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Abstract: Although mining plays an important role for the economy of the Amazon, little is known
about its attributes such as area, type, scale, and current status as well as socio/environmental
impacts. Therefore, we first propose a low time-consuming and high detection accuracy method for
mapping the current mining areas within 13 regions of the Brazilian Amazon using Sentinel-2 images.
Then, integrating the maps in a GIS (Geography Information System) environment, mining attributes
for each region were further assessed with the aid of the DNPM (National Department for Mineral
Production) database. Detection of the mining area was conducted in five main steps. (a) MSI
(MultiSpectral Instrument)/Sentinel-2A (S2A) image selection; (b) definition of land-use classes and
training samples; (c) supervised classification; (d) vector editing for quality control; and (e) validation
with high-resolution RapidEye images (Kappa = 0.70). Mining areas derived from validated S2A
classification totals 1084.7 km2 in the regions analyzed. Small-scale mining comprises up to 64% of
total mining area detected comprises mostly gold (617.8 km2), followed by tin mining (73.0 km2).
The remaining 36% is comprised by industrial mining such as iron (47.8), copper (55.5) and manganese
(8.9 km2) in Carajás, bauxite in Trombetas (78.4) and Rio Capim (48.5 km2). Given recent events
of mining impacts, the large extension of mining areas detected raises a concern regarding its
socio-environmental impacts for the Amazonian ecosystems and for local communities.

Keywords: small-scale mining; industrial mining; google engine; image classification; land-use
cover change

1. Introduction

Brazil is one of the leading countries in mineral production, 40% of which comes from the
Amazonian states [1] generating large financial compensation for local municipalities and states.
At the same time, these activities have profound impacts on the Amazon regional economy, and cause
intense social conflicts [2] and environmental impacts, such as water contamination [3]. For example,
a recent leak of toxic mining debris discharged by a bauxite mining company has contaminated several
communities in Barcarena (Pará State) with high levels of lead, aluminum, sodium, and other toxins
detected in drinking water up to 2 km downstream [3]. Another example regards gold exploitation
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in the Tapajós River watershed, where water has been contaminated with mercury and impacted by
the siltation process due to discharges of artisanal gold-mining tailings since the 1950s [4]. Moreover,
recent publications have demonstrated the influence of mining project/activities on the Land Use
Cover Change (LUCC) caused by other land-use covers, such as pasture and agribusiness, indicating
its importance to territory expansion as well [5,6].

Although mining has an important role for the economy of the Amazon, little is known about its
attributes such as area, type, scale, status and socio/environmental impacts. One of the reasons for
this absence of information is due the lack of accurate mapping of the mining area [7,8]. This lack is
explained by the nature of the mining activity characterized by a diversity of techniques and scale of
exploitation. Mining in the Amazon ranges from small-scale with rudimentary techniques (water jets
and rafts), more mechanized exploitation with pit loaders and cyanide tanks (in the case of gold
extraction) where miners organized themselves into cooperatives, to large-scale mining characterized
by high mechanization at an industrial scale (ports, pipelines, roads, etc.) [9,10]. This diversity
of techniques and exploitation scale causes different types of land cover, which includes barren
soil, land pits, water bodies, degraded and recovering areas [7]. Moreover, a significant amount of
small-scale mining occurs in small areas (<10,000 m2) within forest land which are only detectable
by medium- to high-resolution images (≤20 m). Therefore, both high spectral variability and high
frequency of small-scale mining areas often causes misclassification by image classifiers and interpreters
because the visible features of the mines are similar to many other land cover and land-use changes
such as clearance for agriculture or cattle farms [8]. Another challenge to map mining areas is that
the stream network in which mining takes place can comprise of clear water, but also of highly turbid
water and riverbanks, with spectral signatures similar to those of bare soil [8]. One more aspect
regarding the criteria for including a given land use to the mining class area is that different land
uses such as ports, airstrips, access roads, can be considered to be direct LUCC by mining activities,
and therefore added to the exploitation area [7].

Considering all these difficulties and challenges, maps of mining areas are sporadic. To overcome
that, research efforts have been made to map mining areas around the world using different remote
sensing data and classification methods [11,12]. A recent review article indicates that classification
of mining area is improved when using high-resolution imagery and applies machine learning,
such as Support Vector Machine (SVM), object-oriented or decision tree to classify mining areas.
To detect small-scale mining in Malaysia, for example, some researchers have applied high-resolution
imagery [8] and provided high accuracy (89%) maps using object-oriented/SVM classification to detect
several mining-related land-cover uses. The high accuracy, however, relied on time-consuming image
processing methods. Also, the swath widths of high-resolution images are usually narrow, preventing
their application to large-scale areas. For the Brazilian Amazon, the only mining area estimation
publicly available is based on visual interpretation of Landsat imagery (30 m) and vector editing
(TerraClass Project [13], TC2014). This product, despite the satisfactory location of mining occurrence,
lacks details and is subject to misinterpretation. Moreover, due to the use of a time-demanding method,
it cannot be updated frequently [12].

Given the economic and environmental importance of mining exploitation around the world, and
particularly in the Amazon, the development of rapid and accurate methods for classifying mining
areas is key to understanding the influence of mining activities on the regional environment [7]. In this
context, this research aims to map current active mining areas (open pits) at a large scale (Brazilian
Amazon) and integrate attributes regarding the mining scale and ore exploited. The first objective of
this paper is to map current operational mining areas within the main mining regions of the Brazilian
Amazon using Sentinel-2A images (S2A) applying a low time-consumption mapping method based on
GEE (Google Earth Engine). In the face of a lack of information about the type of mineral exploited and
the scale (industrial or small-scale), the second objective is the integration of data provided by Brazilian
National Department for Mineral Production—DNPM (license status, mineral type among other
information) to the mining map. This integration will be carried out in a GIS (Geographic Information
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System) database and will allow computation of the area occupied by each mining category, providing
key information for the environmental management of mining activities.

2. Materials and Methods

2.1. Mining Sites in the Brazilian Amazon

Small-scale and large-scale mining are present within numerous regions in the Brazilian Amazon,
exploiting several ores such as iron, manganese, bauxite, tin, gold, nickel, and copper. Besides the
different ore types, the techniques applied in the exploitation also vary considerably. Industrial
iron mining in Carajás, for example, applies high-end technology throughout the whole process of
surveying, exploiting, and recovering the area, resulting in high yields with minimum environmental
impacts. On the other hand, small-scale gold mining in the Tapajós River, for example, uses low-end
technology in ore processing (water jets and dredges) with low yields and high impact levels on land
degradation and water contamination (sediment and mercury) [14–17].

To cover the variety of mining activities in the Amazon, 13 main regions for ore exploitation were
considered for analysis, including both small-scale and large-scale that present specific characteristics
in terms of socio-economic and territorial aspects (Figure 1). The areas were selected based on literature
review [10] and other databases [1,13]. Although other areas in the Brazilian Amazon present relevant
mining activities, such as the state of Roraima and north of the Amazon State (diamond and gold
mining), they were not included either due to the lack of cloud-free images or to the mining process,
mainly in rivers in rafts and dredges, which are hardly detectable by satellite imagery [2,18].

Figure 1 shows the study area location and the 38 Sentinel-2A tiles used for mining detection. All
the images were selected with data range from July to September 2017, with exception of Taboca (AM)
and Serra do Navio (AP), due to a lack of a more recent cloud-free images.
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Figure 1. Thirteen mining regions in the Brazilian Amazon evaluated in this study: (1) Tapajós River; (2) 
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Indication of 38 Sentinel-2A images used for mapping mining areas and 12 RapidEye images used for 
validation purposes. Federal States within the Amazon region: Acre (AC), Amapá (AP), Amazonas 
(AM), Maranhão (MA), Mato Grosso (MT), Pará (PA), Rondônia (RO), Roraima (RR), and Tocantins 
(TO). 

Figure 1. Thirteen mining regions in the Brazilian Amazon evaluated in this study: (1) Tapajós River;
(2) Carajás; (3) Rio Xingu; (4) Peixoto de Azevedo; (5) Trombetas/Juruti; (6) Capim River; (7) Mina Taboca;
(8) Ariquemes; (9) Pontes e Lacerda; (10) Amanã River; (11) Amapá; (12) Barcarena; (13) Madeira River.
Indication of 38 Sentinel-2A images used for mapping mining areas and 12 RapidEye images used for
validation purposes. Federal States within the Amazon region: Acre (AC), Amapá (AP), Amazonas (AM),
Maranhão (MA), Mato Grosso (MT), Pará (PA), Rondônia (RO), Roraima (RR), and Tocantins (TO).
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Based on a literature review [1,13,18], Table 1 provides more general information about each study
area including type of ore exploited, Federal Units-State, and whether it is a large-scale (industrial) or
small-scale mining (locally called “garimpos”).

Table 1. Information of the mining sites regarding to location, Sentinel-2 tiles and acquisition date,
ore exploited and mining scale. Mining scale varies from small-scale (“garimpos” with rudimentary
techniques), medium (mines with improved techniques, pitloaders, cyanide tanks), industrial scale
(large mining operations with high mechanization which can include ports, pipelines, ore refinery, etc.).
Federal Units: AM—Amazonas, AP—Amapá, MT—Mato Grosso, PA—Pará, RO—Rondônia.

# Mining Sites F.U. Sentinel-2
Granule Date RapidEye

Tile_Date Ore Mining Scale

1 Tapajós region PA

T21 MWQ,
MVP, MWP,

MVN, MWN,
MVM, MWM

19 July 2017
2135416_2015-06-07
2136118_2015-07-23
2136712_2015-07-19

Gold Small-Medium

2 Carajás region PA T22MEU,
MFU, MET 13 and 20 July 2017 2235415_2014-07-30

2236318_2015-08-01

Iron, Copper,
Manganese,

Nickel
Industrial

3 Xingu/Rio
Fresco PA

T22MCU,
MDU, MCT,
MDT, MET,
MDS, MES,

MFS

13 and 20 July 2017 Gold/Tin/Nickel Small/Industrial

4
Teles

Pires/Peixoto
de Az.

MT T21LXK, LYK,
LXJ, LYJ 6 July 2017 2134423_2015-07-28 Gold Small-scale

5 Trombetas/Juruti PA T21MWU,
MWT

1 December 2017
29 July 2017

2138317_2015-09-21
2138217_2015-09-21 Bauxite Industrial

6 Rio Capim PA T22MHB,
MHC 20 July 2017 Kaolinite Industrial/Pipeline

7 Mina Taboca AM T20MRE 3 September 2017 Tin Industrial

8 Ariquemes
region RO T20LMQ,

LMP 18 and 25 July 2017 2034714_2014-07-28
2034814_2015-07-02 Tin Small/Industrial

9 Pontes e
Lacerda MT T20LRJ 19 July 2017 Gold Small/Industrial

10 Amanã PA/AM T21MVQ 19 July 2017 Gold Small

11 Amapá/Serra
do Navio AP T22NCF, NCG 18 November 2016 Manganese/Gold Industrial

12 Barcarena PA T22MGD 20 July 2017 2238325_2015-06-28 Bauxite/Kaolinite Industrial/Port

13 Rio Madeira RO/AM T20LLR, LLQ,
LKQ 18 and 25 July 2017 2034705_2015-06-24 Gold Small-scale

2.2. Classification and Validation of Mining Areas

To address the first objective, the mapping process was conducted in five main steps, three of
which were carried out in the GEE platform and two in ArcGIS (ESRI, Redlands, CA, USA).
In GEE platform:

(a) The first step was to select current (2017) cloud-free images from the Sentinel-2 database
within the study areas (Figure 2a). A selection script was applied based on criteria of date and cloud
percentage (<20%) to identify the 38 Sentinel-2 granules used (see GEE script at https://goo.gl/2S8zSp).
The S2A image database available on GEE and used in this study is in digital number (DN) and not
submitted to atmospheric correction.

https://goo.gl/2S8zSp
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Figure 2. Flowchart with examples of steps taken to address objective 1 (a–e) and objective 2 (f). In GEE
(Google Earth Engine): (a) Images selection; (b) training samples; (c) supervised classification followed
by exportation. In a Geographical Information System—GIS software: (d) vector editing for quality
control, (e) validation of mining areas with RapidEye classification. (f) Identification of mineral type
as well as scale by intersecting validated mining map with mining licenses (National Department for
Mineral Production—DNPM) layer.

(b) The second step was to define the land-cover classes and select training samples [17]. Initially,
four land-use classes were used as reference for the classification process: dense forest, clear-cut
deforestation (usually pastures with regular geometry), water bodies and barren soil (open-pit mining
areas) (Figure 3a). For each study area, at least 10 small-sized polygons (~5 × 5 pixel) were used
as training samples for each class. Although mining areas can include several land-use cover types,
the criteria used in this study was to select only currently active areas, i.e., open-pit mining areas that
present high albedo levels in comparison to other classes (Figure 3b). The forest class includes dark
dense vegetation areas only and for the water class, natural rivers, and lakes, preferentially of low
turbidity, were sampled for training process. Clear-cut contains areas of pasture with regular shape
with little or non-vegetation (Figure 3a). These classes show spectral difference between each other
(Figure 3b). For example, band 4 shows values up to 400 (DN) for water and forest and increased values
for clear-cut (1500) and mining (2900), whereas band 6 shows low values for water (200), intermediate
level for vegetation (1800) and clear-cut (2000) and high values for mining (3100). The spectral
difference among the classes observed allowed proceeding with the classification process.

(c) The third step was to apply a supervised classification available on GEE to the selected
images (Figure 3c). The classification method used for mining detection was the Classification and
Regression Trees (CART), a non-parametric classifier that does not require any a priori statistical
assumptions regarding the distribution of data. Recent research has compared ten machine-learning
image classification methods implemented on GEE, such as CART and Random Forest, to map wetlands
in Indonesia [19], and indicated that CART presented the mapping accuracy (96%) demonstrating that
CART provides reliable outputs for mapping land-use cover. CART is a pixel-based classifier that uses
the DN levels from the training samples (polygons) to create a decision tree that classifies each pixel of
the image (20 m). Based on Figure 3c, the bands 3 (550 nm), 4 (665 nm), 6 (740 nm), 8 (1600 nm) and
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11 (2200 nm) were used by CART to classify S2A imagery into mining, water, forest, and clear-cut areas.
To avoid extensive misclassification with inactive mining areas that includes some vegetation mostly
where small-scale mining occurs, the mining areas considered for this research included only active
mining areas, i.e., barren soil (active exploitation areas) and associated water bodies. Therefore, for the
following steps, only the mining and water classes were taken into consideration by removing forest
and clear-cut classes from the raster classification (Figure 3c). The resulting layer was exported to Tiff
file type into Google Drive. Unfortunately, the export option only provides image exportation up to
1 million pixels, hindering the export of large areas (such as the whole granule extension). This issue is
even more relevant in the case of MSI/S2A imagery (10 m). To overcome this issue, the exportation
step was conducted with a spatial resolution of 20 m and using subsets to areas of mining occurrence
(Region of Interest, ROI).
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Figure 3. Illustration of the classification process for an industrial mining in Itapuã do Oeste/RO:
(a) Sample selection for four classes used (Mining in red, water in blue, forest in green and clear-cut
areas in magenta). (b) Average and standard deviation of Sentinel-2A spectra for 25 pixels of each class,
bands 1 (443 nm), 2 (490 nm) and 10-Cirrus (1375 nm) were omitted due to high atmospheric effects.
(c) Classification result from GEE based on CART (Classification and Regression Trees), only mining
areas in red and water areas in blue are shown: (i) indicates commission areas within mining class;
and (ii) indicates water bodies derived from mining activities and, therefore, integrated into mining
class. (d) Final mining area map after vector edition with indication of Mining License Areas (dashed
rectangles) used for type of ore identification (see Table 2 for details on Mining License).

Table 2. Example of information related to the Exploitation License given by DNPM (National
Department for Mineral Production). Process numbers refer to the areas indicated in Figure 3d.
In this case, two industrial companied have the license to exploit tin in Itapuã do Oeste (RO) with 485
ha each.

Process N. Year Area (ha) Status Last Update Name Ore Usage Federal
Unit Municipality

2965 1965 485 Active 6 February
2018

Indústria e
Comércio S A Tin (Sn) Not

informed RO Itapuã do
Oeste

2967 1965 485 Active 7 February
2018 Ltd.a Tin (Sn) Not

informed RO Itapuã do
Oeste
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In GIS environment: for data quality control (d), the exported Tiff files, from both S2A and
RapidEye classifications, were then collated in a GIS software and submitted to vector editing at
1:25,000 scale to eliminate major miss-classification of mining areas. For example, in Figure 3(ci),
areas that were committed into mining class were manually removed from vector layer, whereas
water bodies that are directly derived from mining operation were re-classified into mining class
(Figure 3(cii)). This procedure is dependent on the user’s interpretation to distinguish mining areas
from those of other uses, which can lead to omission and commission errors (in particular small-scale
mining). To support the user’s visual interpretation, several ancillary data were used to minimize
these errors such as such as roads, water bodies, limits of gold-mining districts, mining sites and
protected areas [7]. This information helped to identify whether barren soil is an open-pit (mining
area) or a clear-cut for other land use, for example. Moreover, the capacity of identifying mining areas
is more precise using high spatial resolution imagery. Thus, for validation purposes, 12 RapidEye
images (5 m) available at geocatalogo.mma.gov.br [20] acquired in 2014/2015 were uploaded to GEE
and submitted to the same classification procedure developed for MSI/Sentinel-2 data (Table 1).
New independent training samples were selected for each class using RapidEye bands 2 (560 nm),
3665 nm), 4 (710 nm) and 5 (805 nm) for CART classification. Although the time gap between S2A 2017)
and RapidEye images may introduce commission errors as mining tends to expand from 2015 and
2017, RapidEye is the only high-resolution imagery freely available which can be used for validation.
Other high-resolution images, such as Ikonos and WorldView, are available but under purchase only,
which would make the mapping very expensive due to the wide extent of the study area.

Therefore, as part of the validation step (e), the results of Sentinel-2 classification (20 m) were
compared to the classification derived from RapidEye imagery (5 m), the latter being the reference
map (Figure 2e). Digital classification of RapidEye images were resampled to 20 m and used as ground
truth for the S2A classification via confusion matrix (Kappa Index). To minimize spatial errors due
to georeferencing, all the maps used for validation were projected to UTM (Universal Transverse
Mercator) SAD-1969 Brazil coordinate system.

2.3. Identification of Mineral Type and Mining Scale

To address the second objective, validated mining maps derived from S2A images were subject
to identification of mineral exploited, mining scale (whether is an industrial or small-scale mining)
followed by tabulation of mining area in km2. To do so, the validated Mining areas map (2017) was
intersected with the territorial mining license layer controlled by Brazilian National Department for
Mineral Production (DNPM) [21], which contains information about the mineral, license status and
the owner (Figure 2f and Table 2). This information along with ancillary data allowed identification of
mineral exploited and scale of mining activities.

3. Results

3.1. Validation of Mining Areas in 2017

In terms of total mining area, even with the time gap of approximately 2 years, both sensors
provided quite similar results when examining individual tiles (Figure 4). In terms of map accuracy,
Figure 4 shows a better agreement in areas of large-scale mining (>0.70) than those of small-scale
mining (<0.70). For example, for Carajás (Figure 4a), characterized by industrial mining activities,
Kappa index was 0.86. However, for Tapajós (Figure 4b), containing extensive small-scale mining,
the index drops to 0.62. It is interesting to note that for industrial regions, mining concentrated in
large areas (presented by few polygons) and in regions dominated by small-scale, a more diffuse
land occupation, usually along the river network, was observed. The overall accuracy is above 98%,
taking into consideration the 12 RapidEye images (see Table 1) with Kappa index of 0.70 (Table 3).

geocatalogo.mma.gov.br
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Table 3. Confusion matrix of 12 RapidEye tiles and their Sentinel (S2A) equivalent area. Only two
classes were considered, mining and not mining areas. Overall accuracy is above 98% and overall
Kappa Index is 0.70.

RapidEye—2014/2015

Not Mining Total

S2A-2017

Not 7138.63 42.46 6637.09

Mining 73.17 165.75 238.91

Total 7218.30 208.20 7426.54
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Commission error was larger (73.17 km2) than omission error (42.46 km2) and the total area
detected by both imagery data was 165.75 km2. The results show that the methodology proposed for
S2A data provided satisfactory results, giving support to the analysis of total mining distribution and
type of mineral exploited.

3.2. Total Mining Area, Type of Mineral and Mining Scale in 2017

As a result of mining areas derived from S2A images previously validated with RapidEye imagery,
a total of 1084.7 km2 were mapped considering the 13 regions analyzed. Table 4 shows the total mining
area per study area including type of mineral exploited.

Table 4. Mining area in km2 mapped with S2A images acquired in 2017 distributed over the study
areas and specified by mineral type. For gold and tin, percentage of small-scale mining is shown
between brackets. Federal Unit (F.U.).

N Study Area F.U. Gold (% SS) Tin (% SS) Baux. Iron Cop. Kaol. Mang. Nickel Sand Clay TOTAL (SS%)

1 Rio Tapajós PA 345.8 (100) 345.8 (100)
2 Carajás PA 24.2 (100) 47.8 55.1 8.9 4.2 0.7 140.9 (17)
3 Rio Xingu PA 92.1 (100) 37.8 (100) 2.6 1.9 134.4 (97)
4 Peixoto de A. MT 116.7 (100) 116.7 (100)
5 Tromb./Juruti PA 78.4 78.4
6 Rio Capim PA 48.5 12.2 60.6
7 Mina Taboca AM 48.8 (0) 48.8 (0)
8 Ariquemes RO 45.8 (50) 45.8 (50)
9 Pontes e L. MT 27.7 (50) 27.7 (50)
10 Amanã AM 27.5 (100) 27.5 (100)
11 Amapá AP 1.7 (0) 22.1 23.8 (0)
12 Barcarena PA 12.0 2.3 4.5 0.6 19.4
13 Rio Madeira RO 1.3 (100) 13.5 (100) 14.8 (100)

TOTAL (km2) 637.0 (97) 146.0 (50) 138.9 69.8 57.7 14.5 8.9 6.1 5.2 0.6 1084.7 (64)

The total area exploited by gold mining totals 637.0 km2, which is equivalent to 58.7% of the
mining area in the Amazon Region. Industrial gold mining takes place in Pontes e Lacerda (13.2 km2)
and Amapá (1.7 km2). However, small-scale gold mining is responsible for 97% of the total area
distributed over Tapajós (345.8), Peixoto de A. (116.7), Xingu (92.1), Amanã (27.5), Pontes e Laderda
(13.5), and Madeira (1.3 km2). Small-scale also comprises 50% of total tin exploitation, mostly in
Rio Xingu (37.8), Ariquemes (22.9), and Rio Madeira (13.5 km2). The remaining 50% of tin mining
areas are related to industrial activities in Taboca (48.8) and Ariquemes (22.8 km2). Overall, small-scale
mining, including both gold and tin, comprises 64% of total mining area detected.

For the other minerals in Table 4, only industrial mining exploits them. Industrial bauxite mining,
for example, takes place in Trombetas (78.4 km2), Rio Capim (48.5 km2) and Barcarena (12.0 km2),
totaling 138.9 km2. Iron mining is present in Carajás (47.8 km2) and Amapá (22.1 km2), at a total
of 69.8 km2. Copper is exploited in Carajás (55.1 km2) and Xingu (2.6 km2). Kaolin is exploited at
Rio Capim (12.2 km2) and sent by pipeline to Barcarena (2.3 km2 of infra-structure). Manganese mining
occurs in Carajás only (8.9 km2). For nickel, mining is found in Carajás (4.2 km2) and Rio Xingu
(1.9 km2). Sand exploitation is found in Barcarena (4.5 km2) and Carajás (0.7 km2), whereas clay
exploitation only occurs in Barcarena (0.6 km2). Figure 5a shows the exploited area per different
mining activities.

According to Figure 5, the majority (74%) of the mining areas identified in this study, mostly
small-scale gold mining, is within the State of Pará boundaries. In this state, bauxite is the second most
exploited mineral, followed by copper, iron, tin and others. For Mato Grosso state, only gold mining
was identified, which has 9% out of 144.5 km2 as industrial mining. The remaining area is composed
of small-scale gold mining. In Rondônia and Amazonas states, tin mining is predominant. However,
in Rondônia, tin is exploited equally by small-scale (50%) and industrial mining (50%), whereas in
Amazonas only one industrial mining site (Mina Taboca) was identified. In Amapá, a large-scale
exploitation of iron comprises most of the mining areas (93%).
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4. Discussion

4.1. Method for Mapping Mining Areas and Constrains

Considering that the only mining area estimation for the Brazilian Amazon currently available
is based on visual interpretation (TC2014), the first contribution of this research was to develop a
cost-effective method, in terms of time and resources, to map mining areas in the Brazilian Amazon
with satisfactory performance. Created in GEE environment, the mapping process allows quick
access and selection of S2A images, which usually would take hours for selecting and downloading
S2A images from the usgs.gov database for example, can be now done in minutes [22]. In addition,
the classification step is much faster than on stand-alone image processing. For example, in the cloud
(GEE) a supervised classification takes a few seconds, whereas in GIS software it usually takes several
minutes or hours, depending on the computer configuration. Finally, employing the GEE for the
classification suffers from the limitation of restricting the size of exports and thus, preventing the
exportation of large areas in 10 m resolution.

On the other hand, the use of CART to classify mining areas presented some issues. Because
CART is a pixel-based algorithm, some mining areas where not fully classified, leaving isolated pixels
within a mining area, for example. One way to minimize it was to apply a low-pass filter in GIS
environment. Another issue regards commission errors. Even though a careful selection of training
samples were conducted for four main classes, i.e., mining (open-pits), water (natural water bodies),
forest (dense dark vegetation) and clear-cut (pasture with regular shape), commission errors were

usgs.gov
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often identified, mostly commissions of barren soil of other land-cover uses, such as pasture (Figure 3c).
Given the high spectral variability of mining areas (barren soil, water, recovery areas, etc.) [7], a refined
evaluation of what areas/polygons were or were not mining areas was necessary based on ancillary
information to improve the map precision. The use of ancillary data such as mining sites, mining
license, information about other land-cover uses (such as aquaculture, cattle regions, agriculture) as
well as literature review was fundamental to identify the main mining areas, and is encouraged to be
used on research for mining area detection. Therefore, a fully automatic method that detects mining
areas with high precision is yet to be developed. Overall, the method presented here shows a progress
toward a quick and accurate method for mining detection in large scale, such as the Brazilian Amazon.

4.2. Validation of Mining Areas with RapidEye Imagery

Besides being a quick method for mapping mining areas, the accuracy between mining maps
derived from S2A in comparison to those from RapidEye confirms that the proposed method provides
satisfactory results. As shown in Figure 4, the accuracy is higher among large-scale areas than for
small-scale mining. The difference in Kappa index occurs because of two reasons: (1) the more
concentrated mining areas in industrial mining allows easier detection in comparison to small-scale
where a diffuse distribution of small polygons is observed; (2) Also, on small-scale, the LUCC is more
dynamic, expanding or recovering quicker than industrial activities. Therefore, in the case of a 2-year
gap, the commission error is more likely to occur.

The mining detection improvement using the proposed methods is more evident when
we compared the currently available mining areas (TC2014 database) to RapidEye classification
(2014/2015) used as ground truth (Figure 6).
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Figure 6. Comparison of mining areas between current available data (TerraClass 2014), map from
RapidEye (taken as ground truth and limited to validation tiles, 25 × 25 km) and Sentinel-2A (mining
maps for all study areas). In Carajás region (a), accuracy measured by Kappa index shows an
improvement from 0.16 (TC2014) to 0.86 (S2A), due to a large omission error in TC2014. For small-scale
mining in Tapajós (b), Kappa increased from 0.32 to 0.62. S2A classification were able to detect small
polygons, whereas TC2014, due to a coarser classification, lacks detail.

For industrial mining in Carajás, for example, TC2014 detected only 4.81 km2, resulting in a weak
agreement with RapidEye classification (Kappa = 0.16), whereas S2A classification showed a Kappa
index of 0.86. In the case of small-scale in Tapajós, the total area among all classifications were similar
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but the TC22014 classification lacks in detecting very small polygons (Figure 6). The lack of details in
TC2014 maps can be attributed to (1) misclassification during visual interpretation and (2) to a lower
spatial resolution (30 m) of Landsat images used for TC2014 maps, as compared to RapidEye (5 m)
and Sentinel-2 (20 m) used in this study.

4.3. Total Area, Type of Mineral and Scale

The second main contribution of this research is the identification of scale and mineral type for
each mining area mapped. According to Table 4, some minerals such as iron, manganese, copper,
and nickel are exploited by industrial mining only, even though it comprises approximately a third
of the total mining area mapped in this research. Industrial mining in the Brazilian Amazon is
responsible for approximately 14% of total national annual exportation [1]. For some minerals such as
bauxite, copper, kaolin, manganese and tin, Amazonian production totals 90% of national production.
To illustrate its economic importance, the Financial Compensation for Mining Exploitation [1] indicates
that incomes from Amazonian mining exportation yielded, approximately, US$ 531 million in 2016,
of which 96% are related to the state of Pará, mostly from iron, bauxite and copper exploitation,
which corresponds to 90% of total exportation in Pará.

While industrial mining has a significant financial importance and usually follows legal
procedures for mining exploitation and the commitment of recovering degraded areas, several
socio-environment impacts have recently been reported. For example, water contamination by bauxite
exploitation in Barcarena [3], and by nickel exploitation in the Cateté river nearby Xikrin Indigenous
Land [4].

Table 4 also shows that mining areas in the Brazilian Amazon is mostly occupied by small-scale
gold mining, in particular Tapajós, Xingu/Fresco and Peixoto de Azevedo (MT). Including tin mining,
small-scale comprises up to 64% of total mining area detected in this study. According to Enriquez [18],
approximately 150,000 people are directly involved in small-scale mining in the Brazilian Amazon.
This activity creates a large amount of income (~US$ 10 million per month for the regional economy [2])
which is rarely subject to taxes or control because most of the area is informally or illegally installed.

The large extension of small-scale mining raises a concern regarding its socio-environment impacts
for the Amazonian ecosystems and for local people, since it usually does not follow environmental
protocols to recover degraded areas. In fact, recent studies have demonstrated the impact of small-scale
gold mining in the Tapajós River and its tributaries (Crepori, Novo and Tocantinzinho rivers) where
intense water siltation occurs [12,16,17]. The impacts also include geomorphological changes in the
riverbed and landscapes, causing severe impacts on benthic [23] and fish communities [24–27], not to
mention the mercury contamination used in the gold amalgamation process [24,28–30] which is usually
illegally imported [31].

5. Conclusions

This research presents a quick and efficient classification method developed in GEE to map
mining areas in the Brazilian Amazon. The methods rely on quick access to S2A database, supervised
classification of mining and other land-cover uses, exportation to GIS software, followed by vector
editing to assure the product’s quality control. Besides reducing image processing time, the methods
provided accurate maps when compared to classifications derived from high-resolution RapidEye
imagery (overall Kappa equals 0.70).

The main novelty of this research is the identification of scale and mineral type for each mining
area mapped. Based on this identification, we concluded that small-scale mining (gold and tin)
comprises up to 64% of total mining area detected in this study, which raises a concern regarding
its socio-environment impacts for the Amazonian ecosystems and for local people, since it usually
does not follow environmental protocols to recover degraded areas. The remaining 36% of mining
areas in the Brazilian Amazon is comprised of industrial mining, which is responsible for most
iron, manganese, copper, and nickel production. While industrial mining has a significant financial
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importance and usually follows legal procedures for mining exploitation and the commitment of
recovering degraded areas, several socio-environment impacts have recently been reported and are
raising a concern regarding its socio-environment impacts.

Given the satisfactory results, the methods presented here will be applied to map deforestation
far beyond operational mining boundaries. Furthermore, we will carry out a historical mapping from
satellite images, such as Landsat, to support further investigation of water quality and on LUCC in
areas under the influence of both industrial and small-scale mining in the Brazilian Amazon.
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