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Abstract

An animal’s home-range can be expected to encompass the resources it requires for surviv-

ing or reproducing. Thus, animals inhabiting a heterogeneous landscape, where resource

patches vary in size, shape and distribution, will naturally have home-ranges of varied sizes,

so that each home-range encompasses a minimum required amount of a resource. Home-

range size can be estimated from telemetry data, and often key resources, or proxies for

them such as the areas of important habitat types, can be mapped. We propose a new

method, Resource-Area-Dependence Analysis (RADA), which uses a sample of tracked

animals and a categorical map to i) infer in which map categories important resources are

accessible, ii) within which home range cores they are found, and iii) estimate the mean min-

imum areas of these map categories required for such resource provision. We provide three

examples of applying RADA to datasets of radio-tracked animals from southern England: 15

red squirrels Sciurus vulgaris, 17 gray squirrels S. carolinensis and 114 common buzzards

Buteo buteo. The analyses showed that each red squirrel required a mean (95% CL) of 0.48

ha (0.24–-0.97) of pine wood within the outermost home-range, each gray squirrel needed

0.34 ha (0.11–1.12) ha of mature deciduous woodland and 0.035–0.046 ha of wheat, also

within the outermost home-range, while each buzzard required 0.54 ha (0.35–0.82) of rough

ground close to the home-range center and 14 ha (11–17) of meadow within an intermediate

core, with 52% of them also relying on 0.41 ha (0.29–0.59) of suburban land near the home-

range center. RADA thus provides a useful tool to infer key animal resource requirements

during studies of animal movement and habitat use.
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Introduction

That an animal’s home range contains vital resources for survival and reproduction seems

obvious, but identifying and quantifying resource requirements is less so. Early visual observa-

tions of bird territories showed that territory size could correlate inversely with food supply

[1,2]. These observations were followed by a similar and growing body of relationships

between range size and habitats from elusive species, for which locations could be collected

systematically only by tracking, including raptors [3,4], large cats [5,6], squirrels [7], lago-

morphs [8], deer [9–11], bears [12,13], and moose [14].

At the same time, other studies were considering how data from tracked animals could be

used to show animal relative preferences for particular habitats or resources [15–31]—when

habitats were considered, the implicit assumption was that they were a proxy for resources.

Resource selection functions express habitat or resources that animals use in terms of those

available to them. There are several difficulties with this approach, including (i) the unit-sum

constraint, by which one strongly avoided habitat (e.g. water for a squirrel) tends to make all

others seem preferred, (ii) pseudo-replication, if locations from the same animal are treated as

independent observations, and (iii) the definition of what is available or (iv) used.

The first two difficulties were solved by treating (i) habitat use as a compositional problem,

and (ii) animals rather than locations as sample units [22]. However, the delimitation of what

is available [32,33] or used [34] is less tractable. Should one consider habitat availability in the

whole of a study area, despite some areas being unoccupied? Or should one choose areas

around each location or path of an animal [24,26], perhaps using behavioral mechanisms to

define what is accessible from each point or trajectory [27]? Similarly, if an animal lives in a

landscape where resource-bearing patches have a fragmented distribution, should one con-

sider all habitats within a chosen home-range outline to be used by the animal?

Here we interpret resource use through its role in structuring animals’ home-ranges. The

fundamental principle is that, in a heterogeneous landscape, the resources an animal needs

occur in patches that vary in size, shape and distribution [35], and that in order to benefit from

these resources each animal will adjust the size, shape and structure of its home-range so that

it encompasses the minimum required amount of this resource. This agrees with predictions

from optimal-foraging theory, which states that in searching for food animals will try to opti-

mize the energy budget [36–39] and that resource dispersion will influence range size

[2,40,41].

In this paper, we introduce Resource-Area-Dependence Analysis (RADA), a new method

that uses a sample of tracked animals and a categorical map depicting resource distribution to

infer where important resources are accessible and to estimate the minimum area required for

such resource provision. We illustrate our technique by analyzing data from 15 red squirrels

(Sciurus vulgaris), 17 gray squirrels (S. carolinensis) and 114 common buzzards (Buteo buteo).

We use these results to infer the key resource requirements of each species and discuss the

wider application of this approach to the study of animal movement and resource use.

Materials and methods

The data were collected prior to 1994, during a period before local ethics committees were

required to review non-invasive radio-tagging of wildlife, as stated in the Animals (Scientific

Procedures) Act 1986: “The ringing, tagging or marking of an animal, or the application of any
other humane procedure for the sole purpose of enabling an animal to be identified, is not a
regulated procedure if it causes only momentary pain or distress and no lasting harm” (page 2,

section 2.5). Nevertheless, the permissions for squirrels obtained from the then Nature Conser-

vancy Council and Ministry of Agriculture, Fisheries and Food included review of the
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proposed marking on animal welfare grounds, as did those for marking buzzards from the

British Trust for Ornithology, which already at that time had a committee dedicated to the eth-

ics of marking. Elton Estates Ltd., British Petroleum Ltd. and many South Dorset landowners

generously granted land access during the entire data collection process.

RADA model

Consider a population of animals with home-ranges within a particular heterogeneous land-

scape and with similar minimum requirements for a certain resource h (we extend our

approach to multiple resources later). Assume that the landscape is divided up into patches

belonging to a range of categories, and that patch classification has been done in such a way

that acquiring resource h is mainly associated with a single landscape category (e.g. based on

prior ecological knowledge). Assume also that the amount of resource within a patch belong-

ing to that category is, on average, proportional to patch size. In the absence of variation, the

minimum requirement for the resource h translates into a minimum area ah providing h, such

that ah is contained within each animal’s home-range. An animal for which ah is available in

one large patch will have a smaller home-range area (Fig 1A) than, for example, two other ani-

mals for which h is available in smaller disjunct patches that sum to ah (Fig 1B and Fig 1C, see

also [25]). At the population level, a plot of ah against range area A yields a straight line parallel

to the x-axis, i.e. with zero slope (Fig 1D, noting that A� ah if ah is a minimum requirement;

see also [25]). In contrast, an area u of a map category that is visited randomly within a home-

range because it offers no resource will be increasingly found in large ranges as the animal

moves between other, more valuable patches, so a plot of u against A will yield a positive slope.

In reality, there will be variation in ah between animals, so as ecologists our aim is to iden-

tify h and find the average value of ah, which will be the best estimate of the minimum resource

requirement at the population level. Intuitively, one would identify h from the horizontalness

of the relationship of ah versus A (Fig 1D), estimating ah from extrapolation of the horizontal

line to where it crosses the y-axis. However, an approach based on testing for a horizontal line

is inappropriate, because the lack of a significant slope is the null hypothesis in a standard sta-

tistical regression. We consider instead the relationship between ah/A and A. Plotting ah/A
against A yields a hyperbola (Fig 1E), and plotting the log-transformation of both variables

yields a straight line (Fig 1F) described by ln(ah/A) = b ln(A) + c, with b<0. As ln(ah/A) = ln

(ah)–ln(A), ln(ah)–ln(A) = b ln(A) + c. Since one expects the minimum required area to be esti-

mated when ah = A, i.e. ln(ah/A) = 0, solving for this case yields ln(ah) = –c/b (which is the x-

axis intercept) and ah = exp(-c/b). With a perfect hyperbola, b = -1, and ah = exp(c). Similar

reasoning applies to Pearson’s correlation coefficient r between ln(ah/A) and ln(A): r is

expected to be negative, and takes a value of -1 for a perfect hyperbola.

From a statistical viewpoint, the ecologist samples the population of animals by marking a

number I of individuals assumed to be representative. Each animal i will have a measured

home-range area Ai and an area ah,i within it that provides resource h. The reasoning made at

the population level suggests the possibility of using the Ai and ah,i to identify h and estimate

ah. When dealing with real data, however, deviations from the theoretical situation above will

result in a point dispersion such that b 6¼ -1 and r> -1. Deviations from a perfect hyperbola

may arise from h not being homogeneously accessible, inaccurate mapping or individual varia-

tion in movement costs or h requirements.

Think of a white rhino Ceratotherium simum. The male is a solitary grazer that safeguards

patches of grassland within its territory [42]. One such male might find all the food it needs

within a grassland patch that is so rich it could even feed two rhinos. However, as the patch is

within its territory, no other rhino will explore it while it is the resident. One day, a larger
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white rhino arrives and after an intense fight expels the previously resident one, taking hold of

the rich patch. This larger animal will use more of what the patch has to offer, but, back to the

model, ah would be the same for both rhinos. The effect on ah of individual variability in h
requirement will have been compensated by variability in ah richness. By analogy, this also

applies to the variation in movement cost, e.g. the same rich patch will equally feed a young

adult or a large, dominant male that often fights for females and thus has a much higher move-

ment cost.

Fig 1. RADA model schematic diagram. 100% convex polygon peeled by distance from kernel range center (Xk100; for abbreviations used to denote home range

estimators and cores, see S1 Appendix) of three animals requiring the same ah (A) in one patch, (B) in two patches and (C) in three patches. For a population of animals

that maintain an ah in their home-ranges, a plot of ah against A yields a horizontal line at y = ah (D). (E) When ah/A is plotted against A the plot becomes hyperbolic, and

(F) when both axes are ln-transformed it becomes linear with slope b = -1.

https://doi.org/10.1371/journal.pone.0206354.g001
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In RADA, the net effect on A or ah of these unquantifiable variables is treated as uncertainty,

which pushes b and r away from -1 and is a source of conservative bias. The way to minimize it is

to collect a large enough sample of individuals and estimate their home-ranges well, while prepar-

ing the map carefully and defining the statistical population being analyzed in a way that ensures

as much homogeneity as possible (e.g. by considering adults and immatures separately).

Complications and solutions

Complications may arise owing to (i) masking among map categories, ii) lack of independence

between ah/A and A and (iii) a subset of the home-range cores lacking a particular resource-

containing map category.

The first problem–masking among map categories—arises when animals in a sample each

require ah of h, but also a much smaller area ag of resource g–the role of g may be concealed

(Fig 2) owing to the issue affecting proportions known as the ‘unit-sum constraint’ [22,43].

We solved this by following a conditional probability approach [44], which involved subtract-

ing ah from Ai when considering each of the J-1 remaining map categories and excluding cases

when -hAi = 0 (where−hAi = Ai−ah,i).

The second problem–lack of independence between ah/A and A–occurs because A is pres-

ent on both sides of the regression: ln(ah/A) = b ln(A) + c. A consequence of this is that zero is

no longer the expected value under the null hypothesis, and assessing departure of b and r

Fig 2. Presence within A of an abundant resource-providing map category may mask result for another less abundant one (solution to this issue explained in body

of text). Panels A, B and C show, respectively, the ranges of the three figurative animals in Fig 1A, Fig 1B and Fig 1C. When a second resource-providing map category

(dark gray) with, say, 1/20 the volume of the main resource-providing map category (pale gray) is present, the former may be entirely excluded from small home-range

cores. RADA solves this issue by means of a stepwise regression procedure. Shown here are K10d95 (dotted gray), K10d50 (solid gray), Cx95 (dotted black) and Cx50 (solid

black).

https://doi.org/10.1371/journal.pone.0206354.g002
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from zero with parametric statistics would lead to detecting spurious relationships. We there-

fore opted for testing their significance against the null hypothesis of no relationship using

randomization. The randomized empirical distributions include the effect of the dependence,

so the statistical tests based on the randomizations automatically take any such dependence

effects into account. With 999 randomizations, an observed value was significantly different

from the random values, in a two-tailed test, if it was less than 50 (for P<0.10), 25 (for P
<0.05) or 5 (for P<0.01) from the top or bottom edges of the distribution of random values,

or had no random value beyond it (for P� 0.002 from one run or P�0.001 in both of two

runs). Using Ranges 9 [45], we estimated 999 values for I outlines selected at random with

replacement from the I ranges in the data set, and then randomly placed (rotated and dis-

placed) on the map within a convex hull encompassing the most expansive outline of the rele-

vant estimation algorithm for all I ranges.

The third problem–subset of A lacking a particular resource-containing map category–was

addressed with two different approaches: (i) omitting these ranges from the analysis, or (ii)

using the transform log(β + aj,i,/Ai), where β = 0.01 for map categories with mean proportions

greater than 0.10 and β = 0.001 for less frequent categories [22].

Implementation

For the development of this technique, we tested K (= 25) range estimator variants and m (= 1

or = 15) core sizes. Let us denote the Ai estimated using a particular K and m by Ai,k,m, and the

ah contained in Ai,k,m by ah,i,k,m. For each regression between ln(Ai,k,m) and ln(ah,i,k,m/ Ai,k,m),

we recorded the observed value of Pearson’s correlation coefficient r, the slope b, the standard

error of b, the area intercept c (on a logarithmic scale) and the percentage of ranges with none

of the map category in the core. We used r to assess the strength of the relationship and com-

pare with random, and divergence of b from -1 to indicate variability in resource accessibility

or in individual behavior or resource requirement.

Statistics from randomization included the mean and median values for r, z for the differ-

ence of mean r from the observed r, with associated 95% confidence limits (on the assumption

that r is distributed normally), the number of random r values more extremely negative than

the observed value, mean values for b, its SE and c by randomization, and, finally, the propor-

tion lacking a map category at first ‘throw’ was recorded and the means ± standard errors were

calculated (this proportion at ‘first throw’ allowed testing, using a binomial distribution,

whether non-random inclusion of map categories in observed outlines indicated resource-

based placement of the ranges). Geometric means, and other estimates back-transformed from

logarithms, are shown with 95% confidence limits.

We began the analysis by visually inspecting the log-log plots (as in Fig 1F), searching, in

particular, for signs of heteroscedasticity. Then, for J> 2 map categories, in step 2 we identi-

fied the map category presenting the strongest significant negative correlation with range area;

if two yielded similar negative correlations, we considered the most prevalent category (owing

to possible masking of the less prevalent by the latter, as explained above). For step 3, we

addressed the masking problem by subtracting ah,k,m,i from Ak,m,i when considering each of

the J-1 remaining map categories, excluding cases of -hAk,m,i = 0 (where−hAk,m,i = Ak,m,i−ah,k,m,

i). We sought negative relationships between ln(ak,m,i,j/-hAk,m,i) and ln(hAk,m,i), a conditional

probability approach [44]. The process was repeated by removal of further resource-containing

map categories in a stepwise fashion, step four being examination of ln(ak,m,i,j /-h,-g Ak,m,i) and

ln(-h,-g Ak,m,i) where -h,-g Ak,m,i = Ak,m,i−ah,k,m,i−ag,k,m,i, for the J-2 map categories differing from

those containing h and g. We repeated map category removal until no negative r value was sig-

nificant (for a flowchart of the steps involved in this analysis, see Discussion).
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To assess possible departures from the model’s assumptions, we noted whether observed bj,
k,m differed significantly from -1. If that was the case, we considered the mean proportion of ah
(i.e. �ah) a more realistic estimator of habitat requirement than the minimum estimated via

extrapolation of regression. In Ranges 9, RADA was implemented such that analyses involving

several Ak,m could be run simultaneously [45].

Three examples: Red and gray squirrels and common buzzards

We applied RADA to red squirrels, gray squirrels and common buzzards in southern Britain.

The data were collected prior to 1994, during a period before local ethics committees were

required to review non-invasive radio-tagging of wildlife, as stated in the Animals (Scientific

Procedures) Act 1986: “The ringing, tagging or marking of an animal, or the application of any
other humane procedure for the sole purpose of enabling an animal to be identified, is not a
regulated procedure if it causes only momentary pain or distress and no lasting harm” (page 2,

section 2.5). Nevertheless, the permissions for squirrels obtained from the then Nature Conser-

vancy Council and Ministry of Agriculture, Fisheries and Food included review of the pro-

posed marking on animal welfare grounds, as did those for marking buzzards from the British

Trust for Ornithology, which already at that time had a committee dedicated to the ethics of

marking. Elton Estates Ltd., British Petroleum Ltd. and many South Dorset landowners gener-

ously granted land access during the entire data collection process. The data files for red and

gray squirrels, and the radio-tracking data for buzzards, are available for public use through

the Dryad Digital Repository via the following link: http://dx.doi.org/10.5061/dryad.8n183.

The Land Cover Map of Great Britain, which was used in the analysis involving buzzards, is

available against permission at public site http://www.ceh.ac.uk/services/land-cover-map-

1990.

The 15 red squirrels were the 14 used by [46] to correlate body mass with range size, plus

one that was omitted from the previous analysis as its weight was not recorded. Convoluted

and fragmented woodland (5 ha) in 17 patches, set in grassland around oil-production sites on

the 13-ha Furzey Island in Poole Harbour, were digitized as vectors from an aerial photograph

(see Fig 1 in [46]). The woodland was dominated by Scots pines (Pinus sylvestris) and the

demography of the squirrels depended on the crops of pine cones [47].

The 17 gray squirrels were those radio-tracked during July 1989 at Elton estate [22], data

for plotting also in [45]. The map was created with six categories, digitized as (1) two blocks of

mature deciduous woodland (dominated by oak Quercus robur) totaling 27.9 ha, (2) a 1.5 ha

patch of mature larch (Larix decidua), (3) a 6.3 ha plantation of young beech (Fagus sylvatica),

(4) a 4.0 ha Thuja plantation and (5) surrounding fields of wheat extending for more than 75

ha. The squirrels fed mainly on acorns in autumn and winter, with tree flowers and larch

cones taken in spring, and also ate ripening wheat outside the 40 ha of woodland while being

tracked [48].

The 114 common buzzards were monitored in Dorset during October 1990–94, shortly

after their main autumn dispersal period [49], when they were feeding mainly on invertebrate

prey. For these wide-ranging raptors, mapping data were provided as 25x25-m pixels in the

Land Cover Map of Great Britain (LCMGB), which was developed by supervised likelihood

classifications of combined winter and summer Landsat Thematic Mapper scenes imaged in

November 1989 and July 1990 [50,51]. During analysis, the 25 land-cover types were initially

grouped into 16 map categories: (1) sea and inland water, (2) coastal zones (including beach

mudflat and saltmarsh), (3) sparse grassland of dunes and heaths, (4) short (grazed and

mown) grass, (5) seasonally long grass (mainly meadows), (6) marshland, (7) open shrub areas

of mainly heath, grass and bogs, (8) dense shrub areas, (9) bracken (Pteridium aquilinum),
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(10) scrub and orchards (11) broadleaf or mixed woodland, (12) conifer woods, (13) arable

crops, (14) suburban, (15) urban land and (16) bare ground including felled woodland. Inland

map categories were relatively fine-grained with respect to buzzard ranges (see Fig 1 in [52]).

RADA, thus, was applied to the following map categories (% of total 160,000 ha map area):

sparse grass (2.5%), short grass (18.0%), seasonally long grass (34.5%), arable crops (14.9%),

deciduous and mixed woodland (14.0%), conifer woodland (4.9%), suburban land (3.2%),

sparse shrub (2.0%), dense shrub (1.6%), scrub and orchards (1.5%) and marshland (1.0%).

For all three species, home-range core estimates were based on standard samples of 30 loca-

tions, recorded by triangulation during VHF radio-tracking in morning, mid-day and after-

noon (intervals which gave good temporal independence in autocorrelation analyses—for 10

days across two consecutive weeks. These sample sizes gave stable seasonal home-range core

areas when plotted as density-based isopleths and MCPs [53], although larger samples might

have had less method-dependent variance for the most complex outlines, of polygons based on

restricted edges and nearest-neighbor cluster analysis [54].

Results

Red squirrels

Red squirrels on Furzey Island had their resources distributed in fragmented pine woodland in

little-used grassland around tarmac areas, the whole being surrounded by sea. For representing

the individuals’ home range cores, the more expansive, location-density algorithms (ellipses

and kernel contours) tended to include tarmac or sea, both of which are seldom used by squir-

rels. An equally strong RADA result was obtained for tighter outlines round ix001 clusters that

contained on average 94% of the locations, which thus seemed a better representation of their

home ranges. Indeed, this showed the strongest and most significant correlation with the pro-

portion of pine woodland (S1 Table, Fig 3): observed r = -0.86 (n = 15), randomized mean r =
+0.06 (95% CL = -0.54, +0.59, n = 999), with no random value below -0.86 (P� 0.002). Predic-

tion for mean minimum required woodland area was then 0.08 ha (0.01–0.17). That the slope

of the regression, b = -0.23 (±0.04), was considerably shallower than -1 (P<0.001) suggested

Fig 3. RADA results for red squirrels and pine woodland. Proportion of pine woodland (ah /A) as a function of

home-range area (A). A estimated using ix001.

https://doi.org/10.1371/journal.pone.0206354.g003
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that red squirrels were not exploiting resources uniformly—individuals that had the smallest

ranges either had the best of the pine woodland, used it most efficiently or required less

resource as they moved less. Geometric mean woodland area (�ah) was 0.48 ha (0.24–0.97) in

the ix001 polygons.

Gray squirrels

The home ranges of gray squirrels within the rectangular landscape patches were, as for red

squirrels, also better represented by tighter outlines. With concave polygons round clusters

that included 90% of locations, Cv90, and prior to excluding any map category, the correlation

with mature deciduous woodland was r = -0.54 (n = 17), mean random r = +0.06 (95% CL

-0.47, +0.52, n = 999) with 6 values less than -0.54 (P< 0.05). Within Cv90 outlines, mature

deciduous woodland (mean = 38%) was considerably more common than wheat (mean =

5.3%), meaning that the former could mask possible relationships for the latter. To avoid this,

the analysis was also run before (for comparison) and after omitting mature deciduous wood-

land. Omitting it improved results for wheat from r = -0.56 (n = 17, P< 0.01 by randomiza-

tion) to r = -0.73 (n = 17, P< 0.002). From this, predicted mean minimum wheat requirement

was 0.035 ha. A relatively similar mean estimate of 0.046 ha within Cv90 outlines reflected a

regression slope close to -1, reinforcing the strong pattern of wheat-area-dependence. The

squirrels were not usually recorded more than 10 m from the edge of the wood and usually fed

along a strip of 30–50 m of wheat field.

In contrast to what happened in range outlines, within the study area as a whole wheat was

more common (48.6 ha) than woodland (18.1 ha). This led, during randomization, to large

outlines tending to contain more wheat, which could lead to masking of woodland. To account

for this, the analysis was also run excluding wheat and two squirrels that had no mature decid-

uous woodland within Cv90 outlines (Fig 4). Significance for woodland increased from r =

-0.54 (n = 15, P< 0.05 by randomization) to r = -0.56 (n = 15, P� 0.005) with mean random r
= +0.38 (95% CL -0.09, +0.67). There was 0.34 ha (0.11–1.12) of mature deciduous woodland

in the 0.89 ha (0.47–1.68) Cv90 polygons.

Fig 4. RADA results for gray squirrels and wheat. Proportion of wheat (ah /A) as a function of home-range area (A)

after excluding woodland; ‘ represents a squirrel lacking wheat in its range. A estimated using Cv90.

https://doi.org/10.1371/journal.pone.0206354.g004
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Common buzzards

The strongest correlations before removal of any map category were for seasonally long grass

within Koad outlines (adaptive kernel density plots with least-squares optimizing). Koad99

gave the most significant observed r = -0.20 (n = 114), differing from random r = +0.10 (95%

CL -.07, +0.27, n = 999) with all values > -0.20 in two randomization runs (P< 0.001). How-

ever, kernel plots that include 99% of location density distributions are extremely expansive

outlines, likely to cover large areas not used by the birds. Moreover, the slope was very shallow

(b = -0.06), so that the prediction from the intercept for meadow was close to 0 and its upper

95%CL corresponded to only 0.05 ha.

In general, regressions of map category area on range area for buzzards followed a pattern

summarized in Fig 5. At the smallest core sizes, the occurrence of Ai smaller than ah could pro-

duce curvilinear regressions and hence underestimation of ah. With increase in core size,

regressions tended to become linear with steeper slopes, until a core size was reached at which

range areas related less strongly to ah, while in larger core sizes the predicted minimum ah
declined. We considered that the best estimate of ah was the maximum core size at which there

was still a large intercept on the x-axis. In practice, it was convenient to assess core sizes at

which ah remained high relative to the absolute value of the slope (i.e. as ah/|b|), because

decline in slope was more gradual owing to its logarithmic scale (Fig 6). This gave a very clear

peak for Koad65, in which the meadow category had a mean area of 13.5 ha (11–16.5). None of

the 114 buzzards had less than 1.4 ha of meadow within this core.

Once meadow was removed, the strongest negative RADA correlations across a range of

habitats (sparse grass, open shrub, dense shrub and suburban land) were obtained for Xr40

hulls peeled to include 40% of locations nearest the range center (Table 1). When preying on

small mammals, buzzards commonly hunt from and sometimes defend perches on trees along

land-cover edges, such that relatively tight outlines represent an inner territorial core related

to this resource. Similar strong RADA and weak placement relationships for sparse grass and

the two shrub categories, plus knowledge that they all provide small mammal prey, suggested

that a category formed by the union of these three could be a more meaningful representation

of the distribution of the resource for buzzards. This combined map category, termed ‘rough

ground’, was then in 74% of the 9.4 ha (8.1–11.0) Xr40 hulls.

Fig 5. Variation in slope (b) influences prediction of ah. Prediction of ah changes as A increases from (a,b) small

cores that under-sample ah, through cores (c,d) with slope closer to -1 which yield the better predictions, to large cores

(e) that over-sample the area covered by the animal.

https://doi.org/10.1371/journal.pone.0206354.g005
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Repeating the analysis for the pooled-resource category considering a suite of estimators

yielded even stronger correlations for Cxi, the convex hull including all incremental cluster

nuclei. There was rough ground in 84% of the Cxi40 range outlines, and when outlines without

meadow were excluded the observed strongly negative r = -0.45 (n = 97) differed from ran-

domized r = -0.19 (95% CL -.41, +0.01, n = 999) at (P� 0.01). However, the plot of this in Fig

7 indicates that a rare-pixel effect was likely to be influencing the observed and randomly gen-

erated correlations. Although the area of rough ground in the smallest range cores was equiva-

lent to an average of 18–20 pixels, the lower edge of the distribution indicates an appreciable

contribution from ranges containing a single pixel (1 case), two pixels (10) and three pixels (5).

The randomly placed outlines were also affected by the rare-pixel effect of this sparsely distrib-

uted map category, so there was a negative bias to random r too. Replacement of missing

Fig 6. Results for buzzard home-ranges and seasonally long grass illustrate obtainment of optimal RADA

prediction. Regression slope (solid line) and predicted ah (dotted line) change as core size varies. The highest value for

the ratio ah/b (double line) corresponds to the core at which optimal prediction is obtained; in this case, Koad65.

https://doi.org/10.1371/journal.pone.0206354.g006

Table 1. RADA and placement results for buzzards and nine map categories relatively well represented in Xr40 after seasonally long grass was excluded.

RADA (missing values omitted) Placement

Map category % cores Cores r obs(rand) P Cores n% obs(rand) P
Sparse Grass 54 35 -0.74(-0.56) �0.05 30–40 46(34) <0.02

Short Grass 93 ns n/a 30–100 93(66) <0.001

Marsh 31 ns n/a 35–100 53(36) <0.001

Open Shrub 50 35–80 -0.67(-0.36) �0.01 ns n/a

Dense Shrub 37 30–50 -0.73(-0.36) <0.01 ns n/a

Deciduous Wood 81 ns ns 30–95 89(74) <0.002

Conifer Wood 44 75–100 +0.41(+0.10) <0.001 ns n/a

Arable Land 70 70–90 +0.17(-0.06) <0.01 65–95 93(83) �0.01

Suburban/rural 43 30–50 -0.71(-0.26) <0.002 30–55 43(58) <0.005

The percentage of Xr40 with each map category present, spread of cores with RADA significant at P<0.10 and Pearson’s r for greatest significance, followed by spread of

cores and peak significance for placement of home-range cores that always contained the map category. Where RADA was not significant (ns for P >0.10), peak values

were not applicable (n/a). Outlines in which each map category was missing were resampled. Correlations and placement results for map categories significantly

underused are also shown (dotted underline). Probabilities are underlined for (P�0.1), bold for (P�0.01) or bold-italic for (P�0.001).

https://doi.org/10.1371/journal.pone.0206354.t001
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values gave an observed r = -0.25, while in this case also tending to give positive r values by

randomization, with mean +0.15 (95% CL -0.07,+0.33, n = 999) and no random r values less

than -0.25 in two runs (P< 0.001).

Plotting ah/|b| for Cxi gave Cxi35 as the best estimator for ah. However, the area prediction

of 0.09 ha (0–0.25) was considerably smaller than �ah, the mean 0.54 ha (0.35–0.82) area of

rough ground associated with this core. Here, therefore, the mean again seemed a better pre-

dictor of the buzzards’ rough ground requirements.

In the same Cxi35, after long grass and rough ground were excluded, the suburban map cat-

egory–almost exclusively gardens–gave r = -0.52 with randomized r = -0.21 (95% CL -.42,

+0.01, n = 999) and 2 random r values less than -0.52 (P< 0.005) and mean area requirement

estimate (�ah) of 0.41 ha (0.29–0.59). This category was present in 51% of Cxi35 ranges, indicat-

ing the existence of divergent hunting strategies among tagged buzzards.

Discussion

RADA makes it possible to determine which map category contains an important accessible

resource, which home-range core the required resource amount is associated with, and what

area of the resource-containing map category is required on average by individuals. We have

illustrated this by applying it to two species of squirrels and a buzzard, as shown in Fig 8 for

the implementation defined in methods with further refinement developed in the results.

RADA differs from other habitat ‘use-availability’ analyses in three important ways. First, it

can extend beyond relative preference analysis, which compares use with availability at one or

two discrete spatial scales, by considering relationships over a series of home-range core sizes.

Second, unlike previous analyses, RADA does not treat every map category (or ‘habitat’)

within a home-range core as ‘used’, which can bias results when there are unselected or unused

map categories [34]. Third, RADA provides estimates of individual resource requirements,

which may be convenient as input for studying landscape suitability with agent-based

modeling.

Fig 7. Results for buzzards and rough ground after exclusion of seasonally long grass. Proportion of rough ground

(ah /A) as a function of home-range area (A) after excluding seasonally long grass. A estimated using Cxi40. This plot

also illustrates the ‘rare-pixel’ effect, which may occur when cores containing very few pixels of a resource-providing

map category (cases of 1 to 3 pixels at lower left) are used in the analysis.

https://doi.org/10.1371/journal.pone.0206354.g007
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Fig 8. An implementation of Resource-Area-Dependence Analysis. Given J map categories, denote the area of a map

category j contained within Ai by ai,j, where Ai denotes the home-range area of animal i (for a chosen home-range

estimator). Using the regression of ln(aj/A) against ln(A) with the most significant r (tested by randomization),

estimate ah, the minimum area requirement of the map category providing resource h, from the slope b and intercept

c. Repeat, removing the identified map category, until no further map category yields significant results. �Clarifying

this requires ancillary information, such as from fieldwork or literature.

https://doi.org/10.1371/journal.pone.0206354.g008
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Home-range-based interpretation

Results were significant for map categories that were known from independent observations to

contain important resources for each species. Squirrels require woodland for seeds and nests

[47,55], although gray squirrels also take foods such as wheat in summer [48]. RADA showed

dependence of red squirrel range size on mature woodland (Fig 3) and more strongly signifi-

cant relationships between gray squirrel ranges and wheat (Fig 4) than in either of two previ-

ous analyses that used the same data set to examine habitat preferences [22,25]. For buzzards,

too, seasonally long grass and rough ground categories not only correlated with range size

(Table 1 and Fig 7), but also affected productivity and persistence in an area [52,56]. Arable

land, which was favored in extensive outlines, but underused in cores (Table 1), has been rec-

ognized as a ‘poison chalice’ category associated with dispersal [52].

The closer the slope b is to -1, the more precise the area estimates are. A strong relationship

of this nature indicated resource-area-dependence for gray squirrels at Elton, who required

0.35–0.46 ha of wheat in summer.

However, shallower negative slopes lead to underestimation of ah. Results for buzzards

illustrate this point. No buzzards had as little meadow in their Koad65 as the 0.05 ha upper con-

fidence limit for the regression, and fewer than 5% had as little rough ground as the 0.08 ha

predicted by regression for the Cxi35. In cases such as these, where a lower 95% CL for

observed values does not overlap an upper 95% CL for the intercept, an alternative is to con-

sider the mean area of the h-containing map category in the outline for which there is a strong

relationship, knowing that this may over-estimate the average animal’s minimum resource

requirements. For buzzards, this yielded 14 ha (11–17) of meadow and 0.54 ha (0.35–0.82) of

rough ground. Similarly, for red squirrels on Furzey Island of 0.48 ha (0.24–0.97) ha of pine

woodland and for gray squirrels at Elton of 0.34 ha (0.11–1.12) of deciduous woodland. These

mean areas of woodland were appropriate for non-overlapping cores of females, which were at

densities of 2/ha on Furzey Island and 1.5/ha at Elton [47,57].

Where resource accessibility across map categories is comparable, similar RADA results are

expected even if the map categories are analyzed separately. This was likely the case for buz-

zards hunting small mammals [56] in the sparse grass and the two shrub categories, which

yielded very similar results. In such cases, it makes sense to group categories in a way that is

more biologically meaningful to the animal and redo the analysis, as was done here by combin-

ing the sparse grass and the shrub categories into the rough ground category that then yielded

even stronger results (Table 1).

In this exploration using ranges estimated from VHF telemetry datasets, we used 25 estima-

tors, including those in an earlier review [46] and with addition of a Local Convex Hull

(LoCoH) analogue. In order to minimize risk of Type I errors, one solution is to investigate no

more than five estimators and reduce the level of probability considered to be statistically sig-

nificant from P< 0.05 to P< 0.01. From experience here and previously, we would recom-

mend (i) ellipse (Ejt) and (ii) kernel (K10d or Koad) as expansive, density-based estimators,

with (iii) peeled hull Xr (which includes the outer MCP as Xr100) and separate nearest-neigh-

bour cluster (iv) Cxs as link-distance estimators for tight cores, especially on granular maps. If

(iii) and (iv) give strong relationships, then the single hull round cluster nuclei Cxi is a good

choice for (v), but if only (iv) is strong then a further option with separate clusters or concavity

(ix or Cv or a LoCoH analogue) is indicated as (v).

Animal population considerations

A tacit assumption of RADA is that animals are obliged by energy considerations or competi-

tion to have the resources they need within their home-ranges, even if overlap of more
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excursive areas is not strictly ‘area-minimizing’ [58]. Otherwise, relationships between home-

range area and resource content may be weak.

There may also be divergent strategies with regards to resource use by the animals under

study [59]. When this can be discovered from a priori evidence (e.g. [8]), or is suggested from

the log-log plot, statistical separation of distributions for each specialist group (e.g. [60]) may

justify separate analyses. Combination of range placement analysis with RADA may also be

important for detecting divergence. In buzzards, compact range outlines were placed away

from the suburban map category for a significant proportion of birds (Table 1), but the pro-

portion of birds (about half) that had this map category within small cluster-based hulls tended

to show area-dependence.

Robust application

For RADA, the quality of results is intimately associated with how well the biological pattern

was detected by the datasets and the model assumptions were met. For example, variation in

resource homogeneity within patches will militate against detecting resource importance. Sig-

nificant b values for seasonally long grass of around -0.2 in buzzard ranges (as opposed to

being closer to -1.0) were probably due to this map category in the LCMGB not representing

homogeneously distributed resources. Buzzards will have been feeding on earthworms [56]

and it is plausible that larger patches in larger ranges may have represented cultivated grass-

land, where worm densities are lower than in small permanent paddocks. Resources such as

worms will have been available in most other map categories, but were most accessible to or

desired by buzzards in seasons when grass was short. In future analyses, we suggest that the

map category ‘seasonally long grass’ be split into ‘cultivated grassland’ and ‘paddocks’ (<1ha).

Fortunately, the ability to collect better data is advancing fast owing to developments in

remote sensing and animal tracking. It is, for example, nowadays possible to map at different

spatial or temporal resolutions land- or vegetation-cover [61,62], species composition [63],

flooding gradient [64–66] or the entire three-dimensional vegetational structure [67]. This

allows homing into mapping resources for animals that live in open areas, under or within

canopies or in places with complicated relief. Image processing algorithms have also improved.

For example, spatial resolution can be increased by fusing spectral bands with the panchro-

matic band, or classification results can be optimized by confronting results from a suite of

automated or supervised classification methods [68–70]. Importantly for ecologists seeking

long term data, there is a growing body of techniques for taking advantage of most, if not all,

images from temporal series of satellite imagery, such as that from the Landsat sensors [71,72].

In summary, this field is advancing fast and with it the ability to map resources.

Technologies for assessing animal movement, on their side, have also been undergoing

major advances, ushered in initially by Very High Frequency (VHF) technology and more

recently by Global Positioning Systems (GPS) [31,53,73,74], with emerging low-cost options

increasing the accessibility of researchers and conservationists to this technology [75]. Current

algorithms make better use of the added information provided by GPS data, leading to more

refined home-range estimates [76–78] or predictions [58,79–82]. Moreover, better ways of esti-

mating ah than our proposed ‘maximum core size at which there was still a large intercept on

the x-axis’ may emerge from more extensive use of RADA. The concept of home-range itself,

for which no universal definition has been agreed upon, has also been maturing [53,74,83–85].

Such advancements will allow for increased objectivity when choosing the estimator for use in

RADA, which will, in turn, contribute to reducing the likelihood of Type I errors.

Having said this, from the perspective of RADA as a method it is encouraging that clear pat-

terns and quite strong relationships (Figs 3, 4 and 7) were obtained with maps produced with
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30-year-old imagery and samples for home-range estimation considerably smaller than the

usual GPS samples of today. Better datasets and concepts should lead to more robust RADA

results about how animals’ home-ranges are structured by resources.
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