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ABSTRACT

A promising solution to solve the lack of Earth’s surface observation problem on
multi-spectral images consists in integrating multi-sensor data. However data must
be harmonized before its measures can be comparable and a treatment for gaps (due
to cloud cover, sensor defects, and partial images) must be considered. In this con-
text, the present research proposes a methodology to build a gap-free multi-source
and multi-spectral data cube, which involves Earth Observation data harmonization
and reconstruction. To accomplish this, we tested two harmonization procedures,
one based on linear regression and the other based on linear unmixing model, and
propose a procedure for spatial-temporal gap-filling, which does not require previ-
ous reference. Two approaches for filling gaps are developed. The first one aims at
improving a method based on spatial context of close-in-time images to fill small
clouds and stripe effects, where in our adaptation a weighting factor is used for each
pixel within segments. The second one uses a multi-temporal segmentation to fill the
remaining gaps. The gap-filling strategies are applied on two image data cubes com-
posed by Landsat-7/ETM+, Landsat-8/OLI images and CBERS-4/MUX images.
To validate the gap-filling procedure, we simulate artificial gaps in the images and,
subsequently we compare the original image with the gap-filled ones. Our approach
based on weighting factor surpassed the original method for all bands, presenting R2

greater than 0.90 and a V IF of at least 0.97, while asymptotically maintaining the
algorithm cost. It also preserved the texture on reconstructed images, and also was
capable of detecting narrow features, e.g., roads, riparian areas, and small streams.
The second approach based on multi-temporal segmentation filled all the remaining
gaps, 43.64% of the entire data cube. However, the estimated values are more af-
fected by uncertainty and the image texture is affected, resulting in a homogeneous
gap-filling. The harmonized and reconstructed areas were very similar to the original
data, presenting an UIQI of at least 0.92 and a V IF ranging from 0.6 to 0.7 on the
final method, showing the feasibility of the methodology.

Keywords: Time series analysis. Multi-source. Data cube. Gap-filling. Segmentation.
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PREENCHIMENTO DE LACUNAS EM CUBO DE DADOS DE
SENSORIAMENTO REMOTO ÓTICO MULTIFONTE POR MEIO

DE SEGMENTAÇÃO MULTINÍVEL E SEGMENTAÇÃO
MULTITEMPORAL

RESUMO

Uma solução promissora para suprimir a ausência de dados de observações da Terra
em imagens multi-espectrais, devido principalmente pela presença de nuvens, sombra
de nuvens, defeitos na aquisição de dados e imagens parciais, tem sido a integração
de dados multi-sensor. Contudo, deve-se harmonizar os dados provenientes de dife-
rentes sensores para que estes possam ser comparáveis entre sí, além de que, lacunas
de dados devem ser consideradas. Neste contexto, na presente pesquisa propõe-se um
procedimento para construir um cubo de dados multispectral, multifonte e livre de
lacunas, que envolve harmonização e reconstrução de dados da superfície terrestre.
Para tanto, foram testados dois procedimentos de harmonização, um baseado em
regressão linear e o segundo baseado em modelo linear de mistura espectral. Além
disso, propoe-se um procedimento espaço-temporal para preenchimento de lacunas
que não requer referência prévia da área. Foram desenvolvidas duas abordagens para
preenchimento de lacunas, aplicadas serialmente. A primeira abordagem visa apri-
morar um método baseado no contexto espacial para preencher lacunas oriundas
de pequenas nuvens e defeitos do sensor Landsat-7/ETM+. A segunda abordagem
de preenchimento de lacunas utiliza regiões homogêneas obtidas por meio de seg-
mentação multitemporal para preencher as lacunas restantes do cubo de dados. As
estratégias de preenchimento de lacunas são aplicadas em dois cubos de dados de
imagem em duas áreas de estudo. Um cubo foi gerado a partir de um conjunto
de dados composto por imagens Landsat-7/ETM+ e Landsat-8/OLI, e o segundo
incluindo também imagens CBERS-4/MUX neste conjunto de dados. Para validar
o procedimento de preenchimento de lacunas, foram simuladas lacunas artificiais
nas imagens e, posteriormente, comparou-se as imagens originais com as imagens
preenchidas. A abordagem baseada no fator de ponderação superou o método ori-
ginal para todas as bandas e apresentou R2 maior que 0,90 e um V IF com valores
superiores a 0,97, enquanto manteve assintóticamente o custo computacional do al-
goritmo. As imagens resultantes utilizando o método proposto tiveram sua textura
preservada, além de também ser capaz de detectar características estreitas nelas,
por exemplo, estradas, áreas ribeirinhas e pequenos riachos. A segunda abordagem
baseada na segmentação multitemporal, preencheu as lacunas restantes, um total de
43,64% de todo o cubo de dados. No entanto, os resultados obtidos nesta abordagem
foram mais incertos e a textura das áreas estimadas é afetada, resultando em um
preenchimento homogêneo. As áreas resultantes no processo de harmonização e re-
construção apresentaram-se bastante similares as originais, apresentando um UIQI
de pelo menos 0,92 e V IF variando entre 0,6 e 0,7, demonstrando a viabilidade da
metodologia.

Palavras-chave: Análise de Séries Temporais. Sensoriamento Remoto Multifonte.
Cubo de dados. Preenchimento de lacunas. Segmentação.
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1 INTRODUCTION

Satellite remote sensing instruments are one of the most valuable tools available
for understanding and monitoring changes occurring in land, coastal and oceanic
ecosystems. Several remote sensing applications, such as agricultural monitoring
and crop types mapping (BENDINI et al., 2017; MARUJO et al., 2017d), need a great
amount of images acquired in different times and free of clouds to provide timely
information on dynamic changes (KUENZER et al., 2015).

A wide range of satellite-borne instruments are currently in operation and some
of them are freely available on the internet. The Brazilian National Institute for
Space Research (INPE) pioneered the free provision of medium resolution satellite
data, releasing images at no cost from the second China-Brazil Earth Resources
Satellite (CBERS-2) (BANSKOTA et al., 2014). The adoption of this policy encouraged
the United States Geological Survey (USGS) to make Landsat data available in
2008 (WOODCOCK et al., 2008; BANSKOTA et al., 2014), which resulted in a greater
amount of access and use of orbital images (WULDER et al., 2012). Also the European
Copernicus program (BERGER et al., 2012) made available the access to all users for
Sentinel data, such as Sentinel-2A and Sentinel-2B, which have been used in various
earth observation applications. The free data approach persists to recent days with
free data availability from CBERS-4, Landsat-7, Landsat-8, MODIS, Sentinel-2, and
other sensors.

Orbital sensors with high spatial resolution capture information from the Earth’s
surface in more detail than lower spatial resolution sensors (EHLERS et al., 2002).
However, there is a compromise between the spatial, radiometric and temporal res-
olution characteristics of the sensor (LEFSKY; COHEN, 2003). Medium spatial reso-
lution sensors, which range from 10 to 50 m (EHLERS et al., 2002), generate interme-
diary data that suppress the spatial and temporal resolutions trade-off, since this
category of sensors can provide images with more spatial details than low spatial
resolution sensors and can revisit a place to acquire images faster than high spatial
resolution sensors.

Traditional change detection methods normally do not take advantage of the full
potential of historical series (temporal trajectory analysis), since these methods use
few images to map the Earth’s surface, normally a bi-temporal change detection
(COPPIN et al., 2004). In this context, time series of orbital images can provide a
set of information and patterns that cannot be found in single time observations,
e.g. as trends and periodicities (EHLERS, 2009). Because of that, the development of
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techniques that fully incorporate the temporal dimension remains an area of intense
research (GÓMEZ et al., 2016).

The concept of having multiple images of the same location, from different dates,
grouped in a single multi-dimensional array is known as an image data cube. Inte-
grating spectral and spatial information with the time component provides rich in-
formation to detail the space variations over time (PETITJEAN et al., 2012). However,
the absence of Earth’s surface observations, illustrated in Figure 1.1, due to cloud
presence, low temporal resolution and sensor defects (e.g. stripe gaps in Landsat-7
images) can limit the full exploitation of time series (VUOLO et al., 2017). Also in
this context, a characteristic in orbital images is that when the tile is located in the
bordering path/row regions partial images occur.

Figure 1.1 - Types of spatial image gaps.

Illustration of the main radiometric problems occurring when working with satellite data.
The first image illustrates the presence of clouds, which affects the surface observation by
optical sensors. The second image illustrates the Landsat-7/ETM+ Scan Line Corrector
(SLC) failure, which implies in stripes of missing data. The third image corresponds to
partial images, which occurs on the path/rows borders.

Source: Adapted from Vuolo et al. (2017).

Considering the possibility of data absence, it is important to develop tools capable
of reconstructing Earth Observation (EO) data, removing null observations, also
know as gaps, and estimating close-to-reality values to fill the gaps. Reconstruction
of EO data to obtain images without gaps, remains a challenge, nevertheless some
studies have been developed to solve these problems (MAXWELL, 2004; MAXWELL

et al., 2007; VUOLO et al., 2017).

2



Compared to the past years, nowadays there are more EO sensors available than
ever, as shown in Figure 1.2. Shen et al. (2016) have pointed out that multi-source
data is promising to complement EO data. However, since multi-source data dif-
fers in spatial, angular, spectral and temporal characteristics (SAMAIN et al., 2005),
image processing techniques are needed to standardize distinct sensor data so it
can be integrated (HOLDEN; WOODCOCK, 2016; ROY et al., 2016). We also have to
consider that even sensors having correlating bandwidths their Spectral Response
Function profiles can present significant differences (PINTO et al., 2016). In this con-
text, products that are gridded to a common pixel resolution, map projection, and
spatial extent (i.e., tile); atmospherically corrected and cloud masked to surface re-
flectance; normalized to a common nadir view geometry and adjusted to represent
similar spectral responses are also called harmonized (CLAVERIE et al., 2018).

Figure 1.2 - Timelines of optical, including multispectral, earth observation satellites from
1972 to 2015.

Visual timeline from 1972 to 2015 of the optical observation satellites, illustrating that
nowadays the number of imaging sensors is bigger than ever.

Source: Kuenzer et al. (2015).
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Therefore, the harmonization of multi-source orbital images is a crucial processing
step to generate gap-free time series. Although the EO data reconstruction is an open
problem (WULDER et al., 2015), attempts have been undertaken to harmonize data
from multiple sources, including vegetation index intercalibration (TRISHCHENKO

et al., 2002; STEVEN et al., 2003), reflectance fusion between medium and coarse
images (GAO et al., 2006), linear spectral unmixing (AMORÓS-LÓPEZ et al., 2013;
GEVAERT; GARCÍA-HARO, 2015) and bias adjustment (PINTO et al., 2016; ROY et al.,
2016; HOLDEN; WOODCOCK, 2016).

Wulder et al. (2015) have categorized the use of multiple sensors in three types of vir-
tual constellations according to "Application Readiness Levels" (ARL): (i) ARL-1,
which combine sensors whose data are incompatible due to different measurements
principles (e.g. passive and active systems), and (ii) ARL-2, which combine sensors
that share a common measurement principle, e.g. reflectance estimation, however
data transformation may be required depending on the sensors characteristics. (iii)
ARL-3, which combine sensors with similar spatial and similar spectral character-
istics, e.g. Landsat-7/ETM+, Landsat-8/OLI and CBERS-4/MUX with minimal
processing requirements.

Also according to Wulder et al. (2015) and regarding the ARL-3 category, very
few Earth-observation systems, apart from Landsat, independently meet the re-
quirements that are essential for mapping sensors, specifically: a systematic acqui-
sition strategy, consistent and calibrated radiometric quality, and long-term global
archives. One of the few cases is CBERS program.

Considering that nowadays Landsat-8/OLI, Landsat-7/ETM+ and CBERS-4/MUX
are in operation and the sensors present similar spectral bands (visible and near-
infrared), similar spatial resolution (30 and 20m) and acquisition geometry, with
a minimal spectral alignment and spatial resampling, CBERS-4/MUX data can
be used to build a virtual constellation alongside Landsat data and increase its
temporal resolution. Besides, we can also take into consideration other two points as
hypotheses to develop our work: (1) Landsat-8/OLI images can be used as reference
to spectrally harmonize Landsat-7/ETM+ and CBERS-4/MUX data, and (2) image
processing techniques can be used to reconstruct EO data to integrate a gap-free
multi-source optical remote sensing image data cube and, therefore, overcome the
lack of Earth surface observations in time series.

Within this perspective, the objective of this work is to propose a procedure to
build a gap-free multi-spectral data cube, which involves various processing tech-
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niques including EO data harmonization and reconstruction of missing EO data.
To accomplish this, we tested two spectral harmonization methods, one based on
linear regression and the other based on linear unmixing model. Once images were
harmonized, we developed a method for gap-filling imagery from Landsat-8/OLI,
Landsat-7/ETM+ and CBERS-4/MUX sensors based on spatial and temporal con-
text without requiring previous reference of the area. Two approaches for filling
gaps due primarily to cloud cover, sensor defects and partial images are developed.
The first improves a method proposed in the literature that uses spatial context
of close-in-time images to fill small gaps (small clouds and strips defects). It uses
the most frequent value within segments obtained in a multi-scale segmentation to
fill the gaps. The second one uses time series matching and homogeneous regions
obtained through a multi-temporal segmentation to estimate missing data. The gap-
filling strategies are applied on two image data cubes: one generated from Landsat-7
and Landsat-8 images, and the second one including also CBERS-4/MUX images
in dataset. To validate the method, we simulate artificial gaps in images and then
compare the original image with the gap-filling one.

In summary, this work contributions reach optical multi-source harmonization, inno-
vative gap-filling of remote sensing images and the building of remote sensing image
data cubes. The harmonization processes tested are based on linear regression and
linear unmixing model. The gap-filling procedure includes estimation of small gaps,
such as Landsat-7/ETM+ stripes, through a multi-scale segmentation and estima-
tion of larger gaps through multi-temporal segmentation. Unifying the mentioned
techniques a remote sensing image data cube is built.

1.1 Organization

The remaining chapters of this thesis are organized as follow:

• Chapter 2: presents a discussion on the main concepts of remote sens-
ing, multi-source approaches, image segmentation, time series, Analysis
Ready Data, EO data reconstruction and some considerations regarding
data provenance.

• Chapter 3: presents a detailed description of the proposed methodology,
tests and a study cases.

• Chapter 4: presents the main results obtained in this work, based on the
proposed methodology.
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• Chapter 5: presents considerations about the experimental results, conclu-
sions, as well as suggestions for future works.
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2 REVIEW

2.1 Optical Remote Sensing

According to Jensen (2007), the main components of a multispectral sensors are
the radiation detectors, with different wavelength band sensitivity, and the neces-
sary hardware. The digital data acquired by these sensors are normally stored as
numeric matrices. Each value in the matrix, called Digital Number (DN), is located
in a row and a column. The DN values range in an digital image is limited by the
radiometric resolution of the sensor, normally set as a number of bits. For instance,
the radiometric resolution of a sensor an image quantized in 8 bits will present values
in the range from 0 to 255.

A pixel (picture element) is the smallest element in a digital image. In the context
of Remote Sensing (RS) systems, each pixel represents the spectral response of a
specific Earth’s surface area measured by a sensor. This area size is related to the
sensor spatial resolution, the measure of the smallest object that can be resolved by
the sensor, stated in metres.

Since each detector has its own wavelength sensitivity, a data set can be composed
by a countable number of bands, presenting specific bright for each spectral band
(JENSEN, 2007). The number of bands (intervals) a sensor has and these bands
wavelength characterize its spectral resolution (JENSEN, 2007, Chapter 1). Satellites
constructed for resources monitoring normally are Sun-synchronous in order to as-
sure similar conditions during a subsequent image of the same area. Sensor revisit
time is called temporal resolution.

Each sensor has its own radiometric, spatial, spectral and temporal characteris-
tics. Landsat program provides the most faraway orbital image series, providing
observations since 1972 and is freely available (COHEN; GOWARD, 2004). Landsat-8
Operational Land Imager (OLI) and Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) are still operational, acquiring images, even with ETM+ limitations due to
a defect on the Scan Line Corrector (STOREY et al., 2005; MAXWELL, 2004). CBERS
program also provides freely available images,

CBERS-4 was launched in December 2014, and it is in operation. CBERS-4 carries a
Multispectral Camera (MUX), which is very similar to Landsat-7/ETM+ with 20m
of spatial resolution. Table 2.1 presents some characteristics for Landsat-7/ETM+,
Landsat-8/OLI and CBERS-4/MUX. These three satellites have been used in several
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EO studies (WULDER et al., 2015; WULDER et al., 2016; TOTH; JÓŹKÓW, 2016).

Table 2.1 - Landsat-7/ETM+, Landsat-8/OLI and CBERS-4/MUX specifications.

Satellite/Sensor
Landsat-7/ETM+ Landsat-8/OLI CBERS-4/MUX

Coastal 0.433 – 0.453
Blue 0.45-0.52 0.450–0.515 0.45-0.52
Green 0.53-0.61 0.525–0.600 0.52-0.59
Red 0.62-0.69 0.630–0.680 0.63-0.69

Spectral NIR 0.78-0.91 0.845–0.885 0.77-0.89
Bands Swir1 1.57-1.78 1.560–1.660
(µm) Swir2 2.08-2.35 2.100–2.300

Pan 0.52-0.90 0.500–0.680
Cirrus 1.36–1.39
TIRS1 10.42-12.50 10.6-11.19
TIRS2 11.5-12.51

Spatial Resolution (m) 30 30 20
Swath Width (km) 185 185 120
Orbit Height (km) 705 705 778
Inclination (degree) 98.2 98.2 98.5
Temporal Resolution 16 16 16(days)

2.1.1 Preprocessing

Images acquired by orbital sensors suffer from distortions caused by sensor, solar,
atmospheric, and topographic interactions (JENSEN, 2007). Therefore, it is necessary
to preprocess the images to correct various effets due to geometric mismatches, cloud,
cloud shadow, snow and atmosphere.

2.1.1.1 Geometric Corrections

The most common geometric corrections in an image is registration (YOUNG et al.,
2017). Image registration is a digital image processing technique that precisely aligns
two or more targets. In other words, it lines up images so that an object has the
same position in both images (FONSECA; MANJUNATH, 1996; SUNDARESAN et al.,
2007).

The registration technique normally consists of the following four steps (ZITOVÁ;

FLUSSER, 2003): (i) feature detection; (ii) feature matching; (iii) transform model
estimation; and (iv) image resampling and transformation. In the feature detection
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step, salient and distinctive objects in the image (closed-boundary regions, edges,
contours, line intersections, corners, etc.) are selected. In the feature matching pro-
cess, the correspondence between the features detected in the sensed image and those
detected in the reference image is established. Next, in the model estimation, the
type and parameters of the so-called mapping functions, aligning the sensed image
with the reference image, are estimated. Finally, the sensed image is transformed
by means of the mapping functions. Image values in non-integer coordinates are
computed by the appropriate interpolation technique.

In recent years, many automated registration methods have been proposed (ZITOVÁ;

FLUSSER, 2003; LE MOIGNE et al., 2010; DALMIYA; DHARUN, 2015). However, specif-
ically for multi-temporal applications, factors such as different illumination condi-
tions (annual and seasonal variations) and noise, which implies image intensity vari-
ations, must be considered in the geometric model (BEHLING et al., 2014; SEDAGHAT;

EBADI, 2015; GU et al., 2016). When considering multi-source data, the registration
method also must be capable to dealing with differences in the spatial, spectral and
radiometric resolution (GU et al., 2016).

In this context, Behling et al. (2014) proposed a methodology to fully register multi-
source and multi-temporal data. The method is based on the assumption that the
orthorectified standard data products of the various sensors only differ by constant
spatial offsets, which can be corrected by applying image-specific shifts. The authors
registered 26 years of Landsat (TM and ETM+), ASTER, SPOT and RapidEye sen-
sors data, with spatial resolution ranging from 5 to 400m, resulting in an absolute
accuracy of 23m Root Mean Square Error (RMSE). A sensor-internal coregistra-
tion is performed to obtain the high-accuracy spatial fit between datasets of the
same sensor avoiding the uncertainties that get introduced by the co-registration of
individual images to a spatial reference of a largely differing spatial resolution.

The higher spatial resolution dataset is downsampled to the lower resolution one.
Then, using a moving windows of 51x51 pixels, the correlation process is applied on
red and Near infrared (NIR) bands and repeated, until 100 tie points are identified
per image pair or 10% of all image pixels have been checked. After the removal of
outliers, the tie points are used to model the distortion, which is applied to correct
all dataset.
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2.1.1.2 Radiometric Correction

Radiance (W·m−2·sr−1) is the energy emitted by a surface into a unit solid angle, in a
specific direction, by a unit projected area, over a unit wavelength interval (JENSEN,
2007, Chapter 2). Reflectance is a unitless measure of the ratio of radiation reflected
by an object relative to the radiation incident upon the object (YOUNG et al., 2017).

Different surfaces interact with the Sun’s electromagnetic radiation in distinct ways.
The reflectance of an object is dependent on the material’s physical composition, its
roughness and geometric circumstances. Values obtained from absolute radiometric
correction, e.g. surface reflectance and land surface temperature, are better suited
for comparing across images than radiance discrete values (YOUNG et al., 2017).

Each sensor records signals that are stored as DN’s according to the sensor radio-
metric resolution and after a few preprocessing these signals can be used to estimate
reflectance values. The DN’s are calibrated to radiance values according to the sen-
sor specific gains and offsets coefficients in each spectral band. This relation may be
established following (PINTO et al., 2016):.

Li = Gi ×DNi + offseti, (2.1)

where Li is the top of atmosphere radiance at band i (W · m−2 · sr−1), DNi is
the digital number from the image at band i, Gi is the coefficient gain for band i

(W ·m−2 · sr−1) and offseti is the coefficient bias for band i (W ·m−2 · sr−1).

After a solar-effects correction, data can be converted from at-sensor spectral radi-
ance into top of atmosphere (ToA) reflectance. According to Chander et al. (2009),
there are some advantages in using ToA reflectance instead of at-sensor spectral
radiance when comparing images from different sensors: the cosine effect of different
solar zenith angles due to the time difference between data acquisitions is removed;
different values of the exoatmospheric solar irradiance arising from spectral band
differences are compensated; and the variation in the Earth-Sun distance between
different data acquisition dates are corrected. The ToA radiance can be converted
to planetary ToA reflectance data as:

ρλ = π · Lλ · d2

ESUNλ
· cos θz

, (2.2)
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where ρλ is the planetary ToA reflectance (unitless), π is the mathematical constant
(unitless), Lλ is the spectral radiance at the sensor’s aperture (W · m−2 · sr−1), d
is the Earth-Sun distance (astronomical units), θz is the solar zenith angle (degrees
or radians), and ESUNλ

· cos θz is mean exoatmospheric solar irradiance (W · m−2)
(CHANDER et al., 2009).

Chander et al. (2009) provides a table containing values of the Earth-Sun distance
for each day of the year. Since the exoatmospheric solar irradiance is dependent
to each sensor, Pinto et al. (2016) estimated its value for MUX and WFI on-board
CBERS-4. Using those parameters alongside the solar elevation, which are individual
to each image, it is possible to convert it into ToA Reflectance.

Atmospheric conditions and different illumination caused by the solar position and
terrain slope may cause undesired artifacts in RS images (PONS et al., 2014). The
atmospheric correction is a radiometric correction that uses the ToA reflectance and
a radiative transfer model alongside the atmosphere conditions to estimate surface
reflectance values. The most commonly used models are the Second Simulation of a
Satellite Signal in the Solar Spectrum (6S) and the Moderate resolution atmospheric
Transmission (MODTRAN) (CALLIECO; DELL’ACQUA, 2011).

The USGS EROS Science Processing Architecture (ESPA) provides surface re-
flectance products for Landsat-7/ETM+ and Landsat-8/OLI (UNITED STATES GEO-

LOGICAL SURVEY - USGS, 2017e). The product for both sensors uses the 6S radiation
propagation model through the Landsat Ecosystem Disturbance Adaptive Process-
ing System (LEDAPS) (UNITED STATES GEOLOGICAL SURVEY - USGS, 2017c) and
Landsat 8 Surface Reflectance Code (LaSRC) (UNITED STATES GEOLOGICAL SUR-

VEY - USGS, 2017d) algorithms, respectively (UNITED STATES GEOLOGICAL SURVEY

- USGS, 2017e), while for MODTRAN there is an ENVI software plugin (ENVI, 2009).

2.1.2 Cloud Detection

Optical RS images are vulnerable to the occurrence of clouds, since clouds and
cloud shadows affect the surface radiometric response (JENSEN, 2007). The white
color appearance of clouds in the satellite images, can be determined by the additive
effect of all wavelengths of the visible spectrum (POLIDORIO et al., 2005).

Methods for detecting clouds and cloud shadows in scenes that present water bodies
and bare soil, using only sensor spectral responses, may not work properly. This is
due to the low reflectance on water bodies that results in similar spectral charac-
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teristics in areas affected by shadows and to the high reflectance on bare soil that
present similar behavior as exhibited by clouds (ABREU et al., 2013).

Recent methods such as the Function of Mask (Fmask) algorithm (ZHU;WOODCOCK,
2012; ZHU et al., 2015), uses ToA reflectance and Brightness Temperature data as in-
puts to provide a cloud and cloud shadow mask. USGS uses this method as standard
cloud mask for Landsat-7 and an enhanced version for Landsat-8 (UNITED STATES

GEOLOGICAL SURVEY - USGS, 2015).

First, Fmask separates potential cloud pixels and clear-sky pixels. Then, the ther-
mal bands are used to produce a probability mask for clouds over land and water
separately. This probability mask for clouds is combined with the potential cloud
pixels and a potential cloud layer is derived (ZHU; WOODCOCK, 2012; ZHU et al.,
2015). To detect cloud shadows, a mask of dark pixels is extracted by thresholding
the NIR band, then a prediction of possible cloud shadow locations is done using
the view angle of the satellite sensor and the illuminating angle. The areas with
maximum similarity to potential cloud shadow mask are labeled as cloud shadow
(ZHU; WOODCOCK, 2012).

Regarding sensors that do not have thermal spectral bands, Silva and Liporace
(2016) proposed an adaption of the Fmask algorithm to ensure automatic detection
of cloud and cloud shadow using visible and near infrared spectrum. Originally the
methodology was proposed to be used on Amazonia-1/AWFI, but it can be applied
in any similar sensor, such as CBERS-4/MUX (MARUJO et al., 2017c).

To identify clouds, Silva and Liporace (2016) used three indices threshold: Normal-
ized Difference Vegetation Index (NDVI),Whiteness Index (WI) and Haze Optimized
Transformation (HOT), respectively, described, by:

NDV I = NIR−Red
NIR +Red

, (2.3)

where NIR is the Near Infrared band and Red is the red band.

WI =
3∑
i=1

∣∣∣∣∣(Bi −M)
M

∣∣∣∣∣ , (2.4)

where Bi are the visible bands and M is the modified mean band value obtained
through:
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M = 0.25 ·Blue+ 0.375 ·Green+ 0.375 ·Red, (2.5)

where Blue is the blue band, Green is the green band and Red is the red band.

HOT = Blue− 0.45 ·Red− 0.08, (2.6)

where Blue and Red are the blue and red bands. A diagram containing the cloud
detection by thresholding can be visualized in Figure 2.1. The thresholding values
varies from scene to scene and are determined by the interpreter.

Figure 2.1 - Cloud detection method through thresholding.

Silva and Liporace (2016) method to cloud detection through thresholding process. Spec-
tral bands (Blue, Green, Red and NIR) are used to calculate Normalized Difference Vege-
tation Index (NDVI), Whiteness Index (WI) and Haze Optimized Transformation (HOT)
to calculate a Cloud Mask by thresholding the indices and combining them using an AND
operator.

Source: Author’s production.

To detect cloud shadows, the authors performed a similar approach by combining a
dark pixel mask, a water mask and a difference image. The dark pixel mask obtains
candidate pixels, including false positives by thresholding the green and NIR bands,
as demonstrated in:
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D2 = Green < (Greenmin + ρλ2), (2.7)

where Green is the Green band; Greenmin is the least value found for the Green
band; and ρλ2 is reflectance threshold for the green band.

D4 = NIR < (NIRmin + ρλ4), (2.8)

where NIRmin is the least value found for the NIR band; and ρλ4 is reflectance
threshold for the NIR band.

D = D2 andD4, (2.9)

where D is the dark pixel mask, D4 are the dark pixels obtained by Equation 2.7
and D4 are the dark pixels obtained by Equation 2.8. Based on the same approach,
the authors also built a water mask using the NIR band and the NDVI index. This
approach is based on detecting water low response on the NIR band and separate
water from soil using the NDVI. To do that, the authors detect and combine clean
and turbid waters pixels, as can be seen in:

W = ((NDV I < NDV Iclean) and (B4 < ρλclean)) or
((NDV I < NDV Iturbid) and (B4 < ρλturbid)),

(2.10)

where NDV Iclean is a NDVI threshold used to detect clean water; B4 is the NIR
band; ρλclean is a NIR band threshold used to detect clean water; NDV Iturbid is a
NDVI threshold used to detect turbid water; ρλturbid is a NIR band threshold used
to detect turbid water. The final mask, image difference, is used to minimize sea-
sonal differences, assuming negative differences possible cloud shadows and positive
differences as clouds. This mask is obtained by subtracting the target image by a
reference image, as in:

Diff = B4 −REFB4, (2.11)

where B4 is the NIR band and REFB4 is a NIR band reference without clouds. The
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whole cloud shadow detection process can be visualized in Figure 2.2.

Figure 2.2 - Cloud shadow detection method through thresholding.

Silva and Liporace (2016) method to cloud shadow detection through thresholding process.
Spectral bands (Red and NIR) are used alongside Normalized Difference Vegetation Index
(NDVI) and a reference image NIR to calculate a dark pixel mask (D), water mask (W)
and difference image (Diff) to calculate a Cloud Shadow Mask.

Source: Author’s production.

Once preprocessed, RS images can be used in a variety of applications, e.g. crop
monitoring (STEVEN et al., 2003) and change detection (COPPIN et al., 2004). In the
past, these applications mainly used the spectral information alone, based on the
pixel value of each band, while the spatial context was rarely considered (LI et al.,
2014).

With the advance of the sensor spatial resolution, and considering that spectral-
based methods did not provided satisfactory results, spatio-contextual information
started to be incorporated into analyses (LI et al., 2014). However, change detection
methods normally use few images, ranging from two to five images, to map the
Earth’s surface, and do not take advantage of the full potential of historical series
(COPPIN et al., 2004). Hence, integrating the spectral and spatial information with
the time component can provide rich information to detail the space variations over
time (PETITJEAN et al., 2012).
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2.2 Time series

Time series are sets of interdependent chronological observations that provide infor-
mation and patterns that cannot be found in single time observations, such as trends
and periodicities (EHLERS, 2009). Because of that, the development of techniques
that fully incorporate the temporal dimension remains an area of intense research
(GÓMEZ et al., 2016). In the RS context, time series can be extracted from a se-
quence of chronological images or field observations. MODIS (MODerate resolution
Imaging Spectroradiometer) and Landsat are two of the most used data to extract
time series (GÓMEZ et al., 2016). MODIS, on board Terra and Aqua platforms, tem-
poral resolution, provides daily revisits, although its spatial resolution varies from
250m to 1km. Landsat program provides the most faraway orbital image series, pro-
viding observations since 1972 (COHEN; GOWARD, 2004). Nowadays, Landsat-7 and
Landsat-8 are active, each one providing images with 30m of spatial resolution and
16 days of revisit time.

In time series observations, three factors are evident: (i) the order is crucial; (ii)
the correlation has meaning; and (iii) cycles can be difficult to detect. Those char-
acteristics make this type of data harder to analyze than singular time data and
require specific statistical techniques (EHLERS, 2009). One of the main applications
of RS time series is monitoring the changes on Earth’s surface changes (GÓMEZ et

al., 2016). For vegetation change detection, the reflectance (extracted from spectral
bands) alongside the NDVI (ROUSE et al., 1974) and the EVI (HUETE et al., 1997)
are extracted from image pixels or segments, in a same location and different dates,
and used to compose a time series (GÓMEZ et al., 2016), as illustrated in Figure
2.3. Those values obtained through time represent time series and can represent a
"phenology curve" when considering vegetation (BAUMANN et al., 2017).

Many approaches are used to deal with time series. Time series decomposition,
for instance, supposes that a series is an additive or multiplicative aggregation of
components: (i) the trend; (ii) the seasonality; and (iii) the residual components
(VERBESSELT et al., 2010). In vegetation indices time series, for instance, the season-
ality component may represent the vegetation vigor, the trend component relates
to vegetation growth, degradation or stability over the years and the changes in re-
maining components may represent surface anisotropy, atmosphere effects, or sensor
noise (KUENZER et al., 2015).

Integrating the spectral and spatial information with the time component, provides
rich information to detail the space variations along the time (PETITJEAN et al.,
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Figure 2.3 - Image time series extraction.

Extraction of the values of a time series (blue curve) from a stack of orbital images of the
same location and different dates.

Source: Author’s production.

2012). However, the absence of data, due to sensors failure or cloud presence still
affects how precise a time series is. Based on that, another common approach used
to deal with time series is smoothing algorithms (BENDINI et al., 2016; SHAO et al.,
2016; VUOLO et al., 2017). The concept of time series smoothing is to obtain more
consistent time series by reducing the effects of the residual component (KUENZER

et al., 2015). However, it is important to emphasize that while reducing interference
in the time series, most smoothing algorithms can change pixel values with useful
information that had no noise influence (ERASMI et al., 2006).

Long term time series can be analyzed with respect to their daily, weekly, monthly,
annual or decadal interval (KUENZER et al., 2015). Normally when referring to EO,
this interval is defined by the sensor temporal resolution. In the context of vegetation
analysis, one focus of time series analysis is on the extraction of phenology based
on features, also called phenometrics (KUENZER et al., 2015). Many attempts have
successfully exercised those metrics as classifying parameters in order to obtain land
cover maps (ABREU et al., 2013; BENDINI et al., 2016; GÓMEZ et al., 2016).

Given the diverse applications and possibilities of analysis of time series, there is a
demand for developing methods capable of extracting information from those series.
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A promising method that has increasingly been used to classify RS time series is
the Dynamic Time Warping (DTW) (BAUMANN et al., 2017).

2.2.1 Dynamic Time Warping

DTW method aims at finding an optimal global alignment between two data se-
quences, a minimal sum sequence without repeated elements that is called a warp-
ing path (MÜLLER, 2007). This method is based on Levenshtein’s distance (LEVEN-

SHTEIN, 1966) and was proposed by Sakoe and Chiba (1971) for speech recognition.

Basically, Levenshtein’s distance between two strings is the least number of oper-
ations required to convert one string to another (PETITJEAN et al., 2012). DTW is
a similarity measure that can compare time series and obtain details that can not
be acquired by comparing using the Euclidean distance (PETITJEAN et al., 2012). In
the context of time series classification using DTW, a known pattern is compared
with an unknown time series in order to calculate an alignment and measure the
two data similarity (BERNDT; CLIFFORD, 1994; PETITJEAN et al., 2012; MAUS et al.,
2016b), as can be seen in Figure 2.4.

Figure 2.4 - Visual comparison between Euclidean distance and Dynamic Time Warping
applied to time series.

Note that, while the two time series have an overall similar shape, they are not aligned in
the time axis. Euclidean distance, which assumes the ith point in one sequence is aligned
with the ith point in the other, will produce a pessimistic dissimilarity measure. The
nonlinear dynamic time warped alignment allows a more intuitive distance measure to be
calculated.

Source: Keogh and Ratanamahatana (2005).

Suppose we have two time series, Q and C, of lengths n and m, respectively, where
Q = (q1, q2, ..., qn) and C = (c1, c2, ..., cm). To align these sequences using DTW, the
first step consists in building an accumulated cost matrix (n×m), where the (ith, jth)
element of the matrix contains the distance, δ(qi, cj), between the two points qi and
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cj, where i ∈ {1, ..., n} and j ∈ {1, ...,m} (KEOGH; RATANAMAHATANA, 2005). As
an example of the δ value, Maus et al. (2016a) used pixel value absolute difference
from RS images as the metric. Based on that, when pixels present the same value,
distance is 0 and increases according to the differences.

The accumulated cost matrix considers the lower left index as the initial element.
This element is filled with the calculated δ between each series first value. Then
the elements of the first row and the first column of the matrix are calculated,
respectively, by:

D(1, cj) = δ(qi, cj) +D(1, cj−1) (2.12)

D(qi, 1) = δ(qi, cj) +D(qi−1, 1) (2.13)

After filling the first row and the first column, the values of the remaining elements
are filled from left to right and from bottom to top as following equations:

D(Qi, Cj) = δ(qi, cj) +min


D(Qi−1, Cj−1),
D(Qi, Cj−1),
D(Qi−1, Cj)

 (2.14)

This process is represented in Figure 2.5.

Once completely filled, the accumulated cost matrix can be used to obtain an warp-
ing path. This path is calculated starting from the upper right element of the matrix
summing always with the lowest value among the left, below and diagonal elements,
as can be seen in Figure 2.6.

Following that, a warping path must respect three condition:

a) boundary: implies that a path should start and end on the matrix oppose
diagonals;

b) monotonicity: the alignment path must preserve its direction or advance
to the boundary direction;

c) step size: the alignment path must roam obeying neighborhood rules, in-
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Figure 2.5 - Filling a DTW accumulated cost matrix example.

Example of how to fill a DTW accumulated cost matrix.
Source: Adapted from Souza et al. (2009).

cluding diagonal.

Considering two sequences Q of length n = 9 and a sequence C of length m = 7, as
defined in Page 17, Figure 2.7 (a) shows an admissible warping path, while Figure
2.7 (b, c and d) shows cases in which theese conditions are broken.
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Figure 2.6 - Warping path calculation example.

Example of how to calculate a warping path on an accumulated cost matrix.
Source: Adapted from Souza et al. (2009).

Figure 2.7 - DTW warping path conditions.

Illustration of paths of index pairs for some sequence. (a) Admissible warping path satisfy-
ing the boundary, monotonicity, step size conditions. (b) Boundary condition is violated.
(c) Monotonicity condition is violated. (d) Step size condition is violated.

Source: Adapted from Müller (2007).
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2.3 Image segmentation

Image segmentation is one of the most important technique in the image analyses.
Image segmentation partitions an image into uniform regions or objects (GONZALEZ;

WOODS, 2007, Chapter 10). As mentioned before, with the advance of spatial reso-
lution in imaging sensors, spatio-contextual approaches have been more promising
in differing Earth’s surface objects than spectra-based approaches, since some land
cover types cannot be effectively separated with spectral information, e.g., urban
areas and bare soil (LI et al., 2014).

The segmentation enables images to be handled based on its regions instead of
based on their pixel values. Segmentation methods are generally categorized in dif-
ferent approaches, e.g., histogram thresholding, edge-detection and region-growing
(BLASCHKE et al., 2000). Several segmentation methods comparisons for RS applica-
tions have been published in the literature (BÉNIÉ et al., 1989; MEINEL et al., 2004).
In optical RS, region-growing is the most employed approach, being multi-resolution
segmentation (BAATZ; SCHÄPE, 2000), one of the most used algorithms.

Initially, the region-growing segmentation approach normally considers each pixel
as a region. Interactively neighboring regions are compared through a homogeneity
criterion, e.g. region pixel mean value, and merged if they are similar. Some region
growing algorithms also implement a max size that each segment can reach. This
is performed in order to limit segment area size, which implies in a stop on region-
merging after a segment has a determined number of pixels (GONZALEZ; WOODS,
2007, Chapter 10). Region-growing algorithms input parameters, e.g. homogeneity
criterion and minimum area size, are normally empirically set by an user, who tests
several parameters values until a visually satisfactory result is found (ESPINDOLA,
2007). These parameters will interfere in the segmentation results. Hence, in order
to result in a good segmentation they must be set according to the targets charac-
teristics.

2.3.1 Multiresolution segmentation

Baatz and Schäpe (2000) proposed a segmentation method based on region-growing.
The method is implemented in the commercial software Definiens eCognition
(DEFINIENS IMAGING GMBH, 2002), and other implementations of the method in
free libraries (KÖRTING et al., 2013). The method starts assuming a bottom-up ap-
proach, in which each image pixel is an object and if an homogeneity criterion is
achieved, neighboring regions are merged into one larger object.
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This homogeneity criterion is assigned to each possible merge, representing a "fusion
factor". If the possible merge is smaller than the least fusion factor, the regions are
merged and the process is repeated until there are no more possible merges. In order
to find the best merging objects, a heuristic of local mutual best fitting is employed.
In this heuristic, supposing an image object A, the neighbor object that best fits it is
B, according to the homogeneity criterion, while D is the neighbor object that best
fits B. If D = A the merge is performed. Otherwise, the loop is repeated assuming
B for A and D for B in order to perform the merge in A’s neighborhood.

Normally region-growing segmentation approaches starts by randomly setting seeds
on the image. Without order concern, these seed’s neighboring pixels are evaluated
to be merged into the same segment or not. In Baatz and Schäpe (2000) approach,
this random seed location and processing order is not utilized to avoid a sub-optimal
approach. Instead, the method systematically take points with maximum distance
to all other points treated before. In this approach each segment can be treated once
per cycle, if the order is defined over segments, or each segment can be treated p

times per cycle, where p is the number of pixels in it.

In the Ecognition’s implementation, the algorithm uses 4 input parameters: (i) scale;
(ii) color; (iii) compactness; and (iv) spectral bands weight. The scale consists
in the fusion factor and will limit region fitness and segment size, consequently.
The homogeneity criterion (f) used in Baatz and Schäpe (2000) algorithm follows
(BAATZ; SCHÄPE, 2000; ESPINDOLA, 2007):

f = wcolor · hcolor + (1− wcolor) · hshape, (2.15)

where f is the homogeneity criterion; wcolor is the color weight; hcolor is the het-
erogeneity coefficient for the color attribute, which is complementary to shape; and
hshape is the heterogeneity coefficient for the shape attribute.

The color attribute heterogeneity coefficient is a weighted sum of the spectral bands
standard-deviation. Described as follow:

hcolor =
E∑
c

wc(Tunion · σunionc − (Tseg1 · σseg1
c + Tseg2 · σseg2

c )), (2.16)

where E is the set of spectral bands, c is a spectral band, c ∈ E, wc is the weight
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for band c, s is a segment, s ∈ {seg1, seg2, union}, seg1 and seg2 are the merging
sefments, union is the result segment, Ts is the number of pixels of segment s, σsc
is the standard-deviation of segment s. The shape attribute depends on other two
parameters: compactness and smoothness, as can be seen:

hshape = wcp · hcp + (1− wcp) · hsm, (2.17)

where hshape is the heterogeneity coefficient for the shape attribute; wcp is the com-
pactness weight; hcp is the heterogeneity coefficient for the compactness attribute
and hsm is the heterogeneity coefficient for the smoothness attribute.

Compactness represents the relation between factual edge length and the root of the
object size and is given by:

cp = l
√
p
, (2.18)

where cp is the compactness attribute heterogeneity; l is the edge length and n is
the number of pixels within the segment.

Smoothness is the deviation from the shortest possible edge length given by the
bounding box b of the segment and is given by:

sm = l

b
, (2.19)

where sm is the smoothness attribute heterogeneity; l is the edge length and b is
the bounding box edge length.

Similarly to the color heterogeneity, compactness and smoothness heterogeneity are
also calculated for the merging objects. If the calculated f is less than the scale-
root-square the objects will be merged (ESPINDOLA, 2007).

2.3.2 Temporal segmentation

Considering that few researches adapted image segmentation techniques to be ap-
plied over image time series (THOMPSON; LEES, 2014), Costa et al. (2018) developed
a RS image segmentation algorithm, that uses the DTW distance to detect homo-
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geneous regions over time. The initial seeds are time series, instead of image pixels
that are used in the conventional segmentation. The DTW distance is computed be-
tween the time series and their neighbors. If the time series are similar, according to
a threshold parameter, their regions are merged, otherwise other neighbors are ana-
lyzed. This is repeated until all the neighbors are verified. Next, the growing process
is applied to the remaining regions until the whole image has been segmented.

2.4 Multi-source remote sensing

The increasing number of satellite sensors and its data availability, has led to ap-
proaches that integrate multiple sensors, the multi-sensor or multi-source (WULDER

et al., 2012). Applications with multiple sensors were documented in the past years
(PEREIRA, 1988; SHIMABUKURO et al., 1991; POHL; VAN GENDEREN, 1998), though,
the recent availability of great amount of orbital data makes this subject of re-
search promising. In the literature, both terms multi-sensor and multi-source have
been used as synonymous. Multi-sensor approaches can be employed to integrate
different types of sensors, such as passive and active remote sensors (HOLLANDS;

DIERKING, 2016; BRAGA et al., 2015). However, in this study, the term multi-source
is utilized to nominate data obtained only from optical sources.

Combined data from different sensors can provide a higher spatiotemporal data
coverage. In many applications, such as crop monitoring (STEVEN et al., 2003) and
change detection (COPPIN et al., 2004), medium, or even high, spatial resolution
images are required to provide detailed information of the surface (STEVEN et al.,
2003). Though, for these applications, the sensor’s revisit rate is long relative to plant
active growth period (STEVEN et al., 2003). This strongly supports the combination
of multiple observing systems to obtain more frequent measurements (MOUSIVAND

et al., 2015). Nevertheless, sensors heterogeneity concerning spectral, directional,
radiometric and spatial characteristics must be treated in order to make the data
harmonized (SAMAIN et al., 2006; MOUSIVAND et al., 2015; BEHLING et al., 2016).

Samain et al. (2006) organized the multi-source heterogeneous aspects in four cat-
egories: spatial, temporal, spectral and directional. The optimum approach to deal
with spatial differences between different sensors is to use multi-scale algorithms,
which would use each sensor at its native spatial resolution. However, the complex-
ity and processing cost of this approach is high. Resampling data to a common
reference is more appropriate, even though this may propagate information loss.
When data is resampled to the images with the larger pixels size (obtained by the
sensor with least detailed spatial resolution), also called downsampling, information
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is lost, whereas resampling to the images with the smaller pixel size (obtained by the
sensor with most detailed spatial resolution), also called upscaling, introduces inac-
curate measures, since the reconstruction of spectral details is not possible (SAMAIN

et al., 2005).

Regarding the temporal aspect, each on-board satellite sensor has its own revisit
time. Combining data from different sources and noisy data can make the interval
between acquisitions irregular. Similarly to the spatial aspect, the optimum approach
is to use each data on its native acquisition date. However, to facilitate image manip-
ulation, several works in the literature suppose that there are few changes between
images acquired in close proximity to one another. Based on that, these works adopt
a regularly spaced in time dates, as such a bi-monthly data set (BENDINI et al., 2016;
VUOLO et al., 2017). In this approach, when there are more images than the adopted,
operations are performed, e.g., average or replacing, to maintain the interval.

Variations on Sun-view geometries and imaging angle can affect the reflectance val-
ues measured by orbital sensors (JENSEN, 2007). Based on that, when images from
multiple sensors are acquired with distinct directional configurations, a treatment
must be performed to harmonize the data. Samain et al. (2005), Samain et al. (2006)
show that semi-empirical models designed to mimic the Bidirectional Reflectance
Distribution Function (BRDF) are an efficient way of exploiting the angular infor-
mation and harmonizing the observations to pre-defined standard configurations.

Variations in spectral characteristics are harder to deal with than Sun-view ge-
ometries (SAMAIN et al., 2006). Different sensors with similar bandwidth may ac-
quire different responses to a same target on Earth’s surface (TRISHCHENKO et al.,
2002). Based on that, values obtained from different sensors cannot be compared
directly. These differences occur even in spectral bands centered on the same wave-
length and the same width, e.g CBERS-4/MUX and Landsat-7/ETM+ blue bands
(0.45µm − 0.52µm). These differences occur even if sensors have similar spectral
bands, because the Specral Response Function (SRF) is specific for each sensor
(PINTO et al., 2016). In this context, Trishchenko et al. (2002) studied the effects
of SRF on surface reflectance and NDVI measures comparing moderate resolution
satellite sensors. The authors concluded that both measures are sensitive to the
sensor’s SRF and a correction procedure is needed even for similar sensors.

Although the start of the CBERS program history does not coincides with the
Landsat program, the program’s sensors are very similar. Since Landsat and CBERS
sensors spectral bands have few bandwidth differences, similar spatial resolution and
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acquisition geometry, with a minimal spectral alignment and spatial resampling,
CBERS reflective bands can be seen as an opportunity to build a virtual constellation
alongside Landsat data and increase temporal resolution (WULDER et al., 2015).

Consequently, in order to combine signals from different sensors, harmonization is
necessary. This is recommended to compare surface reflectance responses from dif-
ferent sensors, especially in the visible bands (HOLDEN; WOODCOCK, 2016). Mainly,
there are two approaches to harmonize spectral bands from multiple-sources in the
literature: the statistical (SAMAIN et al., 2006; BENDINI et al., 2016; HOLDEN; WOOD-

COCK, 2016; ROY et al., 2016) and the spectral (HUBBARD; CROWLEY, 2005; GAO et

al., 2006; ZURITA-MILLA et al., 2008; AMORÓS-LÓPEZ et al., 2013).

The statistical approach assumes that sensor bands relationship is dependable for
any illumination and observation geometry. Based on that, linear regression method
can be used as a harmonization method categorized in the statistical approach.
The linear regression harmonization uses reflectance reference values to perform a
regression analysis with reflectance target values, in the same position in different
date, resulting in gain and offset coefficients to each band. In this context, Steven
et al. (2003) show that, although spectral bands are not strictly equivalent, surface
reflectance can be corrected for spectral band effects. The authors compared the
NDVI response from different instruments obtaining a strong linear relation between
them. The authors provided an intercalibration table for several sensors: AVHRR,
ATSR2, MSS, TM, ETM+, Spot2, Spot4, IRS, Ikonos, SeaWiFS, MISR, MODIS,
POLDER, QuickBird and MERIS.

The spectral approach is based on the restitution of the surface spectral signature.
It assumes that the spectral reflectance can be decomposed and related to surface
properties (SAMAIN et al., 2006). Efforts using this approach have been made, mainly
by combining moderate and medium spatial resolution sensors (GAO et al., 2006;
ZURITA-MILLA et al., 2008). Based on that, spectral unmixing method can be used
as a harmonization method categorized in the spectral approach. The method based
on spectral unmixing (ZURITA-MILLA et al., 2008) can be employed in the spectral
approach. In this method, endmembers for predetermined classes, e.g. vegetation,
soil and water/shadow, are utilized to transform the spectral image into a combina-
tion of class-fraction images through linear equations, defined by (SHIMABUKURO;

PONZONI, 2017):

ρi = a · vegi + b · soili + c · shadowi + ei, (2.20)
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where ρi is the pixel reflectance value in band i; a, b, and c are the vegetation,
soil and water/shadow proportions, respectively; vegi, soili and shadowi are the
vegetation, soil and water/shadow endmembers and ei is the error in band i.

Endmembers obtained on a reference image can be applied on fraction images of a
target sensor to construct a synthetic image (GEVAERT; GARCÍA-HARO, 2015). The
main advantage of this approach is the use of class proportions instead of sensor
spectral response on a specific band, however this approach is dependent on the
endmember selection (ZURITA-MILLA et al., 2008).

2.4.1 Multi-source applications

Regarding applications, Xaud and Santos (2010) organized the multi-source ap-
proach in categories, such as substitution, complementation, calibration and inter-
calibration. Those approaches have many purposes: substitution of noisy data, add
information, calibration, image sharpening and others.

2.4.1.1 Substitution

Substitution is an approach applied when data is unavailable at a determined
time and other source data is employed to replace the missing one. An example
of this approach can be seen in the Amazon Deforestation Monitoring Project
(PRODES), which maps deforestation in the Brazilian Amazon (INSTITUTO NA-

CIONAL DE PESQUISAS ESPACIAIS - INPE, 2002). The project uses selected images
with low cloud rates Landsat-5, CBERS-2, CBERS-2B, LISS-3, Resourcesat-1 and
UK-DMC2 images to monitor deforestation within Brazil since 1988. When clouds
occur, multiple images of close dates are utilized to map an area.

Other example of this approach can be seen in Bendini et al. (2016)’s work, which
used the multi-spectral CBERS-4/MUX images to reduce noise on Landsat-8/OLI
time series and then improve crop classification. The authors employed vegetation
indices (EVI and NDVI) to derive phenological features of crops using filtered image
time series and Random Forest algorithm to classify agricultural targets. Landsat
time series were classified both with and without replacing original cloudy pixels by
CBERS-4 corresponding pixels. In this case, a slight increase in the classification
accuracy occurred when the replacement of the noisy pixels was performed.
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2.4.1.2 Complementation

Complementation is a multi-source approach that extends a product, for instance
with different wavelength bands, to compose it with other characteristics from mul-
tiple sensors. In this context, image fusion techniques, like pan sharpening method,
can be considered a complementation, since in general, image fusion techniques com-
bine spatial resolution of an image with spectral information of another image to
produce a synthetic product (XAUD; SANTOS, 2010; ZHANG, 2010). Collection 6 of
MODIS, on board platforms Terra and Aqua, provides multi-source products that
uses this approach (UNITED STATES GEOLOGICAL SURVEY - USGS, 2016). Those
products include: Leaf Area Index (MYNENI et al., 2015a; MYNENI et al., 2015b) and
BRDF and Albedo Model Parameters (SCHAAF, 2015).

2.4.1.3 Calibration and intercalibration

Calibration is a multi-sensor approach that uses a low uncertainty sensor to cali-
brate other sensors, while Intercalibration is a multi-sensor approach that combines
multiple similar sensor observations to minimize uncertainty of a phenomenon. Since
Landsat-8/OLI presents low uncertainty data, Pinto et al. (2016) used it as reference
to calibrate CBERS-4 MUX and WFI sensors. The authors utilized near simulta-
neous imaging to compare the sensors responses in a common ground target, and
then to obtain the coefficients to calibrate each sensor band. Data from Landsat-
7/ETM+ was also employed in the evaluation, obtaining favorable agreement with
the reflectance data.

Similarly, Holden and Woodcock (2016) employed near-simultaneous Landsat-8 and
Landsat-7 images to analyze consistency of both sensors surface reflection, since
some spectral bands of Landsat-8 are narrow. The results showed that is necessary
to harmonize their spectral bands, since Landsat-8 visible bands (blue, green and
red) are darker and near infrared band in the Landsat-7 satellite is brighter.

Alongside the spectral differences, orbital data is not always “complete”. Sometimes
due to clouds, or sensor defects, the Earth surface cannot be observed through a spe-
cific sensor. In such cases, techniques to recover or estimate the sensor measurements
are useful.

2.5 Earth observation data reconstruction and analysis ready data

Ideally, a pixel time series would be completely populated and free of cloud, cloud
shadow, or haze, and with no missing data (HERMOSILLA et al., 2015). In reality, a
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pixel series may have missing values for particular dates, which results in data gaps.
This may affect many existing analysis methods, which generally assume fairly com-
plete data (LOU; OBRADOVIC, 2011). Landsat-7, one of the most utilized satellites,
began to present hardware failure on Enhanced Thematic Plus (ETM+) Scan Line
Corrector (SLC) in May 2003, resulting in gaps of valid values, or missing data sec-
tions on the acquired images. The images collected before such failures are called
SLC-on images, and afterwards they are referred as SLC-off. The gaps correspond
to a single pixel near the center of a path/row image and can reach 14 pixels in
width near image borders (STOREY et al., 2005), as illustrated in Figure 2.8.

Figure 2.8 - Landsat-7/ETM+ SLC-off effect image gaps.

A subset of Landsat-7/ETM+ SLC-off image (path/row 220/75).
Source: Author’s production.

Considering Tobler’s first law of geography which establishes that near things
are more related to each other than distant things (TOBLER, 1970), interpolating
Landsat-7 SLC-off missing data would fill the gaps with neighboring pixel values.
This procedure is acceptable for small gaps, however it produces less satisfactory
results for large gaps. Following that, Maxwell (2004) developed a segmentation ap-
proach to fill Landsat-7 SLC-off missing data, pairing it with a reference image that

30



does not contains gaps, based on three principles:

• Adjacent pixels are more likely to be similar;

• Groups of the same landscape unit are likely to have similar spectral values;

• Most landscapes remain constant for long periods.

This segmentation approach uses a pixel value in its neighboring, delimited by ho-
mogeneous regions captured from other close date images (MAXWELL, 2004). As
can be seen in Figure 2.9, Maxwell (2004) approach fills a target image containing
gaps, a Landsat-7/ETM+ SLC-off image, by segmenting a reference image, such as
Landsat-5/TM or Landsat-8/OLI acquired in a close date. The reference image is
segmented and these segments are overlayed in the target image. For each segment
containing a gap on the target image the mode value is calculated and used to fill
the missing data, resulting in a synthetic image.

The gap-filling through segmentation has been improved further by using several
segmentation levels. Maxwell et al. (2007) employed three segmentation levels and
a nearest neighbor approach in case the third level isn’t enough. In this approach, if
a segment is fully contained in the missing data, a segmentation level with segments
of a larger area is used to fill the gap (MAXWELL et al., 2007). This approach is
exemplified in Figure 2.9 and detailed in Algorithm 1. The process is similar to
Maxwell (2004), being the difference the number of segmentation levels. This extra
segmentations are used in cases which a segment does not contains any valid value,
using the other segmentation levels to repeat the process with larger segments.

31



Figure 2.9 - Multiresolution segmentation approach to fill Landsat-7 SLC-off data.

(a) a target image that contains gaps, in this case a Landsat-7/ETM+ SLC-off; (b) a
reference image, in this case a Landsat-8/OLI acquired in a close date; (c) the reference
image is segmented; (d) the segmentation is overlayed in the target image; (e) the mode
value within the segment is calculated and used to fill missing data; (f) resulted synthetic
image.

Source: Author’s production.
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Input: gappedImage, segmentation1, segmentation2, segmentation3
Output: filledImage

1 foreach segment[i] of segmentation1 do
2 if there is a NULL value within segment[i] then
3 if segment[i] most frequent value 6= NULL then
4 use segment[i] most frequent value to fill gappedImage NULL

values that coincides with segment[i] position
5 else
6 if segmentation2 segment on segment[i] position, most frequent value 6=

NULL then
7 use segmentation2 segment most frequent value to fill

gappedImage NULL values on segment[i] positions
8 else
9 if segmentation3 segment that coincides with segment[i] position,

most frequent value 6= NULL then
10 use segmentation3 segment most frequent value to fill

gappedImage NULL values on segment[i] positions
11 else
12 fill gappedImage NULL values with nearest neighbor
13 end
14 end
15 end
16 end
17 end

Algorithm 1: Multiscale gap-filling method (MAXWELL et al., 2007)
pseudo-code.
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In the context of reconstructing Earth’s surface observations, Vuolo et al. (2017) de-
veloped a methodology to build an equally spaced in time data cube. Data cubes are
consistently processed and organized ready data for analysis, which prevent users
to perform time-consuming preprocessing corrections as instrument calibration, ge-
olocation and radiometry (AUSTRALIAN GEOSCIENCE, 2015; DWYER; LYMBURNER,
2016; FOGA et al., 2016). The authors employed a set of Landsat-4-5/TM, Landsat-
7/ETM+ and Landsat-8/OLI time series to fill clouds and sensor defects. Their
approach is based on template matching and smoothing time series.

The first step consists in building a data gap mask. This mask demarcates pixels
affected by the SLC-off failure and by clouds. For cloud detection, the authors use the
Fmask algorithm (ZHU et al., 2015). The second step consists in equally spacing the
time series in a determined rate of 15 days. If there is more than 1 valid pixel on the
15 days interval, an average operation is performed using the values. The third step
consists in building a template pool. For that, the authors use a reference land cover
map to select appropriate time series with more valid observations for each class.
The time series gaps in the templates are then filled using a smoothing algorithm.
In the fourth step, the data cube time series that contains gaps is compared to all
templates through euclidean distance, ignoring the invalid observations, and filling
them using the most similar template. Finally, the smoothing algorithm is applied
again independently of each spectral band and each pixel to produce smoothed out
and gap-filled images (VUOLO et al., 2017).

Nowadays, due to the big volume of data acquired by sensors, some initiatives are
building collaborative platforms to enable scientist to focus on their research instead
of preprocessing. The USGS is using Landsat data to develop an Analysis Ready
Data (ARD), a consistently data processed to the highest scientific standards and
level of processing required for direct use in monitoring and assessing landscape
change (UNITED STATES GEOLOGICAL SURVEY - USGS, 2017a). Landsat ARD prod-
ucts are processed to a common tiling scheme containing 5,000 x 5,000 30m pixels.

Another initiative is the Australian Geoscience Data Cube (AGDC), a collaboration
between Geoscience Australia, Commonwealth Scientific and Industrial Research
Organization (CSIRO), National Computational Infrastructure (NCI), Committee
on Earth Observation Satellites (CEOS) and NASA. It uses open source standards
and is designed to help both government and private industry to make informed de-
cisions (AUSTRALIAN GEOSCIENCE, 2015). The AGDC provides Surface Reflectance,
Landsat Pixel Quality, Landsat Fractional Cover and Landsat NDVI products and
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intends to provide a variety of RS data products such as Landsat5/7/8, Sentinel-
2A, MODIS, SRTM, and Himawari-8 datasets (CEOS, 2016a; CEOS, 2016b). There
is even an effort to develop a merged Landsat and Sentinel-2 (HLS, Harmonized
Landsat Sentinel) 5-day product with atmospheric correction (CEOS, 2016b), which
emphasizes the importance of developing consistent multi-sensor data.

Despite the trend, methodologies for building data cubes and reconstruct Earth ob-
servations are still being developed (AUSTRALIAN GEOSCIENCE, 2015; CEOS, 2016b;
WEISS et al., 2014; HERMOSILLA et al., 2015; VUOLO et al., 2017). Besides, scientific
and application communities are also interested in the input records, processes, and
data origins, the also called data provenance (DI et al., 2013). Based on that, Earth’s
surface reconstruction and estimation methodologies may also include data prove-
nance in order to achieve interoperability among scientific products. The utility of
this information is dependable of the user. Based on that and in the future products
that may rise in EO data, in this research we encourage the conception of this kind
of metadata.
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3 METHODOLOGY

The proposed methodology aims to build a gap-filled optical medium spatial reso-
lution multi-source RS image data cube. The developed methodology is divided in
three stages: (i) Pre-processing; (ii) Sensor Harmonization; and (iii) Gap-filling, as
illustrated in Figure 3.1.

Figure 3.1 - Methodology diagram.

Schematic diagram of the adopted methodology to generate multi-source RS image gap-
free data cube.

Source: Author’s production.

Since this work uses data from multiple scenes, dates and sensors, some pre-
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processing and sensor harmonization operations are required to combine the images.
The Pre-processing stage consists in correcting the sensor/platform specific radio-
metric, data geometric distortions and providing a mask that infers if an image pixel
is a valid surface observation. The Harmonization operation, bring these images to
a common scale and spectrally harmonizes them. Finally, the Gap-Filling procedure
aims at filling gaps in the images based on two approaches: filling smaller gaps, e.g.
stripes, and small clouds using pixel neighborhood information; and filling larger
gaps using time series information.

3.1 Pre-processing

In the Pre-processing stage, images from Landsat-8/OLI, Landsat-7/ETM+ and
CBERS-4/MUX were acquired and processed to produce the surface reflectance
values. A total of 322 images were acquired, respectively 122 Landsat-7/ETM+,
122 Landsat-8/OLI, and 78 CBERS-4/MUX images. Surface reflectance images
from Landsat-7/ETM+ and Landsat-8/OLI were obtained through the USGS EROS
Science Processing Architecture (ESPA) web portal (https://espa.cr.usgs.gov/)
(UNITED STATES GEOLOGICAL SURVEY - USGS, 2017e). The Landsat-7/ETM+ and
Landsat-8/OLI products use the 6S radiation propagation model through the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (UNITED

STATES GEOLOGICAL SURVEY - USGS, 2017c) and Landsat-8 Surface Reflectance
Code (LaSRC) (UNITED STATES GEOLOGICAL SURVEY - USGS, 2017d) algorithms,
respectively (UNITED STATES GEOLOGICAL SURVEY - USGS, 2017e). These images
are collection-1 data (UNITED STATES GEOLOGICAL SURVEY - USGS, 2017b) and con-
tain evidences of cloud, cloud shadow, snow, water and clear pixel masks obtained
using the cfmask algorithm (ZHU; WOODCOCK, 2012; ZHU et al., 2015).

CBERS-4/MUX images can be downloaded in the INPE’s image catalog (http:
//www.dgi.inpe.br/catalogo/), which are not available in reflectance values.
However, we got CBERS-4 reflectance images that were produced by INPE’s re-
searchers based on a method developed by Martins et al. (2018). The cloud mask
for CBERS-4/MUX was also provided by INPE’s researchers and it is adaptation
of the cfmask algorithm (ZHU; WOODCOCK, 2012; ZHU et al., 2015) for sensor that
doesn’t have the thermal bands. It thresholds spectral indices (NDVI, WI, M, HOT),
spectral bands (Blue, Green, Red and NIR) and their standard deviations to delimit
clouds and cloud shadow (SILVA; LIPORACE, 2016; MARUJO et al., 2017c), as demon-
strated in Chapter 2.1.2.

All acquired images from ETM+ and OLI, were already registered with an accuracy
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less than or equal to 12m Radial Root Mean Square Error (RMSE) to the Global
Land Survey (GLS) reference database, as all Collection-1 data (UNITED STATES

GEOLOGICAL SURVEY - USGS, 2017b). In order to ensure spatial comparison, the
CBERS-4/MUX images were resampled to 30m, taken OLI images as reference,
through a bilinear function. This approach was adopted to avoid nearest neighbor
information loss, however a cubic convolution would also be a considerable approach.
Next, a manual registration was employed to register the images. First, MUX images
were registered between themselves and, posteriorly, they were registered adopting
OLI as reference. After ensuring the registration, all images were cropped into a
square grid of 100 km x 100 km using the Military Grid Reference System (MGRS).

3.2 Sensor Harmonization

To ensure spectral harmonization between images, we assumed that OLI, ETM+
and MUX inclination can be ignored (difference of 0.3 degrees). Two harmoniza-
tion approaches were conducted: (i) the spectral unmixing harmonization; (ii) the
linear regression harmonization. To verify which approach would be used on the
entire cube, initially two cloud-free images for each sensor were used tested to test
both harmonization approaches. Considering also that ETM+ and OLI sensors ac-
quire images with a time difference of nearly 8 days, to ensure acquisition on most
coincidental date, the study area was chosen as the intersection between Landsat
Path/Row 219/075 and 220/075 (WRS 2 – Worldwide Reference System 2) areas
that provide images with one day of difference. This area overlaps with CBERS-
4/MUX images acquired in the Path/Row 155/124 (CBERS WRS Path Row). Table
3.1 presents image acquisition dates used in the tests.

Table 3.1 - Acquisition dates for ETM+, OLI and MUX images.

Landsat-8/OLI Landsat-7/ETM+ CBERS-4/MUX
Date 1 06 Aug 2015 (219/075) 05 Aug 2015 (220/075) 04 Aug 2015 (115/124)
Date 2 29 Aug 2015 (220/075) 30 Aug 2015 (219/075) 30 Aug 2015 (115/124)

Considering OLI images as reference to harmonize images from target sensors
(ETM+ and MUX), to perform the spectral unmixing harmonization, endmem-
bers were manually collected, on reference sensor images in a given date (here called
Date 1). The same endmembers locations were used in the target sensor images to
obtain endmembers from the target sensor images, obtained in a given date (here
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called Date 2). The endmembers were collected for classes of vegetation, soil and
water/shadow, using the blue, green, red and NIR bands. During the endmember
sampling of the aforementioned classes, the selected areas were ensured to remain
unchanged on all images and that these points were not in border regions. Each
target image was converted into fraction images using the endmembers through the
spectral linear unmixing model. Then, using reference endmembers and the fraction
images from the target sensors, the reverse process of unmixing transformation was
employed in order to generate a synthetic reference sensor image on Date 2. To do
that, each reference endmember of each class were multiplied by the target class
fraction image and added by its error. As a result of this process, synthetic OLI
images were generated. This process is shown in Figure 3.2.

Figure 3.2 - Spectral unmixing harmonization diagram.

Schematic diagram of the spectral unmixing harmonization methodology generating a
synthetic image and validating it with an image from close date.

Source: Author’s production.
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We utilized the Monte Carlo approach to perform the linear regression harmoniza-
tion. This approach was used, instead of using the entire image to perform the
regression, in order to avoid assuming a statistical distribution of the image and for
the methodology to be scene independent. For each pair of target and reference im-
age bands, a linear regression was performed, with 10, 000 random samples (pixels),
which was repeated 1, 000 times. This samples were used on images from each pair
on a given date (here called Date 1) in order to perform the regression (Table 3.1).
After each regression a gain and offset coefficients were obtained. Using the average
gain and offset coefficients obtained from all regressions during the Monte Carlo,
this coefficients were multiplied by images from a second date (here called Date 2)
target images to generate synthetic images, as illustrated in Figure 3.3.

Figure 3.3 - Linear regression spectral harmonization diagram.

Schematic diagram of the harmonization methodology based on linear regression and val-
idation using an image from close date.

Source: Author’s production.
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Both spectral harmonization methods were validated by comparing pairs of resulted
synthetic images and Landsat-8/OLI reference images. Each image pixel was used
to compare the images and calculate the Pearson’s correlation coefficients.

3.3 Gap-filling

Even though all images are harmonized and can be used, gaps are still present.
Gaps are detected as missing information, e.g. areas were there was cloud or cloud
shadow and partial images, tagged as NULL values on images. Here these gaps are
filled using the segmentation and time series matching approaches. The proposed
gap-filling approach is inspired in Vuolo et al. (2017) which propose to fill multi-
spectral time series. However we modified the method in four main points: (i) we
use time series without smoothing algorithms because time series smoothing can
remove important information (HIRD; MCDERMID, 2009; ADAMI et al., 2018); (ii)
the resulting data cube dates are based on real image acquisition dates and not in
a forced equidistant interval; (iii) two sequential approaches are employed to fill
the gaps: the first one is an adaptation of Maxwell et al. (2007) method, which
uses spatial context and segmentation to fill small gaps; and the second one uses
time series matching based on a multi-temporal segmentation (COSTA et al., 2018)
to fill large gaps and partial images; and (iv) our method relies on a multi-temporal
segmentation that automatically merges homogeneous regions over the time, which
makes it independent of reference data employed to extract time series templates.

3.3.1 Gap-filling through pixel weighting based on multiscale segmen-
tation

In order to calculate the pixel weighting, the proposed method uses the mean value
of the segment instead of the most frequently value (mode) suggested in Maxwell et
al. (2007), but also maintaining the use of 3 fixed segmentations. In this case, two
images are required in the processing: a target image that’s the image with missing
observations (gaps) and a reference image acquired in a date close to the target
image one. We defined that the acquisition time interval between these images must
be less than 9 days, otherwise this gap-filling process is not performed, since the
remaining gaps will be filled by the second approach. The Baatz and Schäpe (2000)
algorithm was adopted to generate 3 levels of segmentation, as in Maxwell et al.
(2007). Each segmentation level contains segments of different sizes. Levels 1, 2 and
3 contain small, medium and large segments, respectively.

The Gap-filling procedure is illustrated in Figure 3.4, in which the gap-filling process
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is performed using pairs of images, a reference and a target, notwithstanding it is
applied to an image data cube. First, reference image is segmented. The segmenta-
tion produced in the level 1 is superimposed on both target and reference images.
For each segment in the target image that contains gaps the mean value of this
segment for both images are calculated. In the reference image, each pixel within
the segment is divided by its mean, here called pixel weighting. The pixel weighting
means how much this pixel is similar to its segment. Back to the target image, the
gaps are filled with target image segment mean weighted by pixel weighting. In a
case where all pixel values within a segment are null, the filling process is repeated
using the next segmentation level, similarly to Maxwell et al. (2007).

The main difference between Maxwell et al. (2007) and the proposed approach is that
instead of using the mode directly to fill the segment, in the proposed approach the
reference image is also used to obtain the weighting distribution within the segment
and that information is used in the filling process instead of using a single value.
The main differences and similarities can be seen in Table 3.2, while the processing
is detailed in Algorithm 2.

Table 3.2 - Differences between gap-filling through segmentation, multiscale segmentation
and our proposed method which uses multiscale segmentation pixel weighting.

Algorithm
Maxwell Maxwell Marujo
(2004) (2007) (2019)

Fill gaps using segmentation X X X
Uses multiple levels of segmentation x X X

Metric used to estimate missing values mode mode pixel
weighted mean

Realistic texture on gap-filled areas x x X
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Figure 3.4 - Segmentation approach to fill Landsat-7 SLC-off data.

Segmentation approach fills Landsat-7 SLC-off gap images: (a) a target image contains
gaps, in this case a Landsat-7 SLC-off; (b) a reference image is used, such as Landsat-5
or Landsat-8 acquired in a close date; (c) the reference image is segmented; (d) these
segments are applied in the reference image; (e) the segment mean value is calculated and
used to calculate pixel weights; (f) the segmentation is overlayed in the target image and
the mean value within the segment is calculated; (g) for each pixel within the segment,
its weight is multiplyed by the segment mean; (h) the gaps are filled with this result; (i)
a synthetic image is obtained.

Source: Author’s production.

In order to validate the method a study case was performed using Landsat-8/OLI
images. The study area is the intersection between Landsat Path/Row 223/072 and
222/072 (WRS 2) areas, which can provide images with acquisition time difference
of 7− 9 days. Based on that, 3 pairs of images were employed in the study, as can
be seen in Table 3.3. The SLC-off effect was simulated using a Landsat-7/ETM+
image, while other image was adopted as reference to perform segmentation. The
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Input: gapImage, refImage, seg1, seg2, seg3
Output: filledImage

1 foreach segment[i] of seg1 do
2 if there is a NULL value within segment[i] then
3 if gapImage mean value in segment[i] pixels 6= NULL then
4 meanTarg = gapImage mean in segment[i] pixels
5 meanRef = refImage mean in segment[i] pixels
6 pixelWeight = vector()
7 pixelWeight = (refImage values in segment[i] pixels)/meanRef
8 gapImage NULL values in segment[i] = meanTarg * pixelWeight
9 else

10 segment[i] = seg2 segment on segment[i] position
11 if there is a NULL value within segment[i] then
12 if gapImage mean value in segment[i] pixels 6= NULL then
13 meanTarg = gapImage mean in segment[i] pixels
14 meanRef = refImage mean in segment[i] pixels
15 pixelWeight = vector()
16 pixelPro = (refImage values in segment[i]

pixels)/meanRef
17 gapImage NULL values in segment[i] = meanTarg *

pixelWeight
18 else
19 segment[i] = seg3 segment on segment[i] position
20 if there is a NULL value within segment[i] then
21 if gapImage mean value in segment[i] pixels 6= NULL then
22 meanTarg = gapImage mean in segment[i] pixels
23 meanRef = refImage mean in segment[i] pixels
24 pixelWeight = vector()
25 pixelWeight = (refImage values in segment[i]

pixels)/meanRef
26 gapImage NULL values in segment[i] = meanTarg *

pixelWeight
27 else

/* Values are not filled */
28 end
29 end
30 end
31 end
32 end
33 end
34 end

Algorithm 2: Multiscale gap-filling method pseudo-code.
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gap filled image obtained by applying the proposed method was validated using the
original images (from before simulating the SLC-off effect).

Table 3.3 - Acquisition dates for OLI images on Path/Row 223/072 and 222/072 to test
the proposed gap-filling approach and Maxwell et al. (2007) method.

Date 1 Date 2
Pair 1 02 Aug 2015 (219/075) 11 Aug 2015 (220/075)
Pair 2 28 Jul 2016 (219/075) 04 Aug 2016 (220/075)
Pair 3 31 Jul 2017 (219/075) 07 Aug 2017 (220/075)

3.3.2 Algorithm code and data provenance

A functional R script of the method can be found in Appendix A and is also dis-
tributed in https://github.com/MarujoRe/EO_filling as marujo_multiscale.R.
The code is open source, free and is published so it can be used or adapted. The code
uses 3 existent packages. foreach and doParallel are two packages used to parallelize
the processing, distributing one segment to each processor on the filling stage. The
third dependency package is the raster package, which is used to work with raster
structures.

Regarding data provenance, for this study, an extra band was saved alongside the
images, containing which pixel was filled in the process and by which image and
segmentation level. An example of this band information can be seen in Figure
3.5. This band includes information about which segmentation level and date was
employed to gap-filling.
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Figure 3.5 - Partial data provenance band.

Partial data provenance band of Landsat-7/ETM+ from 08/10/2015, containing gap-filled
history. "0" means that the pixel value was not changed. "seg" means that a segmentation
was employed to fill the gapped location, followed by the segmentation level, which varies
from 1 to 3. The following number sequence regards the date used to fill that location, in
the format year/month/date.

Source: Author’s production.

3.3.3 Gap-filling through multi-temporal segmentation time series
matching

At this stage, the image data cube null values are due to clouds or partial images,
regions that were not treated by the first gap-filling approach due to their size or
lack of spatial information. Therefore, the methodology aims at filling those gaps
values using temporal information through time series. The first step consists in
segmenting the image data cube through multi-temporal segmentation to obtain
homogeneous regions along the time (COSTA et al., 2018).
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The gap-filling procedure based on time series matching is registered in Algorithm
3. First, the average time series is calculated for each segment, to serve as a seg-
ment reference time series. The null values within the segment are filled using this
reference, since the segmentation guarantees that the segments are homogeneous
along time. For a given date, if none valid observation is found within the segment,
the reference time series do not have information for this date. For these cases, the
missing values are estimated by a cubic polynomial interpolation of the time series.
This approach was used considering that a time period of two years was used. Based
on that, the series behavior is better described by this function rather than a simple
nearest neighbor or linear interpolation.

Input: gappedDataCube, segmentation
Output: filledDataCube

1 foreach segment[i] of segmentation do
2 meanTS = vector()
3 meanTS = segment[i] time series mean
4 foreach timeSeries[j] within segment[i] do
5 if there is a NULL value within timeSeries[j] then
6 timeSeries[j] NULL values = meanTS values from the same

position
7 end
8 end
9 end

Algorithm 3: Time series matching gap-filling method pseudo-code.

As mentioned, the proposed gap-filling process is inspired in Vuolo et al. (2017).
Based on that, Table 3.4 present the main differences and similarities between both
methods. The main differences consists in (i) our method not requiring a previous
reference of the area, since the multi-temporal segmentation groups similar regions;
(ii) our method fills all missing values within a segment using a single time series
extracted from the segment in analysis.
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Table 3.4 - Differences between gap-filling through template matching and multi-temporal
segmentation.

Algorithm
Vuolo Marujo
(2017) (2019)

Uses time series information X X
Smoothed results X x
Realistic texture on gap-filled areas X x
Uses spatial information x X
Does not require previous x Xclassification of the area (templates)

3.3.4 Algorithm code and data provenance

A functional R script of the method can be found in Appendix B and is also dis-
tributed in https://github.com/MarujoRe/EO_filling as marujo_ts_filling.R.
The code is open source, free and is published so it can be used or adapted. The
code uses 4 existent packages: foreach and doParallel are used to parallelize the pro-
cessing, raster package is used to work with raster structures and the zoo package
is used to interpolate NA (not available) values in time series.

Regarding data provenance, for this study, an extra band was saved alongside the
images, containing the information of which pixel was filled in the process using time
series. An example of this band information can be seen in Figure 3.6. This band
was an enhancement of the provenance band from the previous gap-filling step, now
including the string "TemporalFill" to indicate pixels filled using the multi-temporal
segmentation template matching.
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Figure 3.6 - Partial data provenance band.

Partial data provenance band of Landsat-7/ETM+ image from 19 Aug 2015, containing
gap-filled history. "0" means that the pixel value was not changed. "seg" means that a
segmentation was employed to fill the gapped location, followed by the segmentation level,
which varies from 1 to 3. The following number sequence regards the date used to fill that
location, in the format year/month/date. "TemporalFill" means that the pixel value was
filled through segmentation time series matching.

Source: Author’s production.
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3.4 Case studies

After testing each method individually, in order to test the the entire procedure
of harmonization and gap-filling of Earth’s surface data on an entire image data
cube, two study areas were carried out using Landsat-7/ETM+, Landsat-8/OLI and
CBERS-4/MUX images. The study areas are located in Goiás state (center-west of
Brazil), as shown in Figure 3.7. The study areas are two Military Grid Reference
System (MGRS) tiles, 22KDF and 22KEF , that intersects with 3 Landsat scenes,
Path/Rows 223/072, 222/072 and 222/073 (WRS 2) and 6 CBERS-4/MUX scenes,
Path/Rows: 162/119, 162/120, 161/119, 161/120, 160/119 and 160/120 (CBERS
WRS Path Row). In Figure 3.7 the Landsat and CBERS path/rows are shown in
green and red squires, respectivelly. The study was performed using images from
August 2015 to October 2017. This time period was chosen because CBERS-4 was
operational and also due to, in Brazil, summer crops are normally planted during
September/October. Besides, we got images less than 50% of cloud cover. Consid-
ering study area 22KDF , 44 Landsat-7/ETM+ images, 41 Landsat-8/OLI, and 41
CBERS-4/MUX were used, while study area 22KEF used 78 Landsat-7/ETM+,
81 Landsat-8/OLI and 37 CBERS-4/MUX.

Figure 3.7 - Study areas and sensors path/rows.

Study areas in Goiás state, Brazil, showing the Landsat and CBERS-4 path/rows.
Source: Author’s production.
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These two study areas, 22KDF and 22KEF, were defined to show how the method-
ology behave in different situations. In the first case, the tile is fully contained in
the satellite scene. In the second case, the tile is located in the bordering path/row
regions, resulting in partial images.

Pixels affected by clouds or cloud shadows were removed using quality masks. All
images were acquired in reflectance values. They were resampled to 30m, registered
and spectrally harmonized using linear regression, since in the results this approach
showed better results than the spectral unmixing approach on the previous tests.
To perform the linear regression harmonization on an image data cube, a 9 days
difference was adopted as the maximum day interval, otherwise, the regression was
performed using the mean gain and offset obtained from all other cases. This work-
flow produced a gapped image data cube. For validation purpose, we replicated the
approach used by Vuolo et al. (2017), by randomly removing samples from valid
areas, but increasing the number of 10x10 pixel boxes to three, since our area was
larger. The artificial data gaps creation is illustrated in Figure 3.8. After the data
cube was totally filled, the reference data was compared with the gap-filled data
through Pearson Correlation Coefficient, Mean Absolute Error (MAE) and Visual
Information Fidelity (V IF ) (SHEIKH; BOVIK, 2006).

Figure 3.8 - Artificial data gaps.

Generating validation samples. The black polygons indicate the position of the 10x10
pixels sized boxes, which are removed from the time series.

Source: Author’s production.
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This gapped image data cube was filled using our proposed methodology. During
the process, an extra band was created to store the processed pixel history, in order
to provide possible users with information regarding the processes performed on the
images. During the first gap filling process for instance, each filled pixel in this band
contains information about which image and segmentation level was employed in
the process. In the time series matching step, this band shows which pixels of the
time series were filled by this second process.

Similarly in the Harmonization step, in the gap-filling step for the first gap filling
method, a 9 days interval was defined. During this 9 day window, if there was a
target and a reference images, the gap-filling process were performed, otherwise,
in cases which there were no images available in this interval, the first gap-filling
process wasn’t applied. After that, the second gap-filling procedure, multi-temporal
segmentation template matching, was applied. To validate the processing, previous
validation areas were utilized to compare the filled values and the original values
through R2, MAE, Universal Quality Image Index (UIQI) (WANG; BOVIK, 2002)
and VIF (SHEIKH; BOVIK, 2006). Afterwards, an optical multi-source RS images
data cube is obtained so that it can be used in numerous RS applications.
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4 RESULTS

The first results, presented in Section 4.1, refer to the spectral harmonization be-
tween Landsat-7/ETM+ and Landsat-8/OLI (L7·L8) and also between CBERS-
4/MUX and Landsat-8/OLI (L8·C4) that already was published in Marujo et al.
(2017a). The second results, presented in Section 4.2, refer to our proposed adap-
tation of Maxwell et al. (2007) method to fill gaps using multiscale segmentation.
The third results, presented in Section 4.3, refer to the gap-filling process through
multi-temporal segmentation time series matching.

4.1 Spectral Harmonization

Table 4.1 shows gain and offset coefficient values for each image band employed to
spectrally harmonize the sensors through linear regression. These coefficients were
utilized to transform Landsat-7/ETM+ and CBERS-4/MUX images into synthetic
Landsat-8/OLI images. The gain coefficients values indicate that Landsat-7/ETM+
was more consistent with Landsat-8/OLI than CBERS-4/MUX.

Table 4.1 - Linear regression coefficients (gain and offset) for Landsat-8/OLI (L8) with
CBERS-4/MUX (C4) and Landsat-8/OLI with Landsat-7/ETM+ (L7) in the
blue, green, red and near infrared bands.

Blue band Green band Red band NIR band
Offset Gain Offset Gain Offset Gain Offset Gain

L8 C4 184.78 0.69 106.13 0.89 28.04 1.02 209.25 1.28
L8 L7 -51.61 1.03 -24.89 1.05 -38.27 1.07 8.20 1.07

After applying the coefficients to generate the synthetic images, the resulted images
were compared with the original images using the Pearson correlation coefficients,
which can be seen in Table 4.2. The comparison was made using the obtained images
harmonized through linear spectral unmixing and through linear regression (from
tests using images in Table 3.3). The results indicate that shorter wavelength bands,
mainly the blue band, are less intercorrelated than longer ones, such as red and near
infrared. This is probably due to atmosphere interference in lower wavelength bands
that was not completely suppressed by the atmosphere correction method (JENSEN,
2007). These results corroborates with Holden and Woodcock (2016) which also
obtained better results for the longer wavelength bands.

The results in Table 4.2 indicate that Pearson correlation values obtained by linear
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Table 4.2 - Pearson correlation coefficients obtained by harmonizing, through linear spec-
tral unmixing (each date separately) and linear regression (both dates) for
Landsat-8/OLI (L8), Landsat-7/ETM+ (L7) and CBERS-4/MUX (C4) im-
agery from 04/07/2015 and 08/29/2015.

Blue band Green Band Red Band NIR Band
Unmixing L8 C4 (date 1) 0.78 0.82 0.85 0.89
Unmixing L8 C4 (date 2) 0.76 0.79 0.82 0.79
Unmixing L8 L7 (date 1) 0.89 0.95 0.97 0.95
Unmixing L8 L7 (date 2) 0.88 0.94 0.97 0.92
Regression L8 C4 0.82 0.90 0.96 0.96
Regression L8 L7 0.93 0.97 0.98 0.96

regression method are in general, slightly more consistent than the ones produced
by linear unmixing model approach. These results may indicate that linear un-
mixing approach could be propagating uncertainties produced in the endmembers
extraction process, since the analyst must guarantee that the collected points do not
change along the time and that they represent a pure spectral curve of the unmix-
ing class. In the linear regression approach, the analyst supervision is not needed,
since supervised sampling and pure spectres are not required, which also enables
automatization of the process. Considering the image quality assessment, the Visual
Information Fidelity (VIF) index (SHEIKH; BOVIK, 2006) was calculated, as shown
in Table 4.3. Using this index can also be seen that Landsat-7/ETM+ data was
more consistent with Landsat-8/OLI than CBERS-4/MUX data. However, through
VIF the can be noted that the image quality wasn’t so different using either spectral
harmonization methods.

Table 4.3 - Visual Information Fidelity (VIF) index obtained by harmonizing, through
linear spectral unmixing (each date separately) and linear regression (both
dates) for Landsat-8/OLI (L8), Landsat-7/ETM+ (L7) and CBERS-4/MUX
(C4) imagery from 04/07/2015 and 08/29/2015.

Blue band Green Band Red Band NIR Band
Unmixing L8 C4 (date 1) 0.86 0.86 0.85 0.85
Unmixing L8 C4 (date 2) 0.81 0.81 0.80 0.80
Unmixing L8 L7 (date 1) 0.95 0.95 0.94 0.93
Unmixing L8 L7 (date 2) 0.95 0.95 0.95 0.94
Regression L8 C4 0.82 0.81 0.81 0.81
Regression L8 L7 0.96 0.96 0.95 0.94
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Even though Landsat-7/ETM+ and CBERS-4/MUX present bands with similar
wavelengths, their spectral responses are different, as mentioned before. Landsat-
8/OLI is a continuity mission of Landsat-7/ETM+ and both are processed us-
ing similar methods developed by USGS team. However, the correlation between
CBERS-4/MUX and Landsat-8/OLI also showed high values, making promising to
perform multi-source series to increase the number of surface observations.

Based on the obtained results and considering that no interpreters are required to
perform the method, the linear regression approach will be used to perform further
spectral image harmonizations on this research. Although harmonized images still
contains gaps, after harmonization, the image data cube is constructed. Figure 4.1
shows the acquisition dates of the images of a set containing 81 Landsat-8/OLI, 78
Landsat-7/ETM+ and 37 CBERS-4/MUX images, used in the spectral harmoniza-
tion in order to build a multi-source data cube (study area 22KEF), ranging from
August 2015 to October 2017. Regarding data provenance, a table containing the
gain and offset coefficients was saved alongside each image folder and for each date.
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Figure 4.1 - Increase number of multisensor images used to built image data cube.

Set of 81 Landsat-8/OLI (L8), 78 Landsat-7/ETM+ (L7) and 37 CBERS-4/MUX (C4)
images in blue, green and red lines, respectively, used in the spectral harmonization in
order to build a multi-source data cube (study area 22KEF), ranging from August 2015
to October 2017.

Source: Author’s production.

4.2 Gap-filling Through Multiscale Segmentation

The segmentation scale parameter (the algorithm merge criteria) was empirically
adjusted to 50, 100, 200, respectively for levels 1, 2 and 3, whereas the compactness
and shape parameters were maintained in 0.5 (which implies 0.5 for smoothness)
and 0.1 (which implies in 0.9 for color), respectively, for all levels.

One of the most commonly occurring errors in the Maxwell et al. (2007) gap-filling
approach is the loss of narrow features such as roads, riparian areas, and small
streams. In our method these features remain detectable, since texture is maintained.
This is mainly due to the pixel weighting step. In larger gaps, such as the ones found
close to borders in SLC-off images, Maxwell et al. (2007) approach fills the areas as
homogeneous regions due to the repetition of the same spectral value across missing
values, while in our method the filled areas look visually more realistic due to the
textured filling. These visual differences can be seen in Figure 4.2, which illustrates
a comparison between Maxwell et al. (2007) and our method by filling the gaps of a
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SLC-off Landsat-7/ETM+ using both methods. To illustrate the results of gap-filling
on large scale, Figure 4.3 illustrates an entire Landsat scene presenting SLC-off gaps
and the same image filled by our method, notwithstanding that this process was
applied to the entire data cube.
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Figure 4.2 - Gap-filling SLC-off Landsat-7/ETM+ image through two gap-filling ap-
proaches.

SLC-off Landsat-7/ETM+ NIR band image (a); NIR band image from “a” filled through
Maxwell et al. (2007) hierarchical multi-scale segmentation method (b) and the same
image from a filled through the proposed method, which uses segmentation pixel weighting
(c).

Source: Author’s production.
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Figure 4.3 - Gap-filling through multiscale segmentation application in a study area.

Visual comparison (NIR band) between SLC-off Landsat-7/ETM+ from 10 August 2015
(superior) and the image filled through the proposed gap-filling approach (inferior).

Source: Author’s production.
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To quantitatively evaluate both methods, Table 4.4 shows the agreement between
Maxwell et al. (2007) (named as Maxwell) and our (named as Marujo) methods in
relation to a reference. The R2, mean absolute error (MAE) and VIF are used to
evaluate the results. For all spectral bands, the R2 obtained using our method is
greater than the one using the original method, i.e. our method produces images
more similar to the original ones. It the same table can also be noted that the
residues (MAE) are lower using our method and that the image quality assessment
is closer to the original image using our method rather than the original one.

In Table 4.4 is also possible to note that the greater the wavelength, better the
correlation results, except for NIR, while the quality image (VIF) is almost constant.
The crescent correlation results occurred probably due to atmospheric interference
in shorter wavelength bands, also known as Rayleigh Scattering (JENSEN, 2007),
that is not completely suppressed even with atmosphere correction. The differences
obtained for the NIR bands probably occurred due to the differences in the sensors
bandwidths and spectral response function, meaning that spectral harmonization
approaches can enhance the obtained results.

Another characteristic that we noticed is that the algorithm’s asymptotic cost was
maintained since only linear operations were added to calculate the pixel weighting.
We tested the algorithm performance using a 16Gb of memory ram and an intel
processor i7-6500U of 2.5GHz computer. Figure 4.4 shows the execution time for
both algorithms using images ranging from 100x100 to 2000x2000 pixels. An imple-
mentation of the method, in R, can be found in https://github.com/MarujoRe/
EO_filling as marujo_multiscale.R.
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Table 4.4 - Validation agreement between gap-filling through multiscale segmentation
method (named as "Maxwell") and our method (named as "Marujo") on filling
simulated SLC-off effect Landsat-8/OLI data, containing R2, Mean Absolute
Error (MAE) and Visual Information Fidelity (VIF) index.

Dates and Metrics Multispectral bands
Blue Green Red NIR SWIR 1 SWIR 2

M
ax

we
ll

Date 1 R2 0.88 0.88 0.90 0.82 0.90 0.91
Date 2 R2 0.91 0.91 0.92 0.85 0.91 0.91
Date 3 R2 0.92 0.92 0.93 0.88 0.92 0.92
All dates R2 0.92 0.91 0.92 0.86 0.92 0.92
Date 1 MAE 34.15 54.32 85.42 169.13 159.06 124.50
Date 2 MAE 37.99 55.77 94.31 157.42 161.38 124.82
Date 3 MAE 41.31 62.18 102.28 163.30 167.05 128.86
All dates MAE 37.82 57.42 94.00 163.28 162.50 126.06
Date 1 VIF 0.98 0.98 0.98 0.97 0.97 0.97
Date 2 VIF 0.97 0.97 0.97 0.97 0.97 0.97
Date 3 VIF 0.97 0.97 0.97 0.97 0.97 0.97
All dates VIF 0.97 0.97 0.97 0.97 0.97 0.97

M
ar
uj
o

Date 1 R2 0.92 0.92 0.94 0.90 0.95 0.96
Date 2 R2 0.95 0.95 0.96 0.93 0.96 0.97
Date 3 R2 0.97 0.97 0.97 0.95 0.97 0.98
All dates R2 0.95 0.95 0.96 0.93 0.97 0.97
All dates NRMSE 0.01 0.02 0.03 0.03 0.02 0.01
Date 1 MAE 24.41 35.61 54.12 101.37 96.25 72.17
Date 2 MAE 25.57 33.74 52.23 88.33 87.26 63.75
Date 3 MAE 24.73 35.20 54.99 88.47 86.57 64.56
All dates MAE 24.90 34.85 53.79 92.72 90.03 66.83
Date 1 VIF 0.99 0.99 0.98 0.98 0.98 0.98
Date 2 VIF 0.99 0.99 0.98 0.98 0.98 0.98
Date 3 VIF 0.99 0.99 0.98 0.98 0.98 0.98
All dates VIF 0.99 0.99 0.98 0.98 0.98 0.98
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Figure 4.4 - Execution time for multiscale segmentation gap-filling algorithms.

Execution time of Maxwell et al. (2007) algorithm (blue) and the proposed method (red)
using images ranging from 100x100 to 2000x2000 pixels.

Source: Author’s production.
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4.3 Gap-filling Through Segmentation Time Series Matching

In this work, we adopted a threshold parameter of 0.03 (homogeneity criteria to
merge pixels). After multi-temporal segmentation, segments with areas smaller
than 7x7 pixels are merged to the biggest neighboring segment to avoid super-
segmentation.

In a qualitative analysis, our method to fill gaps through segmentation time series
matching, presented texture flaws as expected, since we use a single time series per
segment as a template to fill the gapped time series. The filled areas appear as
homogeneous regions due to the repetition of the same spectral value across missing
values. The filled differences can be seen in Figure 4.5 and Figure 4.6.

Figure 4.5 compares a cloud gapped image, the same image filled through the multi-
temporal segmentation times series matching and a non-gapped image from a close
date. As can be noted, medium-sized gaps are filled by our method not only with
temporal information but also considering the spatial context. However, the pro-
posed gap-filling approach can affect further approaches, e.g., an object-based clas-
sification, since the filling is homogeneous and some attributes like texture can be
affected. This characteristic can be more clearly observed with the existence of larger
gaps, e.g., a partial image illustrated in Figure 4.6, in which can be seen that a single
value is used to estimate all the missing data within a segment. To illustrate the
application of our method in an entire scene, Figure 4.7 contains a partial image
acquired by CBERS-4/MUX and the same image filled through our multi-temporal
segmentation time series approach.
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Figure 4.5 - Visual comparison between a Landsat-8/OLI image presenting gaps, the same
image filled through a multi-temporal segmentation times series matching and
a CBERS-4/MUX non-gapped image from a close date.

Landsat-8/OLI NIR band image, from 18 Aug 2015, presenting gaps due to cloud presence
(a); the same image when applied to a gap-filling procedure through segmentation time
series matching (b) and a CBERS-4/MUX image, from 12 Aug 2015, which does not
contain gaps (c).

Source: Author’s production.

66



Figure 4.6 - Visual comparison between non-gapped image and an image filled through
the multi-temporal segmentation times series matching.

Non-gapped NIR band image from 02 Aug 2015 (superior) and gap-filled image, from 11
Aug 2015, through multi-temporal segmentation time series matching (inferior).

Source: Author’s production.
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Figure 4.7 - Gap-filling through segmentation time series matching application in study
area 22KDF.

Visual comparison between partial CBERS-4/MUX NIR band image from 09 August
2015 (superior) and the image filled through our segmentation time series matching (infe-
rior).

Source: Author’s production.
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Considering a time series analysis, Figure 4.8 demonstrates that our approach over-
comes the lack of observations. In the figure, for three samples, can be seen two time
series, a original time series (blue) and a filled time series (red). The filled time series
contain all observations from the original time series while also containing the esti-
mation of the dates in which the original time series presented gaps. As mentioned
before, the estimation is performed using a reference time series obtained as the
average of all time series within a segment. Periods with few observations presented
changes in the time series curves due to the estimation of missing observations us-
ing the other time series from the segment. This can be better observed in sparse
spots of the time series, in special the larger peak of the time series. However, the
time series became noisy, probably due to differences in sensors measures, even after
spectral harmonization.

In a quantitative analysis, in order to evaluate our method, Table 4.5 and 4.6 shows
the agreement between the two study areas (22KDF and 22KEF) using series com-
posed by Landsat-7/ETM+ and Landsat-8/OLI observations and also including
CBERS-4/MUX data. The R2 and MAE are utilized to evaluate the results in
Table 4.5, while UIQI and V IF are used in Table 4.6.

Considering the series composed by Landsat-7/ETM+ and Landsat-8/OLI on the
two study areas, for 22KDF the relation between estimated and validation values
were stronger than for 22KEF, in all bands. This was expected because 22KEF had
more partial images, consequently more gaps, therefore, missing information implies
in more uncertainty. A similar situation occurs when considering the series using the
three sensors.

Considering both approaches, using two or three sensors, the relation between es-
timated and validation values using Landsat data is slightly greater than when
including CBERS-4 data. This probably occurred because Landsat-7/ETM+ and
Landsat-8/OLI data are more spectrally similar in processing than Landsat-8/OLI
and CBERS-4/MUX.

Considering all cases, when including more satellite data, the Landsat-8/OLI coeffi-
cients decrease. This was probably caused due to differences in spectral measures, as
we showed for CBERS-4/MUX data and according to Holden and Woodcock (2016)
for Landsat-7/ETM+ data.

The red band presented the strongest relation between estimated and validation
values. The NIR band presented most of the value differences. This can be explained
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by the study area composition of mainly vegetation, which has a peak of values in
this band.

Analysing the UIQI and VIF, the previous observations are still valid. Although
UIQI presented consistent values (close to 1), this index is influenced by the gap-
filling process, since the values are close to a regional mean. VIF, on the other
hand, describe the image pixels variation. Considering that our method fill the gaps
creating homogeneous regions, VIF presented values in the range of 0.6-0.7.
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Figure 4.8 - Three samples of gapped and non-gapped time series from NIR band.

Samples, on NIR band, of non-filled time series (blue) and filled time series (red) from
three regions of the same segment. Black dots are observations made from original data,
while white dots are estimated by filling gaps through multi-temporal segmentation time
series matching.

Source: Author’s production.
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Table 4.5 - Validation results using independent reference data from the four study cases.
L7 refers to Landsat-7/ETM+ data, L8 refers to Landsat-8/OLI data and C4
refers to CBERS-4/MUX data. 22KDF and 22KEF are the two study areas
(military grid reference system).

Sensors and metrics Multispectral bands
Blue Green Red NIR SWIR 1 SWIR 2

22
K
D
F
L7

L8

L7 R2 0.86 0.88 0.93 0.92 0.95 0.95
L8 R2 0.79 0.78 0.83 0.77 0.78 0.82
L7 L8 R2 0.83 0.83 0.88 0.84 0.86 0.88
L7 MAE 37.41 46.61 72.32 135.20 116.09 99.74
L8 MAE 67.47 98.30 156.17 289.06 313.36 258.09
L7 L8 MAE 51.91 71.54 112.76 209.41 211.24 176.12

22
K
D
F
L7

L8
C
4

L7 R2 0.85 0.88 0.94 0.91
L8 R2 0.77 0.76 0.81 0.75
C4 R2 0.86 0.83 0.86 0.76
L7 L8 C4 R2 0.83 0.82 0.87 0.81
L7 MAE 37.93 46.56 69.09 132.29
L8 MAE 71.21 102.34 164.02 295.57
C4 MAE 64.92 87.37 140.04 288.40
L7 L8 C4 MAE 57.54 77.99 123.07 236.22

22
K
EF

L7
L8

L7 R2 0.88 0.90 0.94 0.92 0.91 0.93
L8 R2 0.78 0.79 0.85 0.77 0.80 0.83
L7 L8 R2 0.78 0.79 0.85 0.77 0.80 0.83
L7 MAE 32.48 41.39 65.12 132.66 120.65 100.11
L8 MAE 52.11 71.25 115.47 244.90 224.55 178.68
L7 L8 MAE 52.11 71.25 115.47 244.90 224.55 178.68

22
K
EF

L7
L8

C
4

L7 R2 0.88 0.90 0.94 0.93
L8 R2 0.69 0.69 0.75 0.57
C4 R2 0.76 0.66 0.74 0.79
L7 L8 C4 R2 0.77 0.75 0.82 0.76
L7 MAE 32.54 41.28 65.43 129.34
L8 MAE 74.12 105.49 173.26 373.72
C4 MAE 72.87 97.24 158.60 299.53
L7 L8 C4 MAE 57.34 78.38 127.58 262.46
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Table 4.6 - Universal Image Quality Index (UIQI) and Visual Information Fidelity (VIF)
validation results using independent reference data from the four study cases.
L7 refers to Landsat-7/ETM+ data, L8 refers to Landsat-8/OLI data and C4
refers to CBERS-4/MUX data. 22KDF and 22KEF are the two study areas
(military grid reference system).

Sensors and metrics Multispectral bands
Blue Green Red NIR SWIR 1 SWIR 2

22
K
D
F

L7
L8

L7 UIQI 0.96 0.97 0.96 0.97 0.97 0.96
L8 UIQI 0.94 0.95 0.93 0.97 0.96 0.94
L7 L8 UIQI 0.95 0.96 0.94 0.97 0.96 0.95
L7 V IF 0.67 0.70 0.67 0.70 0.70 0.67
L8 V IF 0.65 0.67 0.63 0.66 0.65 0.64
L7 L8 V IF 0.66 0.69 0.65 0.68 0.68 0.66

22
K
D
F

L7
L8

C
4

L7 UIQI 0.96 0.97 0.96 0.97
L8 UIQI 0.93 0.95 0.92 0.96
C4 UIQI 0.96 0.97 0.95 0.97
L7 L8 C4 UIQI 0.95 0.96 0.95 0.97
L7 V IF 0.67 0.70 0.67 0.70
L8 V IF 0.65 0.67 0.63 0.66
C4 V IF 0.67 0.69 0.65 0.68
L7 L8 C4 V IF 0.66 0.68 0.65 0.68

22
K
EF

L7
L8

L7 UIQI 0.98 0.99 0.98 0.99 0.99 0.99
L8 UIQI 0.95 0.96 0.94 0.96 0.96 0.95
L7 L8 UIQI 0.97 0.98 0.96 0.98 0.97 0.97
L7 V IF 0.69 0.72 0.69 0.71 0.70 0.69
L8 V IF 0.66 0.67 0.64 0.66 0.66 0.64
L7 L8 V IF 0.67 0.69 0.66 0.68 0.68 0.67

22
K
EF

L7
L8

C
4

L7 UIQI 0.98 0.99 0.98 0.99
L8 UIQI 0.94 0.96 0.93 0.96
C4 UIQI 0.94 0.95 0.93 0.96
L7 L8 C4 UIQI 0.96 0.97 0.95 0.97
L7 V IF 0.69 0.72 0.69 0.71
L8 V IF 0.66 0.67 0.64 0.66
C4 V IF 0.65 0.67 0.64 0.66
L7 L8 C4 V IF 0.67 0.69 0.66 0.68

4.4 Final Remarks

Optical satellite sensors are affected by clouds, low temporal resolution and sensor
defects, which incapacitates the Earth’s surface observation. More frequently obser-
vations can be acquired by merging multiple sensors data. However, the processing of
multiple sensors together presents greater challenges, than single sensor processing,
due to the need for harmonization of heterogeneous data, and estimating missing
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values.

This PhD thesis proposed a procedure to build a landsat-like satellite sensor image
data cube, in which Landsat-7/ETM+, Landsat-8/OLI and CBERS-4/MUX were
evaluated. In order to do that, two methodologies to harmonize data were evaluated
and two methods for reconstructing missing data were proposed. The methodology
to harmonize images from different optical sensors and reconstruct missing Earth’s
surface observation data was applied to two different study areas. Two case studies
were conducted considering two extreme scenarios, the first one when a study area
tile is fully contained in the sensor path/row and the second case when the study
area is in bordering path/row regions, resulting in more partial images.

The spectral harmonization results showed that Landsat-8/OLI, Landsat-7/ETM+
and CBERS-4/MUX can be used together once their images are harmonized. Among
the studied approaches, the harmonization through linear regression presented better
results to harmonize data from the mentioned sensors. As a direct consequence of
the harmonization, more images populated the image date cube, which overcame the
Landsat original temporal resolution of 16 days. However, missing data still needed
to be estimated due to gaps.

In order to reconstruct Earth observations we sequentially employed two approaches.
The first one, an adaptation on Maxwell et al. (2007) multiscale segmentation gap-
filling approach to use segmentation pixel weighting instead of most frequent value
only. This method was mainly used to fill small image gaps, such as Landsat-
7/ETM+ SLC-off effect. The second approach was inspired in Vuolo et al. (2017),
which uses a previous time series library to reconstruct gapped ones through an eu-
clidean distance comparison. In our method, we use a multi-temporal segmentation
(COSTA et al., 2018) to estimate homogeneous areas and extract a time series of this
area to serve as reference to fill gaps.

Our multiscale segmentation gap-filling method enhanced the original Maxwell et
al. (2007) method, while asymptotically maintaining the algorithm cost. Our ap-
proach allowed image texture to be conserved on reconstructed images, allowing
object based analysis to be further applied on Landsat-7/ETM+ images. Another
improvement was that narrow features, e.g., roads, riparian areas, and small streams,
remained detectable in reconstructed images.

In our multi-temporal segmentation approach, the main advantage is that it allows
the reconstruction of areas without the need of a previous classification, since the
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segmentation guarantee that. However, a peculiarity of our approach is that the
reconstructed regions are filled with a single value per segment. Based on that,
analysts must consider using the method, since it will not provide close-to-reality
texture on the reconstructed regions.

Multi-source and Earth’s surface observation reconstruction can continue to be im-
proved. Considering the importance of monitoring Earth’s surface, this research
shows the potential to improve multi-source data quality and temporal frequency of
orbital images time series. A wide of applications can benefit from that and initia-
tives can benefit collaborative data.

A total of 274,000,819 pixels were reconstructed through our multiscale segmenta-
tion, almost 1.92% of the entire image data cube. A total of 6,245,114,365 pixels
were reconstructed through our multi-temporal segmentation time series matching
approach, the equivalent of 43.64% of the entire image data cube.

In summary, we managed to provide two image data cubes of 100km x100km contain-
ing two years of images, ranging from August 2015 to October 2017, from Landsat-
7/ETM+, Landsat-8/OLI and CBERS-4/MUX sensors, with a spatial resolution of
30m. A total of 274,000,819 pixels were reconstructed through our multiscale seg-
mentation, almost 1.92% of the entire image data cube. A total of 6,245,114,365 pix-
els were reconstructed through our multi-temporal segmentation time series match-
ing approach, the equivalent of 43.64% of the entire image data cube. Two exam-
ples of the methodology application can be seen in Figure 4.9, which demonstrate
Landsat-7/ETM+ SLC-off image gaps being filled, through the multiscale segmen-
tation approach and the remaining gaps being filled through the multi-temporal
segmentation approach.

This research served to the publication and collaboration of several papers. Bendini
et al. (2016) and Bendini et al. (2017) are assessment studies regarding the use of
Landsat and CBERS imagery together. Marujo et al. (2017b) consists of initial tests
regarding Maxwell et al. (2007) method application on Landsat-8/OLI images, since
the original method was applied in Landsat-5/TM images. Marujo et al. (2017c)
is an initial study regarding CBERS-4/MUX cloud detection based on Silva and
Liporace (2016) approach to detect clouds in Amazonia-1 sensor. Marujo et al.
(2017a) is a initial comparison of the linear regression and linear unmixing spectral
harmonizations. Two papers are still being prepared for publishing, one regarding
our multiscale segmentation gap-filling method and the other regarding the multi-
temporal segmentation approach.
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Figure 4.9 - Example of two Landsat-7/ETM+ SLC-off image gaps on NIR band, being
filled through multiscale segmentation approach and multi-temporal segmen-
tation approach.

(a) Landsat-7/ETM+ SLC-off images; (b) the same images after multiscale segmentation
gap-filling approach; and (c) after multi-temporal segmentation gap-filling.

Source: Author’s production.
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5 CONCLUSION

Different sensors image harmonization continues to be a topic of intense research and
its development will lead to more effective approaches on monitoring the Earth’s sur-
face. Considering Landsat-7/ETM+, Landsat-8/OLI and CBERS-4/MUX sensors
and the two harmonization methodologies tested in this research, spectral unmixing
and linear regression, both approaches presented Pearson’s correlation coefficients
greater than 0.76 for all spectral bands. However, the linear regression approach
results were more consistent in all bands, more used in the literature and easier to
automatize, based on that it was chosen as the method to harmonize images from
multiple sensors.

Considering the reconstruction of Earth’s surface data, our multiscale segmentation
gap-filling method enhanced the original method, while asymptotically maintaining
the algorithm cost, notwithstanding that this approach was applied to the entire
image data cube, instead of a single pair of images. Our approach allowed image
texture to be conserved on reconstructed images, allowing object based analysis to
be further applied on Landsat-7/ETM+ images. Another improvement was that
narrow features, e.g., roads, riparian areas, and small streams, remained detectable
in reconstructed images. Considering the V IF index, the method presented values
greater than 0.97 for the gap-filling through multiscale segmentation, presenting
better results than the original method in which it was inspired.

In our multi-temporal segmentation approach, the main advantage is that it allows
the reconstruction of areas without the need of a previous classification, since the
segmentation guarantee that. However, a peculiarity of our approach is that the
reconstructed regions are filled with a single value per segment. Based on that,
analysts must consider using the method, since it will not provide close-to-reality
texture on the reconstructed regions. Considering all tested sensors and the different
study areas, the least UIQI obtained was 0.92 and a V IF ranging from 0.6 to 0.7 on
the final method. Although the mentioned texture issue, the results points that the
harmonized and reconstructed areas are very similar to the original data, showing
the feasibility of the methodology.

Pragmatically, it is expected that the approach developed in this thesis can be
used effectively in academic and industrial environments and henceforth contribute
to improves overall multi-source harmonization and Earth observation data re-
construction. The developed codes are open source, free and published so it can
be used or adapted, as is all its dependencies. The R version can be found in
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https://github.com/MarujoRe/EO_filling.

5.1 Suggestions for Future Research

• Develop an approach capable of estimating the texture variance in multi-
temporal segmentation time series matching approach;

• Expand the image data cube number of imaging sensors, such as Sentinel
or other landsat-like sensors;

• Apply the developed methodology in regions with fewer Earth’s surface
observations, e.g. regions that are more affected by the presence of clouds
such as the Amazon.
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APPENDIX A: R SCRIPT OF GAP-FILLING THROUGH MULTI-
SCALE SEGMENTATION

library ( r a s t e r )
f i l lMa r u j o <− function ( imgGap , imgRef , imgSegMask1 , imgSegMask2 ,

imgSegMask3 ){
cat ( " F i l l i n g . . . " )
# Get a l l image va lue as a vec t o r
Gappixels <− va lue s ( imgGap)
Re fp i x e l s <− va lue s ( imgRef )
s e g 1p i x e l s <− va lues ( imgSegMask1 )
s e g 2p i x e l s <− va lues ( imgSegMask2 )
s e g 3p i x e l s <− va lues ( imgSegMask3 )

# Get segmentat ion IDs
segNum <− unique ( s e g 1p i x e l s )

# Labe l the vec to r wi th the segment number
names( Gappixels ) <− va lues ( imgSegMask1 )
names( Re fp i x e l s ) <− va lues ( imgSegMask1 )

# Get the va lue as a vec tor , t e s t i f the va lue i s NA
NA_which <− which( i s .na( Gappixels ) )

# Get the segments t ha t conta in those NA p i x e l s
segsWithNA <− vector ( )
segsWithNA <− as .numeric (unique (names(NA_which ) ) )
Segmentat ionp ixe l s <− which(names( Gappixels )
%in% segsWithNA)

#Se l e c t s ALL p i x e l s t h a t w i l l be used in f i l l i n g proces s
GapElements <− imgGap [ Segmentat ionp ixe l s ]
names(GapElements ) <− imgSegMask1 [ Segmentat ionp ixe l s ]
# Store the e lements in a l i s t o f segments
SegmentListGap <− l i s t ( )
SegmentListGap <− sp l i t (GapElements ,
f = names(GapElements ) )
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#Se l e c t f i l l i n g proces s p i x e l s
RefElements <− Re fp i x e l s [ Segmentat ionp ixe l s ]
#names ( RefElements ) <− imgSeg [ Segmenta t i onp i xe l s ]
SegmentListRef <− l i s t ( )
SegmentListRef <− sp l i t ( RefElements , f = names( RefElements ) )
SegmentLi s tp ixe l <− l i s t ( )
SegmentLi s tp ixe l <− sp l i t ( Segmentat ionpixe l s ,

f = names( RefElements ) )

l i s t Indexp ixe lOrderNA <− which( i s .na(
unlist ( SegmentListGap ) ) )

for ( s in 1 : length ( SegmentListGap )){
#Check NA va lue

i f (any( i s .na( SegmentListGap [ [ s ] ] ) ) ){
# not a l l are NA
i f ( ! a l l ( i s .na( SegmentListGap [ [ s ] ] ) ) ){

RefsegmentMean = mean( SegmentListRef [ [ s ] ] ,
na .rm = T)

GapsegmentMean = mean( SegmentListGap [ [ s ] ] ,
na .rm = T)

RefsegmentDeviationProp = SegmentListRef [ [ s ] ]
/ RefsegmentMean

indexNA = which( i s .na( SegmentListGap [ [ s ] ] ) )

SegmentListGap [ [ s ] ] [ indexNA ] = GapsegmentMean
∗ RefsegmentDeviationProp [ indexNA ]

SegmentListGap_f i l l ed [ [ s ] ] <− SegmentListGap [ [ s ] ]
}
else { #a l l are NA #use l e v e l 2

lv l1segname <− as .numeric (names(
SegmentListRef [ [ s ] ] [ 1 ] ) [ 1 ] )

l v l 1 s e g p i x e l <− which( s e g 1p i x e l s [ ] ==
lvl1segname ) [ 1 ]

seg2 <− s e g 2p i x e l s [ l v l 1 s e g p i x e l ]
s eg2Indexes <− which( s e g 2p i x e l s [ ] == seg2 )
va luesSeg2 <− Gappixels [ s eg2Indexes ]
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i f ( ! a l l ( i s .na( va luesSeg2 ) ) ){ # not a l l are NA
RefsegmentMean = mean( Re fp i x e l s [ s eg2Indexes ] ,

na .rm = T)
GapsegmentMean = mean( Gappixels [ s eg2Indexes ] ,

na .rm = T)
RefsegmentDeviationProp = SegmentListRef [ [ s ] ]

/ RefsegmentMean
indexNA = which( i s .na( SegmentListGap [ [ s ] ] ) )

SegmentListGap [ [ s ] ] [ indexNA ] = GapsegmentMean
∗ RefsegmentDeviationProp [ indexNA ]

SegmentListGap_f i l l ed [ [ s ] ] <− SegmentListGap [ [ s ] ]
}
else {

lv l1segname <− as .numeric (names(
SegmentListRef [ [ s ] ] [ 1 ] ) [ 1 ] )

l v l 1 s e g p i x e l <− which( s e g 1p i x e l s [ ] ==
lvl1segname ) [ 1 ]

seg3 <− s e g 3p i x e l s [ l v l 1 s e g p i x e l ]
s eg3Indexes <− which( imgSegMask3 [ ] == seg3 )
va luesSeg3 <− Gappixels [ s eg3Indexes ]
i f ( ! a l l ( i s .na( va luesSeg3 ) ) ){ # not a l l are NA

RefsegmentMean = mean( Re fp i x e l s [ s eg3Indexes ] ,
na .rm = T)

GapsegmentMean = mean( Gappixels [ s eg3Indexes ] ,
na .rm = T)

RefsegmentDeviationProp = SegmentListRef [ [ s ] ]
/ RefsegmentMean

indexNA = which( i s .na( SegmentListGap [ [ s ] ] ) )

SegmentListGap [ [ s ] ] [ indexNA ] = GapsegmentMean
∗ RefsegmentDeviationProp [ indexNA ]

SegmentListGap_f i l l ed [ [ s ] ] <− SegmentListGap [ [ s ] ]
}
else {

SegmentListGap_f i l l ed [ [ s ] ] <− SegmentListGap [ [ s ] ]
}
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}
}

}
else {
return ( SegmentListGap [ [ s ] ] )

}
}
p ixe lOrder <− unlist ( SegmentLi s tp ixe l )
pixelOrderNA <− pixe lOrder [ l i s t Indexp ixe lOrderNA ]
imgGap [ p ixe lOrder ] = unlist ( SegmentListGap_f i l l ed )

return ( imgGap)
}

### DEMO Data ###
imgSegMask1 <− r a s t e r (matrix (c (10 ,10 ,10 ,10 ,10 ,20 ,20 ,10 ,10 ,20 ,

20 , 10 , 10 , 10 , 10 , 30 ) , 4 , 4 ) )
imgSegMask2 <− r a s t e r (matrix (c (10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,

10 , 10 , 10 , 10 , 10 , 30 ) , 4 , 4 ) )
imgSegMask3 <− r a s t e r (matrix (c (10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,

10 , 10 , 10 , 10 , 10 , 10 ) , 4 , 4 ) )
imgGap <− r a s t e r (matrix (c ( 1 , 2 , 3 , 4 , 2 , 20 , 22 , 2 ,NA,NA,NA,NA,

NA,NA,NA,NA) , 4 , 4 ) )
imgRef <− r a s t e r (matrix (c (10 ,20 ,30 ,40 ,20 ,20 ,22 ,20 ,30 ,40 ,

50 , 60 , 70 , 80 , 90 , 00 ) , 4 , 4 ) )
#################

f i l l e d img <− f i l lMa r u j o ( imgGap , imgRef , imgSegMask1 , imgSegMask2 ,
imgSegMask3 )
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APPENDIX B: R SCRIPT OF GAP-FILLING THROUGH SEGMEN-
TATION TIME SERIES MATCHING

library ( r a s t e r )
l ibrary ( f o r each )
l ibrary ( doPa r a l l e l )
l ibrary ( zoo )

calcMeanTS <− function ( TS l i s t ){
use index <− lapply ( TSl i s t , i s .na)
meanTS <− rep (0 , length=length ( use index [ [ 1 ] ] ) )
countVec <− rep (0 , length=length ( use index [ [ 1 ] ] ) )
for ( a in 1 : length ( TS l i s t ) ){
pos <− which( use index [ [ a ] ] == F)
countVec [ pos ] <− countVec [ pos ] +1
meanTS [ pos ] <− meanTS [ pos ] + TS l i s t [ [ a ] ] [ pos ]

}
meanTS [meanTS==0] <− NA
meanTS <− meanTS/countVec
meanTS <− na . spline (meanTS)

}

# Ca l cu l a t e the number o f cores
no_co r e s <− detectCores ( ) − 1
# I n i t i a t e c l u s t e r
c l <− makeCluster ( no_co r e s )
r e g i s t e rDoPa r a l l e l ( c l )

#For each segment
for ( i in 1 : numSegs ){

segmentTS <− l i s t ( )
numTS <− length ( SegmentList [ [ i ] ] )
#For each TimeSeries in segment
#Extrac t a l l t ime s e r i e s
for ( k in 1 :numTS){

segmentTS [ [ k ] ] <− as .numeric ( extract (myStack ,
SegmentList [ [ i ] ] [ k ] ) )

}
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#Check i f any element i s NA in the segment
i f ( any( unlist ( lapply ( segmentTS , i s .na) ) ) ){
TS_mean <− calcMeanTS ( segmentTS )
#which TS conta in NA but are not a l l v a l u e s
TS_with_NA <− intersect ( which( sapply (

lapply ( segmentTS , i s .na ) , any ) ) ,
which( ! sapply ( lapply (

segmentTS , i s .na ) , a l l ) ) )

to_be_f i l l ed_pos <− vector ( " l i s t " ,numImgs)
to_be_f i l l ed_value <− vector ( " l i s t " ,numImgs)
for ( k in TS_with_NA){

NAindex <− which( i s .na( segmentTS [ [ k ] ] ) )
for ( img in NAindex ){

to_be_f i l l ed_pos [ [ img ] ] <− append(
to_be_f i l l ed_pos [ [ img ] ] ,
SegmentList [ [ i ] ] [ k ] )

to_be_f i l l ed_value [ [ img ] ] <− append(
to_be_f i l l ed_value [ [ img ] ] ,
TS_mean [ img ] )

}
}
for ( img in 1 : numImgs){

i f ( ! i s . null ( to_be_f i l l ed_pos [ [ img ] ] ) ) {
to_be_f i l l ed_pos_l i s t [ [ img ] ] <−

append( to_be_f i l l ed_pos_l i s t [ [ img ] ] ,
to_be_f i l l ed_pos [ [ img ] ] )

to_be_f i l l ed_value_l i s t [ [ img ] ] <−
append( to_be_f i l l ed_value_l i s t [ [ img ] ] ,
to_be_f i l l ed_value [ [ img ] ] )

}
}

}
}
s topClus t e r ( c l )
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