
Growth of plasma waves of scales longer than 10 km by gradient-drift instability in the
E-region of equatorial ionosphere
E. A. Kherani, R. Bharuthram, and S. K. Maharaj

Citation: Physics of Plasmas 25, 072902 (2018); doi: 10.1063/1.5034018
View online: https://doi.org/10.1063/1.5034018
View Table of Contents: http://aip.scitation.org/toc/php/25/7
Published by the American Institute of Physics

Articles you may be interested in
Electron-acoustic solitary waves in the Earth's inner magnetosphere
Physics of Plasmas 25, 022905 (2018); 10.1063/1.5007907

Electrostatic waves driven by electron beam in lunar wake plasma
Physics of Plasmas 25, 052902 (2018); 10.1063/1.5032141

On the nonlinear solitary and shock waves in Maxwellian multicomponent space plasma
Physics of Plasmas 25, 073704 (2018); 10.1063/1.5024590

Modulation of cylindrical (spherical) waves in a plasma with vortex electron distribution
Physics of Plasmas 25, 072113 (2018); 10.1063/1.5040795

Kinetic ballooning mode under steep gradient: High order eigenstates and mode structure parity transition
Physics of Plasmas 25, 072106 (2018); 10.1063/1.5025949

Investigation of colliding nonlinear structures in a relativistically degenerate plasma
Physics of Plasmas 25, 072302 (2018); 10.1063/1.5031870

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1123670462/x01/AIP-PT/COMSOL_PoPArticleDL_072518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Kherani%2C+E+A
http://aip.scitation.org/author/Bharuthram%2C+R
http://aip.scitation.org/author/Maharaj%2C+S+K
/loi/php
https://doi.org/10.1063/1.5034018
http://aip.scitation.org/toc/php/25/7
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5007907
http://aip.scitation.org/doi/abs/10.1063/1.5032141
http://aip.scitation.org/doi/abs/10.1063/1.5024590
http://aip.scitation.org/doi/abs/10.1063/1.5040795
http://aip.scitation.org/doi/abs/10.1063/1.5025949
http://aip.scitation.org/doi/abs/10.1063/1.5031870


Growth of plasma waves of scales longer than 10 km by gradient-drift
instability in the E-region of equatorial ionosphere

E. A. Kherani,1,a) R. Bharuthram,2 and S. K. Maharaj3
1Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronatus, S~ao Jos�e dos Campos 12227010,
Brazil
2University of the Western Cape (UWC), Robert Sobukwe Road, Bellville 7535, South Africa
3South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200, South Africa

(Received 8 April 2018; accepted 27 June 2018; published online 17 July 2018)

In this study, a linear analysis of the Gradient Drift Instability (GDI) applicable for horizontal

wavelengths longer than 10 km in the E region is presented. By analytically solving the non-local

differential equation for the polarization potential, analytical forms of the dispersion relation and

growth rate, hosting new contributions from non-local effects, are obtained. The new growth rate

and the amplitude of polarization potential are examined for a wide range of wavelengths that

reveal the positive growth of GDI for wavelengths of �25 km. These characteristics raise the possi-

bility of the formation of unstable structures of vertical size �20–30 km in the upper E region,

often observed during twilight hours. Published by AIP Publishing.
https://doi.org/10.1063/1.5034018

I. INTRODUCTION

The Gradient Drift instability (GDI) has been widely

invoked to explain irregular density structures observed in

the equatorial E region. Linear local/non-local theories of

GDI1–6 and numerical simulations7,8 have been found to

explain observations of meter to kilometer (small to interme-

diate to large) scale irregular structures.3,6,9

Thus far, theoretical/numerical studies have been

restricted to the horizontal wavelengths of the perturbation

(k), less than 10 km. However, observations have found the

presence of altitude-extended irregular structures attaining

the vertical size of �20–30 km during twilight hours.6

Interestingly, local GDI theories predict excitation of vertical

size of �20–30 km by a large horizontal wavelength of

�2 km.6 Reference 6 argued the formation of �20–30 km

structures in the E region, based on the tunneling mechanism

in which two unstable regions, separated by the stable

region, communicate to each other. In the present study, we

aim to explore another mechanism that may directly excite

the vertical size longer than 10 km, without relying on the

tunneling mechanism. It is based on the fact that the vertical

size of an unstable structure excited by GDI should be pro-

portional to the horizontal wavelength of the perturbation.3

Therefore, it is of interest to examine growth characteristics

of GDI for horizontal wavelengths longer than 10 km that

may give rise to vertical structures of comparable sizes.

In the present study, we refer to the wavelength range

10 � k � 50 km as the Large-to-Meso (LM) scale, since

ranges 1 � k � 10 km and k � 100 km are classified as large

and meso-scales, respectively, in the literature. Obviously,

for the LM scale, the local approximation breaks down, and

therefore, non-local effects are required to be considered.

The main focus of the present study is to investigate non-

local growth of GDI for LM scales for which no report is

available in the literature to date. Another objective of the

study is to derive an analytical form of the growth rate for

LM scales, similar to that derived by Kudeki et al.3 and by

Riggins and Kadish4 for the intermediate and large scales.

The aim of such reformulation is to accommodate scales

from meters to LM in a unique growth rate expression so

that it can be utilized to investigate the development of

unstable structures of diverse nature in the E region.

This paper is organized as follows. In Sec. II, the non-

local analysis of GDI is presented. In Sec. III, results are pre-

sented in which the derived analytical form of the polariza-

tion potential and the growth rate are examined for the

realistic deserved E region conditions.

II. NON-LOCAL ANALYSIS

The starting point is the governing non-local differential

equation for the polarization potential (u) derived as Eq. (9)

by Riggin and Kadish4 which is written as follows:

d2u

dy2
þ 1

L

du
dy
þ ðR� k2Þu ¼ 0; (1)

where

R ¼ i
k

L

�

X
ðxþ 2ianoÞ

ðx� kvd þ 2ianoÞ
:

Here, (y, L) represent the altitude and electron density scale

height, (x, k) represent the frequency and horizontally west-

ward wavenumber of the perturbation, (no, vd) represent the

ambient density and horizontally westward drift of electrons

relative to ions, and (ano, �, X) represent the dissociative

recombination rate, ion-neutral collision frequency and ion

gyrofrequency, respectively. In writing R, the term ��e

XXe
is

omitted compared to unity.

The above equation is derived in the Cartesian (x–y)

plane perpendicular to the geomagnetic field, where ðx̂Þ and

ðŷÞ represent unit vectors in westward and upward directions,a)esfhan.kherani@inpe.br
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respectively. All ambient variations are considered in the (y)

direction, i.e., the ionosphere is considered to be horizontally

stratified. Initial perturbations (dn, dE ¼ –ru) are introduced

for the ambient condition (no, Eo) such that n ¼ no þ dn, E
¼Eo –ru, where (u) is the electrostatic potential. These per-

turbations are considered in the ðx̂Þ direction of the plane

wave form dðyÞ exp ðikx� ixtÞ, where (k, x) are the perturba-

tion wavenumber and frequency.

In obtaining Eq. (1), the following assumptions have

been made by Riggin and Kadish: (i) Altitude variation of

collision frequency (�) is neglected in comparison to the alti-

tude variation of the ambient electron density (no), (ii) alti-

tude variation of vd is neglected, (iii) pressure gradient force

is not considered implying exclusion of diffusion effects on

GDI, (iv) the perturbation is electrostatic in nature, and (v)
�
X
�e

Xe
� 1, where (�e, Xe) are the electron collision and gyro

frequencies. In addition, the defining characteristics of the E

region, i.e., �� X, �e�Xe, and �
X�

�e

Xe
are imposed (Prolls,

chapter 4).10

A. Analytical solution of Eq. (1)

We employ the method of variation of parameters, i.e.,

u ¼ upuv, where up is a particular solution of (1) and uv is a

dimension-less function. With this substitution in (1), the fol-

lowing solution of uv is obtained:

uv ¼ A

ð
exp ð�hÞdy; (2)

where

h ¼
ð

2

up

dup

dy
þ 1

L

 !
dy

and A is the constant of integration.

B. Particular solution of Eq. (1)

The particular solution (up) is obtained by the method

described by Panayotounakos and Zarmpoutis.11 According

to this method, a particular solution of a second order differ-

ential equation of the Liouville form can always be written

in the form of the zero order Bessel function Jo(p), where (p)

is an explicit function of original independent variable (y).

Panayotounakos and Zarmpoutis [Sec. II, Eqs. (2.14a) and

(2.20a]11 have shown that any second order differential

equation is equivalent to the Bessel Differential equation of

order (�), i.e.,

d2f

dy2
þ hðyÞ df

dy
þ rðyÞf

¼ 0() p2 d2f

dp2
þ p

df

dp
þ ðp2 � �2Þf ¼ 0;

provided the coefficients (h, r) satisfy the following coupled

differential equations:

h ¼ 1

p

dp

dy
� 1

dp=dy

d2p

dy2
; r ¼ 1� �

2

p2

 !
dp

dy

� �2

;

which can be solved analytically for � ¼ 0, leading to the

following analytical expression of p(y):

p ¼ 6

ffiffi
r
p

hþ ð1=2rÞdr=dy
;

and therefore, the particular solution of the 2nd order differ-

ential equation is written as follows:

fp ¼ JoðpðyÞÞ:

It is a particular solution since we have set � ¼ 0. From (1),

we note that

h ¼ 1

L
; r ¼ R� k2;

and therefore,

up ¼ JoðpÞ; (3)

where

p ¼ 6
ðR� k2Þ1=2

1

L
þ 1

2ðR� k2Þ
d

dy
ðR� k2Þ

� 6
ðR� k2Þ1=2

1

L
� R

2ðR� k2Þ
1

L

dL

dy

:

We note from Fig. 1 that for the typical E region density pro-

file denoted by the blue curve, 1
L

dL
dy
	 0 everywhere except in

the vicinity of large L ! 1 where the local condition (kL

� 1) is unconditionally satisfied for all wavelengths. In other

words, 1
L

dL
dy
	 0 is a valid approximation under the non-local

condition (kL � 1) so that the term � 1
2

R
R�k2

dL
dy
� 1 in the

denominator is neglected. Thus, p can be simplified to the

following form:

p ¼ 6LðR� k2Þ1=2
(4)

FIG. 1. Altitude variations of ambient electron density no, 1
L ¼ 1

no

dno

dy , and 1
L

dL
dy

are plotted. nm
o ¼ 1010m�3 represents the maximum value of no.
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C. New dispersion relation

We note that p¼ 0 in Eq. (4) leads to the known disper-

sion relation derived by Kudeki et al.,3 i.e.,

ðxþ 2ianoÞ 1� i

kL

�

X

� �
¼ kvd:

Therefore, Eq. (4) is the new non-local Dispersion relation,

i.e.,

R� k2 ¼ p2

L2

or

i

kL

�

X
ðxþ 2ianoÞ

ðx� kvd þ 2ianoÞ
� 1 ¼ p2

k2L2
� �K

k2
: (5)

Here, K is the eigen value of Eq. (1) since the equation can be

written as Mu ¼ –(R – k2)u � Ku, where M is the differential

operator in (1). Considering x ¼ xr þ ic in (5), the following

frequency and growth rate expressions of the GDI are

obtained:

xr ¼
kvd

1þ g2
K

; c¼�2anoþ cnew; cnew ¼
gK

1þ g2
K

kvd; (6)

where

gK ¼
g

1� K=k2
; g ¼ i

kL

�

X
: (7)

We note that, in the limit K/k2 � 1, the growth rate (co)

derived by Kudeki et al.3 is retrieved from (6), i.e.,

xo ¼
kvd

1þ g2
; co ¼

g
1þ g2

kvd: (8)

D. Analytical expression for the eigenmodes

From (2) and (3), we note that the polarization potential,

u ¼ Jo(p)uv(p), depends on p which is proportional to K.

Therefore, u are the eigenmodes, corresponding to the eigen

values K. The exponent h in uv in (2) is estimated as follows:

uv ¼ A

ð
dy exp �

ð
2

up

dup

dy
þ 1

L

 !
dy

" #
:

Here

dup

dy
¼

dup

dp

dp

dy
¼ �J1ðpÞ

dp

dy

and

dp

dy
¼ 6

d

dy
ðLðR� k2Þ1=2Þ

or

dp

dy
¼ ðR� k2Þ1=2 dL

dy
þ 1

2ðR� k2Þ
dR

dy

� ðR� k2Þ1=2 dL

dy
� R

2ðR� k2Þ1=2

dL

dy
;

where only the derivative of L is retained in estimating dR/

dy. Finally, we have

dp

dy
¼ 1

2

ðR� 2k2Þ
ðR� k2Þ1=2

dL

dy
� 1

2
1� k2L2

p2

 !
p

L

dL

dy
:

Therefore

1

up

dup

dy
þ 1

L
¼ � J1

2Jo
1� k2L2

p2

 !
p

L

dL

dy
þ 1

L
:

Since 1
L

dL
dy 	 0 under the non-local condition and p¼ 0 for

the local condition, as argued in Subsection II C, the first

term in the right hand side can be neglected. Thus, the fol-

lowing simplified expression for h is obtained:

h ¼
ð

1

L
dy � log ðnoÞ:

In order to evaluate the integral in (2), the altitude variation of

electron density of the following Gaussian form is considered:

noðyÞ ¼ N exp ð�ðy� yoÞ2=r2Þm�3; (9)

where (N, yo, r) are constants. Thus, uv from (2) is obtained

as follows:

uv ¼ A

ð
dy exp ð�log noÞ

� A exp ð�log NÞ
ð

dy exp
ðy� yoÞ2

r2

� �

and, the eigenmode (u ¼ upuv) can be written as follows:

u ¼ BJoðpÞ
ð

dy exp
ðy� yoÞ2

r2

� �
; (10)

where up ¼ Jo(p) from (3) is used and B absorbs all the con-

stants. The solution (10) is further reduced to the following

form:

u ¼
ffiffiffi
p
p

B
� �

JoðpÞErfi
y� yo

r

� �
; (11)

where Erfi is the imaginary error function. The expression

(11) is the exact solution of (1) and is examined under realis-

tic E region conditions in Sec. III. It is to be solved numeri-

cally owing to the presence of the error function. However,

much of insight of the solution can be inferred by examining

(10) under valid approximations, namely, the thin E layer

assumption. On such a condition, (y – yo)2 can be approxi-

mated to jy� yojr since r and (y – yo), i.e., width and total

extent of layer, are of the same order. Thus

uana 	
ffiffiffi
p
p

B
� �

JoðpÞ
ð

dy exp
jy� yoj

r

� �

or

uana ¼
ffiffiffi
p
p

Br
� �

JoðpÞ exp
jy� yoj

r

� �
: (12)

Therefore, the eigenmodes possess both oscillatory and

exponential variations with the altitude, suggesting their

unstable and non-local nature.
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E. Estimation of p

We note from (5) and (6) that the estimation of p
requires a priori knowledge of x ¼ xr þ ic that itself

depends on p. These coupled algebraic equations are solved

by the Predictor-Corrector method as follows: In (5), p is

predicted by substituting x ¼ xo from (8) and then x is pre-

dicted from (6). In the correction mode, p is corrected by

substituting predicted x in (5) and subsequent corrected x is

obtained for the corrected p. This correction mode is

repeated until the convergence of two consecutive corrected

p occurs.

III. RESULTS AND DISCUSSION

Expressions (6), (11), and (12) are examined in the E

region between 90 km and 130 km altitude under typical

ambient night-time conditions (Prolls, chap. 4)

no ¼ 1010 exp ð�ðy� 105Þ2=102Þm�3; a¼ 10�13m3=s;
�

X
¼ 102 exp ð�ðy� 90Þ=15Þ; vd ¼�100m=s: (13)

Note that vd is negative since electron drifts eastward

during night-time. Altitude variations of the equilibrium

electron density (no) and the corresponding inverse of scale

height (1/L) are shown in Fig. 1. In Fig. 2, altitude variations

of growth rates (cnew, co) of GDI, as given by Eqs. (6) and

(8), are plotted. In Fig. 3, the altitude variation of eigenmode

(u) given by Eq. (11) is plotted. Six panels in Figs. 2 and 3

correspond to six values of horizontal wavelength of pertur-

bation (k ¼ 2p/k), as indicated at the top of each panel, rep-

resenting small scales (k ¼ 400 m), intermediate scale (k
¼ 1 km), large scale (k ¼ 5 km), large-to-meso (LM) scale (k
¼ 25 km), and meso scale (k ¼ 125 km). Though, for LM

scales, co is not applicable, they are still plotted for LM and

meso scales in Fig. 2 for the comparative study. In Fig. 3,

(uana, up), i.e., the analytically approximate eigenmode, as

given by (12), and the particular solution, as given by (3),

are also plotted.

From Fig. 2, we note that for k � 1 km, both (cnew, co)

are the same, as expected. Moreover, they are positive in the

upper E region as expected during night-time. On the other

hand, for k � 5 km, cnew departs significantly from co though

FIG. 2. Altitude variation of the new growth rate (cnew) given in (6) and the growth rate (co) derived by Kudeki et al.3 and given in (8). Six panels correspond

to six values of horizontal wavelength of perturbation k indicated at the top of each panel. The recombination damping rate (2ano) is also plotted. These results

are obtained by considering the eastward drift vd ¼ –100 m/s.
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both remain positive in the upper E region. Exceptionally,

they are identical in the narrow altitude region around

105 km, where L ! 1, and thus the condition kL � 1, i.e.,

K/k2 � 1, is unconditionally satisfied for all wavelengths,

reducing cnew to co.

We note that cnew decreases with increasing k such that

the growth of LM scales (e.g., k ¼ 25 km) is an order slower

than the growth of large scales (e.g., k ¼ 5 km) and even

much slower than intermediate (e.g., k ¼ 1 km) and small

scales (e.g., k ¼ 400 m). However, the growth rate of the LM

scale remains larger than the recombination rate in the entire

upper E region, as we note for the LM scale. For the meso

scale (k ¼ 125 km), we note that the growth rate and recombi-

nation rate begin to overlap in altitudes, suggesting insignifi-

cant growth of such scales in the E region.

In Fig. 3, we note that the amplitude of eigenmode (u)

increases with k which is expected for any convective insta-

bility such as GDI.3 Under convective instability, longer

wavelengths grow slower than the shorter wavelengths, as

also noted in Fig. 2. It means that the longer wavelength

modes are much more amplified in comparison to the

shorter wavelengths since they have sufficient time to accu-

mulate free energy. This aspect is consistently reflected in

Fig. 3. Another consistent aspect in Fig. 3 is that the

eigenmodes attain maximum (minimum) in the small (large)

L region, i.e., in strong (weak) density gradient regions.

This aspect is expected for instability driven by the density

gradient, as in the present case. It also implies that the

eigenmodes are bounded and unstable since they are attenu-

ated while propagating and therefore have favorable condi-

tions to accumulate free energy in the localized altitude

region. We also note that these eigenmodes acquire vertical

variation scales proportional to the corresponding horizontal

wavelengths, i.e., the horizontal wavelengths are consis-

tently reflected in the vertical variations of the eigenmodes.

Note that k enters though (p), given by (5), and the eigen-

mode is the function of p through up ¼ Jo(p). Therefore,

the consistent reflection of wavelength in eigenmodes

ensures the proper estimation of (p) by the predictor-

corrector method. It also reflects the robust nature of the

analytical procedure adopted in the present study, to solve

the non-local differential equation (1).

FIG. 3. Altitude variation of eigenmode or potential (u) derived as expression (11). Six panels correspond to six values of horizontal wavelength of perturba-

tion as indicated at the top of each panel. The analytical approximate eigen mode (uana) given by (12) and the particular solution (up) given by (3) are also

plotted. All these potentials are normalized to the constant (B).
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We also note that u has a similar altitude variation to up

and the presence of an exponential factor in (8) does not alter

the variation significantly. Therefore, the particular solution

of (1) itself provides a glimpse of the eigenmode and much

of the eigenmode features can be inferred without estimating

the complex integrals in (2). Interestingly, the numerical

solution (u) and the analytical solution (uana) have a similar

altitude variation though they differ in the amplitude. The

similarity suggests that the major variation stems from up,

which is kept the same in both u and uana.

During twilight hours, the ambient E region departs

from the single layer structure and becomes composed of

multiple sub-layers (Ronchi et al.).7 We aim to examine the

present non-local analysis for such a twilight scenario, for

which ambient (no) is considered of the following form:

noðyÞ ¼ 1010 exp ð�ðy� 105Þ2=102Þ þ 5


 109 exp ð�ðy� 115Þ2=102Þm�3: (14)

Other ambient conditions remain unchanged from (13).

Results for the twilight scenario and for k ¼ 25 km are pre-

sented in Fig. 4. We note two altitude regions of positive

growth as expected. The growth and eigenmode attain maxi-

mum in the upper layer in the 115–130 km altitude region.

The phase velocity in 4(D) also maximizes in this altitude

region. Interestingly, the wave propagates with the velocity

much smaller than the electron drift, an aspect also known

for the large scale GDI.3

Therefore, LM scales are preferably excited in

115–130 km altitudes during twilight. It is to be mentioned

that a majority of twilight irregular structures of vertical size

�25 km are observed in this altitude region.6 Therefore, the

present study consistently explains their presence in the

upper E region. The past non-local studies were confined to

the longer scales and successfully interpreted the presence of

altitude extended structures of size less than 10 km that were

reported in various observations.3,6,7 Also, a local analysis

finds that even for the long horizontal wavelength of �2 km,

the growth rate can be positive for the vertical wavelength of

�20 km.6 Evidently, the present study accommodates these

aspects of longer scales as well as brings out new aspects

about the growth of LM scales.

The eigenmode u in Figs. 3 and 4 tends to increase at

the upper and lower boundaries. This behavior is due to the

no(y) profile that has corresponding L decreasing towards the

boundaries. In order to understand the sensitivity of the no(y)

profile upon the eigenmode, the analysis is carried out below

by considering the following profile:

no ¼ 1010 exp ð�ðy� 110Þ2=102Þ

þ 109 1þ � tanh 4pðy� 140Þ=lw½ �
1� �

� �
m�3: (15)

FIG. 4. Twilight scenario: Altitude

variations of (a) no and L, (b) cnew and

recombination damping rate, (c) eigen-

mode u and (d) phase velocity xr/k,

normalized to vd ¼ –100 m/s.
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The second segment in no is similar to that considered

by Huba and Lee2 with � ¼ 0.8 which is retained in the pre-

sent study. In (15), lw ¼ 40 km is the thickness of the E layer.

The resultant density profile is shown in Fig. 5(a). We note

that unlike the previous profiles in Figs. 1 and 4(a), the pre-

sent profile has corresponding L increasing towards the

boundaries. The associated eigenmode u is shown in Fig.

5(b). We note that unlike in Figs. 3(d)–4(c), the eigenmode

in the present case in Fig. 5(b) decreases towards the bound-

aries, demonstrating the consistent behavior in response to

the scale height L and sensitivity to the no(y) profile.

IV. SUMMARY

This study reformulates the non-local linear analysis of

GDI in the E region of equatorial ionosphere with the aim to

study the growth of horizontal perturbation of wavelengths

longer than 10 km which we have referred as Large-to-Meso

(LM) scales. For such scales, growth characteristics remain

unexplored to date. The non-local differential equation for

the polarization potential derived by Riggin and Kadish4 is

solved under conditions where the altitude variation of the

electron density scale height is retained. Its solution is

obtained analytically and found to be proportional to the

zero-order Bessel function whose argument leads to the ana-

lytical form of the dispersion relation with the new non-local

term associated with the eigen value. The eigenmodes and

their growth are examined under night-time and twilight E

region conditions. The new growth rate reproduces the same

results for meter to long wavelengths, as known from the

previous studies, i.e., their growths are much larger than the

recombination damping.

New results are as follows: (1) For LM wavelengths of

�25 km, the new growth rate is found to be larger than the

damping rate, though they grow slower than the long scales

and even much slower than the intermediate and small

scales, (2) corresponding eigenmode acquires large ampli-

tude in the strong density gradient region revealing its

bounded and unstable nature, (3) its amplitude is comparable

to that of longer scale and even larger than that of intermedi-

ate/small scales, (4) it is sensitive to the chosen density pro-

file, (5) it propagates with the phase velocity much smaller

the electron drift velocity. Therefore, horizontal perturbation

of LM scales can grow in the E region, raising the possibility

of the formation of unstable structures of similar vertical

scales which are often observed in the twilight-evening time

upper E region.
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