7th IAA PDC 2021 INPE & UFMG

Introduction Simulations Using Solas Sails to stabilize orbits around asteroids with irregular gravitational fields

MSc. Lucas Gouvêa Meireles¹

PhD. Antônio Fernando Bertachini de Almeida Prado¹ PhD. Cristiano Fiorilo de Melo² PhD. Maria Cecília Pereira de Faria²

> ¹National Institute for Space Research ²Federal University of Minas Gerais

Sumary

7th IAA PDC 2021 INPE & UFMG

1

Introduction

Relevance

7th IAA PDC 2021 INPE & UFMG

Introduction

Simulations

Conclusion

The exploration and study of asteroids has been triggering an increasing curiosity in the aerospace community:

- Information about the origin of planets and life;
- Space mining;
- Planetary defense.

A mission in which a spacecraft is sent to orbit an asteroid to study its shape and composition is of great interest to the scientific community.

▲ロト ▲理ト ▲ヨト ▲ヨト 通言 めんぐ

General purpose

7th IAA PDC 2021 INPE & UFMG

- Introduction
- Simulations
- Conclusion

- Investigate the use of a solar sail embarked in a spacecraft as a form of thrust for a mission in orbit around an asteroid with an irregular gravitational field;
- Implement different strategies to orient the sail's pointing direction as a function of the spacecraft's relative position regarding the asteroid;
- Seek for strategies to increase both the number of flybys and the time in which the spacecraft maintains itself orbiting the asteroid.

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gravitational Potential

7th IAA PDC 2021 INPE & UFMG

Introduction

Simulations

Conclusion

Spherical harmonics:

U

$$=\frac{\mu}{r}\left\{1+\sum_{n=1}^{\infty}\sum_{m=0}^{n}\left(\frac{R_{ref}}{r}\right)^{n}\overline{P}_{nm}\left(\sin(\phi)\right)\left[\overline{C}_{nm}\cos(m\lambda)+\overline{S}_{nm}\sin(m\lambda)\right]\right\}$$

- U is the gravitational potential;
- μ is the gravitational parameter of the central body;
- (r, λ, ϕ) are polar coordinates in a body-fixed reference frame;

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- R_{ref} is a reference radius;
- \overline{P}_{nm} are the associated Legendre functions;
- $\overline{C}_{nm}, \overline{S}_{nm}$ are normalized coefficients;
- *n* is the degree of the expansion;
- *m* is the order of the expansion.

Bennu asteroid

• Relevant parameters:

7th IAA PDC 2021

- 2021
- INPE & UFMG

Introduction

- Mass: 7.8 \times 10¹⁰ kg - Gravitacional parameter: $\mu = 5.2 \text{ m}^3/\text{s}^2$ - $R_{ref} = 246 \text{ m}$

Degree (n)	Order (m)	\overline{C}_{nm}	\overline{S}_{nm}
0	0	1	0
1	0	0	0
1	1	0	0
2	0	-0.0175112	0
2	1	-0.0000023	0
2	2	0.0058194	-0.0000197
3	0	0.0056102	0
3	1	0.0015471	0.0015368
3	2	0.0001115	0.0000635
3	3	0.0026660	-0.0009332
4	0	0.0102498	0
4	1	0.0004360	0.0018562
4	2	-0.0021919	0.0007749
4	3	-0.0010761	0.0001024
4	4	0.0021356	0.0030684
5	0	-0.0013767	0
5	1	0.0005161	-0.0000786
5	2	0.0005464	-0.0012414
5	3	0.0004250	0.0002269
5	4	0.0013801	-0.0005038
5	5	0.0004869	0.0005241

McMahon et al. (2018)

Solar Sail dynamics

L

7th IAA PDC 2021 INPE & UFMG

Introduction

Simulations

Conclusion

Vulpetti et al. (2015) defines the *lightness* vector as the solar sail's "thrust acceleration normalized to the local local solar gravitational acceleration":

$$= \left(\frac{1}{2}\frac{\sigma_c}{\sigma}\right) n_x \left[\left(2r_{spec}n_x + \chi_f r_{diff} + \kappa a\right) \mathbf{n} + \left(a + r_{diff}\right) \mathbf{u} \right]$$

- σ_c is the sail critical loading;
- σ is the sail loading;
- *r_{spec}* is the frontal specular reflectance coefficient;
- *r_{diff}* is the frontal diffuse reflectance coefficient;
- χ_f is the frontal emission/diffusion coefficient;
- κ is the emission/diffusion net thrust dimensionless factor;
- *a_f* is the frontal absorptance coefficient;
- n is the direction normal to the sail surface;
- $\bullet~~u$ is the direction of the incident sunlight.

Solar Sail dynamics

7th IAA PDC 2021 INPE & UFMG

Introduction

Simulation

Conclusion

Reflectance and absorptance coefficients value:

Vulpetti et al. (2015)

・ロト・4回ト・4回ト・4回ト・4回ト

Mission specifications

7th IAA PDC 2021 INPE & UEMG

Introduction

Simulations

Conclusion

- Spacecraft specifications (inspired by LightSail-2 mission):
 - 3U CubeSat
 - Mass: $m \approx 5 \, \mathrm{kg}$
 - Sail area: $A \approx 32 \,\mathrm{m}^2$
- Fictional asteroid osculating orbit elements:
 - Semi-major axis: $2\times {\rm A.U.}$
 - Eccentricity: 0.5
 - True anomaly: 180°
 - All the other elements are null.

The Planetary Society (2020)

Attitude Strategies

7th IAA PDC 2021 INPE & UEMG

Introduction

Simulations

Conclusion

Strategies:

- 1) Based on the LightSail-2 mission:
 - "On"/"Off' regime
 - Sail fully exposed while traveling away from the Sun
 - Sail fully concealed while traveling in the direction of the Sun
- 2) Maximize thrust component in the direction of travel (relative to the asteroid)

- $max(|\mathbf{T}_{\parallel \mathbf{v}_{23}}|)$

- 3) Maximize the ratio between the thrust component in the direction of travel (relative to the asteroid) and the thrust component in the spacecraft's radial direction relative to the asteroid
 - $max(|\mathbf{T}_{\parallel \mathbf{v}_{23}}/\mathbf{T}_{\parallel \mathbf{r}_{23}}|)$

Strategy 1 illustration:

▲ロト ▲理ト ▲ヨト ▲ヨト 通言 めんぐ

Orbit around asteroid

7th IAA PDC 2021 INPE & UEMG

Introduction

Simulations

Conclusion

- Gravitational parameters from Bennu asteroid
- Initial osculating orbit elements:
 - Semi-major axis: $1.5 \,\mathrm{km}$ (inspired by OSIRIS-REx Orbit-B phase)

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- All the other elements are null
- Sail loading $(\sigma = \frac{m}{A})$:
 - Closed sail: $\sigma = 100 \, {\rm kg}/{\rm m}^2$
 - Open sail: $\sigma = 0.15625\,\mathrm{kg}/\mathrm{m}^2$
 - Smaller sail (A pprox 0.5 ${
 m m}^2$): $\sigma=10\,{
 m kg/m^2}$
- Sail fully exposed to sunlight $(n \parallel u)$

Closed sail

7th IAA PDC 2021 INPE & UFMG

Simulations

Closest flybys (10 days):

Time (days)	Distance (km)
2.31	741.80
7.01	576.41

<ロト < 団ト < 豆ト < 豆ト < 豆ト < 豆ト < 豆ト < 〇への</p>

Open sail

Closest flybys (10 days):

Smaller sail

7th IAA PDC 2021 INPE & UFMG

Simulations

Closest flybys (10 days):

Time (days)	Distance (km)
0.30	964.49
2.35	640.90

<ロト < 団ト < 豆ト < 豆ト < 豆ト < 豆ト < 豆ト < 〇への</p>

Strategy combination

7th IAA PDC 2021 INPE & UEMG

Introduction

Simulations

Conclusion

- A combination of 2 strategies is used based on the spacecraft's behaviour. A Strategy is employed in the initial N days and then the Strategy is switched.
- The term "Negative Strategy" is used when a Strategy is employed to maximize the value in the opposite direction.

n ^o	Combination
1	Negative Strategy $2 + $ Strategy 1
2	Negative Strategy 2 + Strategy 2
3	Negative Strategy 2 + Strategy 3
4	Negative Strategy 3 + Strategy 1
5	Negative Strategy 3 + Strategy 2
6	Negative Strategy $3 + $ Strategy 3

Smaller sail - Combination 1 (N = 10)

7th	IAA
PDC	2021
INP	E &
UF	MG

Closest flybys (50 days):

Simulations

Time (days)	Distance (km)
2.17	618.04
8.36	307.70
10.68	284.32
12.33	323.30
14.26	319.97
18.44	469.73
25.99	840.45

< □ > < @ > < E > < E > E = 9000

Smaller sail - Combination 2 (N = 10)

7th IAA PDC 2021 INPE & UFMG

Closest flybys (25 days):

Simulations

Time (days)	Distance (km)
0.32	971.15
2.17	618.04
8.36	307.70
10.69	284.05
12.41	333.15
14.56	349.84
19.43	645.52

・ロト・4日×・4日×・4日× 900

Smaller sail - Combination 3 (N = 10)

7th IAA PDC 2021 INPE & UEMG

Closest flybys (50 days):

UFMG

Introduction

Simulations

Conclusion

Time (days)	Distance (km)
8.36	307.70
10.69	281.84
12.31	298.62
14.19	296.53
17.10	339.11
19.33	385.50
21.56	422.60

・ロト・4日×・4日×・4日× 900

Smaller sail - Combination 4 (N = 10)

7th IAA PDC 2021 INPE & UFMG Closest flybys (50 days):

orma

Simulations

Conclusion

Time (days)	Distance (km)
2.19	630.71
9.18	280.55
10.88	301.08
12.87	323.67
18.91	476.68
20.46	588.86
21.87	631.56
23.45	628.40
26.74	731.64

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

PDO IN

Simula

Smaller sail - Combination 5 (N = 10)

10

X axis (km)

7th IAA PDC 2021	Closest flybys (50 day	′s):
INPE & UFMG		Time (days)
		2.19
troduction		9.18
mulations		10.89
onclusion		20.69
		23.08
	10 5 (uu) sue -5 -10)

-15

Time (days)	Distance (Kill)	
0.31	967.57	
2.19	630.71	
9.18	280.55	
10.89	304.84	
13.07	353.48	
20.69	670.83	
23.08	965.48	
	20	

Distance (lum)

・ロト < 団ト < ヨト < 団ト < ロト

Smaller sail - Combination 6 (N = 10)

7th IAA PDC 2021 INPE & UFMG Closest flybys (30 days):

OTIVIG

Introduction

Simulations

Conclusion

Time (days)	Distance (km)
2.19	630.71
9.18	280.55
10.89	300.19
12.80	301.97
17.78	410.45
19.05	505.74
20.21	528.66
21.52	486.47
24.64	436.29
10.08 12.80 17.78 19.05 20.21 21.52 24.64	301.97 410.45 505.74 528.66 486.47 436.29

・ロト < 団ト < 豆ト < 豆ト < 三日 < のへの

Final discussion

7th IAA PDC 2021 INPE & UEMG

Introduction

Simulations

Conclusion

- The employment of a smaller solar sail (already beneficial from an attitude control and structural point of view), offers smaller accelerations, which, in this case, serves in favor of the purpose of this study;
- The use of a combination of strategies offers great advantages:
 - Combination 2, despite being the worst result achieved, still increases the stage of the mission in over 10 days and triples the number of flybys;
 - Combination 3 increases in over 40 days the stage of the mission, while also offering the greatest number of the closest flybys recorded;
- This study proves the advantages offered by the employment of a solar sail in asteroid exploration missions.

References

7th	IAA
PDC	2021

INPE & UFMG

McMahon, J. W., Scheeres, D. J., Hesar, S. G., Farnocchia, D., Chesley, S., and Lauretta, D. (2018). The osiris-rex radio science experiment at bennu. *Space Science Reviews*, 214:43.

The Planetary Society (2020). Lightsail 2 mission control.

- Vulpetti, G., Johnson, L., and Matloff, G. L. (2015). *Solar Sails*. Copernicus Books, Nova Iorque. 277 p.
- Zuber, M. T. (2000). The shape of 433 eros from the near-shoemaker laser rangefinder. *Science*, 289:2097–2101.

▲ロト ▲理ト ▲ヨト ▲ヨト 通言 めんぐ

7th IAA PDC 2021 INPE &

UEMG

Acknowledgements

Thank you!

The authors would wish to express their appreciation for the support provided by the grants # 406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological Development (CNPq); grants # 2018/19959-0 and 2016/24561-0 from São Paulo Research Foundation (FAPESP), to the financial support from the National Council for the Improvement of Higher Education (CAPES).

