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Abstract

Climate change has been identified as the primary threat to the integrity and functioning of

ecosystems in this century, although there is still much uncertainty about its effects and the

degree of vulnerability for different ecosystems to this threat. Here we propose a new meth-

odological approach capable of measuring and mapping the resilience of terrestrial ecosys-

tems at large scales based on their climatic niche. To do this, we used high spatial

resolution remote sensing data and ecological niche modeling techniques to calculate and

spatialize the resilience of three stable states of ecosystems in South America: forest,

savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress,

the likelihood of exposure to non-analogous climatic conditions, and their respective adap-

tive capacities in the face of climate change. Our results indicate that forests, the most pro-

ductive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate

change than savannas or grasslands. Forests showed less resistance to climate stress and

a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs,

the forest ecosystems would have less chance of adaptation compared to savannas or

grasslands because of their narrow climate niche. Therefore, we can conclude that a possi-

ble consolidation of non-analogous climatic conditions would lead to a loss of resilience in

the forest ecosystem, significantly increasing the chance of a critical transition event to

another stable state with a lower density of vegetation cover (e.g., savanna or grassland).

Introduction

Empirical data show that in 2016 there was a drop in the temperature record [1]. It was also

the driest year recorded for South America since observations began in 1900 [2]. Ongoing cli-

mate changes have been identified as the main threat to the integrity and functioning of terres-

trial ecosystems in the 21st century [3]. In particular, projections for South America indicate

that by the end of this century the continent is likely to be subjected to non-analogous climatic
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conditions, having little overlap with the current climate [4,5]. This represents a high risk to

the extraordinary biodiversity on the continent due to the high climatic sensitivity of its eco-

systems, which could lead to the compromise of a vast set of goods and services provided to

humans [6,7].

Maintaining the structure and functioning of ecosystems over a broad-scale climate gradi-

ent range [8] suggests that each stable state of the ecosystem must be strictly adapted and

evolved under a specific subset of abiotic conditions, enclosed in the multidimensional space

of its climatic niche. Thus, under such a combination of conditions, the ecosystem is expected

to have a higher capacity to absorb disturbances and recover the condition closer to the origi-

nal state in the shortest time after a disturbance. Also, it is important to note that there is a

strong correlation between ecosystem resilience and ecosystem structure.

The theory of ecological stability predicts that if changes to environmental conditions occur

and a critical threshold of resilience is surpassed, catastrophic transitions between stable eco-

system states can be abruptly precipitated [9]. In this sense, it is crucial to measure and moni-

tor ecosystem resilience, because this attribute plays a crucial role in mediating transitional

events between different ecosystems [10]. Recent studies have been devoted to investigating

and understanding the mechanisms behind critical transition events in tropical terrestrial eco-

systems [11–14].

Despite recent theoretical and methodological advances, resilience is a concept that remains

qualitative [15], and quantification at large scales can be challenging [16]. To overcome this

limitation, we propose the methodological coupling of two significant bodies of theoretical

knowledge in ecology: ecological stability theory [17] and ecological niche theory [18–20].

Some previous studies have already proposed measuring ecosystem resilience at large scales by

calculating the likelihood of finding an ecosystem at a given level of precipitation [8,21,22].

However, none of the authors considered the robust theoretical framework and the recent

methodological advances of ecological niche modeling [23,24]. With this approach, it is possi-

ble to construct spatially explicit models that measure the resilience of ecosystems through a

metric of climate suitability, based on the multidimensional niche preferably occupied by

them.

Overall, there are still many uncertainties about what effects climate change will have on

the resilience and response of terrestrial ecosystems in structural and functional terms [25,26].

In this sense, it is fundamental to evaluate the intrinsic vulnerability of terrestrial ecosystems

through a decomposition into three different axes: sensitivity, exposure, and adaptive capacity

of the ecosystem [27]. Here, we propose to objectively estimate the comparative sensitivities of

terrestrial ecosystems in South America from an analysis of ecosystem resistance to a gradual

increase in climatic stress. Also, we will briefly assess the likelihood of exposure to unfavorable

climatic conditions by identifying the propensity of each stable climate state to cope with non-

analogous climate changes within or outside its optimal climatic niche, taking into account

observed and simulated climate trends. Finally, to infer the adaptive capacity of ecosystems to

changes in climate, we will assess the amount of climate variability that the ecosystem can tol-

erate without losing its structure and function.

Materials and methods

Study area

South America is located in the Neotropical biogeographic domain and has an area of almost

18 million km2 distributed among 12 countries. The continent has an extensive environmental

heterogeneity, encompassing over 100 different ecoregions [28]. Among these are some of the

most productive and megadiverse ecosystems on the planet, including forests (e.g., Amazon
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rainforest and Atlantic forest), savanna ecosystems (e.g., Cerrado, Beni, Gran-savanna), sea-

sonally dry tropical forests (e.g., Caatinga, Chiquitano), and even deserts (e.g., Atacama).

The high variability can partially explain this diversity of ecosystems in latitudinal and alti-

tudinal gradients, which directly influence the patterns of moisture and energy availability

throughout the continent. Based on the climatic dataset of this study, we observed that average

annual temperatures could vary between negative values at high altitudes (e.g., the Andes

Mountain Range) to 30 ˚C in the low-altitude equatorial tropical zone. The annual range of

temperature varies mainly as a function of latitude, being low near the equator, and can reach

18 ˚C in high latitudes. In some regions of the tropical zone, it can rain more than 6000

mm�year-1 with low seasonality throughout the year (e.g., Amazonian West), while other areas

are exceptionally arid, with a marked dry season throughout the year and less than 100

mm�year-1 of precipitation.

Vegetational cover data and determination of stable states

To define the terrestrial ecosystems of South America as stable states, we used the variable

called tree cover for the year 2001, from the Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite sensor. This variable describes the percentage of vegetation cover varying

between zero and 100% [29] and can be interpreted as the density or abundance of trees. The

transition limits between ecosystem’s stable states were inferred from the frequency distribu-

tion of the tree cover [8], which presented a trimodal distribution. Each distribution mode

comprises a stable state of a terrestrial ecological system. The grasslands had zero to 5% tree

cover; savannas had 5 to 60%, and forests had values above 60%. The original dataset, spanning

all of South America, was resampled from a 500-m to a 6-km spatial resolution.

Due to the effects of historical changes in land use, mistaken pixel classifications occurred

among the three ecosystem classes. Notably, the forest ecosystem (with tree cover between 60

and 100%) was the most sensitive to spectral and radiometric changes following the intrusion

of alternative land uses (e.g., selective logging, monocultures, or pastures). To minimize such

classification bias, and thus to match the original distribution of the forest ecosystem as closely

as possible, we evaluated the classification accuracy by comparing the tree cover with a census

database of high-resolution land cover [30]. Whenever a pixel was classified with a tree cover

percentage of less than 60% but classified as forest based on the consensus dataset, the pixel

was reclassified to forest.

Presence-absence data for ecological niche modeling

After correction of land use classification inaccuracies, the raster database was converted to a

presence-absence binary, where each map pixel was converted to a point in vector format. In

total, n = 37763 samples were generated for South America, of which 53% were classified as

savanna; 38% as forest; and 9% as grassland. These ecosystems are mutually exclusive and geo-

graphic substitutes, so when a particular type of ecosystem was recorded as present (1) for a

given area, the others were automatically recorded as absent (0) in that same area. These pres-

ence-absence data were used as an input in the ecological niche modeling procedure described

below. Each point was assigned a geo-referenced signature with longitude and latitude

information.

Climatic variables and selection of bioclimatic predictors

For this work, the climatic conditions of South America were defined along two principal axes:

availability of moisture (1) and energy (2). At the scale used for this study, these are considered

the primary predictors of climate response patterns in terrestrial ecosystems [31,32].

Resilience and vulnerability of terrestrial ecosystems to climate change
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To describe the pattern of moisture availability, we used current precipitation data for

South America from the climatic dataset CHPclim (v.1.0), produced by the Climate Hazards

Group’s Precipitation Climatology. It is a combination of satellite data, physiographic indica-

tors, and standard in situ climatological data, with data available from 1980 to 2009. The final

product is a monthly global climatic precipitation measure with a spatial resolution of 0.05˚

(~6 km) [33]. This database was copied from the address ’http://chg.geog.ucsb.edu/data/

CHPclim/’ in ‘tiff’ format and then cut to the region of interest. CHPclim has a critical com-

parative advantage over other precipitation climatic bases available for South America (e.g.,

WorldClim): It has a better fit for regions with low densities of meteorological stations and

high variability of precipitation, such as the Amazon, and responds satisfactorily to complex

terrain, such as in the Andes Mountain Range [33].

To describe energy availability across the continent, we used the WorldClim temperature

database [34], which consists of a climatological average between the years 1960 and 1990,

with data from stations around the globe. The spatial resolution of the dataset is 0.041˚ (~ 5

km) and was copied from ’http://www.worldclim.org/version1’ in ‘tiff’ format. Although it has

the same limitation of a low density of meteorological stations for the Neotropical region, the

variable in question does not present significant variability near the equator, so that the quality

of the observed data is not compromised. Finally, we selected four bioclimatic predictors

related to energy availability and moisture, which originate from the ecophysiological point of

view of ecosystems: (1) annual cumulative precipitation (ACP), (2) precipitation seasonality

coefficient (PSC), (3) average annual temperature (AAT), and (4) annual range of temperature

(ART).

Modeling the climatic niche of ecosystems

Ecological niche modeling finds strong support in ecological niche theory [35], which predicts

that each organism has a multidimensional environmental space with optimal conditions for

its survival, growth, and reproduction [36–39]. The various modeling methods quantify the

relationships between occurrences (presence/absence) and environmental predictors to

delimit and adjust the multidimensional environmental niche. The result is the quantification

and spatialization of the suitability of the environment for the modeled ecosystem.

To model the distribution of ecosystems, we used the biomod2 package implemented in R

software [40]. Distribution models were calibrated using presence-absence data from each eco-

system and climate predictors for the South American continent. We have adopted the ensem-

ble strategy that emphasizes the most consensus in predictions among different modeling

methods [23,41], thus minimizing the effect of uncertainties on model prediction [42]. The

models were run using 10 different methods: Bioclim (SRE), Classification Tree Analysis

(CTA) [43], Maxent [44,45], Random Forest (RF) [46], Generalized Linear Models (GLM)

[47], Generalized Additive Models (GAM) [48], Generalized Boosted Regression Models

(GBM) [49], Function Discriminant Analysis (FDA) [50], Artificial Neural Networks (ANN)

[50], and Multiple Additive Regression Splines (MARS) [51].

For each method, ten replicates with 75% and 25% partitions were run for training and test-

ing, respectively. Quality of the models produced by the different methods was evaluated using

True Skill Statistics (TSS) and Receiver Operating Characteristic (ROC) metrics (S1 Table).

We calculated the contribution of each bioclimatic predictor to build and explain the patterns

of response variable which varies between zero (lower importance) to 1 (higher importance)

(S1 Table). The models selected to compose the ensemble were those with the best TSS, which

measures combined sensitivity and specificity of the model [52]. For the threshold effect, only

the models with TSS values equal to or greater than 0.7 were considered for inclusion in the

Resilience and vulnerability of terrestrial ecosystems to climate change
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ensemble. The consensus distribution model was then obtained as the arithmetic average

taken for the selected models [53].

Measuring and mapping the resilience of terrestrial ecosystems

Here we present an alternative interpretation for the climate suitability map produced from

ecological niche modeling. For the first time, a methodological convergence between predic-

tions of ecological stability and ecological niche theory is explicitly suggested. The phenotypic

adaptation of an ecosystem to a given set of climatic conditions has a direct and robust rela-

tionship with the resilience of the ecosystem itself. In this sense, the ecosystem is expected to

lose resilience as it moves away from the optimal climatic conditions of its niche. Therefore,

the product of niche modeling can be interpreted as a continuous and objective measure of

resilience, ranging from zero (minimum resilience) to 1000 (maximum resilience) for terres-

trial ecosystems in South America.

Sensitivity of terrestrial ecosystems to climate stress

We assume that climate stress increases in ecosystems as they move away from their optimal

niche. Since the climate suitability gradient, predicted by niche modeling, can be interpreted

as an approximation of the fundamental ecosystem niche, we estimate climate stress from a

simple inversion of the gradient as predicted by the models. Thus, a band with low climatic

suitability is assigned a high level of climatic stress and vice versa.

Using this climate stress vector (x) as the predictor of the relative frequency of observations

for each ecosystem (y), we fit an exponential model according to the equation below:

y ¼ abx ð1Þ

where a and b are the estimated coefficients of the exponential model. The objective was to use

the coefficient b, which defines the curve fit of the exponential model to the observed data, as

an indicator of the ecosystem resistance to climatic stress. In other words, if a small increment

of climatic stress significant changes the ecosystem, we can assume that the ecosystem has low

resistance to climatic stress, and consequently a higher value of the coefficient b. Conversely,

resistant ecosystems will have a lower value of the coefficient b.

Exposure of ecosystems to non-analogous climatic conditions and their

respective adaptive capacities

In a two-dimensional climatic space representing the availability of moisture and energy pres-

ent in South America, we evaluated the propensity of ecosystems for exposure to non-analo-

gous climatic conditions and their respective adaptive capacities based on the climate space

occupied by each ecosystem and its respective observed resilience gradient. We have taken as a

reference the observed current climate trends [2,54,55] and simulations of future climate sce-

narios [5,56,57] to assess the likely progression of climate changes in South America. In gen-

eral, both observed and simulated data point to an increase in climatic seasonality associated

with increased aridity and temperatures for South America. We, therefore, delimited a polygon

for the bidimensional climate space to indicate the likely orientation climate changes on a con-

tinental scale. Observed ecosystem resilience data was then compared with the polygon to

determine which ecosystems would be most abruptly exposed to unfavorable climatic condi-

tions. In the same sense, it was also possible to observe the response width of ecosystem resil-

ience and, in this way, infer the capacity to adapt to a new climatic reality.

Resilience and vulnerability of terrestrial ecosystems to climate change
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Results

Mapping ecosystem resilience

Here we present a continuous metric of spatially explicit ecosystem resilience, based on the cli-

matic niche to which each ecosystem is adapted (Fig 1). Grasslands have high resilience at high

altitudes and arid environments, such as in the Andes, the Atacama Desert, and Patagonia.

Savannas are widely distributed throughout the continent and exhibit high resilience along the

continental diagonal polygon as well as to the north of South America. Forests have good resil-

ience near the equator, covering almost entirely the Amazon basin to the foothills of the

Andes. Forests also occupy a narrow strip following the Atlantic coast (Atlantic Forest) and

the eastern region lying near latitude 50˚ (Araucaria forest). All of these areas show a lower

level of resilience than do the forests of the Amazon basin. In the southwestern portion of the

continent, the model predicted the presence of a vertical band of temperate forest (Valdivia).

There is a spatially structured pattern of loss of resilience toward the transition zones

between the three ecosystems. Models based on the climatic niche of ecosystems were highly

sensitive in detecting that ecotone zones tend to have a lower resilience value than do areas in

an optimal climate niche. This pattern reinforces the idea of geographic ecosystem replace-

ment caused by transitional events through the loss of resilience through geographic space and

climatic gradient.

Sensitivity of terrestrial ecosystems to climate stress gradient

In general, the three ecosystems presented similar statistical behaviors, with a decrease in their

relative frequencies accompanying a gradual increase in climatic stress (Fig 2). However, there

are significant differences concerning the forms of the response curves observed for the three

ecosystems. For savannas and grasslands, the distribution of observations was more uniform,

while forests account for almost 80% of the observations in the range of the lowest climatic

stress (close to the climatic optimum). Because of this, savannas and grasslands have a

smoother response curve as climate stress increases than do forests. This pattern was also

reflected in the value of the exponential model parameter, with forests (b = -0.024) having a

value almost double those for grasslands (b = -0.010) and savannas (b = -0.007), indicating that

savannas and grasslands have better resistance to climatic stress than do forests.

Propensity for exposure to unfavorable climatic conditions

The moisture availability gradient showed a strong interaction with climate resilience. Forests

present high resilience to rainfall above 2000 mm�year-1 with a relatively low seasonality

(<100%) during the year (Fig 3). Savannas are adapted to a precipitation range between 500

and 1800 mm�year-1, so that resilience tends to decrease with increasing seasonality of precipi-

tation and annual rainfall volumes. In contrast, grasslands show high resilience in the gradient

range where a more arid climate prevails, with low rainfall volumes and high rainfall seasonal-

ity throughout the year. In this sense, if the observed trends are assessed alongside the simu-

lated future climate scenarios, both savannas and grasslands would be favored, while forests

would inevitably lose resilience due to moisture reduction.

For the energy availability gradient, forests are adapted at high levels of resilience to a nar-

row range of high average annual temperatures (between 20–28 ˚C), but tolerate only low vari-

ability throughout the year (between 0–5 ˚C�year-1). Outside of this range, there was a drastic

loss in ecosystem resilience. On the other hand, savannas have high resilience at average

annual temperatures above 10 ˚C, also supporting temperatures above 25 ˚C, while their resil-

ience tends to decrease at temperatures below 10 ˚C. Savannas also persist in places with

Resilience and vulnerability of terrestrial ecosystems to climate change
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Fig 1. Ecosystem resilience based on the climatic niche projected under geographic space. A Grasslands; B Savannas; C Forest. High values (~1000)

indicate a high recovery capacity after a disturbance, whereas low values (~zero) mean slower recovery capacity after a disturbance.

https://doi.org/10.1371/journal.pone.0194654.g001

Fig 2. Model of ecosystem responses to a climate stress gradient based on the prediction of relative frequencies (%). The parameters of the

exponential model indicate that there are differences regarding resistance to climatic stress among the three ecosystems. Grassland n = 598; Savanna

n = 889; Forest n = 891.

https://doi.org/10.1371/journal.pone.0194654.g002
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considerable variation in temperature throughout the year, with ranges up to 20 ˚C. Grass-

lands are adapted for temperatures in a wide range, from negative to 20 ˚C average annual

temperatures, and with a large annual thermal amplitude (5 to 20 ˚C�year-1). The observed and

simulated average temperature trends indicate abrupt increases, as delimited by the gray poly-

gon, which would favor forest ecosystems, provided there is no increase in the annual tempera-

ture range. If there is an increase in annual temperature variability, the scenario would be

more favorable to savannas at the expense of forests, which would probably lose resilience.

Adaptive capacity of terrestrial ecosystems

Forests and savannas have strong niche-specific adaptive responses to moisture availability

persisting over a specific range of the moisture gradient (Fig 3). This suggests a low adaptive

capacity to new conditions outside the optimum climatic niche for forest and savanna ecosys-

tems. On the other hand, grasslands show high levels of resilience to a wide range of moisture

availability. The pattern is further enhanced by the seasonal axis of precipitation, with grass-

lands maintaining high levels of resilience for a wide range of moisture availability. The most

significant adaptive constraint regarding grassland resilience is regions with rainfall volumes

over 2000 mm�year-1.

Savannas and grasslands would have higher adaptive capacities to changing temperature

gradients because they show high resilience at a wide range of temperature combinations. The

forest ecosystem, however, has a relatively narrow climatic niche and demonstrates high resil-

ience only for high temperatures with low annual variability. This suggests that savannas and

Fig 3. Observed patterns between climatic variation and ecosystem resilience. In the two-dimensional gradient of moisture

availability (A) and energy availability gradient (B), if ecosystems are exposed to non-analogous climatic conditions (gray polygon), it is

possible to assess what the impacts would be and whether they are likely to adapt to climate change. Forest observations: n = 14,466

samples—38.30%; Savana: n = 19,923 samples- 52.75%; Grassland: n = 3,374 samples—8.93%.

https://doi.org/10.1371/journal.pone.0194654.g003
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grasslands have a higher adaptive capacity to changes in the energy availability than do forests,

which have a narrow climatic niche.

Discussion

In the context of robust transformations induced by climate change, the resilience estimated

from the climatic niche emerges as an alternative to the traditional metrics of biological diver-

sity (such as richness or species composition). This new metric can be interpreted as a measure

of ecosystem health [58], and may be useful in the design and implementation of conservation

strategies at different spatial scales. For example, ecosystem resilience could be monitored in

real time to predict catastrophic transitional events between stable states as a function of

observed or simulated climate changes [13]. This method is already available, since remote

sensing data are widely available at high spatial, spectral, and temporal resolutions [59].

Another potential application would be in actions to support the restoration of degraded

ecosystems, considering that the success of an ecological restoration process is directly linked

to the ecosystem resilience of the area to be restored. In other words, recovering a forest in an

area with low resilience (for this type of ecosystem) would be more costly regarding resources

and time, if not infeasible, which could jeopardize successful project implementation.

Our results indicate that the terrestrial ecosystems of South America are sensitive to the

expected gradual increases in climatic stress, since the relative frequency of ecosystems

decrease as conditions become marginal for the climate niche of the ecosystem in question.

However, there are differences in the form of responses between different vegetation classes.

When the exponential model parameters were compared between ecosystems, forests pre-

sented the least resistance to climate stress, indicating a higher sensitivity intrinsic to changes

in climate. These results suggest that forests are more sensitive to climate variability [11,60],

mainly due to decreasing availability of moisture [61–63]. This result highlights the fragility of

these ecosystems to climate change since vulnerability is positively correlated with sensitivity

[27].

The response curve for the stable state of forests also indicates that an incremental change

in the climatic stress gradient could trigger large-scale transformations, particularly if a rup-

ture threshold is reached [64,65]. This factor may be critical in the short term, with the acceler-

ated levels of transformation currently being experienced, so it is critical to the identify

thresholds for rapid forest decline. Even so, it may take decades for forests to restore the ser-

vices they provide [58]. In contrast, a larger amount of climate stress would be required for

savannas or grasslands to become more susceptible to large-scale transformations. It is possible

to explain their higher tolerance to climatic stress due to better adaptation to water deficit and

the fire effect on biota [66,67].

However, it is important to note that when forests are subjected to some degree of climatic

stress, particularly to moisture deficit, their capacity to retain CO2 in biomass is compromised

[68–71]. The reduction of moisture availability throughout the year affects the floristic compo-

sition of forest species [72] and is also associated with high tree mortality rates [73,74]. Hydric

stress, combined with factors such as fire, can lead to species loss and biodiversity erosion

[75,76]. Furthermore, changes in land use at large scales, e.g., deforestation or selective logging,

have affected biophysical climatic parameters such as air temperature [77], as well as the pre-

cipitation regime [78,79]. Since temperature is an essential predictor of the maintenance of

structure and function of terrestrial ecosystems, these bioclimatic temperature variations are

expected to directly and negatively affect forest resilience.

Our results indicate that forests in South America are more likely to face unfavorable cli-

matic conditions in the near future than are savannas and grasslands, which have a lower
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percentage of vegetation cover. Forest ecosystems display greater vulnerability due to their

higher probability of exposure to non-analogous climates [27]. Empirical evidence shows that

forests in border areas of the Amazon southwest have presented slower biomass recovery after

extreme drought events [80,81], suggesting that they have recently declined in resilience.

On the other hand, these new climatic conditions are likely to favor other ecosystem types

that display increasing resilience. In this way, the dynamics of resilience within an ecological

system with multistability are closely related to transition events between stable states and

depend directly on the orientation of change, thus favoring a particular stable state. For exam-

ple, at the end of the Upper Miocene, there was a reduction in global temperature, and grass-

land ecosystems dominated most of South America [82]. However, in the Eocene, with higher

temperatures and precipitation, forests thrived to the detriment of grasslands and savannas

[83].

Tropical forests are known to have a narrow thermal tolerance [84,85], evidence of their

higher vulnerability to climate change, representing a low adaptive capacity compared to other

ecosystems that can maintain high resilience values under a wide range of climatic conditions.

Moreover, in theory, for an adaptation event to occur, the adaptive strategy should be within

the limits of the diversity of responses, i.e., phenotypic plasticity, displayed in the current cli-

mate. Outside the boundaries of the climatic niche, there would be slow adaptation, and the

ecosystem would succumb to a loss of structure and function until it reached a point of rupture

or another stable state.

Our results indicate that, in this sense, savannas demonstrate an advantage over forests.

Savannas are successful in a wide range of moisture and temperature availability and tolerate

strong seasonal variations. Savannas can, therefore, maintain a steady tree cover state despite

climatic variation, which confers a tremendous adaptive potential to the ecosystem if it is

exposed to non-analogous climatic conditions.

There are no predicted energy restrictions in the near future, since all simulated projections

point to an increase in temperature, regardless of the emissions scenario [86]. An increase in

atmospheric CO2 concentration could favor forests by increasing the availability of CO2 as a

resource [87,88]. However, the most critical factor for forest persistence is the widespread

need for moisture [62,89,90]. In contrast to the hypothesis that forests are resilient to climate

change [87], our results suggest that, due to the close adaptive relationship of ecophysiological

and evolutionary patterns between terrestrial ecosystems and climate, the high values of resil-

iency to changing climatic conditions can only be maintained at the conditions of the opti-

mum climatic niche occupied by the ecosystem. This dependence would thus be reflected in

ecosystem responses following a disturbance event [91].

Conclusions

Our models, with strong support in niche theory and ecological stability, have shown a signifi-

cant sensitivity and may be useful in several practical applications within the science of conser-

vation, including in assessing the vulnerability of ecosystems to climate change. We found

some worrying evidence that South American forest ecosystems are intrinsically more vulnera-

ble to climate change than other ecosystems. Ongoing climate change can accelerate the loss of

ecosystem resilience by promoting erosion of forest biodiversity and leading to another stable

state with a lower density of vegetation cover.
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