017).

Each physiognomy has a unique biodiversity and is responsible for a specific amount
of carbon stocked above and below the ground (RIBEIRO; WALTER, 2008; RIBEIRO
et al., 2011). For this reason, improving the detailed Cerrado physiognomies map-
ping is crucial, since so far the mapping initiatives handled well the identification
of the three major ecosystem groups, but reached only low accuracies for individual
physiognomies (JACON et al., 2017; GIROLAMO-NETO, 2018). Additionally, the spec-
tral behavior of the physiognomies and their respective major ecosystem groups rely
on information contained in different wavelengths, represented by satellite spectral
bands. The great variety of spectral bands is an important source of information in
RS field to analyze and discriminate targets. In Deep Learning methods, originally
developed in the computer vision field, the analysis of the contribution of differ-
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ent spectral bands to improve the network accuracy is not yet well explored. The
majority of studies use only Red, Green and Blue channels (GUIRADO et al., 2017;
KATTENBORN et al., 2019), some of them include the Near InfraRed one (NOGUEIRA

et al., 2016; JOZDANI et al., 2019). Additionally, very few initiatives in Deep Learning
approaches have applied some hierarchical behavior in classification tasks (GUO et

al., 2018; YANG et al., 2020).

Therefore, this work is based on the following hypotheses:

• The use of Deep Learning techniques enables the classification of Cerrado
physiognomies with higher level of detail and better performance than
traditional techniques of Machine Learning and GEOBIA;

• The adoption of a hierarchical classification enables that less complex tasks
(i.e., differentiation of Forest, Savanna and Grassland) in a first level re-
duces the confusion between more detailed physiognomies in the subse-
quent levels;

• The use of several different combinations of spectral bands as input dataset
in the Deep Learning network provides the assessment of the appropriate
spectral information for the goal task.

1.1 Objectives

The general objective of this work is to develop and evaluate a novel method based
on Deep Learning techniques to hierarchically classify the detailed physiognomies
of the Brazilian Savanna (Cerrado), according to the classification system proposed
by Ribeiro and Walter (2008). As specific objectives, this work aims to:

• Compare the hierarchical classification results achieved using GEOBIA and
Deep Learning techniques;

• Compare the performance of the classification according to different ap-
proaches used to generate the training samples for the Deep Learning
method;

• Evaluate different combinations of spectral bands taken as input dataset
in the Deep Learning network;

• Generate detailed physiognomies mapping of an environmental Protected
Area from Cerrado using Deep Learning.
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1.2 Document organization

In order to achieve the proposed objectives, this work is structured as follows:

• Chapter 2: presents a literature review about the importance of the Cerrado
vegetation and the main concepts of GEOBIA and Deep Learning. It also
describes and analyses several works related to this thesis;

• Chapter 3: presents the description of the study site, the data used, the
GEOBIA approach tested and explains the proposed hierarchical method-
ology based on Deep Learning techniques;

• Chapter 4: presents the results of the pixel-wise classification of Cerrado
physiognomies achieved using GEOBIA and Deep Learning, and compare
them. It also presents the performance of the Deep Learning networks when
different combinations of spectral bands were used as input datasets;

• Chapter 5: assess the results presented in Chapter 4 and compare them to
other related works;

• Chapter 6: explains the concluding remarks of the work and presents sug-
gestions for future works.
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2 RELATED WORK

In this chapter, initially the Cerrado vegetation is characterized, emphasizing the
classification system proposed by Ribeiro and Walter (2008). Thereafter, main con-
cepts related to this thesis regarding optical RS image classification are reviewed.
Finally, several studies that classified the Cerrado vegetation employing RS tech-
niques are analyzed.

2.1 Brazilian Savanna (Cerrado) and its vegetation cover

There are basically three well known classification systems available to describe the
Cerrado vegetation. The first one was proposed by the RADAMBRASIL Project
(VELOSO; GÓES-FILHO, 1982) and the second is the Technical Handbook of Brazil-
ian Vegetation from the Brazilian Institute of Geography and Statistics (IBGE)
(IBGE, 1992; IBGE, 2012), both representing the vegetation of the entire country.
Actually, IBGE’s classification system is a recasting of the system proposed by
RADAMBRASIL. Among the proposed classes, IBGE’s system does not present
an unique class for Gallery Forest, which is commonly included in other classes.
Savanna vegetation classes (e.g., Savana Arborizada, Savana Parque and Savana
Gramínio-Lenhosa) may or may not contain Gallery Forests in their subdivisions.
Following this system, the class Savana Gramínio-Lenhosa com Mata de Galeria,
for instance, would include patches of Grassland and Forest in the same class.

The third system, which represents specifically the Cerrado vegetation, was proposed
by Ribeiro and Walter (2008). Since it was created specifically to characterize the
Cerrado vegetation, it is more detailed than the general systems previously presented
and presents several aspects to characterize each vegetation type. The differentiation
among the physiognomies in this system is based on shape (structure, types of dom-
inant growth and possible seasonal changes), aspects of the environment (edaphic
factors) and floristic composition. This system has been widely used in analysis
based on RS imagery (FERREIRA et al., 2007; SCHWIEDER et al., 2016; JACON et al.,
2017; RIBEIRO et al., 2020) and divides the physiognomies in three major ecosystem
groups (also called formations): Grassland, Savanna and Forest.

In this work, the types of vegetation will be described according to the classifica-
tion system proposed by Ribeiro and Walter (2008). The Forest formations present
the predominance of arboreal species, forming continuous or discontinuous canopy.
There are four physiognomies included in this group: Ciliary Forest, Gallery Forest,
Dry Forest and Tall Woodland. The Ciliary and Gallery Forests are both riparian
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forests (e.g., occur adjacent to water bodies). They can be differentiated according
to the water bodies that they follow, the deciduousness and the floristic composi-
tion. In terms of floristic composition, the Ciliary Forest is more similar to the Dry
Forest, however this last one does not occur adjacent to water bodies. The fourth
Forest physiognomy, Tall Woodland, is a lower forest, that presents several species
of the Sensu Stricto Savanna.

In Savanna formations, the presence of continuous canopy is uncommon and there
are trees and shrubs scattered over grasses. There are also four physiognomies in
Savanna formations: Sensu Stricto Savanna, Savanna Park, Palmland and Vereda.
The Sensu Stricto Savanna is comprised by four very relevant subtypes: Woodland
Savanna, Typical Savanna, Shrub Savanna and Rupestrian Savanna. Woodland,
Typical and Shrub Savanna are basically differentiated by their vegetation den-
sity, while Rupestrian Savanna typically occurs in shallow soils with rocky outcrops.
The Savanna Park concentrates the vegetation in little terrain elevations, known as
murundus or monchões. The other two physiognomies, Palmland and Vereda, are
both mainly composed by palmtrees. However, the Vereda presents only one species
(Mauritua flexuosa, known as Buriti) and in a lower density.

In Grassland formations, there are predominantly herbaceous species and some
shrubs. Three physiognomies belongs to this group: Shrub Grassland, Open Grass-
land and Rupestrian Grassland. In the Shrub Grassland, the presence of shrubs
is very abundant, while in the Open Grassland, the vegetation is mostly herba-
ceous. The Rupestrian Grassland is differentiated by the occurrence in areas with
rocky outcrops. Therefore, it is possible to specify 11 physiognomies from the three
ecosystem groups. Considering their subdivisions, the classification system has 25
physiognomies. These types of vegetation are illustrated in Figure 2.1, and their
detailed description is presented in Table 2.1.
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Figure 2.1 - The physiognomies according to the Ribeiro and Walter classification system, represented in a biomass gradient (growing from
right to left).

SOURCE: Adapted from Ribeiro and Walter (2008).



Table 2.1 - Detailed description of the Cerrado physiognomies.

Formation Physiognomy Vegetation Tree cover Tree height Soil type Other aspects Subdivisions

Forest

Ciliary Forest
(Mata Ciliar)

Riparian forest, closed
canopy, composed
predominantly by

semi-deciduous trees

From 50%
to 90%

20 - 25m

Shallow (Cambisol,
Plinthosol or Litholic

Neosol) or deep
(Latosol or Argisol)
or Fluvic Neosol

Follows the medium
and large size rivers,
vegetation does not
form galleries (closed

corridors)

-

Gallery Forest
(Mata de Galeria)

Riparian forest, closed
canopy, composed
predominantly by

evergreen (deciduous)
trees

From 70%
to 95%

20 - 30m

Cambisol, Plinthosol,
Argisols, Gleysol,
Neosol or Latosol

(from adjacent areas)

Follows the small
size rivers and

streams, vegetation
forms galleries over

water bodies

Floodable and
Non Floodable

Dry Forest
(Mata Seca)

Composed by various
levels of deciduousness,

which determine
three subdivisions

From 70%
to 95% (wet
season) or

less than 50%
(dry season)

15 - 25m

high fertility (Terra
Roxa Estruturada,

Brunizém or
Cambisol), Latosol
or Calcareous Soil
(in rocky outcrops)

Not associated with
water bodies, occurs
in interfluves and its
subdivisions are also

influentiated by
floristic composition

and soil type

Deciduous,
Semi-deciduous
and Evergreen

(To be continued)



Table 2.1 - Detailed description of the physiognomies (Continued).

Formation Physiognomy Vegetation Tree cover Tree height Soil type Other aspects Subdivisions

Tall Woodland
Cerradão

Presents sclerophyll
characteristics (rigid
leaves and thick

cuticle). Presence of
shrub layer

From 50%
to 90%

8 - 15m

Deep and well
drained soils (Red
and Red-yellow

Latosols)

Physiognomically, it
is a forest, but it
is floristically more
similar to a Savanna

Dystrophic
(poor soil) and
Mesotrophic
(richer soil)

Savanna

Se
ns
u
St
ri
ct
o*

Woodland
Savanna
(Cerrado
Denso)

Mostly arboreal,
presence of shrub

and herbaceous layer
(less dense due to
the tree shades)

From 50%
to 70%

5 - 8m
Predominantly Red
and Red-yellow

Latosol or Cambisol

Presence of tortuous
trees with twisted
branches. Usually
presents evidence of

forest fires

-

Typical
Savanna
(Cerrado
Típico)

Mostly arboreal-
shrubby, without
continuous canopy.

Intermediate Savanna
type between

Woodland and Shrub
Savanna

From 20%
to 50%

3 - 6m
Predominantly Red
and Red-yellow

Latosol or Cambisol

Presence of tortuous
trees with twisted
branches. Usually
presents evidence of

forest fires

-

Shrub
Savanna
(Cerrado
Ralo)

Mostly arboreal-
shrubby. Presents a
significant shrub-
herbaceous layer

From 5%
to 20%

2 - 3m
Predominantly Red
and Red-yellow

Latosol or Cambisol

Represents the
lowest and least

dense of the Sensu
Stricto Savannas

-

(To be continued)



Table 2.1 - Detailed description of the physiognomies (Continued).

Formation Physiognomy Vegetation Tree cover Tree height Soil type Other aspects Subdivisions

Rupestrian
Savanna
(Cerrado
Rupestre)

Arboreal-shrubby,
presents shrub-

herbaceous layer and
occurs in rupestrian

environments

From 5%
to 20%

2 - 4m Litolic Neossols

Presence of rocky
outcrops. Usually
occurs in mosaics,

which includes other
types of vegetation

-

Savanna Park
(Parque de
Cerrado)

Trees grouped
in small elevations

of the terrain
(murundus or
monchões)

From 5%
to 20%

3 - 6m Gleysol

Soils are better
drained in

murundus than in
adjacent depressions

-

Palmland
(Palmeiral)

Majority of a
certain species of
arboreal palmtree

Depend on the predominant species
Occurs in well-
drained soils

Babaçual,
Buritizal,

Guerobal and
Macaubal

Vereda

Presents only one
species of palmtree,
the Buriti (Mauritua
flexuosa), in lower
density than in

Palmland

From 5%
to 10%

12 - 15m Gleysol

Does not form a
closed canopy
and is usually
surrounded by

shrub-herbaceous
vegetation

-

(To be continued)



Table 2.1 - Detailed description of the physiognomies (Continued).

Formation Physiognomy Vegetation Tree cover Tree height Soil type Other aspects Subdivisions

Grassland

Shrub Grassland
(Campo Sujo)

Shrub-herbaceous.
Evident presence
of shrubs, sub-

shrubs and isolated
low trees

No canopy
formation

-

Shallow soils (Litolic
Neosol, Cambisol
and Plinthosol) or
deep and low-
fertility soils

(medium texture
Latosol or

Quartzenic Neosol)

Subdivisions occur
according to

topographic and
edaphic factors

Dry (deep
water table),
Humid (high
water table)
and with
Murundus

Open Grassland
(Campo Limpo)

Mostly herbaceous,
the presence of
shrubs and sub-

shrubs are
insignificant and
there are no trees

No canopy
formation

-
Neosol and
Plinthosol

Subdivisions occur
according to

topographic and
edaphic factors

Dry (deep
water table),
Humid (high
water table)
and with
Murundus

Rupestrian
Grassland

(Campo Rupestre)

Shrub-herbaceous,
possible presence

of low trees

No canopy
formation

up to 2m Litolic Neosol

Usually occurs at
altitudes above

900m and in areas
with rocky outcrops

-

*Characterized according to its subdivisions.
SOURCE: Adapted from Ribeiro and Walter (2008).



2.2 Image classification

In RS field, image classification consists in extracting information from digital im-
ages in order to label the pixels or an object in an image as representatives of specific
types of land cover or other classes (SCHOWENGERDT, 2006). The information may
be related to several properties (spectral, spatial, temporal, geometric, statistical and
so on) (CHEN et al., 2018). Except for Nogueira et al. (2016) and Neves et al. (2020),
all works (described in Section 2.3) proposed methods to automatically map the
Cerrado vegetation using traditional techniques with GEOBIA approaches or Ma-
chine Learning algorithms. Traditional techniques, in this study, refers to methods
and algorithms related to GEOBIA and Machine Learning (e.g., Maximum Likeli-
hood, SVM and Random Forest), which are already established and conventionally
being used in RS applications over the past decades.

Both GEOBIA and Machine Learning techniques require features related to spec-
tral, textural and geometrical characteristics, which are extracted from the images
and used to classify the objects of interest. These features (also known as shallow
features) are often created by mathematical formulations, such as the ratio between
spectral bands of the sensor (i.e., vegetation indices), which transforms the input
data into proper representations of it (ZHANG et al., 2016). In order to create fea-
tures to correctly represent the classes in the image, the traditional methods require
a high level knowledge about specific aspects of the classes. Even so, in some cases
they are not adequate enough to represent all existing information in the input im-
age (BALL et al., 2017). Despite the high classification accuracy presented in some
studies, a detailed Cerrado vegetation mapping, considering the Ribeiro and Walter
(2008) classification system, has not yet been achieved. Under this scenario, this
Section provides a brief description of the image processing and pattern recognition
techniques used in this work.

2.2.1 Geographic Object-Based Image Analysis (GEOBIA)

Based on established concepts (e.g., segmentation and classification), the GEOBIA
created a relationship between them and, consequently, allowed the migration of
analyzes based only on spectral information of pixels to contextual analyzes based on
objects and their spectral, temporal and spatial characteristics (BLASCHKE, 2010).
One of the main purposes of GEOBIA is to develop theories, methods and tools that
are capable of reproducing or improving (automatically or semi-automatically) the
interpretation performed by specialists (HAY; CASTILLA, 2008).
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Many scientific works have demonstrated that classification approaches based on
objects have achieved better results than those per pixel in some RS applications
(BLASCHKE, 2010; WHITESIDE et al., 2011). This occurs especially in high spatial res-
olution images (JOHANSEN et al., 2010), where the variability of spectral information
for each target is greater than in medium or low spatial resolution images. A classic
GEOBIA framework mainly includes four steps: segmentation, feature extraction,
classification and validation (CHEN et al., 2018; BLASCHKE, 2010). The segmentation
step consists in partitioning the image into meaningful non-overlapping segments or
objects based on some homogeneity criteria. For each object, several features are
extracted according to its characteristics. In the classification step, relationships be-
tween these features are used to label each segment/object. Finally, in the validation
step, the resulting classification is evaluated based on some reference data.

2.2.1.1 Features for vegetation patterns

In the feature extraction step, some techniques are commonly used to create features
to represent the vegetation patterns, including the Cerrado vegetation. Some of them
are the following:

• Vegetation Indices (VI): They are utilized to highlight vegetation targets,
reducing the data dimensionality without losing spectral information. VI features
can be obtained from the combination of two or more spectral bands, which is
possible due to the distinct vegetation spectral behavior especially in the visible and
near-infrared ranges. In the visible range, the low reflectance values are related to
the absorption of electromagnetic radiation by the photosynthetic pigments (e.g.,
chlorophyll), while in the near infrared range, the high reflectance values occur due to
the spread of radiation inside the leaves caused by their cellular structure (PONZONI;

SHIMABUKURO, 2010).

These indices may be related to several biophysical variables of vegetation, such as
biomass, Leaf Area Index (LAI) and evapotranspiration. They allow the seasonal
and long-term monitoring of structural, phenological and biophysical parameters
of vegetation (HUETE et al., 2002). However, they should be carefully used, since
modifications in the image acquisition conditions (e.g., satellite viewing geometry)
may affect the indices without any change in the vegetation (ADAMI, 2010).

• Linear Spectral Mixture Model (LSMM): The radiation captured in the
Instantaneous Field of View (IFOV) of a sensor is the combination of radiation
emitted and reflected by various targets (e.g., leaves, branches, soil and water) on the
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Earth’s surface. The mixture of radiation is related to the sensor spatial resolution;
a higher spatial resolution and, consequently, a smaller IFOV, result in less mixture
of elements at the same pixel (SHIMABUKURO; SMITH, 1991).

The spectral mixture models are used to estimate the contribution of each compo-
nent, also called endmembers, within a pixel (ROBERTS et al., 1998). They generate
image fractions from the “pure components” spectra. Several models have been pro-
posed to estimate these contributions and the most common used endmembers are
vegetation, soil and shade (or water). The LSMM assumes that components of a
pixel have a linear relationship (SHIMABUKURO; SMITH, 1991). The resulting image
fractions are highly dependent on the quality of the chosen “pure pixels”, and the
number of endmembers can not be higher that the number of input bands used in
the analysis.

• Tasseled Cap (TC) transformation: The TC transformation is a linear trans-
formation employed to reduce the data volume and complexity, highlighting some
characteristics of the images (KAUTH; THOMAS, 1976). The sensor data may be rep-
resented in a multidimensional space, in which each dimension is related to a spectral
band. In a sensor with three bands, for example, the space would be a cube (CRIST;
KAUTH, 1986).

Every type of target (e.g., vegetation and soil) has a specific spectral behavior, since
their individuals share physical properties. Therefore, sensor data do not have equal
probabilities of occurrence in a multidimensional space. The data mainly concen-
trates in certain portions of this multidimensional space, creating what is called
“data structure”. If each band was correlated to only one type of target and uncor-
related to others, modifications in that target would change only that band. The TC
transformation identifies the data structure for a certain sensor and application and,
by rotating the band axes, defines new directions (axes) associated exclusively with
the physical characteristics of a scene target. These new axes will be the components
resulting from the TC transformation (CRIST; KAUTH, 1986).

For each sensor, a different transformation suitable for its spectral bands must be
proposed. Three commonly components created for several sensors are the following:
greenness, brightness and wetness. The greenness component is related to the green
vegetation reflectance, while the brightness component is defined in the direction
of soil reflectance variation and may be related to uncovered or partially covered
soils and variations in topography. Finally, the wetness component corresponds to
the direction observed by the variation of soil moisture, and may also be related to
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water (CRIST; KAUTH, 1986; BAIG et al., 2014; YARBROUGH et al., 2014).

• Texture - Grey Level Co-occurrence Matrix (GLCM): The texture is
related to the differences between the grey levels that occur in an image, their
spatial correlation and distribution. Small differences generate a smooth texture,
while great differences are related to a rough texture. To represent the image texture
and its features, Haralick et al. (1973) created the Grey Level Co-occurrence Matrix
(GLCM). It is a tabulation of all different combinations of pixel brightness (grey
levels) that occur in an image or region of image.

Given an image (Figure 2.2A) and its respective grey levels (Figure 2.2B), the matrix
structure (Figure 2.2C) is created based on the possible combinations between the
reference pixels and their neighbors. The GLCM (Figure 2.2D) is filled according to
how many times each combination occurs. To choose which pixel will be considered
as neighbor, a direction (Figure 2.2E) must be considered. In this example, the 0o

direction and a counterclockwise rotation were considered (HALL-BEYER, 2017).

Figure 2.2 - Construction of a GLCM. A) Image; B) Grey levels; C) Matrix structure; D)
GLCM; and E) Directions.

SOURCE: Adapted from Hall-Beyer (2017).

The GLCM is a square matrix and has the same number of lines and columns that
the image quantization level. A image with 256 grey levels, for instance, will cre-
ate a GLCM with 256 lines, 256 columns and 65.536 cells. Based on the GLCM,
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texture features of three groups are created: contrast, order and descriptive statis-
tics. The contrast group is composed by three features: contrast, dissimilarity and
homogeneity. In the order group, there are the entropy and the angular second mo-
ment. Finally, the descriptive statistics group is composed by mean, variance and
correlation (HALL-BEYER, 2017).

2.2.1.2 Random Forest algorithm

Usually, in GEOBIA, the relationships and hierarchies between objects are adaptable
and can be modified according to the needs and interpretation of specialists (HAY;

CASTILLA, 2008). The classification step allows the use of several techniques, such
as empirical decision trees created based on the specialist knowledge and Machine
Learning algorithms. Among them, the Random Forest algorithm (BREIMAN, 2001),
represented in Figure 2.3, has achieved higher accuracy when compared to other
traditional Machine Learning algorithms in several RS applications, especially when
using GEOBIA approaches (MA et al., 2017).

Figure 2.3 - Illustration of a Random Forest algorithm, where a set of decision trees creates
a voting system to choose the class.

SOURCE: Adapted from Oshiro (2013).

This algorithm is an ensemble method, i.e., composed by a set of classifiers and, in
general, is more robust to deal with noisy data and outliers. The Random Forest
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algorithm creates a set of decision trees based on subsets of the training data. The
subsets are generated by a statistical technique called bootstrap, that performs a
random sampling of the training data with replacement. Each decision tree is re-
sponsible for a vote and the most popular class will be assigned to the sample (an
object, in GEOBIA) (BREIMAN, 2001). The performance of the classification using
Random Forest is highly dependent on the input features, also known as shallow
features.

2.2.2 Deep Learning

Machine Learning is a research field within Artificial Intelligence, which seeks to
extract patterns from raw data to acquire some knowledge (GOODFELLOW et al.,
2016). In the last years, a Machine Learning subarea has thrived and allowed pat-
tern representations to be learned through a process called Deep Learning. In Deep
Learning, multiple levels of the data representation are built hierarchically: the first
level detects edges, corners and grey levels, the next ones detect patterns and then
the following ones learn the association of these patterns. The complexity increases
in each level (LECUN et al., 2015).

In the last decades, two aspects were fundamental to allow the recent success of Deep
Learning techniques: the great increase in the capacity of data generation, which are
used as samples; and the improvement of computational infrastructure, both in soft-
ware and in hardware (GOODFELLOW et al., 2016). Deep Learning has reached better
results than traditional Machine Learning techniques in many research fields, such
as speech recognition (SAINATH et al., 2013), object detection (GIRSHICK et al., 2015)
and medical images analysis (LITJENS et al., 2017). In RS field, the use of Deep
Learning also became a trend in the development of digital image processing tech-
niques, especially in three categories: (1) image classification, whereby entire image
patches are labeled with one class (NOGUEIRA et al., 2016); (2) object recognition,
whereby objects of interest in an image are located mostly using bounding boxes
(GUIRADO et al., 2017); and (3) semantic segmentation or pixel-wise classification,
whereby each pixel of the image is labeled (NEVES et al., 2020; ADARME et al., 2020).
In supervised methods, the most used Deep Learning algorithm is the CNN (LECUN

et al., 2015).

2.2.2.1 Convolutional Neural Network (CNN)

The CNNs are composed by multiple hierarchical stages for feature extraction. Each
stage is commonly composed by three parts: (1) Convolutional layers, (2) Activa-
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tion function and (3) Pooling layer. After these stages, there are one or more Fully-
Connected layers and, in the end, a classifier (ZHANG et al., 2016). It is possible to
perform a pixel-wise classification (also known as semantic segmentation in Deep
Learning applications) using CNNs. However, the samples for a supervised classifi-
cation in this case would not be only pixels. CNNs receive images with defined size
as samples and, in this way, the existing context among the pixels is still considered
in the classification.

The most common parts of a CNN are the following:

a) Convolutional layer: It is composed by a set of filters that will be applied to
the input image. The filter (or kernel) consists in a k×k matrix of weights wi, whose
values are learned by the network using the backpropagation algorithm. The k × k
matrix computes the filter in a neighborhood called local receptive field (Figure 2.4),
where the output value is a combination of the input pixel values. After applying
the filter to the entire image, a feature map is generated. The stacked feature maps
resulting from a convolutional layer are the input data for the next layer. The number
of convolutional layers depends on the CNN architecture being used (PONTI et al.,
2017).

Each filter has a unique set of weights, which is shared by the local receptive fields of
the image. This aspect reduces the number of parameters that should be learned and,
consequently, the network training time (LECUN et al., 2015). For each convolutional
layer, it is necessary to define the number of filters and their respective size, stride
and padding. The stride represents the interval of pixels that will be considered
when applying the filters. The padding occurs when the filters consider additional
edges in the input image and it is optional (PONTI et al., 2017).

b) Activation Function: After a convolutional layer, an activation function is
usually applied. The most common in CNNs is the Rectified Linear Unit (ReLU -
Figure 2.5a):

f(x) = max(0, x) (2.1)

where x is the feature map pixel value.
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Figure 2.4 - Illustration of a convolutional process, where the values from the local recep-
tive field are used as input in the filters to produce single pixels output in the
feature maps.

SOURCE: Adapted from Ponti et al. (2017).

Figure 2.5 - Representations of: a) Rectified Linear Unit function; b) Sigmoid function.

SOURCE: Author’s production.

In ReLU function, all negative values are reset to zero and all positive values are
maintained, without losing spatial resolution (GOODFELLOW et al., 2016). It reduces
the data dimensionality and selects which neurons remain active for the next layer
(LECUN et al., 2015).
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c) Pooling layer: A Pooling layer is usually applied in order to reduce the data
dimensionality. Frequently, the operator used is the maxpooling, which selects the
maximum value of the chosen window. The application of maxpooling with window
size 2 × 2 and stride 2 is illustrated in Figure 2.6. The resulting images is 2 times
smaller, but the volume depth is preserved, when existing. This process downsamples
the input image and preserves the higher frequencies.

Figure 2.6 - Pooling layer. a) Applying maxpooling operator; and b) Downsampling the
image, but preserving the volume depth.

SOURCE: Adapted from Li (2018).

d) Fully-Connected layer: It is similar to the hidden layers of Multilayer Percep-
tron (MLP), an Artificial Neural Network algorithm. Each neuron from the Fully-
Connected layer is connected to all layers from the previous layer. In Figure 2.7,
a transition from five feature maps (2 × 2) to one Fully-Connected layer with m

neurons is presented. Each neuron produces an output based on f(x>w + b), where
x is a vector created based on the feature maps, w represents the weights associated
to each neuron from the previous layer and b is the bias.

e) Classification: Usually, after the Fully-Connected layer, the last part of a CNN
is the one that computes probabilities (from 0 to 1) of belonging to each class for
each element (pixel). For each pixel, the class that achieved the highest probability is
assigned. In order to convert predicted values into probabilities, a Sigmoid function
may be used:

f(z) = 1
1 + e−z

(2.2)

where f(z) is the estimated probability between 0 and 1, e is the natural logarithm
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Figure 2.7 - Transition from five feature maps to one Fully-Connected layer.

SOURCE: Adapted from Ponti et al. (2017).

base and z is the input for the function (i.e., the previous value predicted by f(x>w+
b)).

2.2.2.2 U-Net

Traditional CNNs, such as LeNet (LECUN et al., 1990) and AlexNet (KRIZHEVSKY

et al., 2012), predict a single class for each image. As a subgroup of CNNs, Fully
Convolutional Neural Networks (FCNNs - Long et al. (2015)) are tailored to the
task of semantic segmentation. In particular, they take an image patch with an
arbitrary number of channels as input and predict a map usually of the same size
as the input or a little smaller, with a label class assigned for each pixel. The U-net
(RONNEBERGER et al., 2015) belongs to the group of FCNNs and has achieved great
results especially for vegetation targets (FLOOD et al., 2019; WAGNER et al., 2019;
NEVES et al., 2020).

U-net is composed of two usually symmetrical parts, which creates a U-shaped archi-
tecture (Figure 2.8). The first part (left side of Figure 2.8) consists in a multi-layer
convolutional encoder that successively reduces the spatial resolution and increases
the number of filters per layer. This contracting path is able to capture the context
associated to the studied classes. The second part (right part of Figure 2.8) is a
multi-layer convolutional decoder, that up-scales the features to the original spatial
resolution through unpooling layers in order to preserve the information localiza-
tion. They use skip-connections between contracting and expansive paths in order
to concatenate the precise localization of the information (from contracting path)
and the high level features (from the expanding path). These concatenations enables
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the accurate prediction of object boundaries (RONNEBERGER et al., 2015).

In the U-net contracting path, convolutions of 3 × 3 followed by ReLU layers and
2× 2 maxpooling layers with stride two are applied. In each of these downsampling
steps, the number of feature layers (and filters, consequently) is doubled. In the ex-
pansive path, each step corresponds to an upsample of the feature map (unpooling
layer), a concatenation with the corresponding feature maps from contracting path
and two 3 × 3 convolutions followed by ReLUs. At the end, a 1 × 1 convolution is
used to map the feature layers into the desired number of classes (RONNEBERGER

et al., 2015). The unpooling layer is also known as a 2 × 2 transposed convolution.
It is not exactly a deconvolution layer, since the operation is not the mathematical
inverse of the convolution applied in the contracting path. The transposed convolu-
tion applies some padding in the input image before the computation of 2×2 normal
convolutions, reconstructing the desired spatial resolution.

Figure 2.8 - Representation of a U-net. d is the image size, f is the number of filters and
b is the band (or bands) from the input image tile.

SOURCE: Adapted from Ronneberger et al. (2015).
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2.3 Initiatives of Cerrado vegetation mapping

The study and characterization of the Cerrado native vegetation in the field are
essential to assess its ecological functions. However, the in situ analysis is generally
restricted to small areas and also requires more time and financial and human re-
sources. For this reason, RS techniques have been used as an efficient tool to study
the Cerrado vegetation, enabling analysis of large areas and places that are hard to
reach (INPE, 2015; ALENCAR et al., 2020). These analyzes can be performed visually
or using automatic classification methods and several types of RS images. The fol-
lowing sections present a brief review about the main projects and studies related
to Cerrado vegetation mapping. They are separated based on the main techniques
employed.

2.3.1 Visual interpretation

Project of Conservation and Sustainable Use of the Brazilian Biological Diversity
(PROBIO) (SANO et al., 2009) and Terraclass (INPE, 2015) were the first initiatives
to map the vegetation in the entire Cerrado using Landsat satellite imagery. Both
projects adopted a methodology based on image segmentation and visual interpre-
tation to map the Cerrado vegetation. PROBIO produced a map for the year 2002
based on the classification system proposed by IBGE (2012). Differently, Terraclass
adopted the Ribeiro and Walter (2008) classification system to produce the map for
the year 2013.

Due to the difficulty in differentiating detailed physiognomies employing 30m spatial
resolution images, both projects grouped them. PROBIO obtained 71% of overall
accuracy to classify three vegetation types: Forest, Savanna and Grassland (SANO

et al., 2009). TerraClass Cerrado reached an overall accuracy of 80.2%, considering
all of its land use and land cover classes (i.e., including classes such as Agriculture
and Pasture). However, it mapped Forest and Non-Forest (comprises Savanna and
Grassland) classes with an overall accuracy ranging from 60% to 65% (INPE, 2015).
One possibility to reduce the confusion is using better spatial resolution images.

Pinheiro and Durigan (2009) used aerial and QuickBird images (0.65m - fused) to
discriminate Humid Open Grassland, Shrub Savanna, Typical Savanna, Woodland
Savanna and Tall Woodland. Their purpose was to evaluate the succession stages of
the physiognomies from 1962 to 2006, therefore they did not develop a classification
methodology and also did not provide accuracy measures. The authors claimed to
be possible to differentiate physiognomies in QuickBird images. Despite that, map-
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ping through visual interpretation is a time-consuming process and has an intrinsic
subjectivity due to different interpreters who are performing the task. Nowadays,
there are other methodologies to partially or totally automate the mapping process.

2.3.2 Machine Learning

MapBiomas Project has performed the automatic land use and land cover mapping
for the entire Cerrado biome, using Landsat imagery (SOUZA et al., 2020; ALENCAR

et al., 2020). In 2020, MapBiomas released its fifth collection, which includes a series
of annual (from 1985 to 2019) maps produced by a classification method based on
Random Forest algorithm to discriminate Forest, Savanna and Grassland. For each
collection, MapBiomas methodology is modified to improve the resulting maps. The
maintenance of consistent maps over time is fundamental for analysis that imply
the application of penalties, such as the Soy Moratorium in the Amazon.

Other initiatives of semi-automatic or automatic Cerrado vegetation mapping have
been performed in small study sites. Some of them included the seasonality, an im-
portant aspect of the Cerrado vegetation. In this case, high temporal but low spatial
resolution (250m) imagery from MODIS (Moderate Resolution Imaging Spectrora-
diometer) were used (ACERBI-JUNIOR et al., 2006; BORGES; SANO, 2014; COSTA et

al., 2015; ABADE et al., 2015). MODIS data is commonly used to estimate vegetation
indices, such as EVI (Enhanced Vegetation Index) (BORGES; SANO, 2014; COSTA et

al., 2015) and NDVI (Normalized Difference Vegetation Index) (ABADE et al., 2015).

The differentiation of the physiognomies through vegetation indexes times series
can be performed using algorithms that calculate similarities between the temporal
profiles (e.g., Euclidean distance and Spectral Angle Mapper - SAM) (ABADE et al.,
2015; BORGES; SANO, 2014) or using classification algorithms, such as SVM and MLP
(ABADE et al., 2015; COSTA et al., 2015). However, due to the low spatial resolution,
MODIS data generate mixture of classes in the same pixel and hinders the proper
detailing of the vegetation classes. Abade et al. (2015) grouped the physiognomies
into only one class “Cerrado” to separate them from Caatinga vegetation in a frontier
between both biomes. They achieved an accuracy of 80.65%. Costa et al. (2015)
obtained an overall accuracy of 85.96% in the classification of three classes: Native
Grasslands, Pasture (cultivated) and Others.

Differently, Borges and Sano (2014) achieved better detailing of vegetation classes,
differentiating the following ones: Shrub Grassland, Shrub Savanna, Typical Sa-
vanna, Woodland Savanna, Seasonal Semideciduous Forest, Seasonal Deciduous For-
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est (Dry Forest), Secondary Vegetation, Agriculture and Cultivated Pasture. How-
ever, they used images from 2000 to 2011 (276 images) and considered only the
predominant pattern of each pixel. Areas converted to other land covers in this pe-
riod were classified as the predominant class, which overrates the natural vegetation
area. The validation was performed using only 90 points in a RapidEye orthoimage
with 5m of spatial resolution and the overall accuracy obtained was 84%. Consid-
ering that, in the validation process, only 1 and 5 points were selected for Shrub
Grassland and Shrub Savanna classes, respectively, their patterns may not have been
well represented in the classification.

Acerbi-Junior et al. (2006) had the purpose of creating an approach with the Landsat
spatial resolution and the MODIS temporal resolution to map Cerrado vegetation.
For that, they combined MODIS and Landsat data in a hybrid image through fusion
based on Wavelet transform. However, the highest accuracy in the classification of
Forest, Savanna and Grassland was 87.69% with only Landsat images, using the
Maximum Likelihood estimation. Using the hybrid image to classify the same classes,
the accuracy was 82.71%. Thus, despite presenting a temporal resolution favorable to
the analysis of the Cerrado vegetation seasonality, the spatial resolution of MODIS
images is not suitable to differentiate the vegetation patterns.

Having a better spatial resolution, Landsat imagery have been widely used to map
Cerrado vegetation, even in general applications that do not require the individual-
ization of physiognomies (MÜLLER et al., 2015; GRECCHI et al., 2013). Müller et al.
(2015) employed NDVI time series metrics (from 2009 to 2012) and Random Forest
algorithm to distinguish Forest and Savanna. They achieved an overall accuracy of
92.19%. Despite they obtained high classification accuracy, their methodology was
not designed to distinguish detailed physiognomies. Similarly to Borges and Sano
(2014), Müller et al. (2015) used time series in the classificaton process but did
not identify land cover conversions in the analyzed period, which may have caused
misclassifications.

This same problem was observed in Schwieder et al. (2016), who classified the fol-
lowing physiognomies based on the Ribeiro and Walter (2008) classification system:
Open Grassland, Shrubby Grassland, Shrubby Savanna (Campo Cerrado), Wooded
Savanna (Cerrado Sensu Stricto), Savanna Woodland (Cerrado Denso), Dense Cer-
rado Woodland (Cerradão) and Gallery Forests. They used phenological metrics
from 2000 to 2014 calculated based on TC components, which were computed us-
ing Landsat images. The overall accuracy with SVM algorithm was 63%. Despite
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the long period analyzed, the lack of data in some months may have affected the
classification and generated artefacts in the final map.

Additionally, Schwieder et al. (2016) observed considerable confusions in transi-
tion areas between the Open Grassland and Shrubby Grassland and also between
Shrubby Grassland and Shrubby Savanna. To overcome this problem and increase
the accuracy, the authors considered the classification errors between adjacent classes
as correct classifications. For example, if there were 290 correct validation points in
a total of 451 (64% of accuracy) for Shrubby Grassland, in the new approach the
correct validation points in adjacent classes were added and the total correct points
turned to 433 (Open Grassland + Shrubby Grassland + Shrubby Savanna) in 451,
achieving an accuracy of 96%. Despite the significant increase, the new accuracies
do not truly represent the method’s ability to differentiate the physiognomies.

Misclassifications in transition areas were also observed by Ferreira et al. (2007)
and Jacon et al. (2017). The first one classified 5 physiognomies (Cerrado Grassland
- Campo Limpo, Shrub Cerrado - Campo Sujo, Wooded Cerrado - Cerrado Ralo,
CerradoWoodland - Cerrado Típico and Gallery Forest) using Mahalanobis Distance
and two types of LSMM created from Landsat images: a general one, including the
soil, vegetation and water fractions, and a specific one, with Grassland, Savanna and
Forest fractions. Despite the accuracy of 89% using the general LSMM, confusions
in transition areas occurred. Shrub Cerrado (21%) was classified as Wooded Cerrado
and Wooded Cerrado (18%) was classified as Shrub Cerrado. The spectral similarity
(and consequent confusion) between the physiognomies is higher in transition areas,
considering the vegetation cover gradient presented in Figure 2.1, therefore their
patterns are not linearly separable (FERREIRA et al., 2007). Besides, images with 30m
spatial resolution are not appropriate to deal with the spectral similarity between
two or more physiognomies in transition areas.

Using 6 hyperspectral images from Hyperion/EO-1 (30m spatial resolution) acquired
in different dates, Jacon et al. (2017) used three types of metrics (reflectance, vegeta-
tion indices and absorption parameters) and Multiple Discriminant Analysis (MDA)
to differentiate seven Cerrado physiognomies: Gallery Forest, Dense Woodland Sa-
vannah (Cerrado Denso), Woodland Savannah (Cerrado Típico), Open Woodland
Savannah (Cerrado Ralo), Wooded Savannah (Campo Cerrado), Shrub Savannah
(Campo Sujo) and Savannah Grasslands (Campo Limpo). The overall accuracy was
higher in the dry season than in the wet season: 84.2% and 81.4%, respectively.
During the dry season, the spectral separability of the physiognomies increases.
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However, even using hyperspectral imagery, confusions were observed between Sa-
vannah Grassland and Shrub Savannah, and between Woodland Savannah and Open
Woodland Savannah in transition areas.

Using a high spatial resolution image from WorldView-2 (2 meters), Girolamo-
Neto (2018) tested different levels of legend. In the first level (Forest, Savanna
and Grassland), they obtained accuracy of 88.95%. However, the accuracy dropped
to 68.60% in the detailed level, which classified 10 physiognomies: Gallery Forest,
Vereda, Woodland Savanna, Typical Savanna, Shrub Savanna, Shrub Grassland,
Open Grassland, Rupestrian Grassland, Humid Open Grassland and Humid Open
Grassland with murundus. Girolamo-Neto (2018) showed the potential of texture
features to separate some classes (e.g., Open Grassland and Shrubby Grassland).

2.3.3 GEOBIA

Using Landsat image for the years 1985, 1995 and 2005, Grecchi et al. (2013) adopted
a methodology based on GEOBIA to identify Cerrado natural vegetation, a general
class. They used the Nearest Neighbor (NN) algorithm, which classifies the objects
based on a similarity measure. The reflectance, the Crop Enhanced Index (CEI)
and the terrain slope were used as features and the overall accuracy was of 86%.
With a better spatial resolution, Silva and Sano (2016) and Orozco-Filho (2017)
used RapidEye images to classify Cerrado vegetation types.

Silva and Sano (2016) performed image segmentation and classification based on
Euclidean distance to discriminate Forest, Savanna and Grassland classes. They
obtained accuracy values of 91% (Forest), 90% (Savanna) and 71% (Grassland).
However, in each of the three classified images, only one class was predominant.
Thus, the classification was between Forest and Non-Forest in one scene, Savanna
and Non-Savanna in the other and Grassland and Non-Grassland in the last. The
confusion between different classes of vegetation barely occurred and might have not
interfered in the classification. Orozco-Filho (2017) obtained an accuracy of 86% with
decision trees and an object-based approach. To accomplish that, he grouped some
classes (Humid Open Grassland and Veredas) and did not subdivided any Forest
formation.

Altought Ribeiro and Walter (2008) proposes a hierarchical structure, which simpli-
fies the classification of Cerrado vegetation types, just few works have explored this
hierarchical aspect (NEVES et al., 2019; RIBEIRO et al., 2020). Neves et al. (2019) used
GEOBIA techniques and Random Forest algorithm to compare a hierarchical and
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a non-hierarchical approach to differentiate seven Cerrado physiognomies. Despite
showing the superiority of the hierarchical approach over the non-hierarchical one,
the accuracy for some physiognomies were still low. More recently, Ribeiro et al.
(2020) also used GEOBIA and Random Forest algorithm and furthermore included
a spatial contextual ruleset to represent other environmental factors (e.g., soil type,
slope and elevation) to improve the identification of Cerrado vegetation classes. They
classified 13 classes (11 of which were vegetation types) and achieved an overall ac-
curacy of 87.6%. However, their semi-automatic methodology still relies on some
subjective tasks, such as the determination of segmentation image parameters.

2.3.4 Deep Learning

To improve the detailing of Cerrado vegetation mapping, a large variety of Machine
Learning techniques such as Random Forest and Decision Trees have been employed.
For Savanna vegetation, some efforts have already been made using Deep Learning to
delineate tree crowns (BRANDT et al., 2020; TORRES et al., 2020). However, Nogueira
et al. (2016) were the first to employ a Deep Learning-based method to identify
Cerrado vegetation patterns, which include several tree heights, tree cover and shrub
and herbaceous vegetation.

Using RapidEye imagery, Nogueira et al. (2016) classified entire regular image
patches as only one class (Forest, Savanna or Grassland), resulting in a considerable
mixture of classes in a single patch. A semantic segmentation (i.e., the assignment
of a separate class per pixel, also known as pixel-wise classification) of the three
major ecosystem groups was performed by Neves et al. (2020), using a modified U-
net architecture and 8 WorldView-2 spectral bands. Compared to the classification
approach performed by Nogueira et al. (2016), the semantic segmentation proposed
by Neves et al. (2020) resulted in a much better delineation of each class.

Table 2.2 presents a summary about the projects and studies on Cerrado vegetation
mapping analyzed in Section 2.3.
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Table 2.2 - Summary of initiatives for Cerrado vegetation mapping analyzed in Section
2.3.

Reference Image Classes* Method Accuracy Contribution Limitation

Abade et al. (2015)
MODIS
(250m)

Cerrado (Stricto
Sensu and
Grassland)

Euclidean dis-
tance, SAM
and SVM

80.75%

Classification in
transition areas
with Caatinga

biome

Low spatial
resolution

Acerbi-Junior et al. (2006)
MODIS and
Landsat

(fusion - 30m)

Forest,
Savanna and
Grassland

Maximum
likelihood

87.59%

Integrated Landsat
spatial resolution

and MODIS
temporal resolution

Highest accuracy
achieved with
Landsat only

Alencar et al. (2020)
(MapBiomas)

Landsat
(30m)

Forest,
Savanna and
Grassland

Decision trees
and Random

Forest
71%

Three decades of
automatic mapping
of the entire biome

Confusions between
Grassland and Pasture
and between Savanna

and Forest

Borges and Sano (2014)
MODIS
(250m)

6 physiognomies SAM 84%
Used time series
to represent
seasonality

Did not detect
class conversions
during the period
(11 years). Few
validation points

(To be continued)



Table 2.2 - Summary of initiatives for Cerrado vegetation mapping analyzed in Section
2.3 (Continued).

Reference Image Classes* Method Accuracy Contribution Limitation

Costa et al. (2015)
MODIS
(250m)

Grasslands,
Pasture and Others

SVM, MLP and
Autoencoder

85.96%

Investigated the
separation of

Pasture
and Grasslands

Reference data
for Pasture and

Grasslands are from
different years (2006

and 2009, respectively)

Ferreira et al. (2007)
Landsat
(30m)

5 physiognomies
Mahalanobis
distance

89%
Used LSMM
fractions

Confusion between
Shrub Cerrado and
Wooded Cerrado

Girolamo-Neto (2018)
WorldView-2

(2m)
10 physiognomies

Random
Forest

68.52%
Used image
texture

Low accuracy
for detailed

level

Grecchi et al. (2013)
Landsat
(30m)

Cerrado natural
vegetation

NN 86%
Considerated
slope data

No detailing
of natural

vegetation types

INPE (2015)
(TerraClass Cerrado)

Landsat8/OLI
(30m)

Forest and Non-
Forest

Segmentation
and visual

interpretation

Between
60% and
65%

Entire biome
mapping

Grouped Grassland and
Savanna. Low accuracy

(To be continued)



Table 2.2 - Summary of initiatives for Cerrado vegetation mapping analyzed in Section
2.3 (Continued).

Reference Image Classes* Method Accuracy Contribution Limitation

Jacon et al. (2017)
Hyperion/EO-1

(30m)
7 physiognomies MDA 84.2%

Differentiated
vegetation patterns

in dry and wet
season

Misclassification
in transition areas

Müller et al. (2015)
Landsat
(30m)

Forest and
Savanna

Random
Forest

92.19%
Used time series
of 30m spatial
resolution

Did not detect
class conversions
during the period

Neves et al. (2019)
WorldView-2

(2m)
7 physiognomies

Random
Forest

68.95%
Used a

hierarchical
approach

Low accuracy

Neves et al. (2020)
WorldView-2

(2m)

Forest,
Savanna and
Grassland

Deep Learning 87%

Used Deep
Learning approach
and performed

pixel-wise
classification

No physiognomies
detailing

Nogueira et al. (2016)
RapidEye

(5m)

Forest,
Savanna and
Grassland

Deep Learning 90.54%
Used Deep

Learning approach

Classified entire
image patches.
Poor delineation

Orozco-Filho (2017)
RapidEye

(5m)
5 physiognomies

Decision
trees (J48)

86.1%
Used object-

based approach
Grouped some
physiognomies
(To be continued)



Table 2.2 - Summary of initiatives for Cerrado vegetation mapping analyzed in Section
2.3 (Continued).

Reference Image Classes* Method Accuracy Contribution Limitation

Pinheiro and Durigan (2009)
Aerial photos
and QuickBird

(0.6m)
5 physiognomies

Visual
Interpretation

-
High Spatial
resolution

Did not perform
validation

Ribeiro et al. (2020)
RapidEye

(5m)
11 physiognomies

GEOBIA and
Random
Forest

87.6%
Included a

spatial context
ruleset

Relies on
subjective

steps

Sano et al. (2009)
(PROBIO)

Landsat7/ETM+
(30m)

Forest,
Savanna and
Grassland

Segmentation
and visual

interpretation
71%

Entire biome
mapping

Confusions between
Grassland and Pasture
and between Savanna

and Forest

Schwieder et al. (2016)
Landsat
(30m)

7 physiognomies SVM 63%
Used time series
of 30m spatial
resolution

Lack of data
for some months
and confusion in
transition areas

Silva and Sano (2016)
RapidEye

(5m)

Forest,
Savanna and
Grassland

Segmentation
and Euclidean

distance

Between
71% and
91%

High Spatial
resolution

Predominance
of one class
in each scene

* Considering only the classes of vegetation.
SOURCE: Author’s production.



3 METHODOLOGY

This research was developed using two different classification approaches: GEO-
BIA (Section 3.3) and Deep Learning (Section 3.4). Figure 3.1 shows a simplified
methodology flowchart, where WorldView-2 image is preprocessed and segmented.
The resulting image and the segmentation are used by both GEOBIA and Deep
Learning approaches. This last approach is divided into two parts: analysis of spec-
tral input data and hierarchical semantic segmentation. Each step will be further
explained in the following sections.

Figure 3.1 - Simplified methodology flowchart. Inside the circles, the respective section
numbers are displayed.

SOURCE: Author’s production.

3.1 Study site

As study site, a Brazilian Protected Area was chosen to ensure the analysis of na-
tive Cerrado vegetation. The Brasília National Park (BNP) (Figure 3.2), located
in the Federal District, Brazil, comprises approximately 423 km2 of preserved Cer-
rado vegetation. It is a representative area of Cerrado native vegetation, since it
encompasses the major physiognomies found in Cerrado biome (FERREIRA et al.,
2001; FERREIRA et al., 2007) and presents high ecological relevance, containing sev-
eral endangered species (ICMBIO, 1998) and a dam that is responsible for 25% of the
Federal District’s water supply. This Protected Area was also used as study site in
several other works (FERREIRA et al., 2001; FERREIRA et al., 2007; SCHWIEDER et al.,
2016; GIROLAMO-NETO, 2018), which attests its representativeness and facilitates
the comparison of results.

According to the existing physiognomies that occur in the study site and the clas-
sification system proposed by Ribeiro & Walter (RIBEIRO; WALTER, 2008), we dif-
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Figure 3.2 - Location of the Brasília National Park image (true color composite), in the
Federal District.

SOURCE: Author’s production.

ferentiated two hierarchical levels of classes (Figure 3.3). In the first level, the three
major ecosystem groups (also known as formations) were classified: Forest, Savanna
and Grassland. The Forest formations present the predominance of arboreal species,
forming continuous or discontinuous canopy. In the second level, the Forest was
maintained as Gallery Forest (Mata de Galeria), since it is the only Forest phys-
iognomy with significant presence in this area. In Savanna formations, the presence
of continuous canopy is uncommon and there are trees and shrubs scattered over
grasses. The areas identified as Savannas in the first level were subdivided into
Woodland Savanna (Cerrado Denso), Typical Savanna (Cerrado Típico), Rupes-
trian Savanna (Cerrado Rupestre), Shrub Savanna (Cerrado Ralo) and Vereda in
the second level. Woodland, Typical, Rupestrian and Shrub Savanna are commonly
defined as subtypes of a class named Savanna Sensu Stricto (Cerrado Sensu Stricto),
but such a definition was not used in this work.
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Figure 3.3 - Class hierarchical levels, based on Ribeiro and Walter (2008) and Table 2.1.

SOURCE: Author’s production.

In the Grasslands, there are predominantly herbaceous species and some shrubs.
Four sub-classes were differentiated in the second level: Shrub Grassland (Campo
Sujo), Open Grassland (Campo Limpo), Rupestrian Grassland (Campo Rupestre)
and Humid Open Grassland (Campo Limpo Úmido). The Humid Open Grassland is
a subtype of Open Grassland, but it was considered an independent class due to its
significant presence in the study site. The individual definitions and characteristics
of the physiognomies are presented in Table 2.1. Their patterns in a true color
composite of the WorldView-2 image can be seen in Figure 3.4.

3.2 Remote sensing data, preprocessing and segmentation

The high spatial resolution (2 meters) image used in this work is a WorldView-
2 multispectral image (tile ID: 103001003373A600; processing level: standard 2A)
acquired in July 22, 2014. With 16-bit radiometric resolution, this image has 8 multi-
spectral bands, whose wavelength ranges are presented in Table 3.1 (DIGITALGLOBE,
2021). Initially represented in Digital Numbers (DN), the image was converted to
surface reflectance using the Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) algorithm (PERKINS et al., 2005) available in the ENVI 5.2 software (EX-

ELIS, 2013).
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Figure 3.4 - Patterns of the physiognomies in the WorldView-2 image (true color compos-
ite).

SOURCE: Author’s production.

Table 3.1 - Wavelength ranges of the WorldView-2 multispectral bands.

Spectral band Wavelength (nm)
Coastal 400-450
Blue 450-510
Green 510-580
Yellow 585-625
Red 630-690

Red-Edge 705-745
Near Infrared 1 770-895
Near Infrared 2 860-1040

SOURCE: DigitalGlobe (2010).

The WorldView-2 image was partitioned into meaningful segments (objects), called
Superpixels (ÇIǧLA; ALATAN, 2010). The algorithm used was the Simple Linear It-
erative Clustering (SLIC), implemented in the Scikit-Learn Python package (PE-
DREGOSA et al., 2011). This is an adaptation of the k-means algorithm (MACQUEEN

et al., 1967), which computes the weighted distance measure through a combination
of color (in the CIELAB color space) and spatial proximity. As input for SLIC,
we use Red, Green and Blue bands, since the CIELAB color space is defined by
the lightness (color brightness). It is also possible to control the compactness of
the Superpixels. If its value is large, spatial proximity is more relevant, therefore
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Superpixels are more compact (close to a square in shape). However, when the com-
pactness value is small, they adhere more to image boundaries and have less regular
size and shape (ACHANTA et al., 2012). Chosen empirically, in this study, compact-
ness equals to 400 was used (Figure 3.5). This value depends on the range of data
value used, and it was chosen empirically to create Superpixels that adhere well to
the class patterns.

Figure 3.5 - SLIC result in regions of the WorldView-2 image (true color composite) using
compactness equal to 400. Image on the left is a region of Gallery Forest and
image on the right is a region of Grassland. Both are on the same scale.

SOURCE: Author’s production.

3.2.1 Reference data

A Cerrado physiognomies map produced from high spatial resolution at this level
of detail is not available yet. Therefore, reference data to validate our results had
to be produced. To execute the GEOBIA approach, a set of points collected by
Girolamo-Neto (2018) in a fieldwork was used. The fieldwork was realized in July,
2017 (in the dry season, the same period of the WorldView-2 image acquisition),
in which 141 sample points were collected. Since the target classes of this work are
natural vegetation patterns in a Protected Area, it is expected that the classes in
the image date (2014) are still the same during fieldwork, in 2017. However, to make
sure of that, each fieldwork sample point was double-checked in the WorldView-2
image and also more 877 sample points were obtained through visual interpretation.
This resulted in a total of 1018 samples.

As the FCNN requires classified patches (rather than points) as samples, the entire
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WorldView-2 image was classified through visual interpretation, and then it was
used as reference data. Considering our intention to differentiate types of natural
vegetation, some minority areas were masked in the reference data (built-up areas,
water bodies, bare soil and burned areas), then remaining ten classes of interest,
described in Table 2.1 and illustrated in Figure 3.4. In Figure 3.6, both references
used in this research are presented.

Figure 3.6 - Reference data used in A) GEOBIA approach; and B) Deep Learning ap-
proach. Classes without an associated point in the legend were not used in
GEOBIA approach.

SOURCE: Author’s production.

3.3 GEOBIA

GEOBIA approach was performed according to the flowchart presented in Figure 3.7.
The preprocessed WorldView-2 image was taken as input in the feature extraction
step. In order to integrate the features and the segmentation, the mean value for
each feature was computed for each object to further perform the classification. In
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this approach, three results were achieved: feature selection and analysis, accuracy
assessment, and Cerrado physiognomies map. Each step will be further explained.

Figure 3.7 - Flowchart of the classification approach using GEOBIA. Numbers inside pink
circles represent the sections where the processes are described.

SOURCE: Author’s production.

3.3.1 Feature extraction

From WorldView-2 surface reflectance image, the following types of features were
extracted: Vegetation Indices, fractions of the Linear Spectral Mixture Model, com-
ponents of the Tasseled Cap transformation and texture images. In order to trans-
form the pixel information into an object-based information, the average value of
each feature was computed on each Superpixel. This process was not necessary for
the texture images, since they were already extracted considering the Superpixels.
More details about each type of feature will be presented in the following sections.

3.3.1.1 Vegetation Indices (VI)

These indices are commonly used to highlight vegetation targets in satellite images.
They are based on the distinct spectral response that the vegetation has especially
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in the regions of visible and Near Infrared (NIR) (PONZONI; SHIMABUKURO, 2010).
Five VIs were extracted: Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), 2-band Enhanced Vegetation Index (EVI2), Soil-Adjusted
Vegetation Index (SAVI) and Modified Soil-Adjusted Vegetation Index 2 (MSAVI2).
Their respective equations and references are described in Table 3.2.

Table 3.2 - Equations and references of the five extracted Vegetation Indices.

Vegetation Index Equation Reference
Normalized Difference

Vegetation Index (NDVI)
ρNIR− ρR
ρNIR + ρR

Rouse et al. (1974)

Enhanced Vegetation
Index (EVI) 2.5 ρNIR− ρR

ρNIR + C1 ∗ ρR− C2 ∗ ρB + L
Huete et al. (1997)

2-band Enhanced
Vegetation Index (EVI2) 2.5 ρNIR− ρR

ρNIR + 2.4ρR + 1 Jiang et al. (2008)

Soil-Adjusted
Vegetation Index (SAVI)

ρNIR− ρR
ρNIR + ρR + L1

∗ (1 + L1) Huete (1988)

Modified Soil
-Adjusted Vegetation
Index 2 (MSAVI2)

2 ∗ ρNIR + 1−
√

(2 ∗ ρNIR + 1)2 − 8 ∗ (ρNIR− ρR)
2 Qi et al. (1994)

where ρNIR is the Near Infrared reflectance, ρR is the reflectance in the Red band,
ρB is the reflectance in the Blue band, L is the soil line adjustment parameter (1),
C1 and C2 are the aerossol resistence terms (6 and 7.5) and L1 is a correction factor
that depends on vegetation cover (0.5).
SOURCE: Author’s production.

3.3.1.2 Linear Spectral Mixture Model (LSMM)

The LSMM was applied to estimate the proportions of three components in each
pixel: Vegetation, Soil and Shade - Equation 3.1 (SHIMABUKURO; SMITH, 1991). To
create the LSMM fraction images, ten endmembers (pure pixels) were selected for
each component. The resulting feature images are presented in Figure 3.8.

ri =
N∑

j=1
(aij × xj) + ei (3.1)

where ri is the spectral reflectance mean for the ith band of a pixel with N compo-
nents; j is the number of components; i is the number of bands; aij is the spectral
reflectance of the jth component of a pixel for the ith band; xj is the proportional
value of the jth component of the pixel; and ei is the error for the ith band.
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Figure 3.8 - Vegetation, Soil and Shade fractions resulting from the LSMM.

SOURCE: Author’s production.

3.3.1.3 Tasseled Cap (TC) transformation

Through the Tasseled Cap (TC) transformation, the information from the eight
bands of the WorldView-2 image was aggregated into components that are strongly
related to the physical characteristics of the image. This process reduces the data
dimensionality and results in three components: Greenness, Wetness and Bright-
ness. The coefficients proposed by Yarbrough et al. (2014) were employed in the
transformation.

Table 3.3 - Coeffients of the Tasseled Cap trasformation.

WorldView-2 band
TC component Coastal Blue Green Yellow Red Red-Edge NIR1 NIR2
Brightness -0.060436 0.012147 0.125846 0.313039 0.412175 0.482758 -0.160654 0.673510
Greenness -0.140191 -0.206224 -0.215854 -0.314441 -0.410892 0.095786 0.600549 0.503678
Wetness -0.270951 -0.315708 -0.317263 -0.242544 -0.256463 -0.096550 -0.742535 0.202430

SOURCE: Adapted from Yarbrough et al. (2014).
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3.3.1.4 Texture features

Based on the GLCM proposed by Haralick et al. (1973) (see details in Section
2.2.1.1), six texture features were extracted for each superpixel: Contrast, Dissimi-
larity, Entropy, Homogeneity, Correlation and Second Angular Moment. They were
calculated in the software eCognition Developer 9.01 and their equations are pre-
sented in Table 3.4.

Table 3.4 - Equations of the texture features extracted based on the GLCM.

GLCM feature Equation

Contrast
N−1∑
i,j=0

Pi,j(i− j)2

Dissimilarity
N−1∑
i,j=0

Pi,j|i− j|

Entropy
N−1∑
i,j=0

Pi,j(− lnPi,j)

Homogeneity
N−1∑
i,j=0

Pi,j

1 + (i− j)2

Correlation
N−1∑
i,j=0

Pi,j

(i− µi)(j − µj)√
(σ2

i )(σ2
j )


Second angular moment

N−1∑
i,j=0

P 2
i,j

where P is the element in the position i, j of the GLCM with N gray levels, µ is the
mean and σ2 is the variance.
SOURCE: Adapted from Haralick et al. (1973) and Hall-Beyer (2017).

3.3.2 Classification

The classification with GEOBIA was performed using two approaches: non-
hierarchical and hierarchical. The hierarchical approach mainly follows the hierarchy
presented in Figure 3.3. However, the second level is composed by seven physiog-
nomies (Gallery Forest, Woodland Savanna, Typical Savanna, Shrub Savanna, Shrub
Grassland, Open Grassland and Rupestrian Grassland). In the non-hierarchical ap-
proach, the same seven physiognomies are differentiated in one step, without de-
tecting Forest, Savanna and Grassland first. The number of samples for each phys-
iognomy is presented in Table 3.5. The number of Savanna and Grassland samples,
from the first level, corresponds to the sum of the samples of their respective phys-
iognomies (594 for Savanna and 335 for Grassland).
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Table 3.5 - Number of samples for each classified physiognomy.

Physiognomy Number of samples
Gallery Forest 89
Shrub Savanna 186
Typical Savanna 362

Woodland Savanna 46
Rupestrian Grassland 12

Shrub Grassland 211
Open Grassland 112

Total 1018

SOURCE: Author’s production.

Rupestrian Savanna and Vereda were not detected in the GEOBIA approach, since
there were not enough training and validation points representing them. The Humid
Open Grassland was included in the Open Grassland physiognomy. The result of the
first classification level was used as input data to the next level. The misclassified
superpixels at the first level were also considered as errors at the second level. In
order to outline the importance of each group of features for the classification, several
experiments with different combinations of features as input data were performed in
the hierarchical approach (Table 3.6). Except for the first experiment, that includes
all groups of features, the others use all features except one at a time. The five
groups of features were represented as follows:

• Spectral: reflectance values from 7 spectral bands - Coastal band was not included
in order to avoid the atmosphere influence in the classification (DIGITALGLOBE,
2010).

• VegInd: five vegetation indices presented in Section 3.3.1.1.

• SMA: three image fractions resulting from the spectral mixture analysis performed
with the LSMM according to Section 3.3.1.2.

• TCap: three image components resulting from the TC transformation - Section
3.3.1.3.

• TX: six texture features presented in Section 3.3.1.4.
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Table 3.6 - Experiments of hierarchical classification combining five groups of features.

Experiment Composition of input data
All All five groups of features

ExceptTCap Spectral, VegInd, SMA and TX features
ExceptSMA Spectral, VegInd, TCap and TX features
ExceptVegInd Spectral, SMA, TCap and TX features
ExceptSpectral VegInd, SMA, TCap and TX features
ExceptTX Spectral, VegInd, SMA and TCap features

SOURCE: Author’s production.

The classification experiments (both non-hierarchical and hierarchical) were per-
formed in the software Weka 3.8.4 (HALL et al., 2009) using the Random Forest
algorithm (BREIMAN, 2001). According to the recommendation of Breiman (2001),
the number of trees was set to 100 in all experiments. The classification accuracies
were generated using a 10-fold cross validation, which means that the samples are
randomly partitioned into ten groups. Nine groups are used as training set, while
the remaining group corresponds to the test set that will evaluate the model. This
procedure is repeated until each one of the ten groups is used as test set (i.e., ten
times), and the final accuracy corresponds to the average value.

3.4 Deep Learning

The Deep Learning approach was performed according to the flowchart presented
in Figure 3.9. The first part of the methodology (Figure 3.9A) corresponds to the
investigation of several input datasets and results in the best combination of features
to be used as input in the part B (Figure 3.9B). This part presents the steps re-
quired to perform the semantic segmentation approach. Hierarchical physiognomies
mapping, using the semantic segmentation presented in Figure 3.9B, is explained
in Figure 3.9C. The semantic segmentation icon is used to indicate every time it is
performed. Every procedure of the flowchart is described in detail in the following
sections.

3.4.1 Network Architecture

In this work, a variation of the U-net architecture (RONNEBERGER et al., 2015),
proposed by Kumar (2018), was used in all tasks of pixel-wise classification (semantic
segmentation). The architecture mainly follows the design-choices of Ronneberger
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Figure 3.9 - Methodological flowchart presenting: A) Data spectral analysis generating the
best input dataset; B) Semantic segmentation approach; and C) Hierarchi-
cal mapping methodology. Numbers inside pink circles represent the sections
where the processes are described.

SOURCE: Author’s production.

et al. (2015). However, it was modified as follows: while the original version uses
unpadded convolutions, zero-padding (addition of zeros) was used to preserve the
spatial size along the network. The up-sampling is based on transposed convolutions
with a stride of two along both spatial dimensions.

Network parameters, such as the number of layers and number of filters per layer,
are depicted in Figure 3.10. The input layer, represented in grey, has the size of the
sample patches (160×160). The depth (N) is the number of bands. The output layer
has the same size of the input layer, but the depth is represented by the number of
classes C. Every other layer is represented according to the legend; a 2 × 2 Max-
Pooling layer, for instance, is illustrated in pink. The numbers in brackets are the
image sizes in each layer followed by the number of filters. As in the original U-net,
skip-connections are used to concatenate information of high spatial resolution but
low complexity with information of low spatial resolution but high complexity.

While the last layer of a network for semantic segmentation is usually modelled by
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Softmax function, here Sigmoid function is used. This output layer was preferred
here because it presented higher overall accuracies in preliminary tests. This al-
lows the model to predict independent probabilities per class and per pixel. Final
class predictions are obtained by choosing the respective classes with the highest
probabilities. The Network was implemented in a Python environment, using Keras
(CHOLLET et al., 2015) with TensorFlow (ABADI et al., 2015) as backend. The NVIDIA
GeForce RTX 2070 super (8GB) GPU was used.

Figure 3.10 - Modified U-net architecture. N (in the input size) is the number of bands,
while C (in the output size) corresponds to the number of classes.

SOURCE: Adapted from Kumar (2018).

3.4.2 Analysis of spectral input data

To test the network performance according to the input spectral data, eight
datasets were created: RGB, RGB+EVI2, LSMM, RGB+LSMM, RGB+RedEdge,
RGB+NIR1+NIR2+RedEdge, RGB+NIR1+NIR2 and the 8 bands. Table 3.7
presents the composition of each dataset. The EVI2 and the LSMM fractions are the
same used in the GEOBIA approach, described in the Sections 3.3.1.1 and 3.3.1.2,
respectively.
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Table 3.7 - Description of the datasets used in the analysis of spectral input data.

Dataset Composition
RGB Red, Green and Blue spectral bands

RGB+EVI2 Red, Green and Blue spectral bands and EVI2
LSMM Vegetation, Soil and Shade fractions from LSMM

RGB+LSMM Red, Green and Blue spectral bands
and the three fractions of LSMM

RGB+RedEdge Red, Green, Blue and Red-Edge spectral bands

RGB+NIR1+NIR2+RedEdge Red, Green, Blue, Red-Edge,
NIR1 and NIR2 spectral bands

RGB+NIR1+NIR2 Red, Green, Blue, NIR1 and NIR2 spectral bands
8 bands All eight bands from WorldView-2 image

SOURCE: Author’s production.

3.4.2.1 Sample patches generation

All datasets were divided into regions A, B and C (Figure 3.11), which contain
roughly similar distributions of Forest, Savanna and Grassland classes. Thereafter,
the datasets and the reference data (described in Section 3.2.1) were cropped into
non-overlapping and adjacent tiles of 160× 160 pixels to be used as samples. Tiles
with any “no data” value (pixels originally covering built-up areas, water bodies,
bare soil and burned areas) were removed from the samples.

In order to increase the amount of samples, data augmentation was performed. It
consists in creating new samples based on slight modifications in the original data.
In this research, six data augmentation techniques were employed: transposition,
horizontal and vertical flips and three rotations (clockwise direction): 90, 180 and
270 degrees. The representation of each technique is presented in Figure 3.12.

3.4.2.2 Training, validation and test

The three regions samples were combined as follows: 70% of the samples from two
regions (e.g., A and B) were randomly selected for training, and 30% for the network
validation. The resulting network was then tested in the remaining region (e.g., C).
This experiment was repeated three times, i.e., a cross-validation approach was
performed. Table 3.8 shows the number of samples used in each experiment. For
training and validation sets, those numbers already include samples generated by
data augmentation.
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Figure 3.11 - Regions A, B and C used to generate sample patches in the spectral data
analysis.

SOURCE: Author’s production.

During training, the early stopping criterion (also known as “patience” in Keras)
was set to 50, i.e., if after 50 epochs the validation accuracy did not increase, train-
ing is halted. In order to reduce the misclassification in the borders of the tiles, the
predicted image of the semantic segmentation was created through a sliding win-
dow approach with steps of 20 pixels. All procedures (see also the first part of the
methodology flowchart, Figure 3.9A) were executed for each of the eight datasets
to classify the three classes (Forest, Savanna and Grassland). In addition to the
thematic maps and the accuracy measures obtained in this approach, the best input
dataset for our application is revealed. The best input dataset will be used in the
next steps for the hierarchical classification.

Table 3.8 - Regions and number of samples used for training, validation and testing in
each cross-validation experiment.

Experiment Training Regions Validation Regions Testing Region
1 A + B: 70% (5439 samples) A + B: 30% (2331 samples) C (645 samples)
2 B + C: 70% (6951 samples) B + C: 30% (2982 samples) A (336 samples)
3 A + C: 70% (4802 samples) A + C: 30% (2065 samples) B (774 samples)

SOURCE: Author’s production.
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Figure 3.12 - Data augmentation techniques.

SOURCE: Author’s production.

3.4.3 Hierarchical semantic segmentation

Using the input dataset that yielded the best performance in the previous spectral
analysis step, a semantic segmentation approach was performed to hierarchically
classify the physiognomies. Different from the first level, the classes in the second
level are unbalanced, i.e., they do not present similar distributions across the three
regions of the image (Figure 3.11). As the unbalanced class distribution can create
artefacts, a different approach for sample generation was employed.
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3.4.3.1 Random sample patches generation

To generate sample patches in the hierarchical semantic segmentation, the segmen-
tation generated by the SLIC method (Section 3.2) was used. Figure 3.13 illustrates
how sample patches are generated. For each Superpixel, a class was assigned based
on the majority of corresponding pixel classes in the reference image. Thereafter,
centroids of the Superpixels were calculated and used as the center point for each
sample of 160 × 160 pixels. Each sample corresponds to the pair composed of one
patch for reference image and one patch for WorldView-2 image.

Figure 3.13 - Scheme of how sample patches are generated. RP1 and WP1 are the Refer-
ence and WorldView-2 Patches of Sample 1, respectively, and RP2 and WP2
are the Reference and WorldView-2 Patches of Sample 2.

SOURCE: Author’s production.

For each class of interest, 1000 centroids were randomly selected to generate a sample
patch. The sample patches may contain areas of transition with other physiognomies,
which is a positive aspect, because it will enable the network to learn the context
where each physiognomy occurs. Similar to the previous experiment (Section 3.4.2),
all samples that contained any no data value were excluded and, for the remaining
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training and validation samples, the same six data augmentation techniques were
applied.

3.4.3.2 Semantic segmentation

For each class, the complete set of samples was randomly split, 70% being assigned
for training and 30% for validation. In order to use the same sample generation
approach in the entire hierarchical process, the semantic segmentation was repeated
for the first level (Forest, Grassland and Savanna). With the resulting Savanna
and Grassland maps, the same semantic segmentation approach was employed for
each one of them. Using the trained model, the sliding window approach was also
employed to create the entire predicted image. The final Cerrado physiognomies
map (and the respective accuracy measures) is then composed of the Forest map
(Gallery Forest) generated in the first level of classification, the Savanna map (Shrub
Savanna, Typical Savanna, Woodland Savanna, Rupestrian Savanna and Vereda)
and the Grassland map (Open Grassland, Shrub Grassland, Rupestrian Grassland,
Humid Open Grassland), these last two generated in the second level of classification.
These methodological steps are represented in Figure 3.9B and C.

The Vereda physiognomy has a minority presence in the BNP, so its area is not
enough to be included into Deep Learning classification. Therefore, this physiog-
nomy was included in the first level of classification (as part of the overall Savanna
physiognomy), but it was manually identified in the second level. Consequently, it
is present in the final map, but it was not considered in the confusion matrices and
accuracy measures.

Another relevant detail concerns the generation of samples for Savanna and Grass-
land physiognomies in the second level of classification. When generating the samples
of the four Grassland types, for instance, any other class present in the sample patch
(e.g., Forest or Savanna classes) was considered as Others, a temporary class. If pix-
els corresponding to Others had simply been excluded, the network would be unable
to understand patterns of transitions between Grassland physiognomies and other
classes of Forest and Savanna, for example. As the network output is a probability
for each pixel and each class, when the network tried to classify any pixel as Others
in the predicted image, the second highest probability was considered, according to
the example of Figure 3.14.
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Figure 3.14 - Example of a predicted image of Savanna (second level of classification)
demonstrating: A) Minority edges predicted as Others; and B) Replacement
of Others class by the second highest probability of the network output.

SOURCE: Author’s production.

3.5 Accuracy assessment

The obtained classification maps were then compared with the respective reference
data, and then confusion matrices were generated. Since we are performing a hier-
archical classification, misclassifications on the first level will directly influence the
results of the second level, i.e., if a pixel of Shrub Savanna was classified as Grass-
land in the first level, it will still be considered as an error in the confusion matrix
of the second level. Based on each confusion matrix (Table 3.9), the following mea-
sures were computed: Overall Accuracy (OA) (Equation 3.2), Recall (Equation 3.4),
Precision (Equation 3.3) and F1-score (Equation 3.5).

The OA corresponds to the percentage of pixels (Deep Learning) or objects (GEO-
BIA) with the respective labels assigned correctly, considering the entire classified
image. Precision is the proportion of pixels (or objects) predicted for a class, and
actually belongs to that class; it is the complement of a commission error. Recall is
the proportion of pixels (or objects) of a particular class successfully identified; it
is the complement of an omission error. F1-score is the harmonic mean of Precision
and Recall, computed for each class.
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Table 3.9 - Example of a confusion matrix.

Classification
Yes No

Reference Yes True Positive (TP) False Negative (FN)
No False Positive (FP) True Negative (TN)

SOURCE: Author’s production.

OverallAccuracy(OA) = TP + TN

TP + TN + FP + FN
(3.2)

Precision = TP

TP + FP
(3.3)

Recall = TP

TP + FN
(3.4)

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

(3.5)
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4 RESULTS

The experiments using GEOBIA approach, presented in Section 4.1, are based on
Neves et al. (2019). The experiments using Deep Learning approach (Section 4.2)
had as its starting point the results published in Neves et al. (2020).

4.1 GEOBIA approach

In order to test the contribution of several feature sets, six experiments were per-
formed for both levels of classification. The OA values are presented in Table 4.1. On
the first level (distinguished Forest, Savanna and Grassland), the highest OA was
88.2%. It was achieved considering all features except the VIs (ExceptVegInd). Re-
moving the features of TC components (ExceptTCap), LSMM fractions (ExceptSMA)
and spectral bands (ExceptSpectral) provided similar OA values, ranging from 87.6%
to 87.9%. On the other hand, when texture features (ExceptTX) were not included,
the OA dropped to 85.2%, indicating that they play an important role in the clas-
sification of Cerrado physiognomies in GEOBIA approach.

Table 4.1 - Overall accuracy (%) of each level of hierarchical classification in the six ex-
periments testing several features.

Experiment First Level Second Level
Savanna Grassland

All (Spectral + TCap +
SMA + VegInd + TX) 87.7 65.7 64.8

ExceptTCap 87.6 65.2 64.2
ExceptSMA 87.8 66.8 64.5
ExceptVegInd 88.2 67.3 62.4
ExceptSpectral 87.9 66.0 63.6
ExceptTX 85.2 62.3 62.7

SOURCE: Author’s production.

The confusion matrix for the first classification level using the ExceptVegInd dataset,
which achieved the highest OA value, is presented in Table 4.2. The values in the
matrix represents the number of superpixels. Forest had the highest F1-score (0.95),
while Savanna and Grassland achieved 0.90 and 0.83, respectively. As Gallery Forest
is the only relevant Forest physiognomy in the BNP, the patterns variability in this
class is lower than in Savanna and Grassland, enabling the highest accuracy value.
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Table 4.2 - Confusion matrix (in number of superpixels), Precision, Recall and F1-score
for the first level of classification, using ExceptVegInd dataset. OA = 88.21%.

Reference
Predicted Grassland Savanna Forest Total Precision
Grassland 275 51 0 326 0.84
Savanna 60 538 4 602 0.89
Forest 0 5 85 90 0.94
Total 335 594 89
Recall 0.82 0.91 0.96
F1-score 0.83 0.90 0.95

SOURCE: Author’s production.

For the Savanna physiognomies classification, the highest OA (67.3%) was also ob-
tained using the experiment ExceptVegInd. The largest drop in the OA occurred when
TX features were excluded from the dataset (62.3%). The use of TX features proved
to be essential for discriminating these classes, once they are capable of capturing
the alternation between different types of vegetation, such as trees, shrub vegeta-
tion and herbaceous vegetation. Initially, in Table 4.2, there were 594 samples of
Savanna. In the second level of classification for Savanna physiognomies (Table 4.3),
538 samples (46 for Woodland Savanna, 354 for Typical Savanna and 138 for Shrub
Savanna) were considered, since they were correctly classified in the first level.

Despite the low F1-score of Woodland Savanna (0.30), the hierarchical classification
was able to separate this physiognomy from Forest in the first level, since its samples
were classified as Savanna and moved to the second level. However, in the second
level, more than half of its samples were classified as Typical Savanna. This phys-
iognomy achieved the highest F1-score (0.82) and only eight of its superpixels were
misclassified in the first level. The majority of errors of Savanna in the first level
was regarding the Shrub Savanna, with 48 misclassified superpixels, resulting in a
F1-score of 0.51. To considerate the errors in the physiognomies accuracy measures,
superpixels of Savanna misclassified in the first level were included in the Recall
calculation in the second level (Table 4.3).
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Table 4.3 - Confusion matrix (in number of superpixels), Precision, Recall and F1-score
for the Savanna physiognomies, in the second level of classification, using the
experiment ExceptVegInd.

Reference

Predicted Woodland
Savanna

Typical
Savanna

Shrub
Savanna Total Precision

Woodland Savanna 9 6 0 15 0.60
Typical Savanna 37 322 65 424 0.76
Shrub Savanna 0 26 73 99 0.74

Total 46 354 138
Recall 0.20 0.89 0.39
F1-score 0.30 0.82 0.51

SOURCE: Author’s production.

The second level for Grassland physiognomies was generated using the experiment
with all features, since it achieved the highest OA (64.78% - Table 4.1). Removing
VIs from the feature set dropped the OA value to the lowest one (62.4%). Dif-
ferently from what happened to the first level and the discrimination of Savanna
physiognomies, the VIs were essential to improve the classification of Grassland
physiognomies, once higher values of VIs were noticed for the Shrub Grassland
when compared to the Open and Rupestrian Grassland.

The superpixels correctly classified as Grassland in the first level (275 from 335)
were differentiated into Open, Shrub and Rupestrian Grasslands (Table 4.4). From
these physiognomies, 16 (14.3%), 40 (18.9%) and 4 (33.4%) superpixels, respectively,
were misclassified in the first level and considered in Recall calculation in the second
level. The Rupestrian Grassland had the lowest F1-score (0.27). The reduced amount
of samples may have affected the performance for this class. The Open and Shrub
Grasslands presented considerable confusions between each other, probably in their
transition areas, resulting in F1-scores of 0.63 and 0.77, respectively.
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Table 4.4 - Confusion matrix (in number of superpixels), Precision, Recall and F1-score
for the Grassland physiognomies, in the second level of classification, using the
experiment with all features.

Reference

Predicted Open
Grassland

Shrub
Grassland

Rupestrian
Grassland Total Precision

Open Grassland 62 18 4 84 0.74
Shrub Grassland 33 153 2 188 0.81

Rupestrian Grassland 1 0 2 3 0.67
Total 96 171 8
Recall 0.55 0.73 0.17
F1-score 0.63 0.77 0.27

SOURCE: Author’s production.

In order to investigate the superiority of hierarchical approach, the Recall values
of each physiognomy were compared to a non-hierarchical classification. The com-
parison is presented in Figure 4.1. Gallery Forest was the only class with a slightly
better accuracy using the non-hierarchical approach. However, the presence of a
unique Forest class on the study site hinders the evaluation of the hierarchy for the
classification of Forest physiognomies. The remaining six classes had higher accura-
cies in the hierarchical approach. Therefore, hierarchical OA (68.9%) was also higher
than the non-hierarchical OA (66.4%).
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Figure 4.1 - Recall of the physiognomies and in the hierarchical and the non-hierarchical
approach. Hierarchical classification OA = 68.9% and Non-hierarchical clas-
sification OA = 66.4%.

SOURCE: Author’s production.

Classification results based on Random Forest models with the highest OA (Ta-
ble 4.1), are presented in Figure 4.2. The vegetation map shows a consistent result,
with correct transitions between the studied physiognomies. However, some physiog-
nomies (e.g., Woodland Savanna and Rupestrian Grassland) still present accuracies
below 50% and need more sophisticated techniques.
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Figure 4.2 - Cerrado physiognomies map using GEOBIA hierarchical approach.

SOURCE: Author’s production.

4.2 Deep Learning approach

4.2.1 Assessment of the spectral input information

In Table 4.5, the accuracies of the training and validation steps for the assessment
of the spectral input information are presented, as well as the number of epochs
needed to stabilize the network in each experiment. It took about 5 hours to train
each network. Due to the patience parameter of 50 (see Section 3.4.2.2 for more
details), all experiments had their training stopped before 100 epochs were reached,
stabilization of the networks occurred between epoch 5 and epoch 93. If the training
had been kept longer, the training accuracy values would have improved, but the
validation accuracies started to become worse, indicating that the model might
be overfitted. In general, all accuracy values were higher than 87.5%. The highest
accuracies in training were reached using the RGB+NIR1+NIR2+RedEdge dataset
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in Experiments 1 and 3, while, in Experiment 2, the highest accuracy was obtained
for RGB+EVI2. In the validation step, the highest accuracies for Experiments 1 and
2 were reached using RGB+EVI2, while the highest accuracy in Experiment 3 was
observed with the RGB+NIR1+NIR2+RedEdge dataset.

Table 4.5 - Training and validation accuracies for all datasets in the three experiments
(see description in Table 3.8). The highest values in training and validation for
the three experiments are given in bold.

Input Dataset Exp. Epochs Training Acc. (%) Validation Acc. (%)

RGB+LSMM
1 23 88.5 89.8
2 52 91.7 88.2
3 16 89.1 87.9

8 band
1 47 91.3 88.6
2 34 90.6 89.0
3 77 92.1 89.4

LSMM
1 25 89.9 89.8
2 31 89.8 89.4
3 89 93.5 89.3

RGB+NIR1+NIR2
1 5 87.7 88.9
2 35 89.4 88.6
3 93 93.0 89.5

RGB+NIR1+NIR2+RedEdge
1 55 91.7 89.9
2 29 88.7 89.2
3 87 93.7 90.4

RGB+RedEdge
1 10 88.6 89.4
2 28 90.5 89.2
3 53 91.4 89.8

RGB
1 47 89.2 89.1
2 70 92.5 88.7
3 28 90.1 89.2

RGB+EVI2
1 47 89.7 90.4
2 58 92.7 89.7
3 32 89.4 88.6

SOURCE: Author’s production.

For the test step, the OAs and the F1-score per class for each input dataset are
presented in Table 4.6. The OA varied from 87.4%, using RGB+LSMM, to 89.3%
with the RGB+EVI2 dataset. It could be expected that the 8 band dataset would
achieve the highest performance, since it has the most bands and, consequently,
the most spectral information. However, it obtained the second worst OA value of
87.6%. Despite presenting the lowest OA, the RGB+LSMM dataset had the highest
F1-score (0.91) for the Forest class. This is also reflected in the classes delineation
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in the thematic map. For the Savanna and Grassland classes, the highest F1-scores
(0.92 and 0.84, respectively) were achieved with the same dataset that had the best
OA, RGB+EVI2.

Table 4.6 - Overall Accuracies - OA (%) and classes F1-score for all input datasets.

Input dataset OA (%) Classes F1-score
Grassland Savanna Forest

RGB+LSMM 87.4 0.81 0.90 0.91
8 band 87.6 0.81 0.90 0.89
LSMM 87.8 0.82 0.90 0.91

RGB+NIR1+NIR2 87.9 0.82 0.90 0.89
RGB+NIR1+NIR2+RedEdge 88.3 0.83 0.91 0.90

RGB+RedEdge 88.4 0.82 0.91 0.89
RGB (532) 88.6 0.83 0.91 0.89
RGB+EVI2 89.3 0.84 0.92 0.91

SOURCE: Author’s production.

In order to analyze in more detail the results of the Table 4.6, Figure 4.3 shows
some selected patches of the WorldView-2 image, the reference and the thematic
maps using the RGB+EVI2 and the RGB+LSMM datasets. In this scale, the mis-
classified areas between Grassland and Savanna (GxS), Grassland and Forest (GxF)
and Savanna and Forest (SxF) are highlighted in different colors. Despite the small
difference between the best (RGB+EVI2) and the worst (RGB+LSMM) datasets of
1.9 percentage point, the resulting maps show significant dissimilarities.

In all maps, the major areas of misclassification occur between Grassland and Sa-
vanna (GxS), followed by Savanna and Forest (SxF). There are only few areas of
confusion between Grassland and Forest (GxF). This behavior is expected, since
the confusions of classification occur mainly in transition areas, considering an in-
creasing scale of vegetation density in the existing physiognomies (i.e., GxS and
SxF). Additionally, the higher Forest F1-score with RGB+LSMM, already observed
in Table 4.6, is also reflected in the maps. In Figure 4.3, it is possible to notice a
better delineation of the Forest areas when using this dataset, even better than in
RGB+EVI2 dataset results.
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Figure 4.3 - Patches of: A) The WorldView-2 image; B) The reference data; C) Resulting
thematic map using RGB+EVI2 dataset; and D) Resulting thematic map us-
ing RGB+LSMM datasets. GxS are the misclassified areas between Grassland
and Savanna; SxF, between Savanna and Forest; and GxF, between Grassland
and Forest.

SOURCE: Author’s production.

4.2.2 Hierarchical classification of Forest, Savanna and Grassland

For the hierarchical classification, the input dataset composed by RGB+EVI2 bands
was used, since it achieved the best performance in the assessment of the spectral
input information for the first level, especially for Savanna and Grassland classes. For
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the first level of classification, the accuracy during training was of 97.9%, achieved
after 147 epochs. The confusion matrix for the validation step is presented in Table
4.7. The matrix is presented in terms of number of pixels, and the OA was of 92.8%.
Forest obtained the highest F1-score of 0.95, and the other two classes achieved
F1-scores higher than 0.91. The Grassland Recall (0.89) was the only metric lower
than 0.90, as 10.5% of the grassland pixels were misclassified as Savanna.

Table 4.7 - Confusion matrix (in number of pixels), Precision, Recall and F1-score for the
first level of classification, using the RGB+EVI2 dataset. OA = 92.8%.

Reference
Predicted Grassland Savanna Forest Total Precision
Grassland 5,906,317 315,673 8,084 6,230,074 0.95
Savanna 697,394 7,788,065 93,307 8,578,766 0.91
Forest 36,929 96,423 2,441,111 2,574,463 0.95
Total 6,640,640 8,200,161 2,542,502
Recall 0.89 0.95 0.96
F1-score 0.92 0.93 0.95

SOURCE: Author’s production.

Confusion between Grassland and Savannas, which presented the highest error rate,
is also the most visually evident one. However, it can be noticed that it occurs mainly
along class borders, where it is really hard to define when one class becomes another,
even in field campaigns. The classification predicted in the first level is presented
in Figure 4.4, where it is possible to note that the misclassified areas occur in the
transitions between the classes. Two regions in predicted image and reference were
selected to be highlighted.

In order to observe the misclassifications in more detail, the zoom of these two regions
and the image representing the difference between predicted image and reference
can be seen in Figure 4.5. The majority of misclassified regions, in grey, represent
the errors between Grassland and Savanna, which were the most frequent in the
confusion matrix (Table 4.7) as well. The errors between Forest and Savanna, in light
green, occur mainly in the borders of Gallery Forests. Finally, the misclassifications
between Forest and Grassland, in red, were the least frequent in the confusion matrix
and, consequently, are rarely observed in the difference image.
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Figure 4.4 - Result of the first level of classification, differentiating Forest, Savanna and Grassland. A) Predicted image; and B) Reference.
The two boxes in the images contain the regions that will be highlighted in Figure 4.5

SOURCE: Author’s production.



4.2.3 Detailed physiognomies mapping

In a hierarchical classification, results of the first level affect directly the performance
of the second level. Considering the detailed reference of Savanna physiognomies and
the resulting classification of the first level, it is shown that 92.7% of the Woodland
Savanna was correctly included in Savanna class, while 6.4% was misclassified as
Forest (Table 4.8). The Typical Savanna had the highest percentage of area classified
as Savanna (98.2%). While the Rupestrian Savanna showed the highest percentage
of misclassification, 88.3% of the area were classified as Savanna, while 10.5% was
classified as Grassland. Pixels of Savanna classified as Forest or Grassland were
included as errors in the Recall of the second level of classification for Savanna
physiognomies (Table 4.9).

Similar to Table 4.8, Typical Savanna showed the best performance in the classi-
fication of the detailed physiognomies, with an F1-score of 0.91 (Table 4.9). The
other three Savanna physiognomies achieved F1-scores from 0.84 (Shrub Savanna)
to 0.88 (Rupestrian Savanna). Most of the misclassified pixels of Woodland and
Shrub Savannas were labeled as Typical Savanna. This was an expected behavior,
since Shrub, Typical and Woodland Savanna (in this order) compose an increasing
scale of vegetation density and biomass. Regarding Rupestrian Savanna, the net-
work was able to identify its pattern among the Savanna physiognomies, resulting
in a Precision of 0.91. However, the confusion of 10.5% of this physiognomy with
Grassland in the previous level of classification lead to a Recall of only 0.84. During
the training step, the accuracy for Savanna physiognomies was of 96.6% when 190
epochs were achieved. In the validation step, the OA was of 95.6%. However, when
errors from the first level of classification are propagated to the second level, then
the OA becomes 86.1% (Table 4.9).

Table 4.8 - Analysis of the result of the second level of classification for Savanna physiog-
nomies regarding the first level resulting map (%).

Reference (Savanna physiognomies)
Predicted
(first level)

Woodland
Savanna

Typical
Savanna

Shrub
Savanna

Rupestrian
Savanna

Savanna (correct) 92.7 98.2 91.0 88.3
Classif. as Grassland 0.9 0.7 8.4 10.5
Classif. as Forest 6.4 1.1 0.6 1.2

SOURCE: Author’s production.
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Figure 4.5 - A) Difference between predicted image and reference for the first level of
classification. B) Zoom of two regions to show the result in more detail. In the
images of Difference, G x S are the misclassified areas between Grassland and
Savanna; S x F, between Savanna and Forest; and G x F, between Grassland
and Forest.

SOURCE: Author’s production.
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Table 4.9 - Confusion matrix (in number of pixels) for the Savanna physiognomies, in the
second level of classification (OA = 86.1%).

Reference

Predicted Woodland
Savanna

Typical
Savanna

Shrub
Savanna

Rupestrian
Savanna Total Precision

Woodland
Savanna 286,275 40,812 2,348 888 330,323 0.87

Typical
Savanna 23,794 4,107,171 295,190 6,227 4,432,382 0.93

Shrub
Savanna 2,258 325,652 2,402,537 4,019 2,734,466 0.88

Rupestrian
Savanna 232 10,219 11,411 231,146 253,008 0.91

Total 337,128 4,566,258 2,980,008 274,599
Recall 0.85 0.90 0.81 0.84
F1-score 0.86 0.91 0.84 0.88

SOURCE: Author’s production.

Considering the reference of the detailed Grassland physiognomies, almost all
(99.4%) of Open Grassland was correctly classified as Grassland in the first level
(Table 4.10). Rupestrian, Shrub e Humid Open Grassland had 94.1%, 85.5% and
79.4% of their areas classified as Grassland, respectively. For the Shrub and Humid
Open Grassland, 14.2% and 18.0%, respectively, were misclassified as Savanna in the
first level. In the hierarchical classification system proposed by Ribeiro and Walter
(RIBEIRO; WALTER, 2008), Humid Open Grassland is a subtype of Open Grassland.
However, it was considered an independent class in this work as it presents a pattern
very different from the traditional Open Grassland. Besides that, preliminary ex-
periments showed that separating these two classes increased the Open Grassland’s
OA by more than 2 percentage points.
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Table 4.10 - Analysis of the result of the second level of classification for Grassland phys-
iognomies regarding the first level resulting map (%).

Reference (Grassland physiognomies)
Predicted
(first level)

Open
Grassland

Shrub
Grassland

Rupestrian
Grassland

Humid Open
Grassland

Grassland (correct) 99.4 85.5 94.1 79.4
Classif. as Savanna 0.5 14.2 5.5 18.0
Classif. as Forest 0.1 0.3 0.4 2.6

SOURCE: Author’s production.

During training step, the OA of the classification of the detailed Grassland physiog-
nomies was 96.3% with 171 epochs. In the validation, the network achieved an OA
of 95.6%. After the inclusion of the errors from the first level of the classification, the
Grassland physiognomies OA decreased to 85.0%. The resulting confusion matrix is
presented in Table 4.11. The F1-scores varied from 0.86 (Humid Open Grassland)
to 0.94 (Open Grassland). Shrub and Rupestrian Grassland had F1-scores of 0.89
and 0.93, respectively. The largest amount of misclassified pixels of Shrub Grassland
were classified as Open Grassland. For Open, Rupestrian and Humid Open Grass-
land, the largest amount of misclassified pixels was classified as Shrub Grassland,
the majority Grassland physiognomy in the BNP.

Table 4.11 - Confusion matrix (in number of pixels) for the Grassland physiognomies, in
the second level of classification (OA = 85.0%).

Reference

Predicted Open
Grassland

Shrub
Grassland

Rupestrian
Grassland

Humid Open
Grassland Total Precision

Open
Grassland 1,662,547 78,198 4,319 3,426 1,748,490 0.95

Shrub
Grassland 110,249 2,858,558 9,961 16,827 2,995,595 0.95

Rupestrian
Grassland 3,898 12,359 379,596 3,283 399,136 0.95

Humid Open
Grassland 4,170 12,286 938 740,197 757,591 0.98

Total 1,791,208 3,461,580 419,588 962,759
Recall 0.93 0.83 0.90 0.77
F1-score 0.94 0.89 0.93 0.86

SOURCE: Author’s production.
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Results of Savanna and Grassland physiognomies is presented in Figure 4.6. This
figure includes as well the Gallery Forest, generated in the first level of classification.
Therefore, a detailed mapping of all physiognomies in the BNP is created. In addi-
tion to the reference and the predicted images, the image representing the difference
between both is presented in Figure 4.7 to clearly show correctly classified areas and
misclassifications. In order to better visualize the development of the hierarchical
classification, the two highlighted regions are the same than the ones presented in
Figure 4.5. Just like in the Tables 4.9 and 4.11, errors from the first level of classi-
fication are carried over to the second level, so no misclassified area from the first
level (grey, light green and red colors in Figure 4.5) can become correctly classified
(dark blue in Figure 4.7) in the second level of classification.
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Figure 4.6 - Result of the second level of classification, including Savanna and Grassland physiognomies and the Gallery Forest. A) Predicted
image; and B) Reference. The two boxes in the images contain the regions that will be highlighted in the next figure.

SOURCE: Author’s production.



Figure 4.7 - A) Difference between reference and predicted image for the second level of
classification. B) Zoom of two regions to show the result in more detail

SOURCE: Author’s production.

74



5 DISCUSSION

5.1 GEOBIA approach

As observed in the GEOBIA approach, the consideration of the Ribeiro and Wal-
ter classification system (RIBEIRO; WALTER, 2008) hierarchy has the potential to
improve the methodologies for mapping the Cerrado physiognomies through RS im-
agery. This improvement using hierarchy was also observed by Ribeiro et al. (2020).
From the RS image perspective, the differentiation between some physiognomies
(e.g., Shrub, Typical and Woodland Savanna) rely on the identification of a context
that shows an increasing vegetation density and height. For this contextual aspect,
the use of objects (superpixels, in this study) are essentially more suitable than a
per pixel approach.

The GEOBIA results showed that some features are better to characterize some
physiognomies than others. The VIs were useful for the discrimination of Grasslands
physiognomies. Additionally, the considerable drop in the accuracy values when the
texture features were excluded shows that they were essential for the first and the
second levels of classification. The GEOBIA approach presented higher accuracy
rates when compared to other works that used the same study site, but different
approaches (GIROLAMO-NETO, 2018; SCHWIEDER et al., 2016). For Shrub Grass-
land and Typical Savanna, for instance, the accuracies were higher than Girolamo-
Neto (2018). Moreover, Gallery Forest, Typical Savanna, Shrub Grassland and Open
Grassland had better accuracies than Schwieder et al. (2016). However, some phys-
iognomies (e.g., Woodland Savanna and Rupestrian Grassland) still presented low
accuracies. In the Deep Learning approach, despite generating pixel-wise classifica-
tions, the application of convolutions enables the extraction of rich context infor-
mation (MA et al., 2019). Therefore, this approach can represent the physiognomies
context without using texture features as input.

5.2 Deep Learning approach

5.2.1 Assessment of the spectral input information

The majority of research in the optical RS field, that apply Deep Learning tech-
niques, use images of the visible spectrum, which present the three most common
channels (spectral bands), the RGB (Red, Green and Blue) (GUIRADO et al., 2017;
KATTENBORN et al., 2019). Others also include a NIR channel (NOGUEIRA et al., 2016;
JOZDANI et al., 2019). These works rarely use all available satellite bands, sometimes
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because of the increase in processing time, or because the network architecture and
the algorithms are prepared to use only 3 input layers. In the RS field, several extra
spectral information, such as Yellow or Red-edge bands (available in WorldView-2),
may be used. Zhang et al. (2018a) tested the efficiency of using datasets containing
4 and 8 bands of the WorldView-2 and WorldView-3 images. The authors achieved
better accuracies with the 8-band dataset, although they classified only different
urban targets (e.g., buildings and roads). While more bands in general improve the
results, in this study, it was observed that the use of some bands, like the Yellow
band (present in the 8 Band dataset), does not improve the differentiation of differ-
ent types of vegetation patterns. Thus, the increase in the number of bands is not
necessarily directly related to an increase of OA.

Deep Learning networks learn features from the training data to identify the desired
classes. For this reason, it is believed that it is not necessary to give the network
supplementary information, commonly called handcrafted features (e.g., vegetation
indices, LSMM fractions), in addition to satellite spectral bands (ZHU et al., 2017).
However, our results showed the opposite: by combining a handcrafted feature (veg-
etation index) to original data, we obtained results with the best OA. The EVI2
enhanced the information regarding vegetation biomass in a way that does not oc-
cur when using only the Red and the NIR bands. Thus, the OA of the RGB+EVI2
dataset was higher than the OA of other datasets containing Red and NIR bands
(8 band, RGB+NIR1+NIR2 and RGB+NIR1+NIR2+RedEdge). A better perfor-
mance when including vegetation indices was also observed by Kerkech et al. (2018),
but the authors used different indices and tested them in a different domain (crop
disease detection).

On the other hand, the inclusion of the three LSMM fractions (Vegetation, Soil and
Shade) as input did not increase the OA. However, vegetation and shade LSMM
fractions were capable to highlight and represent well the conditions of the dense
and high vegetation as well as the presence of shades (due to differences in tree
heights), improving the Forest delineation. This resulted in the highest F1-score for
this class using RGB+LSMM dataset, 0.02 higher than the F1-score achieved using
only RGB bands. The extraction of LSMM fractions from high spatial resolution
images is still worth it, since the mixture of vegetation targets is still present in
2× 2 meter pixels (NICHOL; WONG, 2007; SUN et al., 2021). In a pixel of Woodland
Savanna, for instance, the proportions of vegetation and shade fractions are mainly
higher than in a pixel of Shrub Savanna. These fractions are widely used to classify
vegetation in Cerrado (GIROLAMO-NETO, 2018; FERREIRA et al., 2007; ALENCAR et
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al., 2020; MIURA et al., 2003; AMARAL et al., 2015) with traditional Machine Learning
techniques. In the Deep Learning field, new methodologies have been tested to gen-
erate the LSMM fractions as results of some convolutional neural network (ZHANG et

al., 2018b), but, as far as we know, they were never tested as input layers in semantic
segmentation using Deep Learning approach.

5.2.2 Samples generation

Regarding the generation of samples for the network training and validation, we
employed two procedures. The first, used in the analysis of spectral input data,
split the image in three parts, two of which generated the training and validation
samples and the last one was used to test the network. In the second procedure,
used in all steps of the hierarchical classification, the samples were generated based
on superpixel centroids. The first procedure is commonly used, since it is able to
detect patterns of the same class in different regions of the image (ADARME et al.,
2020; PAN et al., 2020; ANDRADE et al., 2020). However, in a case with several classes
with different occurrences across the study site, the second procedure may be more
appropriate to make sure that the classification represents all classes and their spatial
context patterns. In this study, the OA with the first procedure was of 89.3%, raising
to 92.8% in the second procedure. Both of them for the first level of classification
and using the RGB+EVI2 dataset.

Fu et al. (2018) used an approach similar to the second procedure. They generated
the samples using object centroids, but with a multiresolution segmentation algo-
rithm to classify general classes (e.g., water, road and building). The accuracies of
this approach with a CNN were 5% to 10% higher than the accuracies achieved with
a GEOBIA approach. Superpixel segmentation algorithms, such as the SLIC, creates
more uniform objects, while the traditional segmentation algorithms (e.g., multires-
olution segmentation) generates objects with very different sizes and shapes. Using
this last case to create the network samples could potentially generate patches with
very irregular proportions of the classes due to the centroids position (CHEN et al.,
2019). In segments with irregular shapes, the centroids are not always located inside
them. A supposed elongated and curved segment of Gallery Forest, for example,
could generate a centroid outside that class and fail to represent that pattern.

5.2.3 Hierarchical classification

The high OAs achieved in the results are mainly related to two aspects: the Deep
Learning methodology and the high spatial resolution of the WorldView-2 imagery.
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Using coarser spatial resolution and the same three classes of the first level, previous
works (INPE, 2015; BENDINI et al., 2020; ALENCAR et al., 2020) achieved lower OAs
using traditional Machine Learning techniques. Although these works intended to
identify only three classes, it is valid to notice that each class has a high intraclass
variability. Therefore, Grassland class, for instance, contains the pattern (i.e., spec-
tral behavior) of many different types of grasslands (four, in the BNP). Still using
coarser spatial resolution (30m), Ferreira et al. (2007) and Schwieder et al. (2016)
improved the detail of vegetation classes. The last one had Recalls of 86% and 64%
for Gallery Forest and Shrub Grassland, respectively, while we achieved 95% and
83%.

In Ferreira et al. (2007), the classes Shrub Cerrado and Woodland Cerrado are
equivalent to Shrub Grassland and Shrub Savanna classes, respectively. While they
correctly classified 75% of both, we presented Recalls of 83% and 81% for Shrub
Grassland and Shrub Savanna. Thus, probably only the handcrafted features, used
by the traditional Machine Learning algorithms, are not enough to acquire all the
information needed about the vegetation classes. Improving the spatial resolution
of the input imagery is also not enough to solve the problem of classifying the
Cerrado vegetation. Keeping the Random Forest algorithm and switching to the
same spatial resolution used in this work (2m), Girolamo-Neto (2018) and Neves et
al. (2019) obtained 88.9% and 88.2%, respectively, when differentiating the classes
Forest, Savanna and Grassland. When dealing with the physiognomies, they achieved
Recalls of 39.15% and 39.25% for Shrub Savanna and 63.32% and 72.51% for Shrub
Grassland, respectively, while this study achieved 81% and 83% for these two classes.

In Figure 5.1, the three hierarchical levels of the Ribeiro and Walter (2008) classifi-
cation system are presented, starting with the three major groups of ecosystems and
detailing up to 25 physiognomies. In the bottom right corner of this figure, there are
the majority of studies described in Section 2.3. Only few studies that used classes
not compatible with the Ribeiro and Walter (2008) classification system were not
included in the figure. For each physiognomy, the studies that classified it are iden-
tified. Therefore, it is possible to notice that most studies tackled the differentiation
of the first level classes.

In this study, represented by letter a in Figure 5.1, it was possible to identify phys-
iognomies that are not commonly classified, such as Vereda, Rupestrian Grassland
and Rupestrian Savanna. This last one was not classified in any other study pre-
sented. Some physiognomies (e.g., Dry Forest and Tall Woodland) were classified
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by other studies, such as in Ribeiro et al. (2020), and were not identified in this
study. This occurred because these physiognomies do not occur in the study site.
However, this is not an indicative that the proposed methodology can not identify
these patterns. The inclusion of other Cerrado regions would be required to test the
inclusion of different physiognomies.

Figure 5.1 - Classes identified by this study and by others according to the levels of classes
in the Ribeiro and Walter (2008) classification system.

SOURCE: Author’s production.
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Each detailed physiognomy has its own floristic composition, vegetation density
and edaphic factors. The Woodland Savanna, due to its dense vegetation, is of-
ten confused with Forests, while the Shrub Savanna, with a more sparse vegeta-
tion, is confused with Shrub Grassland, a Grassland physiognomy (JACON et al.,
2017; GIROLAMO-NETO, 2018; NEVES et al., 2019). The confusion between Forest
and Grasslands is rare. Although such a confusion is surprising, it may be related
to the presence of Humid Open Grassland areas in the BNP. This physiognomy is
located predominantly close to the Gallery Forests (RIBEIRO; WALTER, 2008) and,
consequently, the misclassified areas occur at the boundaries between these two
classes.

The physiognomies, according to the classification system used in this thesis
(RIBEIRO; WALTER, 2008), present an increasing scale of density and, consequently,
biomass. Under these circumstances, the most common errors occur in transition ar-
eas between the physiognomies. Although this error is more intense when lower spa-
tial resolutions are used, this is an issue in every mapping of Savanna physiognomies
(FERREIRA et al., 2007; JACON et al., 2017; SCHWIEDER et al., 2016). The majority
of works that classified detailed physiognomies using traditional Machine Learning
techniques performed the validation using independent random points (GIROLAMO-

NETO, 2018; NEVES et al., 2019; MIURA et al., 2003; JACON et al., 2017). As a se-
mantic segmentation approach was performed in this study, the validation samples
(as well as the training samples) were independent patches (160 × 160 pixels) en-
tirely classified. Thus, it generates a more robust evaluation of the delineation of
the physiognomies and, consequently, the misclassification in transition areas.

The use of a hierarchical classification approach intended to minimize the confu-
sion between Savanna and Grassland physiognomies or between any of them with
Forest patterns. Despite considering the misclassifications of the first level, this ap-
proach was efficient to map the detailed physiognomies, since it achieved higher
accuracy rates than other works that intended to perform a similar task without
using hierarchy (FERREIRA et al., 2007; SCHWIEDER et al., 2016; JACON et al., 2017;
GIROLAMO-NETO, 2018). Compared to the other few works that also used hierarchi-
cal approaches (NEVES et al., 2019; RIBEIRO et al., 2020), this study presented supe-
rior accuracy rates. Thus, we demonstrated the potential of applying Deep Learning
techniques to the RS field open problems, such as the classification of targets not
yet well delineated with traditional Machine Learning algorithms.

In Figure 5.2, it is possible to evaluate qualitatively the resulting maps (Figure
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5.2C and E) with other well-established mappings in the BNP, created by INPE
(Figure 5.2A), IBGE (Figure 5.2B) and MapBiomas (Figure 5.2D). IBGE’s map has
a spatial resolution of 1km and, despite having classified almost the entire area as
Grassland, its legend includes several Savanna physiognomies in the Grassland class
(IBGE, 2018). TerraClass and MapBiomas maps have 30 meters of spatial resolution
and classified the area as natural vegetation or as Forest, Savanna and Grassland,
respectively. This comparison clearly shows how the improvements in the spatial
resolution and in the methodology can bring refinements in the classes detailing
and, consequently, in other products derived from vegetation maps (e.g., biodiversity
studies).

It is important to note, though, that in many applications, specially in RS field, one
of the main limitations of Deep Learning techniques is the requirement of a robust
amount of samples to achieve acceptable results (MA et al., 2019). The amount of
samples used in this work (see Sections 3.4.2 and 3.4.3 for more information) was
enough to differentiate the physiognomies in the BNP. Despite covering a propor-
tionally small area of Cerrado biome, the BNP is a Preserved Area representative
of Cerrado ecossystems, and contains the major physiognomies of the biome (FER-
REIRA et al., 2007). However, due to the physiognomies heterogeneity across Cerrado
biome (SANO et al., 2019), the application of this methodology in the entire biome
would require the inclusion of more samples during training phase.
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Figure 5.2 - Cerrado vegetation classification in BNP performed by: A) TerraClass Cerrado - 2013; B) IBGE - 2014; C) This study (first level
of classes); D) MapBiomas - 2014; and E) This study (detailed level of classes).

SOURCE: Author’s production.



6 CONCLUSIONS

This study proposed and evaluated a new methodology based on Deep Learning tech-
niques to hierarchically classify the Cerrado physiognomies, according to the Ribeiro
and Walter (2008) classification system. Regarding the hypotheses presented, some
considerations can be made: (1) the use of Deep Learning techniques enabled the
creation of maps with better detailing and higher accuracies than those other tech-
niques such as GEOBIA and machine learning; (2) although it does not completely
prevent the misclassification, the use of a hierarchical approach reduced the confu-
sion between detailed classes, in Deep Learning and in GEOBIA approaches; and
(3) testing several datasets as input in the networks showed that, in this study, the
best dataset was composed by RGB bands plus EVI2.

Each Cerrado physiognomy has a different amount of biomass above and below
the ground and a unique biodiversity. Consequently, the proper identification and
delineation of the Cerrado physiognomies are fundamental to truly understand the
role of Savanna biomes in the global Carbon cycle. Additionally, Cerrado vegetation
maps can be used as a proxy in other studies, such as those related to biodiversity,
since a high rate of endemism can be found in its physiognomies.

The greatest limitation when mapping the physiognomies of Cerrado, the second
largest biome of a continental-size country like Brazil, is the lack of reference data.
The difficulty in differentiating the patterns of physiognomies associated to the
biome extension results in few options of vegetation maps, usually available only
for three classes (Forest, Savanna and Grassland) and with a spatial resolution of
around 30 meters. This limitation is even bigger when dealing with a semantic seg-
mentation approach, since reference points are not enough and entirely classified
patches are required as samples for the network training.

Under these circumstances, the proposed methodology to hierarchically classify a
relevant Protected Area, the Brasília National Park, using Deep Learning was quite
efficient to delineate the three major groups of physiognomies, in a first level, and
ten detailed physiognomies in the second level. To attest the superiority of the Deep
Learning approach, a GEOBIA approach was performed in the same study site using
the same high spatial resolution image. The GEOBIA experiments were fundamental
to demonstrate that using a hierarchical structure of classes can improve the accura-
cies. Besides that, they have also shown that some features are more valuable in the
classification than others. The VIs were fundamental to differentiate the Grassland
physiognomies, while the texture features proved to be more relevant for the first
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level of classification and for the differentiation of the Savanna physiognomies.

Nevertheless, as GEOBIA and Deep Learning approaches work in very different
ways, the evaluation of different input datasets was also performed using the Deep
Learning approach. The highest accuracies were achieved by the dataset composed
by RGB bands plus the EVI2, contradicting the idea that handcrafted features
are irrelevant to Deep Learning networks. Although this is a well accepted idea in
Deep Learning field, it was established for computer vision experiments and, when
it comes to the RS field, more tests are needed. For the first level of classification,
two different procedures were used to generate the training/validation samples. The
random generation, which includes the use of superpixels as the starting point of
the process, proved to be the best method. It not only achieved higher accuracy, but
also created more balanced samples regarding the vegetation classes.

The results for the first and second levels of classification achieved superior OAs
when compared to other works that performed similar task using other Machine
Learning algorithms, GEOBIA approaches, image time series or visual interpreta-
tion. The developed method proved to be capable of delineating the physiognomies.
As the Cerrado contains several particularities across the biome, the reproduction
of the method for the entire biome would require the availability of high spatial res-
olution images and the production of reference data in the same spatial resolution
to generate more samples for training and validation.

6.1 Suggestions for future works

Based on the results achieved in this thesis, some suggestions can be made for future
works. First, the inclusion of additional satellite data to consider other aspects of
the physiognomies may help in the mapping. A good example of that is the use
of satellite image time series to contemplate the physiognomies seasonality in the
analysis. However, the use of time series (without considering the spatial context)
with well-known techniques have been done already and may not be enough. For
this reason, it is also suggested to keep the high spatial resolution and to apply Deep
Learning architectures that are appropriate for time series data, such as the Long
Short Term Memory (LSTM) networks. The inclusion of active remote sensing data,
such as Radar and LiDAR (Light Detection And Ranging) data, can also provide
additional information, especially of the vegetation structure, to differentiate the
physiognomies patterns.
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