
Testing Environmental Models supported by Machine Learning
Valdivino Alexandre de

Santiago Júnior
Instituto Nacional de Pesquisas

Espaciais (INPE)
São José dos Campos, SP, Brazil
valdivino.santiago@inpe.br

Leoni Augusto Romain da Silva
Instituto Nacional de Pesquisas

Espaciais (INPE)
São José dos Campos, SP, Brazil
augustoromain@gmail.com

Pedro Ribeiro de Andrade Neto
Instituto Nacional de Pesquisas

Espaciais (INPE)
São José dos Campos, SP, Brazil

pedro.andrade@inpe.br

ABSTRACT
In this paper we present a new methodology, DaOBML, to test
environmental models whose outputs are complex artifacts such
as images (maps) or plots. Our approach suggests several test data
generation techniques (Combinatorial Interaction Testing, Model-
Based Testing, Random Testing) and digital image processing meth-
ods to drive the creation of Knowledge Bases (KBs). Considering
such KBs and Machine Learning (ML) algorithms, a test oracle as-
signs the verdicts of new test data. Our methodology is supported
by a tool and we applied it to models developed via the TerraME
product. A controlled experiment was carried out and we conclude
that Random Testing is the most feasible test data generation ap-
proach for developing the KBs, Artificial Neural Networks present
the best performance out of six ML algorithms, and the larger the
KB, in terms of size, the better.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Software and its engineering → Software testing and de-
bugging; Empirical software validation; • Applied computing→
Environmental sciences;

KEYWORDS
Combinatorial Interaction Testing, Model-Based Testing, Random
Testing, Machine Learning, Environmental Modeling, Empirical
Software Engineering, Digital Image Processing

ACM Reference Format:
Valdivino Alexandre de Santiago Júnior, Leoni Augusto Romain da Silva,
and Pedro Ribeiro de Andrade Neto. 2018. Testing Environmental Models
supported by Machine Learning. In III Brazilian Symposium on Systematic
and Automated Software Testing (SAST ’18), September 17–21, 2018, SAO
CARLOS, Brazil. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3266003.3266004

1 INTRODUCTION
Environmental modeling is an important activity where models
mean coupled nature-society systems in different ways [6]. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6555-0/18/09. . . $15.00
https://doi.org/10.1145/3266003.3266004

motivation for the creation of such models is to understand how
human actions impact on natural systems, and they hence support
planners and policy makers to propose recommendations for a
sustainable development.

In order to develop a software product to support the modeling
of nature-society interactions, several steps should be followed such
as conception, structuring, calibration, and validation. Such tools
usually provide a real-time visualization interface of simulation of
complex outputs (e.g. images (maps) or plots). This is the case of
TerraME, a product to implement environmental models1 [6, 12].

The real-time views provided by tools such as TerraME certainly
help an expert to determine if there are problems (defects) within
the environmental models that created such outputs. However,
more complex environmental models may make the expert’s man-
ual task to identify if a certain model is defective rather difficult.
Thus, Software Engineering, and particularly the software testing
process, can contribute a lot towards asserting that an environmen-
tal model has defects. And one path to do this is the automation of
software testing [9] by analyzing the complex outputs generated by
environmental models. It is a hard task to perform test automation,
specifically related to the oracle activity, when the evaluated output
takes a complex form such as an image [9, 17] but it is a valuable
direction to help creating better nature-society interaction models.

Based on this motivation, in this paper we present a newmethod-
ology, called TestData Generation andOracle via Knowledge Base
and Machine Learning (DaOBML), to generate test data and to
perform the oracle task for environmental models whose outputs
are complex artifacts such as images (maps) or plots. Our approach
suggests several test data generation techniques (Combinatorial In-
teraction Testing (CIT) [3, 4, 22], Model-Based Testing (MBT) [2, 25],
Random Testing (RT) [7]) and digital image processing methods
to drive the creation of Knowledge Bases. Considering such bases
and Machine Learning (ML) algorithms, a test oracle assigns the
verdicts of new test input data. Our test oracle proposes six ML
algorithms, Artificial Neural Network (ANN), Decision Trees (DT),
Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), Ran-
dom Forests (RF), and Naive Bayes (NB) [23], to decide about the
verdicts of new test data submitted to the environmental models2.
Our methodology is supported by a tool, also called DaOBML, and

1A model is more within the conceptual level while its implementation (source code)
can be seen as one way to concretize it. However, in this work, the term "environmental
model" refers to the source code of a certain programming language which implements
a model developed to study a phenomenon.
2Even though Random Forests (RF) also operate by constructing decision trees, we
have made a distinction here between traditional solutions, such as the C4.5 algorithm,
and RF. In this case, the traditional solutions we call Decision Trees (DT) to differentiate
from RF.

https://doi.org/10.1145/3266003.3266004
https://doi.org/10.1145/3266003.3266004
https://doi.org/10.1145/3266003.3266004

SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil V. A. Santiago Júnior et al.

we applied it to models developed via the TerraME product. A con-
trolled experiment was carried out to realize about the suitability of
the Knowledge Bases created by each test data generation approach
to support the test oracle, about the performance of the six ML
algorithms, and whether the size of the Knowledge Base influences
the performance of the test oracle.

This paper is organized as follows. Section 2 shows an overview
of environmental modeling. Our methodology, DaOBML, is in Sec-
tion 3. Section 4 describes the controlled experiment we conducted.
Results and analysis of the empirical evaluation are in Section 5.
Section 6 presents relevant related studies, and in Section 7 we
present our conclusions and future directions of this research.

2 ENVIRONMENTAL MODELING
Environmental modeling uses mathematical and computational
models to represent and investigate the environment. In this paper,
we focus on computational models. There are different world views,
also called paradigms, to guide the development of environmental
models. Given a paradigm, the system under study can then be
represented according to the definitions available for that paradigm.
The modeler needs to take into account the advantages and the
limitations of the available paradigms in order to choose one that
best addresses the problem under study.

TerraME is a toolkit to implement models [6, 12]. It is an open-
source tool distributed under the GNU LGPL license. In TerraME,
models can be implemented using three modeling paradigms: Sys-
tems Dynamics (SD), Cellular Automata (CA), and Agent-Based
Modeling (ABM). It provides concepts that work as building blocks
for model development, allowing the user to specify the spatial,
temporal, and behavioral parts of a model.

TerraME uses the Lua language [14] for its programming inter-
face. The modeler can use a clear and expressive language that calls
demanding operations in C++, hidden from him. This provides a
good trade-off between computational efficiency, coding velocity,
and readability. Figure 1 shows the output (a map) of a deforestation
model for the Brazilian Amazonia implemented in TerraME.

Figure 1: Map of a deforestation model for the Brazilian
Amazonia implemented in TerraME

Areas in red in Figure 1 mean a further intensification of defor-
estation. Thus, one of the main outputs that TerraME generates
is a map which is a sort of image, and this is the type of output
addressed in this work.

3 THE DAOBML METHODOLOGY
The DaOBMLmethodology is a black box testing strategy particular
suited to system, acceptance, and regression testing levels. Figure 2
presents our methodology. The main idea behind DaOBML is that
if an environmental model (source code) has defects, the outputs
(usually some sort of image) produced by this model are generally
incorrect and we may infer, based on such incorrect outputs, that
there are flaws in the source code.

TID/KB

Test Data Generation

CIT

MBT

RT

OP: Sti +
ML

(ANN, DT,
SVM, K-NN,

RF, NB)

Test Oracle

KB

New TID

Verdict:
Pass/Fail

Ad hoc

OIG: Sti EMk Imk

EMn Imn

DIP
AR

Figure 2: The DaOBML methodology. Caption: TID = Test
Input Data; KB = Knowledge Base; OIG = Oracle Informa-
tion Generator; OP = Oracle Procedure; Sti = Stimulation;
EM(k/n) = Environmental Models; Im(k/n) = Images; AR =
Actual Results; DIP = Digital Image Processing

We will explain our methodology considering two flows, upper
and lower, where the upper flow needs to be carried out before
the lower one. In the upper flow, the first step is the test input
data generation. We rely on three distinct testing techniques: CIT,
MBT, and RT. These techniques can be used in isolation or they can
combined. But note that here the idea of applying these test data
generation techniques is related to the creation of an appropriate
Knowledge Base so that the oracle can assign a coherent verdict
(see TID/KB in Figure 2). Thus, at first, test data generation helps
the test results evaluation (oracle problem) activity of the testing
process.

The context of this situation is where we have a set of environ-
mental models that are sufficient trusted to generate the expected
results. In DaOBML, the Knowledge Base (KB in Figure 2) can be
indeed considered as the equivalent of the expected results. Such
trusted models can be denoted as “gold standard" models. Hence, we
need to test new versions of such models with more features or even
other different environmental models but which have relatively
similar characteristics of the ones which created the Knowledge
Base. We assume that we have not enough images (maps) in the
Knowledge Base or we have no base at all. Note that this situation
of insufficient or even not existence of a set of appropriate images
is very likely to occur when we are dealing with new research
environmental projects or even with software developed for new
medical equipments.

Testing Environmental Models supported by Machine Learning SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil

Thus, the reasoning is to drive the creation, via a systematic
procedure (test generation strategy), of a Knowledge Base to sup-
port the test oracle operation. Moreover, the idea of three distinct
testing techniques is to perceive that eventually for certain types
of environmental models, for instance, a CIT-based approach can
generate a more suitable Knowledge Base compared with MBT and
RT-based ones.

Once the test input data are created, the Oracle Information
Generator (OIG) component of the test oracle then stimulates (Sti) a
set of Environmental Models (EMk) with these test data in order to,
at the end, generate the expected results (Knowledge Base). In the
case of environmental modeling software, the outputs are in many
cases graphical outcomes or images (Imk) such as two-dimensional
maps and plots. However, such images need to be processed so that
their attributes can be gathered and hence helping the test oracle
to assign the correct verdicts via ML approaches.

Note that the outputs of the Digital Image Processing (DIP)
method are a set of transformed images. But, note that each entry
of the Knowledge Base can be a transformed image itself but it can
also be only the features extracted from the transformed image [9].
In the latter case, the Knowledge Base demands less storage space.
Hence, when we mention an “entry" (i.e. a record) of the Knowl-
edge Base, this means an output of the environmental modeling
tool (image, map) which can be represented as an image itself or
only as its features.

In the lower flow, new test input data (New TID) need to be
submitted to the environmental models. Note that DaOBML does
not suggest any particular test data generation technique for these
new test input data: the professional may use an ad hoc strategy
or even to rely on one of the techniques (CIT, MBT, RT) that were
used to generate test input data to support the development of the
Knowledge Base. The dashed arrows in Figure 2 mean this set of
possibilities a test designer may have at his/her hand.

The Oracle Procedure (OP) of the oracle then stimulates the Envi-
ronmental Models (EMn) with these new test input data in order to
produce another set of images (Imn) which are also processed by the
DIP method to obtain the Actual Results (AR). The same remark we
have just made about the Knowledge Base, where each record can
be an image or only its features, applies. The environmental models
considered here (EMn) are usually different from the ones used
in the upper flow (EMk). However there are circumstances where
it makes sense that EMn = EMk, when we want to evaluate the
capability of the methodology, particularly related to the strengths
of the ML algorithms, to return the correct class (environmental
model), since the new test input data are completely different from
those that were used to generate the Knowledge Base.

With these two artifacts, KB and AR, the OP component uses
one out of six ML algorithms, as shown in Figure 2 (ANN, DT, SVM,
K-NN, RF, NB), to decide about the verdict of the new test data.
We selected such algorithms given their wide acceptance in the
academic community as classifiers. The verdict (Pass/Fail) is given
by the OP component via a particular ML approach which checks
if a given transformed image (e.g. a map), in , derived via new test
input data matches some image, ik , within the Knowledge Base.
An environmental model passes a test if such a match is found, i.e.
in ∼ ik . Otherwise, we say that the test fails and the environmental
model is defective. Naturally, this “matching" does not mean a

complete equality between the two images, in and ik , since we are
exploring the ability of the classifiers (ML algorithms) to predict
the correct class due to new test input data as it has been done for
so long within data mining/pattern recognition applications.

3.1 Implementation
We have implemented a tool, also called DaOBML, to partially sup-
port our methodology. The tool automatically executes the set of
test input data suggested by a particular technique (CIT, MBT, RT)
for driving the generation of the images (maps) that will compose
the Knowledge Base. Our tool implements some steps of the digi-
tal image processing such as the conversion of color images into
grayscale, and the use of the Sobel operator as edge detector. For the
conversion into grayscale, we transform a color image (map) into
an image with 16 shades of gray (4-bit grayscale). Note that even
though 4-bit grayscale is considered an old color depth system, it is
still adequate for the type of image produced by the environmental
modeling software we selected (TerraME).

The Sobel operator is a gradient-based edge detection method
which encounters edges using a horizontal mask and a vertical mask.
Considering that convolution is the process of multiplying each
intensity value of an image with its local neighbors, weighted by the
mask, in the Sobel operator an image is scanned from left to right
and top to bottom of the image using the horizontal and vertical
masks, separately [19]. In the current version of the DaOBML tool,
all images that are input to the OP component of the test oracle,
the ones within KB and AR, have their edges detected. To help in
the digital image processing steps, we have taken into account the
JavaCV library [24].

Regarding the six ML algorithms suggested by our methodology,
we have embedded the Weka data mining software [31] within our
tool so that the user does not need to call it separately in order to
know the verdict of the new test data. Moreover, note that each map
produced by TerraME has only its features, after digitally processed,
stored into the Knowledge Base in the main input format of the
Weka software (arff). The images (maps) are created and after
processed (edges detected) they are discarded. The bottom of line
is that, in the current implementation of DaOBML, a Knowledge
Base is indeed a single arff file where we concatenate all the
partial contributions of the test input data suggested by the testing
generation techniques. This single arff file is automatically created
by our tool.

4 EMPIRICAL EVALUATION
In this section, we present the description of an empirical evaluation
to assess several points of our methodology. In fact, this empirical
evaluation is classified as a controlled experiment [32].

4.1 Objective and Definitions
The objective of this assessment is to evaluate several aspects re-
lated to DaOBML. First, we want to realize how suitable are the
Knowledge Bases created by the test data generation approaches
so that the test oracle can assign True Positive verdicts. For CIT,
we selected the T-Tuple Reallocation (TTR) greedy algorithm [3, 4]
and the Advanced Combinatorial Testing System (ACTS) tool [5]
configured with the In-Parameter-Order General (IPOG) greedy

SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil V. A. Santiago Júnior et al.

algorithm. For MBT, we relied on the Hierarchy-based translation
from Statecharts into Model Checking and Specification Patterns
Properties for Testing (HiMoST) [25] method which generates soft-
ware test cases via Model Checking. But, in this case, we started
right from the model of the NuSMV Model Checker and not from
the Statechart model. We considered pure RT and not its adaptive
variation.

Other issue is the performance of the ML algorithms, i.e. which
out of the six solutions (ANN, DT, K-NN, NB, RF, and SVM) presents
more correct verdicts. This is a very important goal of this evalua-
tion since providing recommendations of approaches to practition-
ers is quite advisable.

Any strategy supported by a Knowledge Base is naturally influ-
enced by such base. Hence, we wonder if the size of the Knowledge
Base influences the performance of the test oracle. We created two
types of bases: one smaller and one larger. For each type of base, we
combined this possibility with the test data generation techniques
resulting in 9 different Knowledge Bases as shown in Table 1. Note
that the MBT technique created a single smaller base while ALLT
means that the base was created by combining the maps of all the
previous approaches: CIT/TTR + CIT/ACTS + MBT + RT. In this
case, the single MBT base was considered for creating both the
ALLT smaller and ALLT larger bases. We checked for duplicates
of maps when combining the bases to form the ALLT Knowledge
Bases. The size of the smaller base is around 25 entries and the larger
one is around 250 entries. These numbers are not equal for all the
approaches because of the characteristics of the test generation
techniques and the environmental models we selected.

Table 1: Knowledge Bases. Caption: TDG = Test Data Gener-
ation

TDG Smaller Larger
ALLT ✓ ✓

CIT/TTR ✓ ✓

CIT/ACTS ✓ ✓

MBT ✓

RT ✓ ✓

Regarding the metrics to assess the accuracy of our strategy, we
considered the True Positives, i.e. the correctly classified instances.
Our set of samples is composed of the following models (programs)
of the TerraME 2.0-RC5 product:

(1) 13 models of the CA package: Anneal, Banded Vegetation,
Fire, Growth, Life, Oscillator, Parasit, Snow, Parity,
Interspecific Competition, Excitable, Wolfram, and
Solid Diffusion;

(2) 9 models of the ABM package: Growing Society, Heat
Bugs, Labyrinth, Life Cycle, Overpopulation, Single
Agent, Sugarscape, Schelling, and Predator Prey.

As a matter of example, Figure 3 shows one output (map) of the
Interspecific Competition model of the CA package stored in
the RT smaller base. This model shows how species juxtaposition
in space can lead to different population dynamics among com-
petitor species [29]. This map is the final result of the simulation
where we can see the competitive interaction of five grass species:

Agrostis stolonifera (orange cells), Holcus lanatus (dark green cells),
Cynosurus cristatus (dark blue cells), Poa trivialis (light blue cells),
and Lolium perenne (dark red cells).

Figure 3: One outputmap of the Interspecific Competition
environmental model stored in the RT smaller base

4.2 Research Questions and Variables
We defined the following Research Questions (RQs) to answer:

(1) RQ_1 - How suitable are the Knowledge Bases created by
each test data generation approach suggested by DaOBML
to support the test oracle: ALLT, CIT, MBT, and RT?

(2) RQ_2 - Which of the ML algorithms (ANN, DT, K-NN, NB,
RF, SVM) presents the best performance?

(3) RQ_3 - Does the size of the Knowledge Base influence the
performance of the test oracle?

The independent variables are the test data generation tech-
niques, the ML algorithms, and the size of the Knowledge Bases.
The dependent variable is the number of True Positives obtained
after applying the DaOBML methodology. In this evaluation, a True
Positive means a Pass verdict issued by the test oracle.

4.3 Description of the Experiment
We started by generating the test input data in order to create
the 9 Knowledge Bases (see Table 1). For both CIT approaches,
CIT/TTR and CIT/ACTS, we considered 2 values per parameter for
the smaller base and 4 values per parameter for the larger base. In
both cases, we have the strength (t) equals to 2. For instance, let us
consider the Banded Vegetation [10] model of the CA package.
One parameter of this model is dryCoeff, a coefficient between 1.2
and 3.5 to change the state of a cell to dry. Hence, we selected two
values of this parameter for creating the smaller bases due to TTR

Testing Environmental Models supported by Machine Learning SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil

and ACTS, and 4 values for the larger bases. This model has other
parameters (plantCover, wetCoeff, etc.) in which we followed the
same reasoning. Each combination of values produced by a CIT
algorithm, where each parameter contributes with one value, is
input to an environmental model and thus this combination results
in one map which will be stored into the Knowledge Base, after
detecting the edges. Since the outputs of both algorithms are not
deterministic, the precise size of the bases (smaller, larger) is not
known a priori.

As we have mentioned in Section 4.1, the HiMoST method [25]
was the one used as MBT strategy. For each sample (environmental
model), we developed amodel directly in the notation of the NuSMV
Model Checker rather than starting with a Statechart model. We fol-
lowed the guidelines for properties formalization in Computation
Tree Logic (CTL) [8] and test case generation proposed in HiMoST.
We selected the Absence Pattern and Global Scope of the Specifica-
tion Patterns System proposed by Dwyer et al. [11]. With respect to
RT, the choice of values of the parameters was completely random.
Moreover, we selected pure RT and not Adaptive RT [7].

It is important to state that not all models of the CA and ABM
packages are suitable so that we could generate test input data
for them. For instance, to generate test input data via the CIT
algorithms with t = 2, the environmental model must have at least
3 free parameters so that we can assign different values (2 or 4) to
them. If a model does not meet this requirement, hence we were
not able to generate test data via these approaches.

After developing all 9 Knowledge Bases, the next activity was to
select new test data where we considered 25 new test input data
in accordance with an Ad hoc approach (see Figure 2) to submit
to each environmental model. However, these 25 sets of values
were determined for each model where it was possible to generate
test input data according to a certain testing technique. Such new
test input data are completely different from the ones suggested
by each testing approach to drive the creation of the Knowledge
Bases. For instance, we could generate test data for the Banded
Vegetation model taken into account all 9 configurations of test
data generation techniques and size of Knowledge Bases. Thus, we
determined 25 new sets of values, which generated 25 maps, for
the Banded Vegetation model and these values are not equal to
any of the set of values suggested by CIT, MBT, and RT.

Next, the ML algorithms (ANN, DT, K-NN, NB, RF, SVM) came
into play to give the verdicts of the new test data. Note that here
DaOBML suggests the adoption of a single ML algorithm and not a
combination of them. The main reasoning of the verdict assignment
is based on the “adequate" matching of the map due to new data
with some map of the Knowledge Base. Moreover, we considered
the default configuration of the classifiers within theWeka software
in most cases but we emphasize these points below:

(1) ANN. We used the Multilayer Perceptron with the backprop-
agation algorithm for training;

(2) DT. We chose the C4.5 algorithm (J48 classifier);
(3) K-NN. We used the IBk classifier configured with 3 neigh-

bors;
(4) SVM. We selected the LibSVM library with a linear kernel.

As we have previously mentioned, a True Positive is indeed a
Pass verdict of a particular new test input data. The assignment

of True Positives is as follows. Let us consider the RT larger base
where all 22 samples created entries in this base. Let us consider
an environmental model, e. g. Fire, and one new set of input data
(values) for this model that will generate a new map,mnf . Hence,
we expected that every ML algorithm would classify thismnf as
Fire and not as, for example, Banded Vegetation. To assert that
an ML algorithm classifiedmnf as Fire, we looked at the highest
percentage of correctly classified instances as shown in Weka’s out-
put. Hence, we expected that Fire was the class with the highest
percentage of correctly classified instances among all 22 environ-
mental models. In this case, we have a True Positive. Otherwise, we
have a False Negative which conversely represents a Fail verdict.
As a matter of illustration, in the RT larger base, the RF algorithm
had only 11 True Positives out of the 25 new maps for the Fire
model, and thus it presented 14 False Negatives. On the other hand,
the ANN algorithm presented 21 True Positives ouf of 25, and 4
False Negatives.

Another remark about the verdict assignment is that some ap-
proaches that use features to help in the similarity analysis between
images [9, 16, 21] adopt a threshold parameter, which indicates the
maximum distance accepted to consider two images similar. We do
not have this threshold parameter to tune because, as we have just
said above, we give the verdict of the new test data by a relative
comparison among the percentage of correctly classified instances
of the ML algorithms. We decided to do this because one of the
main questions we would like to answer is about the performance
of the classifiers (ML algorithms), measured as giving the correct
(Pass) verdicts within DaOBML, to give us indication of which out
of the six ML approaches is better for further developments of our
methodology.

We focused our data analysis considering only True Positives
because, in our context, making analysis with False Negatives, as
others have done [16], would not give us significant information.
Since we are using the same environmental models to receive the
new test input data as the ones for creating the Knowledge Bases,
hence we expected that every ML algorithm within the test oracle
would produce as verdict Pass (True Positive) for all new test input
data. Moreover we decided to do this, same environmental models
for creating the Knowledge Bases and to receive new and different
test input data (EMk = EMn in Figure 2), again because knowing
about the performance of the ML algorithms is one of the main
issues we would like to answer. Since we have 25 new sets of values,
we always have this situation:

FN = 25 −TP ,
where FN = number of False Negatives, and TP = number of True
Positives. Statistically speaking, it is enough to accomplish the
analysis with True Positives where the higher its value (median,
mean), the better.

Regarding RQ_1, in order to obtain the number of True Positives
for each environmental model, we used the following formula:

emf = (
b∑

p=1

m∑
q=1

TPpq)/b,

where emf is an environmental model identified by f (in our case,
here we have 1 ≤ f ≤ 15), p identifies a base related to a particular

SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil V. A. Santiago Júnior et al.

test data generation technique where the maximum number of
bases is b (here we have b = 2, 4, 1, 2 for ALLT, CIT, MBT, and RT,
respectively), q is an ML algorithm and the maximum number of
algorithms ism (in our case,m = 6), and TPpq is the number of
True Positives due to a particular ML q. Note that the maximum
value of True Positives is 150 (25 × 6) for each sample.

Regarding RQ_2, the value of True Positives for an environmental
model, emf , is simply the sum of True Positives due to each ML
algorithm. In this case, we were allowed to consider all 22 models,
and since we have 9 Knowledge Bases, the maximum value of
True Positives is 225 (25 × 9) for each sample. For answering RQ_3,
we performed a pairwise comparison between the smaller and
larger bases of each test strategy where here ACTS and TTR were
considered in isolation, and took into account 15models (CIT/ACTS,
CIT/TTR) and all 22 models (RT, ALLT). Recall that, depending
on the test data generation strategy and the model, we could not
generate test input data. Here, the maximum value of True Positives
is 150 (25 × 6) for each environmental model.

To properly answer all the RQs, we made use of appropriate
statistical evaluation. For RQ_1 and RQ_2, we have more than two
populations and thus we used the Friedman test plus the exact
all-pairs comparisons post-hoc test [13] with Bonferroni and Holm
p-value adjustment methods. For RQ_3, we performed a pairwise
comparison between smaller and larger bases. Thus, we relied on the
two-sidedWilcoxon signed-rank test or on its two-sidedAsymptotic
variation, in case of ties. In all cases, we defined the significance
level α = 0.01.

4.4 Validity
One of the threats to the conclusion validity is the reliability of
the measures. Our results are associated with six tools/libraries:
DaOBML, Weka (embedded within DaOBML), JavaCV (embedded
within DaOBML), TTR, ACTS, and NuSMV. After all processing
steps, the measures were automatically obtained in accordance with
the ML algorithms of the Weka tool. We believe that replication of
this study by other researchers will produce similar results and our
study has a high conclusion validity.

The samples of our experiment were environmental models,
coded in the TerraME’s modeling language, and thus we neither
had any human/nature/social factor nor unanticipated events to
interrupt the collection of the measures once started to pose an in-
ternal validity. Hence, our controlled experiment has a high internal
validity.

We have a threat to external validity related to the population,
i.e. how significant is the set of samples used in the experiment.
Overall, we investigated 22 environmental models of two packages
of the TerraME product. These models serve as examples of how to
use the several features of the TerraME’s language and thus it is
necessary to evaluate more environmental models to generalize our
results. But, we believe that the results of this controlled experiment
are interesting as discussed in Section 5.

5 RESULTS AND ANALYSIS
We now present and discuss the results of the empirical evalua-
tion we conducted. Recall that we considered True Positives (Pass

verdicts) as explained in Section 4.3. Data for this evaluation are
available in [26].

5.1 RQ_1
Regarding the first RQ which aims to answer how suitable are the
Knowledge Bases created by each test data generation approach
to help the test oracle, we had four classes of bases: ALLT, CIT,
MBT, and RT. The result of the Friedman test presented a p-value =
0.0007067, refuting the null hypothesis of equal population distribu-
tions. Results (p-values) of the exact all-pairs comparisons post-hoc
test with Bonferroni and Holm p-value adjustment methods are
shown in Table 2. Figures 4a and 4b present the boxplot and the
meansplot, respectively.

Table 2: RQ_1 - Exact all-pairs comparisons post-hoc test
with Bonferroni and Holm p-value adjustment methods

Comparison Bonferroni Holm
CIT × ALLT 0.83025 0.41513
MBT × ALLT 0.00051 0.00051
RT × ALLT 1.00000 0.72257
MBT × CIT 0.16312 0.10875
RT × CIT 1.00000 0.72257
RT ×MBT 0.00628 0.00524

As presented in red in Table 2, in two cases the null hypothesis
is rejected and there is difference between the populations: MBT ×
ALLT and RT ×MBT. This happens with both adjustment methods,
Bonferroni and Holm. As we can see in Figures 4a and 4b, the MBT
technique is the worst technique (lower median and mean) in the
pairwise comparison with ALLT and RT. Since there is no difference
between any other pairs of techniques (including RT × ALLT) and
in order to create the ALLT base is necessary to apply all the three
testing techniques requiring more effort, we conclude that RT is
the most suitable approach for creating a Knowledge Base to help
the test oracle. According to this conclusion, the professional may
simply select a set of random values for the parameters which is a
more straightforward approach.

Despite criticisms of pure RT as we used, such as the next test
cases/data to be selected can be less evenly distributed over the
input domain because it does not make use of knowledge of previ-
ously executed test cases/data [7, 27], pure RT was the best solution
in our evaluation. The simplicity of pure RT is one of its advantages
for practical purposes.

5.2 RQ_2
To answer the question of which of the ML algorithms presents the
best performance, first we need to realize that we have six classes,
corresponding to the six ML algorithms that the DaOBML proposes:
ANN, DT, K-NN, NB, RF, and SVM. Repeating the same procedure
described in Section 4.3, the Friedman test resulted in a p-value =
2.442e-12, again rejecting the null hypothesis. Results (p-values) of
the exact all-pairs comparisons post-hoc test with Bonferroni and
Holm p-value adjustment methods are shown in Table 3. Figures
5a and 5b present the boxplot and the meansplot, respectively.

Testing Environmental Models supported by Machine Learning SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil

●

ALLT CIT MBT RT

40
60

80
10

0
12

0

RQ_1: Boxplot

Testing Technique

#T
ru

e
P

os
iti

ve
s

(a) Bloxpot

70
80

90
10

0
11

0

RQ_1: Meansplot

Testing Technique

#T
ru

e
P

os
iti

ve
s

103.90

 91.88

 75.67

100.47

●

●

●

●

ALLT CIT MBT RT

n=15 n=15 n=15 n=15

(b) Meansplot

Figure 4: RQ_1 - Boxplot and Meansplot

Table 3: RQ_2 - Exact all-pairs comparisons post-hoc test
with Bonferroni and Holm p-value adjustment methods

Comparison Bonferroni Holm
DT × ANN 6.8e-13 6.8e-13

K-NN × ANN 0.0136 0.0091
NB × ANN 2.1e-09 1.8e-09
RF × ANN 1.0e-09 9.6e-10
SVM × ANN 0.0013 0.0010
K-NN × DT 0.0052 0.0038
NB × DT 1.0000 1.0000
RF × DT 1.0000 1.0000
SVM × DT 0.0574 0.0344
NB × K-NN 0.1242 0.0580
RF × K-NN 0.0747 0.0399
SVM × K-NN 1.0000 1.0000
RF × NB 1.0000 1.0000
SVM × NB 0.5903 0.1968
SVM × RF 0.4820 0.1928

In Table 3, we see that there is significant statistical difference
when comparing ANN with all the other ML approaches with the
Holm adjustment method. Considering the Bonferroni method, only
the comparison K-NN × ANN accepted the null hypothesis (there
is no difference) while all the other pairwise evaluations involving
the ANN algorithm presented differences. Even so, in this case, the
adjusted p-value is a little bit superior (0.0136) than the significance

level (0.01). Regarding the other pairwise comparisons, only K-NN
× DT presented significant statistical difference.

Median and mean of the ANN are the highest and K-NN is in the
second place as shown in Figures 5a and 5b. Based on these facts,
we can state that ANN is the ML algorithm that presented the best
performance overall. As we have mentioned, we used as ANN the
classic Multilayer Perceptron with the backpropagation algorithm
for training. This classic ANN has been proving successful in several
application domains due to its adaptive learning, ability to deal with
complicated or imprecise data, among other points. It is one of the
most well known classifier and, for this experiment, proved to be
the best solution.

5.3 RQ_3
As we have stated in Section 4.3, in order to answer this question we
performed a pairwise comparison between the smaller and larger
bases of each test strategy where here ACTS and TTR were con-
sidered in isolation. Therefore, we accomplished four comparisons
with both types of bases: CIT/ACTS, CIT/TTR, RT, and ALLT. We
detected ties in all four pairwise evaluations and hence the two-
sided Asymptotic Wilcoxon signed-rank test was selected. Table 4
presents the p-values.

We noticed that only in the ACTS case there is no difference
between the populations. In all the other three comparisons, the
Wilcoxon test determined that there are differences. In all cases, the
larger base due to a certain testing technique has always the highest
mean andmedian comparedwith the respective smaller base. Hence,
we conclude that as larger the Knowledge Base, in terms of size,

SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil V. A. Santiago Júnior et al.

ANN DT K−NN NB RF SVM

50
10

0
15

0
20

0

RQ_2: Boxplot

ML Algorithm

#T
ru

e
P

os
iti

ve
s

(a) Bloxpot

80
10

0
12

0
14

0
16

0
18

0

RQ_2: Meansplot

ML Algorithm

#T
ru

e
P

os
iti

ve
s

161.27

 98.05

127.23

104.00 102.59

119.50

●

●

●

●
●

●

ANN DT K−NN NB RF SVM

n=22 n=22 n=22 n=22 n=22 n=22

(b) Meansplot

Figure 5: RQ_2 - Boxplot and Meansplot

Table 4: RQ_3 - Asymptotic Wilcoxon signed-rank test

Comparison p-value
CIT/ACTS: smaller × larger 0.07007
CIT/TTR: smaller × larger 6.104e-05

RT: smaller × larger 5.484e-05
ALLT: smaller × larger 9.537e-07

the better. Although this conclusion may be regarded as obvious,
it is important to stress that in other rigorous comparisons [20],
working with complex output systems, the size of the bases was not
that important. Thus, we decided to investigate in our context if the
size of the bases was indeed relevant, and it ended up happening.

6 RELATEDWORK
In this section, we present some recent and relevant studies related
to our research. VISOR is an automated test oracle that uses an
image processing pipeline which includes a series of image filters
that align the compared images and remove noise to eliminate
differences caused by scaling and translation [17]. The context of
their research is the usage of captured images of Digital TV screens,
which are prone to illumination, translation, scaling variations, and
noise. Their approach is more sophisticated than ours but note
that scaling is not a problem in our context because we work with
outputs with the same pixel resolution, and zooming does not make
much sense here. It is very probable that illumination is not also
something to be concerned because lighting is basically the same
(we are not capturing images via a camera). Thus, we were able

to develop a simpler and less costly strategy compared with their
method.

Content-based image retrieval has been employed to address the
oracle problem for systems which produce complex outputs such
as image or audio [9, 16, 20, 21]. The authors named their approach
as feature-based test oracle which relies on the exploitation of
features extracted from reliable outputs considered as a reference.
They then measure the similarities between the outputs produced
by an application being tested and the reference base. One drawback
of their method is that it is required to tune a threshold to decide
whether two images are similar. The calculation of this threshold is
not a trivial task in practice which may demand considerable effort
from the professional. Our approach does not have a threshold
parameter to tune. Moreover, they have been using only Euclidean
distance as similarity measure although many other solutions are
available and seem more appropriate such as the Bin Overlapped
Similarity Measure [28].

The effectiveness of Metamorphic Testing (MT) in detecting
faulty Sobel edge detection programs was studied in [30]. MT is a
way to generate new test input data and detect faults in applications
even if the correct expected output is unknown, i.e. when we have
no oracle available. The authors used camera captured images from
published image libraries as test inputs. Approaches that are based
on MT suffer the problem of identifying the metamorphic relations.
These relations can be very complicated even for simple programs.
On the other hand, we exploit the capabilities of ML algorithms as
classifiers and their strengths to infer conclusions based on complex
data.

Testing Environmental Models supported by Machine Learning SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil

In the automotive industry domain, image processing and vi-
sual testing techniques have been used for test oracle automation
[1]. The authors addressed the Model-In-the-Loop (MIL) step of
development of the Electronic Vehicle Information Center (EVIC), a
component which has an interactive display to provide information
to the driver such as fuel consumption. Hence, they took snapshots
of the interactive display at certain times during test execution. Test
results evaluation is accomplished via techniques such as coefficient
of correlation between the actual and a reference image, optical
character recognition (text), or other custom visual feature extrac-
tion for more complex items. We used the Sobel operator to detect
the edges of the actual and reference images and not coefficient
of correlation. Moreover, we relied on ML algorithms to give the
verdict of the test cases.

In the context of Web applications, test oracle automation has
been much approached although most of the techniques accom-
plishes analysis of code and they are not a black box technique via
image matching. However, the feature-based test oracle we have
previously mentioned [9] has been used as an image matching
strategy for Web applications testing.

Other work within the Web domain proposed a pairwise image
comparison (production page × staging page) to locate Web page
layout faults while neglecting insignificant variations [27]. Their
approach is suitable for regression testing, uses Adaptive RT [7]
to select regions to be compared in pairs of images, and is based
on the characteristics of failure patterns of browser layouts. Cross-
browser compliance is not an issue in our case since we assume
that the environmental modeling tools are desktop and not Web
applications. Moreover, our methodology proposes RT not to select
portions of images to be compared but rather to be a systematic
way to create a reference base to help the test oracle.

Another research within the Web domain presented a technique
for detecting presentation failures in Web applications, and localize
the HTML elements that are likely to be responsible for the fail-
ures [18]. They used computer vision techniques to compare a Web
page rendered in a browser with its oracle information and iden-
tify difference pixels. Fault localization is an issue with black box
approaches, and thus it is interesting to address this point like the
researchers did. However, it is not clear how generic their approach
can be since they did fault localization by mapping difference pixels
to HTML elements. In other words, it is probable that their tech-
nique is not suitable, under this respect, for other programming
languages. In the detection phase, they identified presentation fail-
ures by comparing the screenshot of the actual page, as rendered
in a browser, with its expected appearance, the oracle information.
But, they performed this phase with Perceptual Image Differencing
(PID) which requires not only one but four parameters to be defined
by the professional. As we have previously mentioned, tuning of
parameters can be very demanding in practical terms.

A framework to test image processing applications was proposed
in [15]. It includes test data generation (images) via symbolic evalu-
ation, execution of test data, and test results evaluation (test oracle)
via MT and SVM (ML algorithm). In order to apply their approach,
it is necessary to instrument the source code of the application
aiming to indicate the interested code areas executed during a test
run. Although used by researchers, code instrumentation can be
dangerous because it can insert additional faults or interfere on

the behavior of the application. Regarding the test oracle, we have
already pointed out the problem of identifying the metamorphic
relations within MT. They also proposed SVM as an oracle (MT
or SVM can be selected) but our methodology and supported tool
suggested up to six ML algorithms to choose, giving more flexibility
to the tester.

We can assert that there are two main differences between
our methodology and the studies presented in this section. First,
DaOBML suggests a set of ML algorithms as the main component
of the test oracle. Only one research study [15] used a single ML
algorithm (SVM) as test oracle while we suggested up to six and
performed an empirical evaluation where ANN was the best. We
believe that the potentialities of ML and Artificial Intelligence meth-
ods are very significant and thus Software Engineering processes,
such as testing, should take them more into consideration. Second,
our methodology proposes the use of test case/data generation
techniques (CIT, MBT, RT) as a systematic procedure to create
or to improve Knowledge Bases to support the operation of the
test oracle. Hence, we aimed at improving the quality of bases via
techniques to generate test suites.

7 CONCLUSIONS
This paper presented a new methodology with tool support,
DaOBML, to help improving the quality of environmental mod-
els where the outputs are complex artifacts such as images (maps)
or plots. We believe that Software Engineering processes, such as
testing, with all the techniques and methods that have been studied
can give valuable contributions to develop better software systems
which produce complex outputs such as images or even when these
outputs are not exact, as it might happen with scientific software.

We relied on three test data generation techniques (CIT, MBT,
RT) to drive the creation of Knowledge Bases. These techniques
may also be used as new test data generators as traditionally but the
main goal is to develop new or to improve existent Knowledge Bases
in a situation where we have a set of environmental models that
are sufficient trusted to generate the expected results (Knowledge
Bases). The core of the Oracle Procedure are six ML algorithms
(ANN, DT, K-NN, NB, RF, SVM) which assign the verdicts of new
test data.

Considering environmental models developed via the TerraME
product, a controlled experiment makes us to conclude that RT is
the most feasible test data generation approach for developing the
Knowledge Bases to support the test oracle, ANNs prove again that
is an interesting Artificial Intelligence approach since it achieved
the best performance among all considered alternatives, and the
size of the Knowledge Base is important so that the larger is the
better.

Even though, at first, scaling variations and illumination are not
an issue to us, we need to enhance the digital image processing
steps of our methodology and tool. Filtering techniques can be used
as well as we can consider other edge detectors such as the ANN
itself and phase congruency methods. We also need to accomplish
other controlled experiments increasing the number of environ-
mental models as well as assessing models that are not closely
similar to the ones that created the Knowledge Bases, so that we
can generalize our results. Mutation testing can also help in these

SAST ’18, September 17–21, 2018, SAO CARLOS, Brazil V. A. Santiago Júnior et al.

other experiments by creating faulty versions of the environmental
models and hence we can better evaluate the effectiveness of our
approach. Like any other black box approach related to system
and acceptance testing levels, fault localization is an issue within
DaOBML, and we aim at working in this direction where we can
rely on supervised or unsupervised ML algorithms for this purpose.
In addition, we will try to develop this fault localization strategy in
a generic manner so that it can be suitable to several programming
languages used for environmental modeling.

ACKNOWLEDGMENTS
This research was supported in part by a PIBIC grant (Process:
142440/2017-5) from theConselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico (CNPq), Brazil.

REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, and S. Scala. 2014. Towards Au-

tomatic Model-in-the-loop Testing of Electronic Vehicle Information Centers.
In Proceedings of the 2014 International Workshop on Long-term Industrial Col-
laboration on Software Engineering (WISE ’14). ACM, New York, NY, USA, 9–12.
https://doi.org/10.1145/2647648.2656427

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,W. Grieskamp, M. Harman,
M. J. Harrold, and P. Mcminn. 2013. An Orchestrated Survey of Methodologies
for Automated Software Test Case Generation. Journal of Systems and Software
86, 8 (Aug. 2013), 1978–2001. https://doi.org/10.1016/j.jss.2013.02.061

[3] J. M. Balera and V. A. Santiago Júnior. 2016. A Controlled Experiment for Com-
binatorial Testing. In Proceedings of the 1st Brazilian Symposium on Systematic
and Automated Software Testing (SAST). ACM, New York, NY, USA, Article 2,
10 pages. https://doi.org/10.1145/2993288.2993289

[4] J. M. Balera and V. A. Santiago Júnior. 2017. An algorithm for combinatorial
interaction testing: definitions and rigorous evaluations. Journal of Software
Engineering Research and Development 5, 1 (28 Dec 2017), 41. https://doi.org/10.
1186/s40411-017-0043-z

[5] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. 2012. Combinatorial
Testing of ACTS: A Case Study. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation. 591–600. https://doi.org/10.1109/
ICST.2012.146

[6] T. G. S. Carneiro, P. R. Andrade, G. Câmara, A. M. V. Monteiro, and R. R. Pereira.
2013. An extensible toolbox for modeling nature–society interactions. Envi-
ronmental Modelling & Software 46 (2013), 104 – 117. https://doi.org/10.1016/j.
envsoft.2013.03.002

[7] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T.H. Tse. 2010. Adaptive Random Testing:
The ART of test case diversity. Journal of Systems and Software 83, 1 (2010), 60 –
66. https://doi.org/10.1016/j.jss.2009.02.022

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of
Finite-state Concurrent Systems Using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems 8, 2 (April 1986), 244–263.
https://doi.org/10.1145/5397.5399

[9] M. E. Delamaro, F. L. S. Nunes, and R. A. P. Oliveira. 2013. Using concepts of
content-based image retrieval to implement graphical testing oracles. Software
Testing, Verification and Reliability 23, 3 (2013), 171–198. https://doi.org/10.1002/
stvr.463

[10] D. L. Dunkerley. 1997. Banded vegetation: development under uniform rainfall
from a simple cellular automaton model. Plant Ecology 129, 2 (01 Feb 1997),
103–111. https://doi.org/10.1023/A:1009725732740

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 1999. Patterns in Property Spec-
ifications for Finite-state Verification. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99). ACM, New York, NY, USA, 411–
420. https://doi.org/10.1145/302405.302672

[12] Earth System Science Center (COCST/INPE). 2018. TerraME: Multiparadigm
Modeling Toolkit. Available from: http://www.terrame.org/doku.php. Access in:
May 18, 2018.

[13] R. Eisinga, T. Heskes, B. Pelzer, and M. Te Grotenhuis. 2017. Exact p-values for
pairwise comparison of Friedman rank sums, with application to comparing

classifiers. BMC Bioinformatics 18, 1 (25 Jan 2017), 68. https://doi.org/10.1186/
s12859-017-1486-2

[14] R. Ierusalimschy, L. H. Figueiredo, and W. C. Filho. 1996. Lua – an extensible
extension language. Software—Practice & Experience 26, 6 (June 1996), 635–
652. https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.
CO;2-P

[15] T. Jameel, L. Mengxiang, and L. Chao. 2016. A framework of automatic testing
of image processing applications. In 2016 13th International Bhurban Conference
on Applied Sciences and Technology (IBCAST). 312–317. https://doi.org/10.1109/
IBCAST.2016.7429896

[16] M. C. Júnior, R. A. P. Oliveira, M. A. G. Valverde, M. P. Jackowski, F. L. S. Nunes,
and M. E. Delamaro. 2017. Feature-Based Test Oracles to Categorize Synthetic 3D
and 2D Images of Blood Vessels. In Proceedings of the 2nd Brazilian Symposium
on Systematic and Automated Software Testing (SAST). ACM, New York, NY, USA,
Article 11, 6 pages. https://doi.org/10.1145/3128473.3128484

[17] M. F. Kiraç, B. Aktemur, and H. Sözer. 2018. VISOR: A fast image processing
pipeline with scaling and translation invariance for test oracle automation of
visual output systems. Journal of Systems and Software 136 (2018), 266 – 277.
https://doi.org/10.1016/j.jss.2017.06.023

[18] S. Mahajan and W. G. J. Halfond. 2015. Detection and Localization of HTML
Presentation Failures Using Computer Vision-Based Techniques. In 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).
1–10. https://doi.org/10.1109/ICST.2015.7102586

[19] N. Nausheen, A. Seal, P. Khanna, and S. Halder. 2018. A FPGA based implemen-
tation of Sobel edge detection. Microprocessors and Microsystems 56 (2018), 84 –
91. https://doi.org/10.1016/j.micpro.2017.10.011

[20] R. A. P. Oliveira. 2017. Test oracles for systems with complex outputs: the case of TTS
systems. Ph.D. Dissertation. Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo (USP).

[21] R. A. P. Oliveira, A. M. Memon, V. N. Gil, F. L. S. Nunes, and M. Dela-
maro. 2014. An extensible framework to implement test oracles for non-
testable programs. Proceedings of the International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE January (2014), 199–
204. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935074236&
partnerID=40&md5=778fb3296d6f16acf77a7e70702d9a9d

[22] J. Petke, M. B. Cohen, M. Harman, and S. Yoo. 2015. Practical Combinatorial
Interaction Testing: Empirical Findings on Efficiency and Early Fault Detection.
IEEE Transactions on Software Engineering 41, 9 (Sept 2015), 901–924. https:
//doi.org/10.1109/TSE.2015.2421279

[23] I. Portugal, P. Alencar, and D. Cowan. 2018. The use of machine learning al-
gorithms in recommender systems: A systematic review. Expert Systems with
Applications 97 (2018), 205 – 227. https://doi.org/10.1016/j.eswa.2017.12.020

[24] S. Audet. 2018. JavaCV. Available from: https://github.com/bytedeco/javacv.
Access in: May 18, 2018.

[25] V. A. Santiago Júnior and F. E. C. Silva. 2017. From Statecharts into Model
Checking: AHierarchy-based Translation and Specification Patterns Properties to
Generate Test Cases. In Proceedings of the 2nd Brazilian Symposium on Systematic
and Automated Software Testing (SAST). ACM, New York, NY, USA, Article 2,
10 pages. https://doi.org/10.1145/3128473.3128475

[26] V. A. Santiago Júnior, L. A. R. Silva, and P. R. A. Neto. 2018. Empirical Evaluation
Data - SAST 2018. Available from: https://bit.ly/2v9ygj5. Access in: July 31, 2018.

[27] E. Selay, Z. Q. Zhou, and J. Zou. 2014. Adaptive Random Testing for Image
Comparison in Regression Web Testing. In 2014 International Conference on
Digital Image Computing: Techniques and Applications (DICTA). 1–7. https:
//doi.org/10.1109/DICTA.2014.7008093

[28] S. G. Shaila and A. Vadivel. 2016. Indexing and encoding based image feature
representation with bin overlapped similarity measure for CBIR applications.
Journal of Visual Communication and Image Representation 36 (2016), 40 – 55.
https://doi.org/10.1016/j.jvcir.2016.01.003

[29] J. Silvertown, S. Holtier, J. Johnson, and P. Dale. 1992. Cellular Automaton Models
of Interspecific Competition for Space –The Effect of Pattern on Process. Journal
of Ecology 80, 3 (1992), 527–533. https://doi.org/doi:10.2307/2260696

[30] K. Y. Sim, D. M. L. Wong, and T. Y. Hii. 2013. Evaluating the Effectiveness of
Metamorphic Testing on Edge Detection Programs. In International Journal of
Innovation, Management and Technology, Vol. 4. 6–10.

[31] The Univesity of Waikato. 2018. Weka 3: Data Mining Software in Java. Available
from: https://www.cs.waikato.ac.nz/ml/weka/. Access in: May 18, 2018.

[32] C. Zannier, G. Melnik, and F. Maurer. 2006. On the Success of Empirical Studies
in the International Conference on Software Engineering. In Proceedings of the
28th International Conference on Software Engineering (ICSE ’06). ACM, New York,
NY, USA, 341–350. https://doi.org/10.1145/1134285.1134333

https://doi.org/10.1145/2647648.2656427
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1145/2993288.2993289
https://doi.org/10.1186/s40411-017-0043-z
https://doi.org/10.1186/s40411-017-0043-z
https://doi.org/10.1109/ICST.2012.146
https://doi.org/10.1109/ICST.2012.146
https://doi.org/10.1016/j.envsoft.2013.03.002
https://doi.org/10.1016/j.envsoft.2013.03.002
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1145/5397.5399
https://doi.org/10.1002/stvr.463
https://doi.org/10.1002/stvr.463
https://doi.org/10.1023/A:1009725732740
https://doi.org/10.1145/302405.302672
https://doi.org/10.1186/s12859-017-1486-2
https://doi.org/10.1186/s12859-017-1486-2
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-SPE26>3.0.CO;2-P
https://doi.org/10.1109/IBCAST.2016.7429896
https://doi.org/10.1109/IBCAST.2016.7429896
https://doi.org/10.1145/3128473.3128484
https://doi.org/10.1016/j.jss.2017.06.023
https://doi.org/10.1109/ICST.2015.7102586
https://doi.org/10.1016/j.micpro.2017.10.011
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935074236&partnerID=40&md5=778fb3296d6f16acf77a7e70702d9a9d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935074236&partnerID=40&md5=778fb3296d6f16acf77a7e70702d9a9d
https://doi.org/10.1109/TSE.2015.2421279
https://doi.org/10.1109/TSE.2015.2421279
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1145/3128473.3128475
https://doi.org/10.1109/DICTA.2014.7008093
https://doi.org/10.1109/DICTA.2014.7008093
https://doi.org/10.1016/j.jvcir.2016.01.003
https://doi.org/doi:10.2307/2260696
https://doi.org/10.1145/1134285.1134333

	Abstract
	1 Introduction
	2 Environmental Modeling
	3 The DaOBML Methodology
	3.1 Implementation

	4 Empirical Evaluation
	4.1 Objective and Definitions
	4.2 Research Questions and Variables
	4.3 Description of the Experiment
	4.4 Validity

	5 Results and Analysis
	5.1 RQ_1
	5.2 RQ_2
	5.3 RQ_3

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

