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cDepartment of Mechanical Engineering - Federal University of Rio de Janeiro,
Rio de Janeiro, RJ, Brazil

Abstract

Helicopters are aricraft with rotational wings with many sub-systems
presenting nonlinear dynamics. One of these sub-systems is the main
rotor, which is responsible to provide the sustentation of the aircraft.
Nonlinear equations of motion are applied to simulate the dynamics of
the main rotor. The main rotor responses are analyzed carrying out
some simulations with different numerical values of frequency associ-
ated to the motion equations. The helicopter dynamics can presents
a very dangerous situation, such as the ground resonance caused by
the interaction between the ground and the rotorcraft. The rotor dy-
namical analysis is performed by breeding technique, where the model
is executed under a perturbed initial condition. The difference be-
tween the reference and the perturbed dynamics is called bred vector.
The time series of bred vector magnitude is employed for describing
classes of dynamics predictability, in other words, the classes represent
the degree of confidence for the simulated dynamics. Two neuro-fuzzy
classifiers are used in our analysis: ANFIS and Guaje software pack-
ages. ANFIS codify the Takige-Sugeno approach, while Gauje is a
computer system dealing with Mamdami formulation.

Keywords: Dynamic analysis, helicopter flight dynamics, bred vector,

neuro-fuzzy systems.

1. Introduction

Helicopter main rotor dynamics can be represented by a set of nonlinear
equations. A particular vibration on the main rotor is produced while the
helicopter is on the ground over its landing gear. This instability is known
as ground resonance and it has been studied since 1958 by Coleman and
Feingold [1, 2].
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The study of the helicopter dynamical system is important to identify
different types of the aircraft behavior. In particular, for understanding how
the behavior changes as the system parameter changes, to avoid phenomena
such as the ground resonance.

The dynamical system characterization has been done using several tools
such as Lyapunov exponents, bifurcation diagram, Poincaré section. An ap-
proach known as bred vector has been used in data assimilation and atmo-
spheric models [5, 6]. Bred vectors are the difference between two simula-
tions fo the dynamical system. Such diffenrece is computed from the ref-
erence dynamics (control) and perturbed dynamics, after some time-steps
[8].

Here, the bredding method is used to analyze the helicopter rotor dy-
namics and provide pairs of input/output required for neuro-fuzzy system
GUAJE (Generating Understandable and Accurate fuzzy models in a Java
Environment) [17]. GUAJE is based on Mamdami’s fuzzy scheme. The
Mamdami’s approach can provide a more easily interpretable rules. It was
employed as a classifier and also for deriving some rules for the rotor dy-
namics. Furthermore, the accuracy results obtained with GUAJE was very
good.

2. Rotor Model Dynamics

In order to obtain the governing equations of motion of a three-blade
helicopter which is modeled by a simplified multibody system, the following
assumptions are made: (1) the movement occurs only in (x, y) plane, (2)
the blades are rigid bars, (3) the rotor head is a rigid cylinder with constant
rotational speed, and (4) only the first axial/lateral modes of the helicopter
are taken into account. With such hypotheses, the system has five degrees
of freedom (DOF): the x and y displacements of the center of mass of the
rotor head, and the blade angles βi (i = 1, ..., N), where N is the number of
blades, which is three in the present model. Using the mathematical model
developed by the authors [6], Figure 1 shows the general scheme of the
proposed model.

The blades are attached to the rotor head through a point called link,
distant d from origin O, the geometric center of the rotor head. At each
link, there is a linear torsional spring and damping.

Let us consider a inertial frame of reference, with basis {n1,n2}, and a
Cartesian coordinate system with origin O. The position of the center of
mass of the rotor head H∗ with respect to the origin can be written as:



Figure 1: System Coordinate and Degrees of Freedom [6]

OrH∗(t) = [x(t) + e cos(ε+ Ωt)]n1 + [y(t) + e sin(ε+ Ωt)]n2 (1)

where x is the displacement of the geometric center of the rotor head in the
direction of n1, y is the displacement of the geometric center of the rotor
head in the direction of n2 , Ω is the rotor head constant rotation speed, e
is the eccentricity of the rotor head, ε is the angle of the eccentricity (figure
2).

Considering that each blade has a phase angle (φi), or azimuth, the
position of the center of mass of the blade Bi with respect to O can be
written as:

OrBi(t) = [x(t) + d cos(φ+ Ωt) +

(
hBi

2

)
cos(φ+ Ωt+ βi(t))]n1

+[y(t) + d sin(φ+ Ωt) +

(
hBi

2

)
sin(φ+ Ωt+ βi(t))]n2 (2)

where hBi is the length of the i-th blade and βi is the angle of the i-th blade
in the direction of n3 with respect to a frame that rotates with the rotor
head.



Figure 2: Blade Dynamics Scheme [6]

2.1 Newton Second Law

Applying Newton’s second law (figure 3), we have:

F =
dGT

dt
(3)

where GT is the total linear momentum of the system and the derivative
is with respect to the inertial frame of reference. The vector with external
forces F acting on the system due to the tower stiffness/damping and due
to gravity are written as:

F = [−cxẋ(t)− kxx(t)]n1 + [−cy ẏ(t)− kyy(t)− (NmBi
+mH)g]n2 (4)

where g is the acceleration of gravity, kx, ky, cx, cy are the stiffness and damp-
ing coefficients related to the helicopter, in the n1 and n2 directions. The
i-th blade mass is mBi , and mH is the sum of the mass of the rotor head.

The total linear momentum is composed by the linear momentum of the
rotor head plus the linear momentum of the blades. The linear momentum
of the nacelle/tower is given by:

GH = mHvH∗ (5)

where vH∗ is the velocity of the center of mass of the rotor head, which
is the derivative of the position OH∗ with respect to the inertial frame of
reference. The linear momentum of the i-th blade is given by:



GBi
= mBi

vBi
(6)

where vBi is the velocity of the center of mass of the i-th blade, which is
the derivative of the position OrBi with respect to the inertial frame of
reference. The total linear momentum of the system, if all blades have the
same mass, is then defined by:

GT = GH +

N∑
n=1

GBi = mHvH ∗+mB

N∑
n=1

vBi (7)

Figure 3: Acting Forces [6]

After some manipulations, we get the first two equations of motion of
the system:

(NmB +mH)ẍ(t) + cxẋ(t) + kxx(t) = emHΩ2 cos(ε+ Ωt) +

dmBΩ2
N∑

n=1

cos(φi + Ωt) +mB

(
hB
2

) N∑
n=1

[β̈i(t) sin(φi + Ωt+ βi(t)) +

(Ω + β̇i(t))
2 cos(φi + Ωt+ βi(t))] (8)



(NmB +mH)ÿ(t) + cy ẏ(t) + kyy(t) + (NmBi +mH)g =

emHΩ2 sin(ε+ Ωt) + dmBΩ2
N∑

n=1

sin(φi + Ωt) +

mB

(
hB
2

) N∑
n=1

[−β̈i(t) cos(φi + Ωt+ βi(t)) +

(Ω + β̇i(t))
2 sin(φi + Ωt+ βi(t))] (9)

where the over dot is the derivative with respect to time.
Unfortunately, these equations are not sufficient to analyze the system

because the system has (N + 2) DOFs. One possibility is to develop three
equations of motion for each rigid body, and end up with 3(N + 2) equations;
but, fortunately, we do not need so many equations. Since we are not
interested in the interaction forces among the rigid bodies, we will calculate
the angular momentum with respect to each link, so that only N more
equations are required to analyze the system. The price to pay is that the
link is a moving point not coincident with the center of mass, therefore,
attention is required because M 6= dH/dt.

2.2 Euler Law

Applying the Euler’s law, we have:

MBi

Li
=
dIBi

Li
ω

dt
+ (mBi

)LirBi
∗ × aLi (10)

where MBi
Li

is the vector of external moments acting on the i-th blade with
respect to link Li. The angular inertia tensor of the i-th blade with respect
to link Li is IBi

Li
, LirBi is the position of the center of mass of the i-th

blade with respect to Li , and aLi is the acceleration of Li. Note that the
additional term on the right of the above equation appears because the point
Li has an acceleration which is not zero. The vector of external moments
acting on the i-blade is given by:

MBi

Li
= [−ciβ̇i(t)− kiβi(t)−mBig

(
hBi

2

)
cos(φi + Ω(t) + βi(t)]b3 (11)



where ki and ci are i-th blade stiffness and damping coefficients. The posi-
tion of the center of mass of the i-th blade with respect to Li can be written
as:

LirBi(t) =

[(
hBi

2

)
cos(φi + Ω(t) + βi(t)

]
n1

+

[(
hBi

2

)
sin(φi + Ω(t) + βi(t)

]
n2 (12)

and the acceleration of the link is given by:

aLi
(t) = [ẍ(t)− dΩ2 cos(φi + Ω(t)]n1 + [ÿ(t)− dΩ2 sin(φi + Ω(t)]n2 . (13)

Again, after some manipulations, we get the extra N equations of motion
of the system (i = 1, ..., N):

1

3
mBih

2
Bi
β̈i(t) + ciβ̇i(t) + kiβi(t) +mBi

hBi

2
dΩ2 sinβi +

mBig
hBi

2
cos(φi + Ωt+ βi(t)) = mBi

hBi

2
[ẍ(t) sin(φi + Ωt+ βi(t))−

ÿ(t) cos(φi + Ωt+ βi(t))] (14)

Setting N = 3 (three blade system), the five equations of motion of the
proposed model are given by Eqs. (8), (9) and (14), which form a set of
coupled, nonlinear, second order ordinary differential equations, that must
be solved numerically.

3 Non-linear analysis

An analysis to identify the dynamics behaviour was carried out using the
0-1 test [20] (red OBS: Citar o teu artigo onde esta analise foi feita!). The
test is applied to detect chaos regime in a time series. Other approaches can
be used to distinguish the nature of the dynamics, such as the Lyapunov
exponent [18, 19]. The 0-1 test is much simpler, and it can be applied to
continuous or discrete time series from experimental data or a mathematical
equations. The 0-1 test returns values close to one in the presence of chaos
and close zero otherwise [21].

Our results show ...



3.2 Bred vector analysis

Breeding was first used as a method to generate initial perturbations for
ensemble forecasting in numerical weather prediction at the National Centers
for Environmental Prediction (NCEP) [8, 9] but it was also employed in
several nonlinear models [10, 13, 14, 15].

The method consists in running the nonlinear model twice. First of all,
the model is run with the original data (control run) next another execution
is realized with a small perturbation added to it. The control solution is
subtracted from the perturbed solution after a fixed amount of time steps
and the rescaled difference (a bred vector) is then added to the control run
and the process repeated. The growth rate of the bred vectors is a measure
of the local instability of flow [9, 13]. Figure 4 shows bred vectors growth.

Figure 4: Bred vector growth [16]

The bred vector algorithm [11] is described in detail below:

1. Start with a initial perturbation δr0 = r0 + δr0. The initialization is
executed only once

2. Add the perturbation calculated in the previous step to the basic so-
lution, integrate the perturbed condition with the nonlinear model
for a fixed number of time steps, and subtract the original unper-
turbed solution from the perturbed nonlinear integration δr0(t) =
Φ(δr0 + r0, t0 + n∆t)− Φ(r0, t0 + n∆t)

3. Evalute the growth ratio g = 1
n ln

(
‖δr(t)‖
‖δr0‖

)
4. Re-scale the perturbation, and repete the process.

Breeding method has been used with success to predict the behavior of
chaotic systems such as the Lorenz strange attractor [10] and the three-waves
systems [13]. It was also applied to the AGCM-CPTEC model generating
bred vectors that indicate regions with high and low predictability, regions



with small and large bred vector magnitude [32]. Our objective is to extend
such methodology to investigate the rotor model dynamics.

3.3 Classification: neuro-fuzzy approach

The combination of fuzzy logic and neural networks are known as neuro-
fuzzy. It constitutes a hybrid intelligent system which is capable of reasoning
and learning in an uncertain and imprecise environment. The idea is to
integrate different approaches to solve problems, extracting the advantages
from each of them.

The groundwork of the neuro-fuzzy approach is to create or improve a
fuzzy system automatically by means of neural network methods. An even
more important aspect is that the system should always be interpretable in
terms of fuzzy if-then rules because it is based on a fuzzy system reflecting
vague knowledge.

In short, we can point out, among others, some neuro-fuzzy software
such as the professional commercial tools like the Matlab toolboxes which
include the well-known ANFIS (Adaptive Neuro-Fuzzy System), GUAJE
(Generating Understandable and Accurate Fuzzy Models in a Java Envi-
ronment) and NEFCLASS (Neuro-Fuzzy Classification). In this work, the
experiments have been made with ANFIS and GUAJE. However, we will
present the results only with GUAJE because this takes the better results.

3.3.1 ANFIS neuro-fuzzy classifier

3.3.1 Guaje neuro-fuzzy classifier

4 Numerical Results

The computer results were conducted in an Intel Core I5 2.27 GHz under
Linux operating system. Our mathematical model described in Section 2 was
implemented in Matlab R2011b.

The rotor dynamical system of equations were integrated numerically
using the fourth-order RungeKutta time scheme with a time step of ∆t =
0.0001, Figure 5 illustrates the trajectory on space-phase which represents
the movement of the rotor head, as we can see it is confined in a finite region.
Finally, we set the following parameters: kx and ky equal to 113 lb/ft, mBi

equal to 0.1 slug, mH equal to 6.8 slugs, Ω equal to 90 rad/s and hB equal
to 10 ft.

4.1 Non-linear regime evaluation (Test 0-1)



Figure 5: Position of the Center Rotor Head

We used the 0-1 test to identified if our rotor dynamics is chaotic or
regular. The encoded program was developed by [27], the total size of the
time series for the variable x(t) is 110.000 but we choose a sample of 2000
elements. At each 50 time steps, we took one element of the time series. We
set the lower bound for c equal 0 and the upper bound equal π. The asymp-
totic growth rate K found was −0.0113 which means that the helicopter
rotor dynamics is regular.

4.3 Bred vector analysis

In this work we are interested in the study of stable dynamics, it was
the reason that we set frequency Ω equal to 90 rad/s. For our analysis, we
divided the system in two regimes. The first regime is identified “turn right”
Figure 6(a), and the second regime “turn left”, Figure 6(b). The same idea
was applied in [10] with the Lorenz model they call the regimes as “warm
winter” and “cold winter”. Although apparently simple, in these systems it
is hard to identify when a regime change.

The bred vector approach was applied in the rotor dynamics model. The
first integration was done with ∆t = 0.0001, and a second run started from
an initial perturbation δx0 added to the control at time t0. The difference
δx between the perturbed and the control run was taken at every 8 times
steps. The growth rate of the perturbation was measured per time step as
[10]:



(a) Right Regime (b) Left Regime

Figure 6: Right and Left Regime

g =
1

n
ln
( ‖δx‖
‖δx0‖

)
(15)

We used 6 colors to indicate the bred vector growth intervals, described
in Table 1. Figure 7 illustrated the bred vector growth after 8 times steps.

Table 1: Color that Represents the Bred Vector Growth
Color BV Growth

Yellow: [-0,0930 ; -0,0196]
Green: (-0,0196 ; -0,0013]
Blue: (-0,0013 ; 0,0033]
Red: ( 0,0033 ; 0,0075]
Black: ( 0,0075 ; 0.0250]
Cyan: ( 0,0250 ; 0,2006]

4.4 Neuro-fuzzy classification

The rotor dynamic model was then executed for 110.000 time steps. In
the execution the regimes change 470 times, 365 times turn right and 105
left. From the observation of the system depicted in Figures 6(a), 6(b) and
7, the following rules were observed:

1. The presence of four or five blue stars indicates that the trajectory
will turn (right or left)



Figure 7: X(t) for Stable Dynamic (Ω = 90 rad/s) with the Bred Vector
Intervals.

2. After 4 cycles turning right, the trajectory will turn left one or two
times on the 5th or 6th cycle

Using these rules we want to embrace mapping of different classes of
dynamics. It is a little difficult work to find the rules presented above. This
task requires much knowledge and time of the analyst. One way to help
the analyst is to automate the rules that can characterize the dynamics. It
can be done using neuro-fuzzy approach which is an appropriate artificial
intelligence technique for this particular problem.

We use the GUAJE system to combine knowledge from the expert in-
formation and/or from the data. Figure 8 shows the automatic rules (17)
generated by the GUAJE system. Several rules can be grouped to become
even easier interpretable system.

Moreover, we use the magnitude of bred vector as the input for a pre-
sented neuro-fuzzy classifier GUAJE. Each sample is composed of the num-
ber of color stars that represents the bred vector magnitude. The start and
end of each sample occurs when the start/end of a curve which corresponds
the 4 or 5 blue bred vector.

For example, in Figure 9 the sample has start at A and end at B. After
the blue bred vector, we started the count of each color: green (13), yellow
(2), cyan (0), black (10), red (4) and blue (4). If one of the magnitudes does
not appear in the sample, we attribute zero (0) for the color not found, in



Figure 8: Automatic Rules Generated by GUAJE

this example it does not show magnitude cyan.

Figure 9: Input Sample for Neuro-Fuzzy System

The output was defined in Section 5.2. One output regime is “turn
right” (class 1), and the other output regime is “turn left” (class 0). We
have used 470 samples, divided as: training (329 - 70% of the total samples)
and validation (141 - 30% of the total samples).

We have performed 4 types of experiments using the helicopter rotor
dynamics. First, we divided the validation data set into balanced and un-
balanced samples, then we separated in normalized and unnormalized data.
Different techniques can be use to normalize the data set, in this work we
used min max normalization which takes the data inputs and mapped into
a range [0,1].

The confusion matrices obtained by the use of GUAJE with unbalanced
set are given in Table 2. The accuracy results for the rotor dynamics using
unbalanced set achieved 84.4% for unnormalized data and a little bit better
for normalized data with 85.1%. The lines correspond to the real class and



the column to system response.
Table 3 bring the confusion matrices obtained by the use of GUAJE with

balanced samples. The accuracy results for the rotor dynamics applying
balanced set achieved 85.8% for unnormalized data. We obtained the better
results with normalized data reaching 87.2%.

Table 2: Confusion Matrices - Unbalanced Data

Unnormalized Normalized

Class 0 1 Class 0 1
0 22 11 0 22 11
1 11 97 1 10 98

Table 3: Confusion Matrices - Balanced Data

Unnormalized Normalized

Class 0 1 Class 0 1
0 67 3 0 66 4
1 17 54 1 14 57

5 Final remarks
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