

Does seasonal drought influence ecosystem transpiration and water use efficiency in a tropical rainforest?

Maricar Aguilos, Clement Stahl, Benoît Burban, Bruno Hérault, Elodie Courtois, Fabien Wagner, Kentaro Takagi, Damien Bonal

► To cite this version:

Maricar Aguilos, Clement Stahl, Benoît Burban, Bruno Hérault, Elodie Courtois, et al.. Does seasonal drought influence ecosystem transpiration and water use efficiency in a tropical rainforest?. AFM BIOMED Conference, May 2018, Boise, United States. 2018. hal-02789955

HAL Id: hal-02789955 https://hal.inrae.fr/hal-02789955

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Does seasonal drought influence ecosystem transpiration in a tropical rainforest?

Paper number: 4 33rd Conference on Agricultural and Forest Meteorology May 14 – 18, 2018 Boise, Idaho, USA

Maricar Aguilos¹, Clement Stahl¹, Benoit Burban¹, Bruno Herault², Elodie Courtois³, Fabien Wagner⁴, Kentaro Takagi⁵, and Damien Bonal⁶

¹INRA, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France, ² CIRAD, France and Institut National Polytechnique Félix Houphouët-Boigny, Ivory Coast, ³University of Antwerp & LEEISA – IRD, Cayenne Cedex, French Guiana, ⁴INPE, São José dos Campos, SP 12227-010, Brazil, ⁵Hokkaido University, Sapporo, Japan, ⁶Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France

A. Introduction

- Warmer and drier climates over eastern Amazonia have been predicted during the next several decades, with consequences on water and carbon cycles.
- Available literature on the long-term response of the coupled water and carbon cycles to these disturbances is highly limited.
- Here, we evaluated the ecosystem transpiration across an 11-year period (2004 – 2014) to capture interannual and seasonal changes and determine its key climatic drivers.
- We expected solar radiation to play a vital role to control evapotranspiration (ET) processes, without neglecting the restrictive role of soil water availability during drought period.
- We also hypothesized that the effect of drought on ET would be directly related to the severity of drought.
- Whether a reduction in evapotranspiration with drought will occur or not highlights the focus of this study.

C. Results

Fig 1. Seasonal variations of ET

Fig 3. Interannual variations of ET

Fig 2. Climatic drivers

Period

Drought effect on ET

Fig. 4 Comparison of ET and WUE for the whole year and during drought period

variable - Ra 2004

	Rg_2005
•	Rg_2006
	Rg_2007
•	Rg_2008
1	Rg_2009
•	Rg_2010
•	Rg_2011
-	Rg_2012
	Rg_2013
	Rg_2014

variable

- REW 2005 - REW 2006 REW 2007 REW 2008 REW 2009 - REW 2010 - REW 2011 REW_2012 - REW 2013 - REW_2014

Table 1. Best climate predictors

Dependent	Best model		Intercept	Coefficients		F value	P value
variable	predictors	Multiple R		1	2		
2004 - 2014							
ET		0.70	2.91				
	Rg			0.46	0.71	1136.4	< 0.0001
	REW			0.21	0.21	105.3	< 0.0001
	Ts			0.07	0.04	7.11	< 0.000
Soil water depletion							
ET		0.48	3.19				
	Rg			9.51	3.39	180.6	< 0.0001
	REW			1.01	2.20	105.3	< 0.0001
	Rg			0.56	0.12	5.18	< 0.0001

- REW 2004

GuyaFlux tower in French Guiana

Flux and meteorological measurements

- CO₂ and H₂O concentrations
- Air temperature and humidity
- Global and infrared incident and reflected radiations
- Incident and reflected photosynthetic photon flux density
- Rainfall
- Wind direction and speed
- Atmospheric pressure
- Soil temperature
- Volumetric soil water content

Data were collected and compiled as 30-min averages or sums and processed following the standard flux data processing and analysis procedures.

Fig. 5 Interannual variation in soil water stress index (SWSI)

1.0-0.50.00.51.01.5-1.0-0.50.00.51.01.5-1.0-0.50.00.51.01.5

Fig. 6 Drought duration (gray shaded area) and the severity of water stress Table 2. Soil water stress index

D. Summary/Conclusion Fig. 7 Relationship between radiation-normalized • Over 11– year period, ET exhibited significant interannual variability ET with SWSI (*P* < 0.001; Fig. 2) 2007 Annually, global radiation (Rg) is the best climate predictor for ET followed by relative extractable water (REW) then soil temperature (Ts) (Table 1). During drought period, almost 50% of the combined effect of Rg and REW drove the variability in ET although Rg has more control over REW. There was no effect of Ts (Table 1). $R^2 = 0.14 P = 0.003$ $R^2 = 0.22 P = 0.001$ 1.0-0.50.0 0.5 1.0 1.5 • Driest years in French Guiana occurred in 2004, 2005, 2008 and 2012 (NOAA, 2015). Interestingly, years having negative drought index (SWSI) values during drought period correspond to most of these dry years: 2005, 2008, 2010, and 2012 (Fig. 5). These were also the same years with relatively longer drought duration and with severe water Soil water stress index stress intensity (Fig. 6). • Regression analysis showed that when the soil water stress level is ensity of strong, normalized ET were reduced (Fig. 7). ter stress 0.21 After comparing the slopes among years, we assume that at tree level, depending on drought intensity, some species would suffer from drought and some do not. Thus, at ecosystem level, the response of ET to drought might depend upon the severity of drought (as some trees may or may not be affected by drought, depending on drought length and/or severity). 0.17

Year	Soil water	Soil water	N
	deficit duration	stress index	int
	(no. of days)	(SWSI)	wa
2004	143	13.2	
2005	119	-5.06	
2006	91	11.29	
2007	127	40.04	
2008	110	-12.11	
2009	80	11.13	
2010	83	-5.94	
2011	57	29.97	
2012	93	-17.37	
2013	45	32.89	
2014	122	26.65	

Acknowledgment:

This study is part of the Guyaflux program funded by the French Ministry of Research, INRA, CNES and co-funded by the European Regional Development Fund (FEDER, 2007-2013). The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure, ANAEE-F. This program also received support from the "Observatoire du Carbone en Guyane" and an "investissement d'avenir" grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01).

Daytime evapotranspiration (ET)

ET at ecosystem level during day time was determined from values of the flow of *latent heat* (LE) obtained with the eddy flux system.

The soil water stress index (SWSI) and the drought period

SWSI is a dimensionless number that is calculated as the sum of daytime differences between the REW value and the 0.4, divided by 0.4 (Granier et al. 1999).

$$SWSI = \sum \frac{REW - 0.4}{0.4}$$