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SEARCH FOR STABLE ORBITS AROUND 1999 KW4 

Thais C. Oliveira* and Antonio F. B. A. Prado† 

This paper is a study of the orbital motion of a space vehicle around the binary 

system 1999 KW4. The model used is the restricted full body problem, in which 

it is assumed that the mass of the spacecraft is negligible and that the binary sys-

tem is composed of two-ellipsoid bodies. The equations of motion of the binary 

system are found using Lagrange’s method. The solar radiation pressure pertur-

bation is assumed to act on the spacecraft’s dynamics along with the gravitational 

influence of the non-spherical asteroid bodies. The results are based on a grid 

search method to find stable orbits for a spacecraft to visit the 1999 KW4 system. 

Several types of families of orbits are found, such as orbits around one or both 

asteroid bodies. Trajectories ending in escapes from the double system or colli-

sions with one of the asteroid bodies are also mapped because they need to be 

avoided. The eccentricity of the orbit of the binary system around the Sun is ap-

proximately 0.69, a large value, therefore the effect of the solar radiation pressure 

on the orbit of the spacecraft for short and long periods is investigated. 

INTRODUCTION 

Asteroids are fascinating objects in the solar system. They are an important key to understanding the 

formation of the solar system because they are nearly unaltered remains of the solar nebula from approxi-

mately 4.6 billion years ago.1 

Asteroids are rocky or metallic airless objects from the Solar system that are too small to be called planets. 

They come in different shapes and sizes, e.g., Vesta is the largest known asteroid at approximately 530 kilo-

meters in diameter (see Reference 2) and 2015 TC25 is the smallest known asteroid at approximately 2 meters 

in diameter.3, 4 A few massive asteroids are nearly spherical, while most asteroids do not have enough mass 

become a nearly spherical and thus have irregular shapes. Because asteroids do not have enough mass and 

magnetic field to contain an atmosphere, the airless bodies are covered in craters. 

NEAs (Near-Earth Asteroids) are a group of asteroids that approach the Earth’s orbital distance to within 

45 million km and they can pose an impact danger to Earth. The probability of an impact is low, but the 

consequences could be catastrophic depending on the size and velocity of the object. Such hazard events 

have occurred before on Earth, e.g., the mass extinction 65 million years ago caused by a massive asteroid 

impact.5 Thus, it is not surprising that asteroids can be an alarming potential threat that should be studied in 

advance in order to mitigate a potential impact. Several spacecraft missions have been envisaged to explore 

asteroids, binary asteroid systems, triple asteroid systems. Some missions to explore these bodies have al-

ready occurred and been successful in gathering real data.6,7,8 9 

Since the discovery of the first known binary system, 243 Ida [see Reference 10], numerous binary sys-

tems, including Near-Earth Asteroids (NEAs), have been observed in the Solar System. 309 binary asteroids 
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systems have been discovered thus far: 63 NEAs, 24 Mars crossing asteroids, 140 main-belt asteroids, 4 

Jupiter Trojans and 78 trans-Neptunian objects.11 

Binary and multiple systems are frequent among asteroids smaller than 15 km in diameter of the primary 

body.12 According to photometrically detected binaries systems, an estimate suggests the upper limit of the 

primary body diameter to be approximately 13 km.13 

Current estimates indicate that the fraction of binaries in the population of NEAs that are larger than 300 

𝑚 in diameter is 15±4%.14  

The binary asteroid system studied in this paper is the (66391) 1999 KW4. It is classified as a Near-Earth 

object and potentially hazardous asteroid. It is a Mercury-crosser and the closest known binary system to the 

Sun with a perihelion of just 0.2 AU. It was discovered on 20th May 1999, by Lincoln Near-Earth Asteroid 

Research at the Lincoln Laboratory's Experimental Test Site in Socorro, New Mexico, United States.15 In 

2006 it was revealed to be a binary system.16 

 This binary asteroid system was selected for study because of its proximity to the Sun. The spacecraft’s 

orbit is highly perturbed by the solar radiation pressure at the perihelion of the orbit and that is why this 

binary system is a potential hazardous NEA. Furthermore, this binary system’s physical properties and dy-

namics have been well studied in the literature review, thus, there is a lot data and analysis on this binary 

system’s dynamics.17,18,19  

The focus of this paper is to find stable spacecraft orbits around the binary asteroid system KW4. The 

solar radiation pressure is considered as an external perturbation force of the spacecraft’s dynamics. The non-

spherical nature of the binary system is also considered in the orbital dynamics of the spacecraft and the 

binary system itself.  

In the following section - Mathematical Formulation - the dynamics of the binary system based on the 

two-ellipsoid model and the motion of spacecraft in the gravitational field is analytically described in more 

detail. In the results section, the search for stable orbits is performed using two techniques: a grid search that 

assumes different initial Keplerian Orbital elements around the primary body; and utilization of the Jacobi 

constant and orbits near equilibrium points to find an initial state before performing a grid search discover to 

find which orbits do not collide or escape the system for different Jacobi constants. 

MATHEMATICAL FORMULATION 

This section provides the mathematical formulation of the solar radiation pressure force model of the 

spacecraft, the dynamics of the binary asteroid system and the spacecraft’s orbital motion around the binary 

system. Additionally, the mathematical formulation of zero velocity curves based on the Jacobi constant of 

a circular mutual orbit of binary asteroid bodies. 

Solar Radiation Pressure Force Modelling 

The influence of the solar radiation pressure is more pronounced in interplanetary missions where the 

spacecraft is under the sphere of influence of a weak gravitational field and negligible atmospheric drag, e.g., 

spacecraft orbiting around the Sun, asteroids or small natural satellites is given.  

The solar radiation pressure comes from the momentum exchange upon the interaction of a flux of pho-

ton-particles with the spacecraft’s surface.  

In this work, the absorptivity, the specular reflectivity and the diffuse reflectivity of the spacecraft’s sur-

face are considered. Their respective coefficients are given by: 𝛽, 𝜌, 𝛿. The sum of these coefficients is equal 

to one, i.e.,   𝛽 + 𝜌 + 𝛿 = 1. The model assumes Lambertian reflection, which means that the reflection can 

be described in terms of specular and diffuse reflectivities.20 The absorbed energy is assumed to not be 

reemitted. The specular reflection is perfectly specular. In other words, the spacecraft’s surface behaves like 

a linear combination of a black body, a perfect mirror, and a Lambertian diffuser.21  

The spacecraft’s surface is modeled as a rectangular prism with flat plates. The assumed orientation of 

the spacecraft is that one of its faces is always turned toward the primary asteroid body. The area of the 

spacecraft is considered to be 25 m2 with a mass of 500 kg. 

https://en.wikipedia.org/wiki/Near-Earth_object
https://en.wikipedia.org/wiki/Near-Earth_object
https://en.wikipedia.org/wiki/Potentially_hazardous_asteroid
https://en.wikipedia.org/wiki/Mercury-crosser
https://en.wikipedia.org/wiki/Binary_system
https://en.wikipedia.org/wiki/Lincoln_Near-Earth_Asteroid_Research
https://en.wikipedia.org/wiki/Lincoln_Near-Earth_Asteroid_Research
https://en.wikipedia.org/wiki/Lincoln_Laboratory%27s_Experimental_Test_Site
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The mathematical formulation for the force due to solar radiation pressure acting on each of the space-

craft’s flat surfaces is given by: 20, 21, 22, 23 

 𝑭 =
𝜙𝐴𝑐𝑜𝑠𝜃

𝑐
[(1 + 𝜌)𝒔̂ + 2 (

𝛿

3
+ 𝜌𝑐𝑜𝑠𝜃) 𝒏̂]  (1) 

where 𝑭 is the force due to solar radiation pressure on a flat plate [N]; 𝐴 is the surface area of the flat surface 

[m2], 𝜃 is the angle between the surface normal and spacecraft to Sun vectors; 𝒔̂ is the spacecraft to Sun unit 

vector and 𝒏̂ is the surface normal vector. 

Physical and Orbital Parameters of 1999 KW4 

Table 1 and Table 2 present some physical and orbital parameters of the 1999 KW4 system. It is assumed 

that the inclination, ascending node and argument of perigee are zeroed for the secondary asteroid body 

around the primary in Table 2. 

Table 1. Physical Parameters of the 1999 KW4 Asteroid Bodies. 

 Asteroid 1 Asteroid 2 

Dimensions 
1.532 x 1.495 x 

1.347 km 

0.571 x 0.463 x 

0.349 km 

Mass 2.353 1012 𝑘𝑔 0.135 1012 𝑘𝑔 

Spin Rate 2.7645 hr 17.4 hr 

Table 2. Orbital Data for the 1999 KW4 Asteroid Bodies. 

 Primary Secondary 

Semi-major axis 0.642291859 au 2.548 km 

Eccentricity 0.688460238 0.0004 

Inclination 105.4° 0° 

Ascending Node 244.9231238° 0° 

Argument of Peri-

gee 
192.6154467° 0° 

The Binary Asteroid System Dynamics 

This paper considers a two-ellipsoid binary system for the 1999 KW4. The mass of the primary body is 

𝑚1 and the mass of the secondary body is 𝑚2. The mass of the Sun is 𝑚𝑆𝑢𝑛 and treated as a point mass. The 

inertial reference frame 𝑂𝑆𝑢𝑛𝑋𝑌𝑍 is located at 𝑚𝑆𝑢𝑛 (𝑂𝑆𝑢𝑛) along with the unit vectors  𝑋̂, 𝑌̂ and 𝑍̂. 

The center of mass of the binary asteroid body is located at 𝑂 and its position vector, with respect to the 

inertial reference frame, is 𝑹0. The axes 𝑥𝑦𝑧 form the local reference frame, with its origin attached to 𝑂. 

The 𝑥 axis is oriented along the line that connects the binary asteroid system. The unit vectors of the 𝑂𝑥𝑦𝑧 

local reference frame are given by 𝑥̂, 𝑦̂ and 𝑧̂. The orientation of the local reference frame relative to the 

inertial frame is given by the angle 𝜃. 

The center of mass of each ellipsoid body is given by 𝑂1 and 𝑂2. The position vectors of each center of 

mass with respect to the inertial reference frame are 𝑹1 and 𝑹2. A body fixed frame is defined for each body 

given by 𝑂1𝑥1𝑦1𝑧1 for the primary body and 𝑂2𝑥2𝑦2𝑧2 for the secondary body. The unit vectors of the body 

fixed frame are 𝑥̂𝑖 , 𝑦̂𝑖 , 𝑧𝑖 , for 𝑖 = 1,2. The orientation of the asteroid body 𝑖 with respect to its body fixed 
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frame is given by the angle 𝛼𝑖, i.e., the asteroid bodies rotate in the same direction as the orbital plane’s 

rotation.  

Figure 1 illustrates the binary asteroid system geometry with the angles 𝛼1, 𝛼2 and 𝜃, the position vectors 

𝑹0, 𝑹1, 𝑹2 and 𝑹12 and the reference frames 𝑂𝑆𝑢𝑛𝑋𝑌𝑍, 𝑂𝑥𝑦𝑧,  𝑂1𝑥1𝑦1𝑧1 and  𝑂2𝑥2𝑦2𝑧2.24 

 

Figure 1. Two-ellipsoid asteroid bodies geometry. 

It is assumed that the body-fixed frame 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is aligned with the principal axes, i.e., the inertia matrix 

is diagonal and expressed as: 

 𝑰𝒊 = [

𝐼𝑥𝑥𝑖 0 0
0 𝐼𝑦𝑦𝑖 0

0 0 𝐼𝑧𝑧𝑖

]  (2) 

where 𝐼𝑥𝑥𝑖 , 𝐼𝑦𝑦𝑖  𝑎𝑛𝑑 𝐼𝑧𝑧𝑖 are the moments of inertia with respect to the 𝑥𝑖𝑦𝑖𝑧𝑖  axes, for 𝑖 = 1,2. 

The binary system can be described by four generalized coordinates: the distance 𝑅12 between 𝑂1 and 

𝑂2; the local reference frame angle orientation  𝜃 with respect to the inertial frame, and the local orientation 

angles 𝛼1 and 𝛼2 of the asteroid bodies. 

The Lagrange’s equation is given by: 

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞ሶ𝑗
−

𝜕𝑇

𝜕𝑞𝑗

+
𝜕𝑈

𝜕𝑞𝑗

= 0 
(3) 

where 𝑞𝑗  is the generalized coordinates 𝑅12, 𝜃,  𝛼1 and 𝛼2. 

The equations of motion are given by: 24 

𝑅̈𝐶 − 𝑅𝐶𝜃ሶ 2 +
𝐺(𝑚1 + 𝑚2)

𝑅𝐶
2

+
3𝐺(𝑚1 + 𝑚2)

4𝑅𝐶
2 {

1

𝑚1

[2𝐼𝑧𝑧1 − 𝐼𝑥𝑥1 − 𝐼𝑦𝑦1 + 3(2𝐼𝑦𝑦1 − 2𝐼𝑥𝑥1) cos 2𝛼1]

+
1

𝑚2

[2𝐼𝑧𝑧2 − 𝐼𝑥𝑥2 − 𝐼𝑦𝑦2 + 3(2𝐼𝑦𝑦2 − 2𝐼𝑥𝑥2) cos 2𝛼2]} = 0 

 

 

 

(4) 
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𝑑

𝑑𝑡
{𝑅12

2 𝜃ሶ
𝑚1 + 𝑚2

𝑚1𝑚2

[𝐼𝑧𝑧1(𝜃ሶ + 𝛼ሶ1) + 𝐼𝑧𝑧2(𝜃ሶ + 𝛼ሶ2)]} = 0 
(5) 

𝐼𝑧𝑧1(𝜃̈+𝛼̈1) +
3𝐺𝑚2

2𝑅12
3 (𝐼𝑦𝑦1 − 𝐼𝑥𝑥1) sin 2𝛼1 = 0 

(6) 

𝐼𝑧𝑧2(𝜃̈+𝛼̈2) +
3𝐺𝑚1

2𝑅12
3 (𝐼𝑦𝑦2 − 𝐼𝑥𝑥2) sin 2𝛼2 = 0 

(7) 

 

Radii of Gyration of an Ellipsoid 

The radii of gyration of any body shape can be obtained with its mass and its integral moments of inertia.  

The mass of an ellipsoid with dimensions 𝑎𝑟0, 𝑏𝑟0, 𝑐𝑟0 in the 𝑥, 𝑦, 𝑧 directions is: 

𝑚 =
4

3
𝜌𝜋𝑎𝑏𝑐𝑟0

3 
(8) 

The moments of inertia are: 

𝐼𝑥𝑥 =
1

5
𝑚(𝑏2𝑟0

2 + 𝑐2𝑟0
2) ≡ 𝑚𝑟𝑥𝑥

2  
(9) 

𝐼𝑦𝑦 =
1

5
𝑚(𝑎2𝑟0

2 + 𝑐2𝑟0
2) ≡ 𝑚𝑟𝑦𝑦

2  
(10) 

𝐼𝑧𝑧 =
1

5
𝑚(𝑎2𝑟0

2 + 𝑏2𝑟0
2) ≡ 𝑚𝑟𝑧𝑧

2  
(11) 

where 𝑟𝑥𝑥 , 𝑟𝑦𝑦 , 𝑟𝑧𝑧 are the radii of gyration. 

Nondimensional Variables 

The distance, mass and time variables are nondimensionalized. The distance variable is nondimensional-

ized by the characteristic length of the mutual orbits given by 𝑙. The characteristic length of the bodies is 𝑟0. 

Let 𝜖 = (
𝑟0

𝑙
)

2

.24  

The moments of inertia are re-written in terms of the nondimensionalized radii of gyration by: 

𝑝𝑥𝑥𝑖
2 =

𝐼𝑥𝑥𝑖

𝜖𝑚𝑖𝑙
2

;  𝑝𝑦𝑦𝑖
2 =

𝐼𝑦𝑦𝑖

𝜖𝑚𝑖𝑙
2

;  𝑝𝑧𝑧𝑖
2 =

𝐼𝑧𝑧𝑖

𝜖𝑚𝑖𝑙
2
 

(12) 

where  𝑝𝑥𝑥𝑖 , 𝑝𝑦𝑦𝑖 , 𝑝𝑧𝑧𝑖  for 𝑖 = 1,2. 

     Let the time 𝑡 be nondimensionalized by 𝜏 = 𝑛𝑡, where 𝑛 ≡ (
𝐺(𝑚1+𝑚2)

𝑙3 )

1

2
 and 𝐺 be the gravitational 

constant. In fact, 𝑛 is the angular velocity of a body moving in a circular orbit with radius 𝑙. 

The time derivatives of 𝑡 and the nondimensional time 𝜏 are given as follows: 

(∙)ሶ ≡
𝑑(∙)

𝑑𝑡
= 𝑛

𝑑(∙)

𝑑𝜏
 

(13) 

The generalized variable 𝑅12 is also changed to the nondimensional variable 𝑢 as follows: 

𝑢 ≡
𝑙

𝑅12

 
(14) 

The equations of motion after the nondimensionalization are given as follows:24 

𝑑2𝑢

𝑑𝜏2
− 𝑢

𝑑𝜃

𝑑𝜏
− 𝑢4 − 𝜖

3

4
𝑢6(𝑘12

2 + 3𝑘1
2 cos 2𝛼1 + 3𝑘2

2 cos 2𝛼2) = 0 
  (15) 
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𝑑𝜃

𝑑𝜏
−

ℎ

𝑛𝑙2
+ 𝜖𝑢2 [

𝑝𝑧𝑧1

1 − 𝑣
(

𝑑𝜃

𝑑𝜏
−

𝑑𝛼1

𝑑𝜏
) +

𝑝𝑧𝑧2

𝑣
(

𝑑𝜃

𝑑𝜏
−

𝑑𝛼2

𝑑𝜏
)] = 0 

  (16) 

𝑑2𝜃

𝑑𝜏2
+

𝑑2𝛼1

𝑑𝜏2
+

3

2
(1 − 𝑣)

𝑘1
2

𝑝𝑧𝑧1
2 𝑢4 sin 2𝛼1 = 0 

  (17) 

𝑑2𝜃

𝑑𝜏2
+

𝑑2𝛼2

𝑑𝜏2
+

3

2
𝑣

𝑘2
2

𝑝𝑧𝑧2
2 𝑢3 sin 2𝛼3 = 0 

  (18) 

where  ℎ is the constant of integration of Eq.   (16). The constant ℎ can be understood as the angular momen-

tum of the mutual orbits. 

Energetic and Hill Stability 

The energetically stable relative equilibria and conditions for Hill stability are determined for the two-

ellipsoid binary asteroid system.25  

The energetic stability determines whether the system can seek out a lower energy state by dissipation of 

energy. An energetically stable system is a system that has reached its lowest energy state for a given angular 

momentum. 

The Hill stability determines whether the system can undergo a mutual escape. A Hill stable system means 

the asteroid bodies will not escape the mutual orbit as it evolves dynamically. 

The condition for the energetic stability is: 25 

𝑢𝑚𝑎𝑥
2 <

1

𝜖
[
3

2
{

𝑝𝑧𝑧1
2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
+

𝛾

2
} +

1

2
(9 {

𝑝𝑧𝑧1
2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
+

𝛾

2
}

2

+ 30𝛾 (
𝑝𝑧𝑧1

2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
))

1/2

]

−1

 

 

(19) 

where 𝑢𝑚𝑎𝑥 is the maximum 𝑢 value or the minimum 𝑅12 distance between the asteroid bodies and  𝛾 =
𝑝𝑧𝑧1

2 − 2 𝑝𝑥𝑥1
2 + 𝑝𝑦𝑦1

2 + 𝑝𝑧𝑧2
2 − 2 𝑝𝑥𝑥2

2 + 𝑝𝑦𝑦2
2 . 

The condition for the Hill stability is given [Reference 25]: 

𝑢𝑚𝑖𝑛
2 <

2

𝜖
[

𝑝𝑧𝑧1
2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
+

𝛾

2
]

−1

[1 + (1 + {6𝛾 (
𝑝𝑧𝑧1

2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
)} [

𝑝𝑧𝑧1
2

1 − 𝑣
+

𝑝𝑧𝑧2
2

𝑣
+ 𝛾]

−2

)

1/2

]

−1

 

 

(20) 

Spacecraft’s Equations of Motion 

Let 𝑹 be the spacecraft’s position vector with respect to the local reference frame Oxyz. Let the space-

craft’s position vector 𝑹13 and 𝑹23 be from the asteroid bodies center of mass 𝑚1 and 𝑚2, respectively. The 

nondimensionalization of the position vectors 𝑹, 𝑹13 and 𝑹23 is given by: 

𝒓 =  
𝑹

𝑙
= 𝑥𝒙 + 𝑦𝒚̂ + 𝑧𝒛̂ 

 

(21) 

𝒓13 =  
𝑹13

𝑙
= (

1 − 𝑣

𝑢
+ 𝑥) 𝒙 + 𝑦𝒚̂ + 𝑧𝒛̂ 

 

(22) 

𝒓23 =  
𝑹23

𝑙
= 𝑥 (

−𝑣

𝑢
+ 𝑥) + 𝑦𝒚̂ + 𝑧𝒛̂ 

 

(23) 

The nondimensional equations of motion of the spacecraft around the binary system are given by: 

𝑑2𝑥

𝑑𝜏2
− 𝑦

𝑑2𝜃

𝑑𝜏2
− 2

𝑑𝜃

𝑑𝜏

𝑑𝑦

𝑑𝜏
− 𝑥 (

𝑑𝜃

𝑑𝜏
)

2

= 𝑓1(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) 
 

(24) 
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𝑑2𝑦

𝑑𝜏2
+ 𝑥

𝑑2𝜃

𝑑𝜏2
+ 2

𝑑𝜃

𝑑𝜏

𝑑𝑥

𝑑𝜏
− 𝑦 (

𝑑𝜃

𝑑𝜏
)

2

= 𝑓2(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) 
 

(25) 

𝑑2𝑧

𝑑𝜏2
= 𝑓3(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) 

 

(26) 

where  

𝑓1(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) = −𝑣 ({
1

𝑟13
2

+
3

2𝑟13
2 𝜖 [2(𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 + 𝑝𝑧𝑧1

2 ) −
5

𝑟13
2 (𝑎1

2𝑝𝑥𝑥1
2 + 𝑏1

2𝑝𝑦𝑦1
2 + 𝑐1

2𝑝𝑧𝑧1
2 )]} (

1 − 𝑣

𝑢
+ 𝑥)

+
3

2𝑟13
2 𝜖[𝑎1(−𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 + 𝑝𝑧𝑧1

2 ) cos 𝛼1 − 𝑏1(𝑝𝑥𝑥1
2 − 𝑝𝑦𝑦1

2 + 𝑝𝑧𝑧1
2 ) sin 𝛼1]) 

(1 − 𝑣) ({
1

𝑟23
2 +

3

2𝑟23
2 𝜖 [2(𝑝𝑥𝑥2

2 + 𝑝𝑦𝑦2
2 + 𝑝𝑧𝑧2

2 ) −
5

𝑟23
2 (𝑎2

2𝑝𝑥𝑥2
2 + 𝑏2

2𝑝𝑦𝑦2
2 + 𝑐2

2𝑝𝑧𝑧2
2 )]} (

−𝑣

𝑢
+ 𝑥)

+
3

2𝑟23
2 𝜖[𝑎2(−𝑝𝑥𝑥2

2 + 𝑝𝑦𝑦2
2 + 𝑝𝑧𝑧2

2 ) cos 𝛼2 − 𝑏2(𝑝𝑥𝑥2
2 − 𝑝𝑦𝑦2

2 + 𝑝𝑧𝑧2
2 ) sin 𝛼2]) 

 

 

 

(27) 

𝑓2(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) = −𝑣 ({
1

𝑟13
2 +

3

2𝑟13
2 𝜖 [2(𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 + 𝑝𝑧𝑧1

2 ) −
5

𝑟13
2 (𝑎1

2𝑝𝑥𝑥1
2 + 𝑏1

2𝑝𝑦𝑦1
2 + 𝑐1

2𝑝𝑧𝑧1
2 )]} 𝑦

+
3

2𝑟13
2 𝜖[𝑎1(−𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 + 𝑝𝑧𝑧1

2 ) sin 𝛼1 + 𝑏1(𝑝𝑥𝑥1
2 − 𝑝𝑦𝑦1

2 + 𝑝𝑧𝑧1
2 ) cos 𝛼1]) 

−(1 − 𝑣) ({
1

𝑟23
2 +

3

2𝑟23
2 𝜖 [2(𝑝𝑥𝑥2

2 + 𝑝𝑦𝑦2
2 + 𝑝𝑧𝑧2

2 ) −
5

𝑟23
2 (𝑎2

2𝑝𝑥𝑥2
2 + 𝑏2

2𝑝𝑦𝑦2
2 + 𝑐2

2𝑝𝑧𝑧2
2 )]} 𝑦

+
3

2𝑟23
2 𝜖[𝑎2(−𝑝𝑥𝑥2

2 + 𝑝𝑦𝑦2
2 + 𝑝𝑧𝑧2

2 ) sin 𝛼2 + 𝑏2(𝑝𝑥𝑥2
2 − 𝑝𝑦𝑦2

2 + 𝑝𝑧𝑧2
2 ) cos 𝛼2]) 

 

(28) 

𝑓3(𝑥, 𝑦, 𝑧, 𝑢, 𝛼1, 𝛼2) = −𝑣 ({
1

𝑟13
2 +

3

2𝑟13
2 𝜖 [2(𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 + 𝑝𝑧𝑧1

2 ) −
5

𝑟13
2 (𝑎1

2𝑝𝑥𝑥1
2 + 𝑏1

2𝑝𝑦𝑦1
2 + 𝑐1

2𝑝𝑧𝑧1
2 )]} 𝑧

+
3

2𝑟13
2 𝜖𝑐1(𝑝𝑥𝑥1

2 + 𝑝𝑦𝑦1
2 − 𝑝𝑧𝑧1

2 )) 

 

(29) 

where 

𝑎1 = − (
1−𝑣

𝑢
+ 𝑥) 𝑐𝑜𝑠𝛼1 − 𝑦 𝑠𝑖𝑛𝛼1;   𝑎2 = − (

−𝑣

𝑢
+ 𝑥) 𝑐𝑜𝑠𝛼2 − 𝑦𝑠𝑖𝑛𝛼2; 

𝑏1 = (
1−𝑣

𝑢
+ 𝑥) 𝑠𝑖𝑛𝛼1 − 𝑦 𝑐𝑜𝑠𝛼1;   𝑏2 = (

−𝑣

𝑢
+ 𝑥) 𝑠𝑖𝑛𝛼2 − 𝑦 𝑐𝑜𝑠 𝛼2; 

𝑐1 = 𝑐2 = −𝑧. 

Jacobi Constant and Mutual Circular Orbit 

The Jacobi constant and zero velocity curves can be useful for finding large periodic orbits of a spacecraft 

that is orbiting around a binary system with a circular mutual orbit.  

If the orbit of the binary asteroid system can be approximated to a circular mutual orbit, then 𝑢(𝜏) = 𝑢𝑐 

and 
𝑑𝜃

𝑑𝜏
=

𝑑𝜃

𝑑𝜏
|

𝑐
, where the sub-index 𝑐 means that the variable is a constant. The equations of motion given by 

Eqs. (24),(25) and (26) can be re-written as: 

𝑑2𝑥

𝑑𝜏2
− 2

𝑑𝜃

𝑑𝜏
|

𝑐

𝑑𝑦

𝑑𝜏
=

𝜕𝑈̌

𝜕𝑥
 

(30) 
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𝑑2𝑦

𝑑𝜏2
+ 2

𝑑𝜃

𝑑𝜏
|

𝑐

𝑑𝑥

𝑑𝜏
=

𝜕𝑈̌

𝜕𝑦
 

(31) 

𝑑2𝑧

𝑑𝜏2
=

𝜕𝑈̌

𝜕𝑧
 

(32) 

where 𝑈̌ =
1

2

𝑑𝜃

𝑑𝜏
|

𝑐
(𝑥2 + 𝑦2) + 𝑣 {

1

𝑟13𝑐
+ 𝜖

3

2𝑟13𝑐
3 [

𝑝𝑥𝑥1
2 +𝑝𝑦𝑦1

2 +𝑝𝑧𝑧1
2

3
− (

1−𝑣

𝑢𝑐
+ 𝑥)

2 𝑝𝑥𝑥1
2 +𝑝𝑦𝑦1

2 +𝑝𝑧𝑧1
2

𝑟13𝑐
2 ]} 

The Jacobi integral can be expressed as: 

𝐶 (𝑥, 𝑦, 𝑧,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = 2𝑈̌(𝑥, 𝑦, 𝑧) − ((

𝑑𝑥

𝑑𝜏
)

2

+ (
𝑑𝑦

𝑑𝜏
)

2

+ (
𝑑𝑧

𝑑𝜏
)

2

) 
(33) 

Re-arranging Eq.(33), the zero-velocity surfaces can be found by setting 𝐶(𝑥, 𝑦, 𝑧, 0,0,0) = 2𝑈̌(𝑥, 𝑦, 𝑧) =
𝐶0. The Lagrangian points for the binary asteroid system can be found in pages 55-61 in Reference 24. 

RESULTS 

Binary Asteroid System in a Mutual Orbit 

The physical parameters of 1999 KW4, which include the orbital elements, asteroid body dimensions and 

rotational rates, are used as nominal parameters for the two-ellipsoid binary asteroid bodies analyzed in this 

paper. The validation of the binary asteroid system models is based on the similarity of the of the orbital 

dynamics of asteroid bodies that have the same parameters as 1999 KW4, shown in Table 1 and Table 2.  

Table 3 presents nondimensionalization parameters and Table 4 presents the initial state of the binary 

system.  

Table 3. Nondimensionalization Parameters. 

l  2547 m 

𝑟0 766 m 

𝑣 0.9457 

Table 4. Initial Parameters of the Binary Asteroid System Simulations. 

 
∴= 𝜏 

(non-dimensional) 
 

∴= 𝑡 

𝑢|∴=0 0.99915 2549 m 

𝜃; 𝛼1;  𝛼2|∴=0 0 0 

𝑑𝜃

𝑑 ∴
|

∴=0
 1.0030 17.4 hr 

𝑑𝛼1

𝑑 ∴
|

∴=0
 5.4502 2.7 hr 

𝑑 𝑢

𝑑 ∴
;
𝑑𝛼2

𝑑 ∴
|

∴=0
 0 0 

 

The Ellipsoid-Ellipsoid System. The dimensions of the two-ellipsoid system are the same as the 1999 

KW4 system. The radii gyration of the asteroid bodies in Table 5 is computed by using Eqs. (9) to (12) and 
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Table 1. The initial non-dimensional parameter 𝑢|𝜏=0=0.99915 guarantees a mutual orbit similar to the orbital 

parameters of 1999 KW4 given in Table 2.  

Table 5. Radii Gyration of the Ellipsoid-Ellipsoid System. 

 Asteroid 1 Asteroid 2 

𝑃𝑥𝑥 0.5878 0.1697 

𝑃𝑦𝑦 0.5957 0.1958 

𝑃𝑧𝑧 0.6251 0.2150 

 

Figure 2 to Figure 5 present numerical simulations of the two-ellipsoid system for a total duration of 

𝜏𝑡𝑜𝑡 = 4 × 2𝜋. 

As illustrated in Figure 2, the two-ellipsoid asteroid bodies move in a nearly circular orbit. The maximum 

distance between the asteroid bodies is ≈ 2549 𝑚 and the minimum is ≈ 2547 𝑚,  which are the actual 

apogee and perigee distance of the binary system 1999 KW4 (see Table 2).  

 

Figure 2. Distance between the two-ellipsoid bodies. 

As shown in Figure 3 and Figure 4, the inertial rotational rate of the binary system and the local rotational 

rate of the primary body have high frequency oscillations but small amplitude variations of 1.003 <
𝑑𝜃

𝑑𝜏
<

1.005 and 5. 4475 <
𝑑𝛼1

𝑑𝜏
< 5.4505, respectively. 

In Figure 5, the orientation of the secondary body in the local reference frame remains relatively constant, 

i.e., the secondary asteroid body rotation is synchronous with the orbital motion of the binary asteroid, similar 

to the 1999 KW4 system. 

For the two-ellipsoid system, the condition for energic stability is a maximum 𝑢𝑚𝑎𝑥
2 (𝜏) < 2.69 and for 

Hill stability it is 𝑢𝑚𝑎𝑥
2 (𝜏) < 10.01 (see Eqs. (19) and (20) and Reference 25). Figure 6 presents the nondi-

mensional distance between the two-ellipsoid bodies 𝑢(𝜏) for a total duration of 𝜏𝑡𝑜𝑡 = 100 × 2𝜋.  

The 𝑢𝑚𝑎𝑥
2 ≈ 1.0001 of the two-ellipsoid system satisfies considerably the conditions for energetic sta-

bility and Hill stability. This means that the system has reached its lowest energy state and will remain 

bounded. 
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Figure 3. Inertial rotational rate of the two-ellipsoid binary system. 

 

Figure 4. Local rotational rate of the ellipsoid primary body. 

 

Figure 5. The orientation of the secondary body in the local reference frame. 
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Figure 6. The nondimensional distance between the two-ellipsoid bodies. 

 

Search for Stable Orbits around the Binary Asteroid System 

The search for stable orbits around the two binary asteroid systems consists of varying the initial condi-

tions of the spacecraft around the binary system and mapping the three possible outcomes: a) Collison with 

one of the asteroids; b) Escape from the gravitational influence of the binary system; c) A stable orbit that 

will not collide or escape the system for a given amount of time.  

The solar radiation pressure is not considered in the grid method search because it requires more compu-

tational effort and the grid search method itself is time-consuming. The solar radiation pressure is considered 

when specified. 

The Initial Keplerian Orbits around the Binary Asteroid System. This first search consists of positioning 

the spacecraft on an initial Keplerian orbit around the primary body. The orbit of the spacecraft does not 

remain in a Keplerian orbit for two reasons: the irregular shape of the primary asteroid body and the gravita-

tional perturbation of the secondary asteroid body. Additionally, the solar radiation pressure is a non-con-

servative force that also disturbs the orbit.  

Nevertheless, this method is useful for finding stable orbits when the primary body is much more massive 

than the secondary. The orbits far from the binary system that encompass both of the asteroid bodies considers 

the center of mass between the asteroid bodies as the focus of the orbit and the total mass of the binary system 

for the initial Keplerian elements. 

The mapping is computed by varying two initial Keplerian elements: the semi-major axis and the eccen-

tricity variation in Figure 8. The inclination of the orbit is 180°. Retrograde orbits are more stable than pro-

grade orbits and for that reason a retrograde orbit was chosen.26 The true anomaly is also 180° because it was 

found that there are more stable orbits with this true anomaly value. The ascending node and the argument 

of perigee are all zeroed. 
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Figure 7. Search for stable orbits varying the semi-major axis and eccentricity initial values. 

Figure 7 shows two bands of stable orbits, i.e., orbits that do not escape or collide with the asteroid bodies 

for 𝜏 = 500. The larger band is studied in more detail in Figure 8, while the smaller, thinner band is studied 

in Figure 9. 

Figure 8 presents highly eccentric initial Keplerian elements and large enough semi-major axes that they 

englobe both asteroids around the spacecraft’s orbit (see Figure 10). The evolution of the orbital dynamics is 

shown in Figure 8b). Most of the non-stable orbits escape from the system. There is only one orbit that 

collides with the primary body in blue. 

Figure 9 shows a stable orbit band around the primary asteroid body. Most of the orbits around stable 

orbits collide with the secondary body, but there are some that collide with the primary and a couple that 

escape the system.  

Figure 10 presents a stable orbit from Figure 8 when 𝑎 = 0.85 and 𝑒 =  0.82 for an integration period 

𝜏 = 103 or t ≈ 116 days.  

The solar radiation pressure perturbation has a great influence on the orbital dynamics of the spacecraft. 

The main effect of the solar radiation pressure perturbation occurs at the perpendicular axis of the initial 

orbital plane (Z axis), as shown in Figure 11. 

Figure 12 presents a stable orbit around the primary body from Figure 9 when 𝑎 = 0.6 and 𝑒 =  0.275. 

The simulation is for 𝜏 = 103. 

The solar radiation pressure in Figure 12 produces a great impact on the orbital dynamics. The effects of 

the solar radiation pressure on the spacecraft’s orbit are noticeable and it should not be neglected for long 

binary asteroid systems missions. 
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a) 

 
b) 

Figure 8. Search for stable orbits for highly eccentric initial state. 

 

a) 
 

b) 

Figure 9. Search for stable orbits around the primary asteroid body. 

All the simulations in this paper consider the initial state of the center of mass of the binary asteroid 

system to be in the perihelion of the orbit, when the true anomaly is 0°. According to Table 2, the highly 

eccentric orbit of the center of mass of the system provides a close approximation with the Sun, and therefore 

leads to an increase in solar radiation pressure perturbation.  

    Figure 13 compares the magnitude of the solar radiation pressure perturbation between the perihelion 

and the aphelion by subtracting the position of the spacecraft with and without the solar radiation pressure. 

The acceleration force of the solar radiation pressure is inversely proportional to the square of the space-

craft’s distance from the Sun. The difference between the solar radiation pressure perturbation magnitude at 

the perihelion and aphelion of the orbit is evident. 

Figure 17 shows an initial inclination orbit of 90° for a stable orbit in  
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Figure 15. The orange orbit considers the solar radiation pressure, while the blue orbit does not consider 

any perturbation other than the non-sphericity of the asteroid bodies. As shown in Figure 17, the solar radia-

tion pressure can change the orbit drastically. This orbit collides with the secondary body when 𝜏 = 350.9. 

 

Figure 10. Spacecraft’s stable orbit system with and without solar radiation pressure. 

 

Figure 11. Spacecraft’s stable orbit XZ axes view with (orange) and without (blue) solar radiation 

pressure for 𝝉 = 𝟏𝟎𝟎. 

Figure 14 considers a true anomaly of 0° for the secondary asteroid body. The other initial Keplerian 

elements are kept the same as the previous simulation. The initial position of the spacecraft around the orbital 

binary system plane can be an important factor when searching for stable orbits (compare Figure 7 and 14). 

There is no stable orbit (with 𝜏 ≥ 500) in Figure 14 when the initial true anomaly is 0°. 

Figures 15 and 16 consider a zeroed argument of perigee, ascending node angles, and 180° for true anom-

aly. The initial inclination is 90° in Figure 15 and 0° for Figure 16. The inclination can also be a crucial factor 

in finding stable orbits and is studied widely in the literature. there are more retrograde stable orbits around 

asteroid system than prograde orbits (compare Figure 7, 15 and 16 and see Reference 26). There are no stable 

orbits (with 𝜏 ≥ 500) in Figure 16  when the initial inclination is 0°. 

Zero Velocity Curves. For second method used to search for stable orbits, it is assumed that the asteroid 

bodies orbit is in a mutual circular orbit (see Reference Roy). This assumption can be used for the KW4 

because the binary system mutual orbit is nearly circular with an eccentricity of 0.0004.  

Let the initial conditions of the spacecraft be 𝑥|𝜏=0 = 𝑥𝑐 , 𝑦 = 𝑧 =  𝑑𝑥/𝑑𝜏 = 𝑑𝑧/𝑑𝜏|𝜏=0 = 0. Then, a 

specific value of the Jacobi constant 𝐶0 is chosen. The initial velocity 𝑑𝑦/𝑑𝜏|𝜏=0 can be written as: 

𝑑𝑦

𝑑𝜏
|

𝜏=0
= (2𝑈(𝑥𝑐 , 𝜗𝑐 , 𝑢𝑐) − 𝐶0)

1/2
 

(34) 
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Based on the mathematical formulation of 24, the Lagrangian points of the binary two-ellipsoid system 

are: 𝐿1 = [0.6792, 0], 𝐿2 = [1.1953, 0], 𝐿3 = [−0.9887, 0], 𝐿4 = [0.4192, 0.8897] and 𝐿5 =
[0.4192, −0.8897]. 

 

Figure 12. Spacecraft’s stable orbit around the primary asteroid body with and without solar radia-

tion pressure. 

 

    Figure 13. Difference between the position of the spacecraft with and without the solar radiation 

pressure. 

The Jacobi constants for each Lagrangian point are: 𝐶𝐿1 = 3.48, 𝐶𝐿2 = 3.39, 𝐶𝐿3 = 3.07, 𝐶𝐿4 = 𝐶𝐿5 =
2.95.  

Let 𝐶0 = 3.7 and 𝑥|𝜏=0 = −0.785. The allowable region of the spacecraft’s trajectory when  𝐶0 > 𝐶𝐿1 

and 𝑥|𝜏=0 = −0.785 is around the secondary body as shown in Figure 18. According to Equation (34), 

𝑑𝑦/𝑑𝜏|𝜏=0 = 08250. The initial state corresponds to a retrograde orbit. 

The 3D orbit view is shown in Figure (20 for 𝜏 = 500 and the comparison of the orbits with and without 

solar radiation pressure is given by Figure 19 for 𝜏 = 75. The solar radiation pressure perturbation leads to a 

collision course with the secondary body when 𝜏 = 75. 

Let 𝐶0 = 2.95 and 𝑥|𝜏=0 = −1.2. The Jacobi constant 𝐶0 = 𝐶𝐿4 results in an allowable region that 

englobes the binary system, except for the Lagrangian points 𝐿4 and 𝐿5.  Figure 19 shows the orbit with these 

initial parameters. The trajectory does not cross the Lagrangian points 𝐿4 and 𝐿5. The solar radiation pressure 

perturbation plays an important role on the orbital dynamics of the spacecraft. 
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The analytical method to find stable orbits based on the Jacobi constant and Equation (34) cannot always 

find stable orbits. This method is good for finding orbits within a certain region, especially when the region 

is closed, e.g. 𝐶0 > 𝐶𝐿1. But it cannot guarantee that a collision with the asteroid bodies will be avoided. The 

grid method or the mapping method combined with the Jacobi constant can be a useful tool to find the stable 

orbits in restricted allowable trajectory paths. Figure 21 combines the Jacobi method in Equation (34) and 

the grid method to find stable orbits (𝜏 = 100).  

 

Figure 14. Search for stable orbits with zeroed true anomaly and varied varying the semi-major axis 

and eccentricity. 

 

Figure 15. Search for stable orbits with 90° inclination, and varied the semi-major axis and eccen-

tricity initial values. 

The stable orbits shown in Figures 20 and 21 can be seen in Figure 34 with the initial Jacobi constant and 

the initial position of the spacecraft. Note that the initial positions are all negative because there are more 

stable orbits in this geometry (see Figure 7 and Figure 14).  

In  

Figure 21, the blue vertical band occurs for one or both of the following reasons: the secondary asteroid body 

is in a collision path with spacecraft; and/or it is non-allowable region for the spacecraft to be, according to 
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the Jacobi constant. Figure 23 is useful for finding stable orbits around a certain allowable region that the 

spacecraft can orbit, based on the Jacobi constant. 

 

 

Figure 16. Search for stable orbits with zeroed inclination, and varied semi-major axis and eccen-

tricity initial values. 

 

Figure 17. Search for stable orbits with zeroed inclination, and varied the semi-major axis and 

eccentricity initial values. 
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Figure 18. Zero Velocity Curves and Lagrangian Points. 

 

Figure 19.  Spacecraft’s stable orbit around the primary asteroid body with and without solar ra-

diation pressure. 
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Figure 20. Spacecraft’s stable orbit around the binary asteroid system with and without solar ra-

diation pressure. 

 
Figure 21.  Search for stable orbits varying the Jacobi constant and the initial position of the space-

craft. 

CONCLUSION 

The two-ellipsoid system considered in this paper’s results has similar dynamics to the real 

KW4 binary system as presented in the literature review. The system is stable, i.e., the asteroid 

bodies do not collide with each other, do not escape from the system, and not seek out a lower 

energy state. 

The grid method can find several stable orbits. The maps can show regions where there are a 

great number of stable orbits, or where a potential external perturbation may not destabilize the 

system as easily as a region where there are few stable orbits.  

The Keplerian elements or Keplerian orbit method for finding stable orbits is efficient. This 

method is great for binary systems in which the primary body is much more massive than the sec-

ondary body (moonlet). 

The Jacobi Constant method for finding stable orbits is also capable of finding a great spectrum 

of stable orbits. The greatest advantage to using this method with the grid search is that it is easy 

to visualize the allowable regions that the spacecraft can be. In this way, it is easy to find stable 

orbits around the primary or secondary asteroid body. 

The solar radiation pressure magnitude in the perihelion of the orbit is noticeable and will even-

tually require a control system to correct the spacecraft`s orbit. The magnitude of the solar radiation 

pressure at the aphelion of the orbit is much less intense. 
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