
XMITS: Software Inspections via Formal Verification

Luciana Brasil R. Santos1, Camila P. Sales1, Valdivino A. de Santiago Júnior2

1Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP)
Câmpus Caraguatatuba – Caraguatatuba – SP – Brazil

2Laboratório Associado de Computação e Matemática Aplicada (LABAC)
Instituto Nacional de Pesquisas Espaciais (INPE)

São José dos Campos – SP – Brazil

lurebelo@ifsp.edu.br,camilapsales27@gmail.com,valdivino.santiago@inpe.br

Abstract. In this paper, we present version 3.1 of XMITS, a tool developed to
support Model Checking-aided inspections improving the design of software.
XMITS enables the translation of UML behavioral diagrams representation to
Transition Systems and then to the input language of NuSMV model checker. Our
tool was applied to real case studies (embedded software) in the space domain.
The main objective is to allow the use of Formal Methods (Model Checking, in
this case) establishing a solution that can be used in practice.
Tool video demonstration: https://youtu.be/dJ0tbJoO3Sg

1. Introduction

In the context of Software Engineering, Verification and Validation (V&V) discipline
is one of the pillars to ensure that software products are of high quality, and this dis-
cipline is particularly important if critical systems are considered. V&V activities are
usually time-consuming, specially if critical/complex systems are considered. Tech-
niques are developed to reduce and ease the V&V efforts while increasing their coverage.
V&V encompasses a large range of activities and techniques, of which one can men-
tion testing [Ammann and Offutt 2016], inspection [IEEE 1990], and Formal Verification
[Clarke et al. 1999]. Model Checking is the most popular Formal Verification method
and can be defined as an automated technique that, given a finite-state model of a system
and a formal property, systematically checks whether this property holds for that model
[Baier and Katoen 2008]. This verification is performed using a model checker.

Considering that, we developed a methodology, which we call SOLIMVA 3.0
[dos Santos et al. 2014], aiming at detecting defects within the design of the software
product. Our methodology works with three different UML (Unified Modeling Lan-
guage) [OMG 2015] behavioral diagrams (sequence, behavioral state machine, and ac-
tivity), translating them into a single Transition System (TS) to support Model Checking
of software developed in accordance with UML.

The Formal Verification process is as follows: the analyst collects requirements
from software specifications. Such requirements are generally expressed within UML
use case models or simply in Natural Language. SOLIMVA 3.0 suggests using Specifi-
cation Patterns [Dwyer et al. 1999] to direct the formalization of properties. The UML
behavioral diagrams should reflect these requirements. So, these diagrams (sequence,
behavioral state machine, and activity) are translated into a TS, and then to the notation

55

of the NuSMV model checker [Kessler 2015] by means of a tool developed to support
SOLIMVA 3.0: XML Metadata Interchange to Transition System (XMITS). Hence, the
properties are verified and it is possible to determine if there are defects with the design
of the software product.

XMITS has been continuously developed. In this article, we introduce version
3.1 of this tool where the main differences from previous versions is related to the coun-
terexample, which is detailed in the next section. The counterexample was a limitation
in previous versions. This paper is structured as follows. Section 2 shows the main func-
tionality of XMITS, as well as its architecture. Section 3 presents an example of using the
tool. Section 4 discusses related tools versus XMITS. Conclusion are in Section 5.

2. XMITS: Main Functionalities and Architecture
XMITS is essential to the application of SOLIMVA 3.0. It facilitates the process of apply-
ing Formal Verification during the software development, so that it becomes transparent
to the user. Due to the modular nature proposed for the system, the tool is extensible: if
one wants to add another UML diagram to the approach, this can be easily implemented in
XMITS. Java [Oracle 2011] is the chosen language, as the object-oriented programming
paradigm is used.

Figure 1 presents the the architecture of XMITS. The tool interoperates with two
other tools: Modelio 3.2 [Modeliosoft 2011], which is the software used to produce the
UML artifacts; and the NuSMV model checker, which performs the Formal Verification.
XMITS consists of six modules: the Reader, that receive the diagrams in XMI format
and transforms them to a list of tags; the Converter, that transforms the list of tags to a
single TS; the TUTS (The Unified Transition System), that transforms the single TSs to
the unified TS; the Bridge module, that transforms the unified TS to the model checker
notation; the Global module, which saves the Transition System output as a txt file; and
the Interface module, which is responsible for saving the TS in graphical format and
implements the user interface.

Figure 1. Architecture of XMITS

XMITS has undergone constant updates. The first version encompassed only mod-
ules Reader, Converter, and Global. At that time, the translation of the diagrams was per-

56

formed individually and only a txt file was generated. Then, the second version had, in
addition to the previous ones, the modules TUTS and Bridge. Here it was possible to con-
vert the diagrams to a unified Transition System (joining all diagrams) and generate the
smv file, the input language of the NuSMV model checker. So, the third version brought
the Interface module, where the user no longer needed programming knowledge to use
XMITS, an interface was developed. Besides, the final TS could be observed in a graph
format, which has substantially improved the validation of the TS model generated.

This work presents version 3.1 of XMITS. The improvement addressed this time
refers to the counterexample generated by the model checker, when finding an incon-
sistency. The model checker shows the state where the requirement (property) was not
satisfied within the TS. However, it is necessary to automatically specify the UML dia-
gram(s) where this inconsistency was found and, more than that, the exact point in this
diagram(s) where the property was not satisfied. The automated translation of the model
checker counterexample back to the UML diagrams is important to identify in which di-
agram, or diagrams, the detected problem is related. To achieve this goal, three classes
were created, as can be seen in Figure 2-A. The interface screen had a minor change: a
field to insert the TS state (where the property was not satisfied). Once the user fills this
field, the tool points to the original diagram where the problem occurred, showing the
state, as well as the position of this state in the diagram. Figure 2-B shows the new field
created (highlighted in red).

Figure 2-A) XMITS 3.1 classes Figure 2-B) XMITS 3.1 graphical interface

Figure 2. XMITS 3.1: New classes for identifying the counterexample back to the
UML diagrams (A) and graphical interface (B)

3. XMITS in Action: Usage Example
In order to illustrate the use of XMITS, we present the main steps that must be performed
by the user. In accordance with SOLIMVA 3.0 methodology, it is necessary to identify
a scenario and then select the requirements to be analyzed. Suppose we want to analyze
the ATM (Automated Teller Machine) classical example and we choose the following

57

requirement to check: whenever the specified amount exceeds the level of available funds,
it should be possible for the user to request a new cash advance operation if the user
wishes to correct the amount. The ATM Specification shows three behavioral diagrams
which are related to this requirement: sequence, activity, and a state machine. Once
the diagrams are identified, they must be rewritten using Modelio, so that they can be
exported to XMI format, the input of XMITS. Thus, XMITS translates the diagrams into
a unified TS and then to a smv file. Figure 3 depicts three screens illustrating some steps
of this process: A) Modelio - a file being exported to XMI format; B) XMITS 3.1 - UML
diagrams of ATM being translated; and C) Results when running XMITS 3.1. In this case,
three files are generated (in the order they appear on the screen): a pdf file showing the
TS in graphical mode; an smv file, which is the input to NuSMV; and a txt file showing
the TS in text mode.

Figure 3. Screens depicting few steps of SOLIMVA methodology

It is necessary to formalize the property (requirement) to proceed with Model
Checking. The property can be formalized using the patterns and scopes proposed by
Dwyer [Dwyer et al. 1999]. 1 Once having a formalized property and a model (smv file),
it is possible to apply Model Checking. After applying Model Checking, a counterexam-
ple is generated, indicating that this property is not satisfied. The state where the property
is not satisfied is $ $$minus$$coma$ 16$dots$insufffunds$coma$ showbalance$ $
because it is not possible, from this state, to reach a state where the customer can re-
quest a new cash advance operation. When feeding the error field (highlighted in red in
Figure 2-B) with this state, the tool returns the response shown in Figure 4, pointing out
the diagram and state in this diagram where the problem occurred, as well as its position
within the diagram (highlighted in red in Figure 4). This means that at this point, the
diagram does not reflect the requirement.

1Santos et al. present a complete explanation of the property formalization [Santos 2015].

58

Figure 4. The counterexample showed in the UML diagrams

4. Other tools
Coskun et al. present AutoInspect, a tool for semi-automated inspection of design docu-
ments [Coskun et al. 2016]. As outputs, a list of defects found during inspection, and a
design verification report (in PDF format) are created. Taba and Ow developed a web-
based tool, ArSeC, to support their proposed model [Taba and Ow 2016]. It is designed to
detect and remove the defects in the first two phases of software development. The result
alerts the inspectors about the possible defects and shows the possible causes. Dautovic
et al. presented checks software development documents against implemented document
quality rules [Dautovic et al. 2011]. The approach suggested by Li and Liu designed
methods of deriving functional scenarios and generating inspection tasks by applying con-
sistency properties to each scenario [Li and Liu 2014]. They implemented these specific
methods in a support tool.

Some of the tools discussed so far are not available, so the usability aspects cannot
be compared. What we could consider is that the approaches, as well as the tools, support
particular techniques/methodologies, normally to deal with issues on specific contexts.
We are proposing a more broad way to perform requirements checking, which can be
applied in different contexts. Our approach allows that an informal language (UML),
still quite popular, can continue to be used for creating the design of software systems.
XMITS can be applied to any software product that uses UML as the modeling specifica-
tion language.

5. Conclusion
This paper presented version 3.1 of XMITS, a tool developed to support the translation
of UML behavioral diagrams representation to the input language of the NuSMV model
checker. The main motivation is to build a solution which can be used in practice. XMITS
was applied to two real embedded software in the space domain. Defects were detected
within the design of these software systems showing the feasibility of the proposed ap-
proach.

This version implements the functionality to catch the feedback from NuSMV

59

and show to the user the model checker counterexample back to the UML diagrams,
which was a limitation in older versions of XMITS. Future directions of this research
include directives to improve the automation of property formalization. We consider this a
very important issue to be addressed, in order to SOLIMVA methodology can be adopted
as part of the software development process. The tool, as well as the user manual, are
available at https://github.com/abacoresearchgroup/xmits.

References
Ammann, P. and Offutt, J. (2016). Introduction to software testing. Cambridge University

Press.

Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT Press.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

Coskun, M. E., Ceylan, M. M., Yigit¨ozu, K., and Garousi, V. (2016). A tool for au-
tomated inspection of software design documents and its empirical evaluation in an
aviation industry setting. In Ninth Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages 287–294.

Dautovic, A., Plösch, R., and Saft, M. (2011). Automated quality defect detection in
software development documents. In First Proceedings of the International Workshop
on Model-Driven Software Migration (MDSM 2011), page 29.

dos Santos, L. B. R., de Santiago Júnior, V. A., and Vijaykumar, N. L. (2014). Trans-
formation of uml behavioral diagrams to support software model checking. Electronic
Proceedings in Theoretical Computer Science, 147:133–142.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999). Patterns in property specifications
for finite-state verification. In 21st Proceedings of the International Conference on
Software Engineering, pages 411–420.

IEEE (1990). Institute of electric and electronic engineers. Standard glossary of software
engineering terminology, Standard 610.12.

Kessler, F. B. (2015). Nusmv home page. http://nusmv.fbk.eu/.

Li, M. and Liu, S. (2014). Tool support for rigorous formal specification inspection. In
17th Proceedings of the IEEE International Conference on Computational Science and
Engineering (CSE), pages 729–734.

Modeliosoft (2011). Modelio open source community. https://www.modelio.org.

OMG (2015). Unified modeling language (omg uml). http://www.uml.org/.

Oracle (2011). Javadoc tool home page. http://www.oracle.com/technetwork/java/javase/.

Santos, L. B. R. (2015). A Methodology to apply formal verification to UML-based soft-
ware. PhD thesis, Instituto Nacional de Pesquisas Espaciais (INPE).

Taba, N. and Ow, S. (2016). A new model for software inspection at the requirements
analysis and design phases of software development. The International Arab Journal
of Information Technology (IAJIT), 13(6):51–57.

60

