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Abstract. In a recent paper (Chian et al., 2016) it was
shown that magnetic reconnection at the interface region be-
tween two magnetic flux ropes is responsible for the gene-
sis of interplanetary intermittent turbulence. The normalized
third-order moment (skewness) and the normalized fourth-
order moment (kurtosis) display a quadratic relation with
a parabolic shape that is commonly observed in observational
data from turbulence in fluids and plasmas, and is linked to
non-Gaussian fluctuations due to coherent structures. In this
paper we perform a detailed study of the relation between the
skewness and the kurtosis of the modulus of the magnetic
field |B| during a triple interplanetary magnetic flux rope
event. In addition, we investigate the skewness–kurtosis rela-
tion of two-point differences of |B| for the same event. The
parabolic relation displays scale dependence and is found to
be enhanced during magnetic reconnection, rendering sup-
port for the generation of non-Gaussian coherent structures
via rope–rope magnetic reconnection. Our results also indi-
cate that a direct coupling between the scales of magnetic
flux ropes and the scales within the inertial subrange occurs
in the solar wind.

Keywords. Space plasma physics (turbulence)

1 Introduction

The solar wind can be regarded as a network of entan-
gled magnetic flux tubes and Alfvénic fluctuations propa-
gating within each flux tube (Bruno et al., 2001; Borovsky,
2008). Flux tubes can emerge locally in the solar wind as
a consequence of the magnetohydrodynamic turbulent cas-
cade (Matthaeus and Montgomery, 1980; Veltri, 1999; Greco
et al., 2008, 2009; Telloni et al., 2016). An alternative view
describes coherent structures as “fossile” structures that em-
anate from the solar surface and are advected by the solar
wind (Borovsky, 2008; Bruno et al., 2001).

The probability distribution functions (PDFs) of turbu-
lent space plasmas display sharp peaks and fat tails on
small scales within the inertial subrange (Sorriso-Valvo et al.,
2001; Bruno et al., 2001; Koga et al., 2007; Chian and Mi-
randa, 2009), as well as departures from self-similarity and
monofractality (Bershadskii and Sreenivasan, 2004; Bruno
et al., 2007; Miranda et al., 2013). These features are due
to the presence of rare, large-amplitude coherent structures
which dominate the statistics of fluctuations on small scales
and can be quantified by the computation of statistical mo-
ments.

A robust parabolic dependence between the normalized
third-order moment (skewness) and the normalized fourth-
order moment (kurtosis) has been found in local concentra-
tions of contaminants in atmospheric turbulence as found
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by Mole and Clarke (1995). Sura and Sardeshmukh (2007)
also found a similar skewness–kurtosis parabolic relation
using global data of sea-surface temperature fluctuations.
Labit et al. (2007) reported a similar skewness–kurtosis de-
pendence in electron density fluctuations in plasma con-
finement experiments. Medina and Díaz (2016) obtained
a skewness–kurtosis parabolic relation for datasets of hu-
man reaction times for visual stimuli. Since then, the pres-
ence of a skewness–kurtosis relation in different physical
scenarios has attracted much attention (Krommes, 2008; Sat-
tin et al., 2009; Sandberg et al., 2009; Guszejnov et al., 2013;
Bergsaker et al., 2015) and has been associated with the
presence of non-Gaussian fluctuations due to coherent struc-
tures (Labit et al., 2007; Sandberg et al., 2009; Guszejnov
et al., 2013; Bergsaker et al., 2015). The skewness–kurtosis
parabolic relation was also found in time series of two-point
differences of the modulus of the magnetic field by Vörös
et al. (2006). They demonstrated that the parabolic relation
is due to nonlocal interaction between large-scale structures
and small-scale intermittency.

In this paper we investigate the skewness–kurtosis rela-
tion during a triple interplanetary magnetic flux rope (IMFR)
event detected by Cluster-1 in the solar wind. This event was
recently characterized by Chian et al. (2016). They demon-
strated the occurrence of magnetic reconnection at the inter-
face region of two IMFRs and that this reconnection can be
the origin of interplanetary intermittent turbulence. Our re-
sults show that the skewness–kurtosis parabolic relation is
enhanced during the reconnection between flux ropes, and
that is a natural consequence of the interaction between flux
ropes.

This paper is organized as follows. Section 2 presents
the statistical tools employed for the data analysis, includ-
ing the equations to compute the skewness and the kurtosis.
Section 3 describes the triple-IMFR event. The skewness–
kurtosis relation is analyzed in detail in Sect. 4. The interpre-
tations of these results are presented in Sect. 5. Finally, we
conclude in Sect. 6.

2 Data analysis tools

Let θi , i = 1, . . .,N be the time series of a quantity of interest
(e.g., the modulus of the magnetic field |B|). The skewness
of θi can be computed as follows:

S =
1
N

N∑
i=1

(
θi −〈θi〉

σ

)3

, (1)

where 〈θi〉 represents the average of θi , N represents the
number of data points, and σ is the SD of θi . The flatness
of θi is given by

F =
1
N

N∑
i=1

(
θi −〈θi〉

σ

)4

, (2)

from which the kurtosis can be obtained by

K = F − 3. (3)

For a Gaussian function S =K = 0. The skewness quan-
tifies the degree of asymmetry of the PDF of θi , whereas the
kurtosis quantifies the departure of the flatness of the PDF of
θi from the flatness of a Gaussian distribution which is equal
to 3. The definition of kurtosis in Eq. (3) is sometimes called
“excess kurtosis” (Sattin et al., 2009).

A common way to characterize asymmetry and non-
Gaussianity of θi as a function of scale τ is through the time
series of two-point differences:

δθi(τ )= θi+τ − θi .

The skewness of θi on scale τ is then

S(τ)=
1
N

N∑
i=1

(
δθi −〈δθi〉

στ

)3

, (4)

and the flatness is

F(τ)=
1
N

N∑
i=1

(
δθi −〈δθi〉

στ

)4

, (5)

where στ is the SD of δθi(τ ). From Eq. (5) the kurtosis as
a function of scale is obtained by

K(τ)= F(τ)− 3. (6)

A functional relation between the skewness and the kur-
tosis of θi as defined by Eqs. (1)–(3) has been observed in
a variety of scenarios (e.g., Mole and Clarke, 1995; Labit
et al., 2007; Medina and Díaz, 2016). This relation is given
by

K = αS2
+β, (7)

where α and β are the coefficients that characterize
a parabolic curve.

We compute the α and β coefficients by applying a least-
square fit between (S,K) values obtained from the observa-
tional data and Eq. (7) following the Levenberg–Marquardt
algorithm (Levenberg, 1944; Marquardt, 1963; Bard, 1974),
which is a popular method to fit a dataset into nonlinear equa-
tions. In order to quantify how well the computed (S,K) val-
ues are fitted into Eq. (7) we employ the correlation index r
which measures the correlation between two datasets Xi and
Yi , i = 1, . . .,N :

r =
1

σXσY

N∑
i=1

(Xi −〈Xi〉)(Yi −〈Yi〉)

N
, (8)

where σX and σY represent the SD ofXi and Yi , respectively.
The correlation index r ∈ [−1,1]. If r = 1 there is complete
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correlation betweenXi and Yi , whereas r =−1 indicates an-
ticorrelation. The value r = 0 represents absence of correla-
tion.

In summary, the analysis is described by the following
steps:

– Compute S and K from the modulus of magnetic field
|B| using Eqs. (1)–(3).

– Apply the Levenberg–Marquardt algorithm to find α

and β in Eq. (7) that best fit the (S,K) values.

– Use α and β obtained from the previous step in Eq. (7)
to obtain empirical values of K as a function of S.

– Compute the correlation index r between the values of
K from the previous step and the values of K from the
observational data. The r index will measure how close
the K values computed by Eq. (3) are to the K values
obtained empirically from Eq. (7).

We repeat these steps for S(τ) and K(τ) of two-point dif-
ferences using Eqs. (4) and (6) in the first step. There are
several computational programs for data analysis that im-
plement the Levenberg–Marquardt algorithm. Here we use
the implementation available in the GNU Octave program
(Eaton, 2012; Eaton et al., 2014).

We note that several papers regarding the relation between
skewness and kurtosis have employed the definition of what
we refer to as flatness (Eq. 2). Throughout this paper we will
focus on the kurtosis defined by Eq. (3).

3 A triple-IMFR event

Figure 1a shows the time series of the modulus of magnetic
field |B| obtained by the FGM instrument onboard Cluster-1
(Balogh et al., 2001) from 00:00 to 12:00 UT on 2 Febru-
ary 2002. During this interval Cluster-1 was in the solar
wind upstream of the Earth’s bow shock (Chian and Miranda,
2009). The magnetic field data are collected by Cluster-1 at
a resolution of 22 Hz (Balogh et al., 2001). Figure 1 also
presents an overview of other in situ plasma parameters for
the selected interval, namely, the three components of B in
the GSE coordinates, the angles8B and2B of the solar wind
magnetic fieldB relative to the Sun–Earth x axis in the eclip-
tic plane, and out of the ecliptic, respectively, in the polar
GSE coordinates; the modulus of the ion bulk flow velocity
|Vi|, the ion number density ni, the ion temperature perpen-
dicular to the magnetic field Ti and the ion plasma βi, which
is the ratio between plasma kinetic pressure and magnetic
pressure. The Cluster-1 plasma measurements are given by
the ion spectrometry experiment CIS (Rème et al., 2001).

This event is characterized by the presence of three in-
terplanetary magnetic flux ropes. Magnetic flux ropes are
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Figure 1. Cluster-1 magnetic field and plasma parameters from
00:00 to 12:00 UT on 2 February 2002. From top to bottom: mod-
ulus of magnetic field |B| (nT), three components of B (nT) in
the GSE coordinates, azimuth angle 8B (◦), latitude angle 2 (◦),
modulus of ion bulk velocity |Vi| (kms−1), ion number density ni
(cm−3), ion temperature Ti (eV) and ion plasma beta βi. Horizontal
arrows indicate the interval of IMFR-1 (black), IMFR-2 (red) and
IMFR-3 (blue). The front and rear boundary layers of each IMFR
are indicated by the vertical dotted lines.

magnetic structures described as bundles of twisted, current-
carrying magnetic field lines bent into a tube-like shape, spi-
ralling around a common axis (Russell and Elphic, 1979; Tel-
loni et al., 2016; Chian et al., 2016). During this event three
IMFRs were identified by Chian et al. (2016) using a com-
bination of criteria for large-scale magnetic cloud boundary
layers (Lepping et al., 1997; Wei et al., 2003) and small-scale
IMFRs (Moldwin et al., 2000; Feng et al., 2007). The inter-
val of each IMFR is indicated by horizontal arrows in Fig.
1a, and their timings are shown in Table 1.

4 Skewness–kurtosis relation

4.1 Time series of |B|

Figure 2a shows the time series of |B| detected by Cluster-1
on 2 February 2002 (Julian day 32) from 00:32 to 03:18 UT.

www.ann-geophys.net/36/497/2018/ Ann. Geophys., 36, 497–507, 2018
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Table 1. Beginning and end of the intervals depicted in Fig. 1, cor-
responding to the boundary layers of three interplanetary magnetic
flux ropes (IMFRs) on 2 February 2002.

Beginning (UT) End (UT)

IMFR-1 00:32 00:53
IMFR-2 01:32 02:35
IMFR-3 02:31 08:53

Table 2. Timing of the five selected regions during the triple-IMFR
event on 2 February 2002.

Interval Symbol Start End

Interior region of IMFR-1 R1 00:32 01:02
Interface of IMFR-1 and IMFR-2 I12 01:02 01:32
Interior region of IMFR-2 R2 01:48 02:18
Interface of IMFR-2 and IMFR-3 I23 02:18 02:48
Interior of IMFR-3 R3 02:48 03:18

Five regions were defined during this interval and are indi-
cated using arrows. These regions represent the interior re-
gion of IMFR-1 (R1), the interface of IMFR-1 and IMFR-2
(I12), the interior of IMFR-2 (R2), the interface of IMFR-2
and IMFR-3 (I23), and the interior of IMFR-3 (R3). Their
timings are indicated in Table 2. Each region has a duration
of 30 min, which gives 40 358 data points. During this event
current sheets were detected at the front boundary layer of
IMFR-1 and at the interface region between IMFR-2 and
IMFR-3. This interface region was identified as a source
of intermittent turbulence by Chian et al. (2016). A current
sheet was detected at the leading edge of IMFR-1 using data
from ACE and Cluster-1, and a current sheet was detected at
the interface region between IMFR-2 and IMFR-3 using data
from Cluster-1, ACE and Wind (Chian et al., 2016).

The S–K parabolic relation described by Eq. (7) can be
verified by computing S and K from a number of datasets
corresponding to different realizations of an experiment. In
the case of a time series, the parabolic relation can be tested
by computing S andK using datasets extracted from the time
series with sliding windows. The size of the sliding window
is a critical parameter for this type of analysis. Since S and
K are higher statistical moments, the number of data points
inside the window should be large enough to guarantee the
robust estimation of S and K . However, if the time series
is divided into sliding windows with a large number of data
points, then the number of (S, K) values may be insufficient
to verify the parabolic relation of Eq. (7). This can be solved
by defining overlapping windows; nevertheless, the overlap-
ping cannot be too large in order to obtain a set of indepen-
dent (S, K) values. To determine the optimal window size,
we applied a procedure to estimate the maximum order of
the statistical moment in a time series (de Wit, 2004; Mi-
randa et al., 2013). We computed the maximum statistical or-
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Figure 2. (a) Time series of |B| from 00:32 to 03:18 UT on 2 Febru-
ary 2002. Five regions of 30 min each are highlighted using different
colors: interior of IMFR-1 (R1, black), interface region of IMFR-
1 and IMFR-2 (I12, green), the interior of IMFR-2 (R2, red), the
interface of IMFR-2 and IMFR-3 (I23, violet), and the interior of
IMFR-3 (R3, blue). The interval of each IMFR is indicated by hor-
izontal arrows as in Fig. 1. (b, c) Time series of the skewness S and
the kurtosisK computed using a sliding overlapping window of size
10 000 data points and a window shift of 400 data points. The SD
computed in each window is represented by a gray area.

der in each sliding window of size 5000 data points across
the time series of Fig. 2, and a window shift of 400 data
points. Then, we increased the size of the window by 1000
data points (keeping the same window shift), computed the
maximum order in each window and then repeated the pro-
cedure. We found that a sliding window of size 10 000 data
points is large enough for a robust estimation of moments up
to the sixth order in all windows and at the same time allows
a sufficient number of estimations of S an K to be obtained
to test the parabolic relation of Eq. (7). Figure 2b and c show
the resulting time series of S and K , respectively. The SD
gives an estimation of the uncertainty of the computed S and
K inside each window, and is represented using a gray area.
From this figure we observe that from 02:26 to 02:35 UT the
uncertainty of S andK increases due to the large variation in
|B| at the interface between IMFR-2 and IMFR-3. A similar
behavior was observed in magnetic field data during an inter-
planetary shock event by Vörös et al. (2006). The uncertainty
within sliding windows that contain the large variations in
|B| increases due to nonstationarity. Following Vörös et al.
(2006), we exclude these windows from further analysis.

Figure 3 shows K as a function of S for the five regions
previously defined. A least-square fit with Eq. (7) is dis-
played as a dashed line. Table 3 shows the resulting fit for
each region, as well as the correlation index r between the
points in the scatter plot and the fitted parabolic function
computed using Eq. (8). Since the interpretation of α and β
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Figure 3. Kurtosis K as a function of skewness S computed using
overlapping windows of size 10 000 data points and a window shift
of 400 data points, for (a) the interior region of IMFR-1, (b) the
interface of IMFR-1 and IMFR-2, (c) the interior of IMFR-2, (d) the
interface of IMFR-2 and IMFR-3, and (e) the interior of IMFR-3.
In each panel, the least-square fit with the parabolic function K =
αS2
+β is displayed as a dashed line (see Table 3).

Table 3. The least-square fits of Eq. (7) computed from the scat-
ter plots of Fig. 3, and the correlation index r for the five regions
defined.

Interval K = αS2
+β r

R1 K = 1.29S2
−0.86 0.78

I12 K = 1.42S2
−0.92 0.75

R2 K = 1.82S2
−0.42 0.73

I23 K = 1.26S2
−0.40 0.91

R3 K = 1.03S2
+0.17 0.76

is under debate (see the discussion in Sect. 5) we will focus
on the computed value of r .

The correlation index r shown in the last column of Ta-
ble 3 measures how well the data points can be adjusted by
the parabolic function given by Eq. (7). All regions display
r > 0.5. The lowest correlation is obtained for the interval
corresponding to R2, in agreement with a visual inspection
of Fig. 3c. For this interval, most of the points in Fig. 3c tend
to accumulate around (S,K)= (0,0), which is the value ob-

tained for a Gaussian distribution (i.e., in the absence of co-
herent structures). Therefore, the interior of IMFR-2 is char-
acterized by a low degree of non-Gaussianity and intermit-
tency in comparison with the other intervals.

The highest value of the correlation is obtained during I23
(see Table 3). Figure 3d shows that points spread near the
fitted parabola and far from the (0, 0) Gaussian point. This
indicates that this interval is characterized by a higher degree
of non-Gaussianity. These results are in agreement with the
results of Chian et al. (2016), which found that the interior
of IMFR-2 has lower degrees of non-Gaussianity and phase
coherence, and a nearly monofractal scaling when compared
with other intervals. For the interface of IMFR-2 and IMFR-
3 they observed higher degrees of non-Gaussianity and phase
synchronization, and a strong departure from monofractality.

4.2 Time series of δ|B|

Next, we investigate the S–K parabolic relation as a func-
tion of scale within the inertial subrange. The left side of
Fig. 4a shows the power spectral density (PSD) as a func-
tion of frequency f of the time series of |B| from the be-
ginning of IMFR-1 at 00:32 UT until the end of IMFR-3 at
08:40 UT. The right side of Fig. 4a shows the compensated
PSD which is the original PSD multiplied by f 5/3 (Biskamp
et al., 1999). The inertial subrange should appear as a fre-
quency range in which the compensated PSD is almost hor-
izontal. The following panels in Fig. 4 show the PSD and
the compensated PSD for R1, I12, R2, I23 and R3. A com-
mon frequency range in which the compensated PSD is al-
most horizontal for all regions is indicated by two verti-
cal dashed lines. From Fig. 4, the inertial subrange starts at
f = 0.01 Hz and ends at f = 0.1 Hz, which correspond to
scales τ = 100 s and τ = 10 s, respectively.

The intermittent aspect of interplanetary magnetic field
turbulence can be demonstrated by constructing the PDF of
the normalized magnetic-field differences

1B(τ)=
δB(τ)−〈δB〉

σB
,

where δB(τ)= |B(t + τ)| − |B(t)|, and the brackets denote
the average value. Figure 5 shows the PDFs of 1B con-
structed from the magnetic field fluctuations of the five re-
gions, for τ = 10 s and τ = 100 s. From this figure it is clear
that the PDFs are closer to a Gaussian distribution (repre-
sented by the gray area in Fig. 5) at τ = 100 s (large scale),
and become non-Gaussian at τ = 10 s (small scale), exhibit-
ing sharp peaks and fat tails. This figure demonstrates that
magnetic field fluctuations become more intermittent as the
scale τ becomes smaller.

Next, we analyze the S–K relation of 1B(τ) at τ = 10 s
and τ = 100 s. Figure 6a shows the time series of 1B(τ =
100s). Figure 6b and c show the time series of S andK com-
puted using a sliding overlapping window as in Sect. 4.1. The
gray area indicates the uncertainty of the S and K values.

www.ann-geophys.net/36/497/2018/ Ann. Geophys., 36, 497–507, 2018
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Figure 4. The power spectral density (PSD, left panels) and the
compensated PSD (right panels) for (a) the time series of |B| from
00:32 UT until 08:40 UT, (b) the IMFR-1 interior region, (c) the
interface between IMFR-1 and IMFR-2, (d) the IMFR-2 interior
region, (e) the interface between IMFR-2 and IMFR-3, and (f) the
IMFR-3 interior region. Vertical dashed lines indicate the beginning
and the end of the inertial subrange.

As in Fig. 2, we observe a large uncertainty from 02:26 to
02:35 UT due to the interface between IMFR-2 and IMFR-
3; therefore these S and K values are excluded from further
analysis.

Figures 7 and 8 show the S–K scatter plots for τ = 100 s
and τ = 10 s, respectively. From these figures, we note that
R2 does not display a parabolic shape on the two selected
scales. The low value of the correlation index of R2 shown in
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Figure 5. Probability distribution functions (PDFs) of 1B(τ) for
τ = 10 s (continuous line) and τ = 100 s (dashed line). (a) The in-
terior region of IMFR-1, (b) the interface of IMFR-1 and IMFR-2,
(c) the interior of IMFR-2, (d) the interface of IMFR-2 and IMFR-
3, and (e) the interior of IMFR-3. A Gaussian distribution function
is represented by the gray area.

Table 4. The least-square fits of Eq. (7) computed from the scatter
plots of Fig. 7 (τ = 100 s). The fitting function of IMFR-2 was not
applicable (n/a) due to the small correlation value.

Interval K = αS2
+β r

R1 K = 1.45S2
−0.77 0.65

I12 K = 0.97S2
−0.57 0.53

R2 n/a 0.13
I23 K = 1.24S2

−0.15 0.90
R3 K = 0.76S2

−0.13 0.46

Tables 4 and 5 confirms that the data points fit the parabolic
shape poorly. This indicates that magnetic field fluctuations
during R2 are nearly Gaussian even on the smallest scale.

Except for R2, all other regions show a parabolic shape
at τ = 100 s that is enhanced at τ = 10 s, in agreement with
the intermittent nature of magnetic field turbulence. Mag-
netic field fluctuations in the solar wind turbulence display
a scale dependence in which they become intermittent as the
scale becomes smaller, within the inertial subrange, due to
rare, large-amplitude coherent structures. As a consequence,
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terior of IMFR-3 (R3, blue). The interval of each IMFR is indicated
by horizontal arrows as in Fig. 1. (b, c) Time series of the skewness
S and the kurtosis K computed using a sliding overlapping window
with the same parameters as in Fig. 2. The SD computed in each
window is represented by a gray area.

Table 5. Same as in Table 3 for τ = 10 s. The fitting function of
IMFR-2 was not applicable (n/a) due to the small correlation value.

Interval K = αS2
+β r

R1 K = 3.00S2 + 0.88 0.98
I12 K = 2.96S2 + 0.95 0.91
R2 n/a 0.14
I23 K = 1.36S2 + 0.72 0.99
R3 K = 2.13S2 + 1.40 0.90

statistics of magnetic field fluctuations such as the PDFs
of the 1B (Fig. 5) departure from Gaussian statistics as τ
decreases. By comparing the values of the correlation in-
dex shown in Table 4 for τ = 100 s with those of Table 5
for τ = 10 s we note that, for each region, the correlation
r increases on the smallest scale, confirming that the S–K
parabolic relation displays scale dependence within the iner-
tial subrange.

The highest correlation value for τ = 100 s (Table 4) cor-
responds to I23. This indicates that the ongoing magnetic re-
connection occurring in this region can act as a source of non-
Gaussianity and intermittent turbulence even on the largest
scale. At τ = 10 s, Table 5 shows that r = 0.99 at I23 and
r = 0.98 at R1. Small-scale current sheets were detected in
these two intervals by Chian et al. (2016) and are responsible
for intermittency and non-Gaussian fluctuations. Our result
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Figure 7. Kurtosis K as a function of skewness S computed from
the time series of δ|B|(τ ), where τ = 100 s. (a) The interior region
of IMFR-1, (b) the interface of IMFR-1 and IMFR-2, (c) the in-
terior of IMFR-2, (d) the interface of IMFR-2 and IMFR-3, and
(e) the interior of IMFR-3. In each panel, the least-square fit with
the parabolic function K = αS2

+β is displayed as a dashed line
(see Table 4).

demonstrates that they are also responsible for the enhance-
ment of the S–K parabolic relation. Note that there are points
in Fig. 8d that are further away from the (0, 0) Gaussian
point, compared to Fig. 8a. This means that while the scat-
ter plots of R1 and I23 are highly correlated with Eq. (7), the
numerical values of S and K , which measure the degree of
asymmetry and non-Gaussianity respectively, can be higher
at I23.

5 Discussion

A theoretical explanation of the parabolic relation between
the skewness and kurtosis of turbulent fluids and plasmas is
still an open question. Sura and Sardeshmukh (2007) pro-
posed a nonlinear Langevin equation with external forcing
that can account for the parabolic relation between S and
K . Krommes (2008) extended this model to include self-
generated internal instabilities in plasmas. Sattin et al. (2009)
argued that a parabolic relation can be obtained as a natu-
ral consequence of a number of constraints expected to be
met for most physical systems. Guszejnov et al. (2013) pro-
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Figure 8. Kurtosis K as a function of skewness S computed from
the time series of δ|B|(τ ), where τ = 10 s. (a) The interior region of
IMFR-1, (b) the interface of IMFR-1 and IMFR-2, (c) the interior of
IMFR-2, (d) the interface of IMFR-2 and IMFR-3, and (e) the inte-
rior of IMFR-3. In each panel, the least-square fit with the parabolic
function K = αS2

+β is displayed as a dashed line (see Table 5).

posed a simplified model of a synthetic intermittent time se-
ries, constructed from a random number of coherent struc-
tures with random amplitudes embedded in a background
Gaussian noise, and demonstrated that their model can pre-
dict a S–K parabolic relation. A similar study was performed
by Bergsaker et al. (2015) using a model of coherent plasma
flux events.

Although a theoretical explanation of the S–K relation is
still unclear, there is a consensus that the parabolic shape
is due to non-Gaussianity related to coherent structures,
whereas points near (S,K)= (0,0) correspond to Gaussian
fluctuations. This is confirmed by models of synthetic time
series. For example, Sandberg et al. (2009) proposed a model
of intermittent time series which consists of a superposition
of Gaussian and non-Gaussian random fluctuations. Their
model includes a parameter that measures the deviation from
Gaussianity. The resulting PDF derived from their model dis-
plays asymmetric long tails that reproduce measured distri-
butions of plasma density fluctuations in plasma magnetic
confinement devices (Antar et al., 2001, 2003) as well as dis-
tributions of X-ray emissions detected from accretion disks
(Sandberg et al., 2009). Their model also leads to a parabolic
relation between S and K . Bergsaker et al. (2015) observed

a transition from a parabolic shape to the (S,K)= (0,0)
point by increasing the intensity of the Gaussian noise in their
model of synthetic time series, constructed by adding deter-
ministic fluctuations and Gaussian noise. However, a quan-
tification of the parabolic shape is needed for an objective
comparison between different datasets. We have found that
the computation of the correlation index r allows time se-
ries dominated by either Gaussian and non-Gaussian fluctu-
ations to be clearly distinguished. Despite the simplicity of
this approach, it represents an alternative way to compare the
degree of non-Gaussianity due to asymmetry and fat tails in
the PDFs of different datasets, and can be applied to obser-
vational data and results from numerical simulations.

The stochastic model of a time series proposed by Sand-
berg et al. (2009) assumes that the non-Gaussian fluctua-
tions arise from a quadratic nonlinear term. By increasing
the degree of non-Gaussianity the skewness and the kurtosis
converge to extreme values: S =±2

√
2 and K = 12. This

means that experimental data governed by nonlinear pro-
cesses of quadratic order should lead to S–K scatter plots
with S ∈ [−2

√
2,2
√

2] and K < 12. The scatter plots shown
in Fig. 3a, c and e seem to agree with these limits; however, in
Fig. 3d there are some points in which S <−2

√
2. Sandberg

et al. (2009) also propose that processes described by higher-
order nonlinearities can result in S–K parabolic shapes with
S outside the interval [−2

√
2,2
√

2], which can explain the
behavior of |B| during the magnetic reconnection occurring
in the I23 interval.

In the previous sections we showed and discussed the
value of the correlation index measuring how well the S–K
scatter plots fit with a parabola. As mentioned before, there
is no agreement on the interpretation of the coefficients α
and β in Eq. (7). Sattin et al. (2009) argues that the coeffi-
cients are not likely to offer relevant information about the
underlying process. However, Guszejnov et al. (2013) dis-
cussed an interpretation of the α and β coefficients based on
their model of a synthetic time series. The value of the α co-
efficient depends on the statistics of the fluctuations due to
coherent structures and is not necessarily constant in time.
For the β coefficient, if the number of coherent structures
in a time series can be represented as random independent
variables that follow a Poisson distribution function (which
models the occurrence of rare events), then β = 3. Devia-
tions from this value can be interpreted as a departure from
the independence assumption, which means that there is in-
teraction among coherent structures (Guszejnov et al., 2013).
Since we define kurtosis to be the flatness minus three, the
previous statement is equivalent to say that deviations from
β = 0 are due to interacting coherent structures. From Ta-
ble 3, we note that all intervals have nonzero values of β. Re-
call that this event is characterized by a rope–rope magnetic
reconnection involving IMFR-2 and IMFR-3, with formation
of a bifurcated current sheet acting as a source of intermittent
turbulence (Chian et al., 2016). The interaction between the
small-scale IMFR-2 and the medium-scale IMFR-3 occur-
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ring during this event gives support for the interpretation of
the β parameter by Guszejnov et al. (2013).

Vörös et al. (2006) demonstrated that the S–K parabolic
relation is also observed for time series of two-point dif-
ferences of |B| in the solar wind. They showed that this
relation is enhanced in the presence of large-scale events
such as interplanetary shocks, whereas for nonshock inter-
vals, the parabolic relation is not observed. In this case the
S–K parabolic relation represents a signature of direct cou-
pling between large-scale structures (interplanetary shocks)
and small-scale intermittency. Our results indicate that the
S–K parabolic relation is present during reconnection be-
tween a small-scale IMFR with a duration of ∼ 60 min and
a medium-scale IMFR with a duration of∼ 7 h (see Table 1).
The only region in which the parabolic relation is not ob-
served is in the interior of IMFR-2. This region was found
to have a low degree of intermittency and nearly monofractal
scaling. Therefore, our results are in accordance with cross-
scale coupling between IMFR scales and scales within the
inertial subrange.

6 Conclusions

In this paper we investigated the relation between the skew-
ness and the kurtosis during a triple-IMFR event on 2 Febru-
ary 2002. This event was divided into five regions, namely,
the interior of IMFR-1, the interface of IMFR-1 and IMFR-2,
the interior of IMFR-2, the interface of IMFR-2 and IMFR-
3, and the interior of IMFR-3. We then computed the skew-
ness S and the kurtosisK of |B| using a sliding window, and
showed that the scatter plots of K as a function of S display
a parabolic shape for all regions. The highest value of the
correlation index computed by a least-square fit between the
(S,K) values and Eq. (7) occurs at the interface of IMFR-2
and IMFR-3. This region was found to be the source of inter-
mittent turbulence due to a magnetic reconnection between
the small-size IMFR-2 and the medium-size IMFR-3 (Chian
et al., 2016). Therefore, the enhanced S–K parabolic relation
is related to non-Gaussian fluctuations due to coherent struc-
tures emerging from intermittent turbulence generated via
magnetic reconnection. The lowest value of the correlation
index was obtained at the interior of IMFR-2, in agreement
with the results of Chian et al. (2016), who found that this
region is characterized by a low degree of non-Gaussianity
and phase synchronization, and nearly monofractal scaling.

We also analyzed the S–K relation using two-point dif-
ferences of |B| on two different scales within the inertial
subrange. By computing the compensated PSD we selected
an interval of frequencies in which all regions exhibit −5/3
scaling corresponding to the inertial subrange and selected
two timescales representing the largest scale (τ = 100 s) and
the smallest scale (τ = 10 s) within the inertial subrange. We
found that the scatter plot of IMFR-2 on the largest scale
(τ = 100 s) and on the smallest scale (τ = 10 s) accumulate

around the (S,K)= (0,0) point. The least-square fit with
Eq. (7) results in a low correlation index, which confirms that
magnetic field fluctuations in this region are nearly Gaussian.
All other regions displayed parabolic shapes. At τ = 100 s,
the correlation index is high for the interface of IMFR-2 and
IMFR-3, indicating that the magnetic reconnection that oc-
curs in this region can generate non-Gaussian fluctuations on
the largest scale. On the smallest scale, the correlation in-
dex is higher for two regions, namely, the interior of IMFR-1
and the interface of IMFR-2 and IMFR-3. This result can be
due to non-Gaussian fluctuations resulting from small-scale
current sheets detected within these regions (Chian et al.,
2016). Our analysis indicates that the S–K parabolic rela-
tion observed in interplanetary magnetic field turbulence is
enhanced on small scales within the inertial subrange.

Our findings give support to the conclusion by Chian et al.
(2016) that rope–rope magnetic reconnection acts as a source
of interplanetary intermittent turbulence and suggest that
magnetic reconnection is responsible for non-Gaussian PDFs
with asymmetric shapes and fat tails. The results are also in
agreement with the results of Vörös et al. (2006) in that the
S–K parabolic relation is a signature of direct coupling be-
tween IMFR scales and small-scale intermittency.
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