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The Hubbard model for the disordered systems: An 

application to the specific heat of the phosphorus doped silicon 
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senvolvimento Cientifico e TecnolOgico, CNPq 

12200 - São José dos Campos, S.P., Brasil 

A self consistent many body theory of the disordered systems, described 

by the Hubbard Hamiltonian with random transfer integral, is developed. 

The random nature of the system is taken into account by the Matsubara-

Toyozawa theory of impurities in semiconductors. By considering the 

hidrogen like impurity states, the electronic specific heat of 	the 

uncompensated phosphorus doped silicon is calculated and compared with 

the experimental results. It is found that it agrees well with the 

experiment in the entire semiconductor to the dilute metallic region. 



I. INTRODUCTION 

Recently considerable attention has been given to the study of doped 

semiconductors because they provide a good model system where both 

disorder and electron correlationsplaytheir roles'. Thermodynamics and 

electrital properties of these systems show that the degree of interplay 

of electron correlations and disorder varies with the concentration of 

the impurities. However, the relative importance of these effects is 

still not fully understood. 

At present, experimental results are reasonably well understood only 

for the impurity concentrations very much smaller or very much larger 

than the critical concentration N
c 

where semiconductors to metal (S-M) 

transition occurs. For example in the concentration region very much 

smaller than N
c quantitative interpretation is possible in terms of 

electrons local ized at the randomly distributed donor impurities. Here 

electron correlation plays the essential role. It is believed that it 

produces antiferromagnetic exchange to make the system as a prototype 

of amorphous antiferromagnet. However, no evidence of antiferromagnetic 

ordering has been found 2 . On the other hand, at concentration muchlarger 

than N
c' the properties of the metallic sample can be understood in 

terms of the rigid band model which assumes that the electrons occupy 

slightly modified conduction band of the host 2 . However, in the case of 

both amorphous antiferromagnet and metallic samples, the above mention-

ed models become unsatisfactory as the concentration approaches Ne . 

At intermediate concentration, Mott l  describes S-M transition as 

follows. For concentration very much smaller than N.  there are two 

separated Hubbard bands 3 , a lower band, consisting of D°  states 



(related to singly occupied impurities), and an upper band, consisting 

of D-  states (doubly occupied impurities). The energy gap between the 

two bands corresponds to the intraatomic Coulomb interaction of two 

electrons at the same impurity-site, and the system behaves as a semi-

conductor. As the concentration increases, the Hubbard bands are 

broadened and eventually start overlapping. It the disorder due to 

random distribution of impurities is not sufficient to produce local ized 

states at the bottom of the upper Hubbard band, 5-M transition takes 

place at the concentration at which the two bands just startoverlapping. 

On the otherhand, for sufficiently strong disorder which produces 

localized states in the bottom of the upper Hubbard band up to a mobili-

ty edge E.  S-M transition takes place when the Fermi energy enters in 

the region of extended states above E e . On further increase of concen-

tration, the Fermi levei enters the conduction band of the host and the 

property of the system can be described by assuming that the electrons 

move in the slightly modified host conduction band. According to this 

picture one should expect a Friedman anomaly in the Hall coefficient, 

p type thermopower on the semiconductor side of the transition, 

activation energy and N e , sensitive to the compensation, and very strong 

enhancement of the specific heat. So far the first three effects have 

not been observed and the enhancement of specific heat is observed to 

be quite weak. To avoid these difficulties, Mott suggested that the 

transition is purely Anderson type 4 dueto the localization of electronic 

states caused by disorder at the Fermi energy as N e  is approached from 

above. However, Economou and Antoniou s  found that the randomness of 

the off-diagonal disorder cannot produce localization in the middle 

of the band and thus raised doubts about completely disorder dominates 



transition. Thus it shows that at least for uncompensated samples, the 

electron correlation and not the disorder plays a major role near the 

5-M transition. And for any theory of doped semiconductors to be valid 

in the whole range of concentrãtion of impurities, both disorder and 

electron correlation should be taken into account. 

We, in this paper, present such theory by considering that the 

disordered systems are described by the Hubbard Hamiltonian' with random 

transfer integral. In the past s , this Hamiltonian has been studied to 

calculate density of states, and critical concentration using Hubbard's 

approximation' which, as shown by Edwards and Hewson s , suffers from the 

difficulty that no sharp Fermi surface exist in the metallic region of 

a translationally invariant system. 

Fedro and Wilson' developed a self-consistent many-body theory for 

the single-particle Green's function. Here we use the generalization 

proposed by Kishore" for any particle Green's function to obtain the 

equation of motion for the single particle Green's function. Also, we 

use an approximation which, in the case of translationally invariant 

systems, is equivalent to that of Ikeda et al i ' and is free from the 

defects of Hubbard's approximation 7 . The configuration average of these 

equations is performed according to the method of Matsubara and 

Toyozawa". By considering the hydrogen like impurities, we calculate 

the specific heat of the uncompensated phosphorus doped silicon and 

compare with the experimental results of Sasaki and co-workers" and 

Marko et al 2 , and the theoretical calculations based on the highly 

correlated electron gas (HCEG) model' and the Alternant-Molecular-

Orbital method in the Matsubara-Toyozawa scheme (AMO-MT)". 

In Sec. II, we describe the HUbbard Hamiltonian for the disordered 



systems. After giving a brief outline of the self consistent many body 

theory, equations of motion of the single particle Green's functions are 

obtained and then Matsubara-Toyozawa theory is used to obtain the 

configurationally averaged Green's function. In Sec. III, the energy of 

the system and from that, the low temperature electronic specific heat 

is calculated. In Sec. IV, we discuss our numerical results for the 

specific heat of phosphorus doped silicon and give the concluding 

remarks. 

II. GREEN'S FUNCTION FORMULATION 

We consider a disordered system described by the Hubbard Hamiltonian s  

H = 	V.. a. 	a. 	+ 	y 	i  n. 	n. 	 (1) ij 10 ia 	2 	a 1-a ija 	 ia 

where a
ia 

and a
ia are the creation and the annihilation operators of an 

electron of spin 	at the site i,V ii  is the random transfer integral 

associated with the site i and j, U represents the intraatomic Coulomb 

interaction (or correlation) energy, and n 10= a 0  a ia  is the number 

operator corresponding to the site i and spin a. We shall apply above 

Hamiltonian for an n-type doped semiconductor with randomly distributed 

donor impurities. In this case, summation over sites in (1) should be 

considered as summation over the impurity sites. Also, we shall restrict 

ourselves to uncompensated samples in which V ii  can be considered a 

constant independent of the sitei". We shall define the energy scale 

such that V ii = O. The transfer integral V.. 
1J  and intraatomic interaction 

U will be calculated from hydrogen 1-s type wave functions. 

The single particle Green's function is calculated by exploiting the 

self-consistent many body theory.developed by Fedro and Wilson 9 , and 



Kishore l ? A brief outline of the theory is given as follows. An 

equation of motion for the Green's function" 

Gij  (t) = ie (t) < Elk 	(t)]
n 
> ; j = ± 	 (2) 

foranytwosetsofHeise~peratorsA i andB.obeying the 

condition 

Bj] n  > = <21 1 , B. 	> 6.. 	 ( 3 ) 

is given as 

- i -a G 4 (t) 	<fA i , B i:I n> d ij  6(t)+ ie (t)<Pk i , L Bj  (t)J> 	(4) 

where for the Hamiltonian H and any operator X, the Liouville operator 

L is defined as 

LX 	rH, xJ 	 ( 5 ) 

and the angular brackets <---> denote the grand canonical ensemble 

average. Now, the operator B j  (t) is broken into two parts 

B. (t) E P B. (t) + (1 - P) B. (t) • 	 (6) 

The projection operator P is chosen such that 

P E 	P. 	 (7) 

and 

Pi  x = 	CA . , x] > J r1 	 (8) 

<[Aj , Bj] n> 

By substituting the identity (6) in Eq. (4) and using the relation 



<!X,LYi
n
> =-< [LX,Y] n> , obtained from the cyclic invariance of the trace 

implied in the ensemble average, we get 

-iát G. (t) 	[A. BV> 	d(t).4s-t. G 	(t) — 	 1' In 13 iz tj 

	

- 	(t) < EL A i  , (1-P) 13 5 ( .0] n>, 	 (9) 

where 

‹[A.,L B 	5  
2.  _ 	1 	R n 	 (10) 
12 	<1-11,2 , 132,  1 11 > 

From the solution of the equation of motion of the operator (1-P) 0(t) 

Bj
(t), it can be shown that9 "° 

iT(1-P)L 
(1-P)e(t) Bi (t) = 	dt e 	(1-P)L 	  

<IA2 , 1321 n> tJ  
( 11 ) 

The substitution of Eq. (11) in Eq. (9) gives a closed equation for the 

Green's function 

-; 	G 1 (t) rC [A,,Eyn> dij ami n,,G,j (t) 

	

dt y it (t) G2i  (t-t), 	 (12) 

where 

iT(1-P)L 

-"i0(T)1 LA1  .,e 	(1-P)LB 1 › 
YiR(T  ) = 

	

ft n 	 (13) 

<[. A 2 , B2,] n> 

Eq. (12) can be easily solved by introducing the Fourier transform 

iwt 
E(t) = 	dw e 	F (co) 	 (14) 

2 -Fr _w  
where F represents either G or y'. We now take the Fourier transform of 



(12) to find 

	

w 	(w) . <EA,,B.] > d. -1-  

	

Gij 	1 1 n 	1j 	IR Rj R 

4-  X Tit (W) Gu (10 ), 	 (15) 
R 

which is the starting point of our present work. By chosing A i  E 
+ 

	

a. n. 	where n 1-0  . . n. -C  and 111-17E  1 - n 	; B 	aiG i rs 	and 

	

Ia 1-0' 	 1  

n = +, Eg. (15) becomes. 

++ 
(o G. 	(w) 	. 	n- 	d.. 	+ 	2T 	G 	. 	(m) lj 	-o 	13 	2 	lto 	Rjo 

	

+ 	+ 
1-  i 	yii (w) 	G. 	(W) Rja R 

+ 
where,forsimplicity,n -c E<nt>is assumed to be 1-a 
the site index in spite of the randomness of the system. 

+ 	 + 
G. G ja(m)and.m) are the Fourier transform of Y1jc (  

(16) 

independent of 

The functions 

Gf. (t). 10(t) <[a 	a. ] > 	 (17) • 1ja 	 ia ri  1- o ' jc +  
and 

+ 

	

it(1-P± )L , 	„ 
-i0(t) <fta. 	nT 	• e 	cr(1-P(- )La]„ 	 (18) 

10 1-0 	
2  v ija (t) - 	 + 

n
-a 

respectivily 

<[a. 
 nT 	,1 

1 1-0 	JG +  2: 	- 	 (19) 1j 
n
+ 
-o 

	

and the projection operators P i-cr 	are defined as 

p: 	 (20) 
G 	30 



with 
+ 	+ 

	

a. 	< 
- 

a [aja 
. n _0 , x]> 

± 	J  .X Pjo 	
+ 

n
-a 

We are interested in the Fourier transform G 10 (  w) of the single 

particle Green's function 

	

(t) = 	e (t) <ra ia , a ia> , 	 (22) G. 

+ 	_ 
which is the sum of the Green's functions G ( t) and G ije (t).TheGreen's 

+ function G(w) .G o  (w) + G (w) can be calculated from the solution ij  

of the equations of motion (16). In case of translationally invariant 

system, (16) can be solved by taking Fourier transform in momentum 

space. This case has been considered by Kishore et al".' In disordered 

systems, Eq. (16) should be averaged configurationally for ali therandom 

configurations before taking the Fourier transform in the momentumspace. 

For configurational averaging, we shall use the method of Matsubara and 

Toyozawa i2 . Before applying their method of configurational averaging,we 

shall assume that y it0 (w).0. Within this approximation,bysubstituting 

2. 	= V. +  lia 	IR. 	-7- (1 t 1) 6 	 (23)ft  

obtained from Eq. (19) for the Hubbard Hamiltonian (1), in Eq. (16), we 

get 

(w -e± ) 	(w) = n±  6. + Z V. G. 	(w) 	 (24) ija 	-a 	1 j 	IR Rja 

where, c + 	U, and e -  = O. In the case of translationally invariant 

systems, Eq. (24) gives the result of Ikeda et al". Which is exact in 

both atomic and band limits and for small(where A is the bandwidth) 
—4—  

differs from Hartree-Fock theory only by an exponentially smell quantity. 

Also it has sharp Fermi surface in the metallic region 	<l) and thus 

(21) 



removes the difficulties of the Hubbard's approximatioe" For --> I, it 

gives two separated Hubbard bands with local moment formation. The effects 

of yija(w)  have been considered by Kishore et al i! 	It was found that 

for -2- 51, y..± (w) gives spin dependent shifting and narrowing of the 
A 	1J0 

bands. These effects make the ferromagnetic state more stable compared 

to the paramagnetic state. We hope that for our paramagnetic system, 

these effects may not alter the results very much. 

Now we expand the Green's function Gt2 (W) in Eq. (24), in powers of Lio 

1/(w-c) by making use of an iteration procedure, and get 

n
+ 

V. 	7  V 	V 
G ± (w) = 	[Ó. + + + 	ig Zi  + - -1 	 (25) ij 

W-E 	(W-E± ) 2  

The configurationally averaged Green's function G
a  

T (w) can be obtained 
11 

by just taking the configurational average of the right band side of 

(25) over the random destribution of the transfer integral. For this, 

we use the diagramatic summation method of Matsubara and Toyozawa l2  and 

obtairl the configurationally averaged diagonal Green' s functions. 

G:. 	(w) = , 
11O 	w-e- 

where 

1  
C(w) 	 (27) 

1 -n(w) 

and 

n(w) 	NC(w)f  V 2 (-0 dt 	
(281 

8IT 3w2  1 _ N(w)  v (t )  

w2 



N is the number of the impurity sites per unit volume and 

V(t) =V() e i 	Ã , 	 (29) 

is the Fourier transform of 

-00A.1 
V.. = -V o (l+a

I P1 -Rj 1) e 	" =11(1 -Pj I). 	(30) 

Eq. (30) is obtained from the hydrogen like 1-s wave functions. Here, 

V o  is equal to twice the ionization energy of the 1-s state and a -1  

the radius of the 1-s orbit. The Matsubara-Toyozawa method 12  can also 

be applied to calculate the configurational average of the off-diagonal 

elements of the Green's functions. But for our purpose, we shall 

require only the diagonal element. 

III. SPECIFIC HEAT 

The calculation of the specific heat requires the energy of the 

system which can be expressed in terms of the single parti de Green's 

function for the system described by theHubbard Hamiltonian (1). The 

energy of the system is given as "  

co 

1 E = <H> 	- 	Um 	(w<5. + V. .) 	(w+ic)}1 f(w)dw 
2u 	 ij 	ij  c.01- ijG 

(31) 

where, f(w) is the Fermi destribution function 

f(w) - 
	1 	

(32) 

ee(W-E F ) +1 

c
F denotes the Fermi energy and e = 1/kT. Eq. (31) can be expressed 



11 - 

solely in terms of diagonal Green's function by using Eq. (24) which 

gives 

(w-c ± ) Im {G1.11^ i c (w+ ¡c)} = 1 V-- Im 	(ui+ ¡E)} 	 (33) 
1J 	J1G 

By substituting Eq. (33) in Eq. (31), we get 

1 E =- ri-Em 	jr (2w-e t ) rim {G".f ia  (w+ ic)}] f(w)dü, 	(34) 

io 

Since we are dealing with a disordered system, Eq. (34) must be 

averaged configurationally over ali the random configuration. The 

configurational average of (34) gives us 

É = - 	lim y 	(w-cP/2)[Im (G ia(w+ ie)} 	f(w)dw 	(35) 
E.o+ pg. 

—oo 

where, p =±. 

Eq. (35) can be rewritten in tens of the density of states defined as 

D(w) 	1 DP (w), 	 (36) 

with 

DP (w ) = 	um / Im (Ge- ( 034-  Ei)} 	 (37) 
11G 

Tr  C.0+0 

D
+
(w) and D (w) correspond to the density of states of the upper and 

the lower Hubbard bands respectivily. From Eqs. (36) and (37), Eq. (35) 

becomes 
roo 

= 	lio D(w) - 4- D + (to)} f(w)db, 	 (38) 
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Because of the Fermi distribution function f(w) in (38), the energy of 

the system E is a temperature dependent quantity. At low temperatures, 

we can express it in powers of temperature. This is done by using the 
20 

low temperature expansion, for any arbitrary function F(w) . 
co 	

EF 

I F(w) f(w) 	= f 	F(w) dw + (TrkT)2  rFle F  ) - F(E F  ) 	' 	] 6 	 g(EF ) 
-00 	 (39) 

Here, E F  is the Fermi energy at T=0, and 

d F(w)  F'(e F) - 	d. 	
W 	

• (40)
= EF 

d D(w)  and D'(e F ) = dw 	!W=E
F 

By taking F(w) = wD(w) - --U-- D+ (w) , Eq. (39) gives 
2 

= 	{w  D(w) - 
2  
-- D+ (w)) dw 

• 
(ukT) 2 	D ( cr ) 	112 	11+  (EF) 	

81- (EF ) D'(EF) 	
(41) 

6 	 D (E F ) 

which on differentiating with respect to T gives the low temperature 

specific heat 

dE c 	
dT 	

= y T 	 (42) v  

with 

u2k2 + 	D+ (e F ) D 1 (e F ) 
Y 	 iF'D (EF) 	 (43) 

D  (EF) 
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Thus, the calculation of the specific heat requires the total and the 

upper Hubbard band density of states and their derivatives at the 

Fermi energy c F  which can be calculated from the formula 

eF 

nN = 	dw 
	

(44) 

where n = Y nP  is the total number of electrons per impurity. In the 
PG 

next section we shall discuss the results of numerical calculation of 

specific heat of uncompensated phosphorus doped silicon using Eq. (42) 

together with Eqs. (43), (37), (36) and (26) to (30). 

IV. RESULTS AND DISCUSSIONS 

In Fig. 1 we have plotted our numerical result of y, curve 1, as a 

function of donor impurity concentration N for the uncompensated 

phosphorus doped silicon. The experimental critica] concentration N
c

, 

at which S-M transition occurs, is also shown. The experimental results 

of Sasaki andco-workers"are shown as dots with error bars. We see a 

very good agreement between our calculation and experiment over the 

entire semiconductor to the dilute metallic region (N<5x10 18 cm-3 ). 

We have also shown the results of calculation based on HCEG mode] of 

Berggren and Sernelius'" as curves 3 and 4, and AMO-MT method of 

Chao and Ferreira da Silva'', as curve 2. HCEG model, based on the 

electron-hole droplets mode1 21  with immobile impurity ions playing 

the role of the mobile holes, although gives a good agreement with 

the experiment in the metallic region N>N c , fails completely in the 

semiconductor region N<N c • On the other hand AMO-MT method, which 
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takes into account the correlation effects in Matsubara-Toyozawa' 2  

theory, gives only a rough agreement in the intermediate region 

(N-Nc ). In Figs. 2, 3 and 4, we have plotted the specific heat C v  as 

a function of temperature for variousconcentrations of donor impurity 

together with the experimental results of Sasaki and co-workers" and 

Marko et al 2  and calculations based on the inhomogeneousmode1 2 . It 

should be noted that our results agree fairly well with the experiment 

and are better than the inhomogeneous mode1 2 . 

The shape of the density of states and the position of the Fermi 

leve] are shown in Fig. 5 for various concentrations of donor impurity. 

And in Fig. 6 the behavior of the top and the bottom edges of the 

Hubbard bands is shown. These figures show that the Hubbard bands 

start overlapping at a concentration much less than the critical 

concentration N c
. It shows that the electronic states near the bottom 

of the upper Hubbard band should be localized so that the S-M 

trànsition can occur when the Fermi leve] crosses the mobility edge, 

separating the regions of localized and extended states. The lo-

calization of the electronic states near the bottom of the upper 

Hubbard band has been shown by Aoki and Kamimura s . Thus, our theory 

supports Mott's description of S-M transition in the doped semi-

conductor as described in Section I. It should be noted that the 

density of states in both the Hubbard bands, is tailed in the low 

energy side. It has been shown by Aoki and Kamimura 6  that the 

consideration of resonance broadening (dynamical motion of the 

electrons with spin), neglected by us, can give tailing in both low 

and high energy sides of the Hubbard bands. Recently, Ferreira da 

Silva et al 22  have shown that the impurity-impurity correlations can 
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also produce this high energy tailing. 

In our theory, we have not taken into account the presence of the 

host conduction bandwhich,we think, is necessary to get agreement 

with the experiment in the metallic region (N>5x10"cm -3 ). 

Nonorthogonality corrections, resulting from the nonorthogonal nature 

of the 1-s wave functions, should also be incorporated in the theory. 

At present, we are studying these effects. To give a further support 

to our theory, we shall also calculate the conductivity and the 

susceptibility. The present theory can be improved by considering 

also resonance broadering corrections and impurity-impurity corre-

lation. 
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FIGURE CAPTIONS 

Fig. 1 - Electronic specific heat coefficient y for Si:P as function 

of the impurity concentration N. Curve 1 is the present 

calculation. Curve 2 (Ref. 15) is the AMO-MT calculation. 

Curves 3 and 4 (Ref. 14) are the results from the higly 

correlated electron gas model. The dots with error bars are 

the experimental data measured by W. Sasaki and co-workers 

(Ref. 13). N
c indicates theimpurity critica] concentration. 

Fig. 2 - The electronic specific heat of Si:P in units of cJ/ ° K-

Mole as a function of temperature of various impurity 

concentrations indicated by the numbers. Full drawn curves 

refer to the present calculation. Open triangle or solid 

triangle and solid circles are the experimental data by 

W. Sasaki and co-workers (Ref. 13). 

Fig. 3 - The electronic specific heat of Si:P in units of J/ ° K- Mole 

as a function of temperature for impurity concentration 

1.8x10"cm-3 . Dashed line refers to the present calculation . 

Fui) line refers to the inhomogeneity model by Marko et ai 

(Ref. 2). Solid circles correspond to the experimental data 

by Marko et ai (Ref. 2). 

Fig. 4 - The electronic specific heat of Si:P as a function of 

temperature for impurity concentration 2.4x10 1s cm-3  . 

Dashed line is the present calculation. Solid line is the 

inhomogeneity model and solid circles are experimental data, 

both from Marko et ai (Ref. 2). 
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Fig. 5 - Density of states of impurity Hubbard bands for various values 

of the normalized impurity concentration P = 321iNa: . N is 

the true impurity concentration and a o  (a-1 ) is the Bohr 

radius of the impurity. The position of the Fermi energy is 

indicated by dashed lines and the bottom of the host 

conduction band by dotted line. 

Fig. 6 - Top and bottom edges of the impurity Hubbard bands as function 

of the impurity concentration P. CB is the bottom of the 

conduction band at E/V 0 =0.5 . U/V 0  is the intraatomic corre-

lation energy equal to 0.625. The arrow indicates the con-

centration where the bands start overlapping. 
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