

MANUAL DE UTILIZAÇÃO DA CENTRIFUGA DO LABAS/INPE PARA ENSAIOS EM ALTAS ACELERAÇÕES (Versão 1)

Plínio Ivo Gama Tenório

Rafael Cardoso Toledo

Chen Ying An

INPE São José dos Campos 2019

RESUMO

Este documento é o manual de utilização da centrifuga para ensaios de solidificação em alta gravidade do Laboratório Associado de Sensores e Materiais do Instituto Nacional de Pesquisas Espaciais (LABAS/INPE). Nele contém as especificações, modo de utilização, restrições e quesitos de segurança do equipamento.

CENTRIFUGE USER MANUAL FOR HIGH GRAVITY TESTS OF LABAS / INPE (Version 1)

ABSTRACT

This document is the manual for the use of centrifugation for high gravity solidification tests of the Laboratory of Sensors and Materials at Brazilian Institute for Space Research (LABAS / INPE). Here contain the specifications, the operation mode, restrictions and safety requirements of the equipment.

LISTA DE FIGURAS

Figura 1.1. Antiga centrifuga do LAS/INPE	. 13
Figura 2.1. Centrifuga LABAS/INPE	. 14
Figura 2.2. Sistema de acionamento da centrifuga	. 15
Figura 2.3. Vista em corte do forno	. 16
Figura 2.4. Posicionamento dos parafusos e entrada para o termopar	. 17
Figura 2.5. Peças com entrada para um ou dois termopares	. 17
Figura 2.7. Esquema de conexão entre o modulo de potência e o forno	. 19
Figura 2.8. Chaves utilizadas para ligar o módulo de potência	. 19
Figura 2.9. Display do modulo de potência	. 20
Figura 2.10. Botão para ligar o forno	. 20
Figura 2.11. Posicionamento da chave que deve ser acionada	. 21
Figura 2.12. Posicionamento do botão verde no inversor de frequência	. 22
Figura 2.13. Posicionamento dos botões para determinar a aceleração do	
motor	. 23
Figura 2.14. Posicionamento do botão vermelho no inversor de frequência	. 23
Figura 2.15. Sistema de aquisição de dados	. 24
Figura 2.16. Interface do LogChart II	. 25
Figura 2.17. Parâmetros de configuração.	. 25
Figura 2.18. Aviso de confirmação dos parâmetros de configuração	. 26
Figura 2.19. Aquisição dos dados medidos	. 26
Figura 2.20. Monitor de temperatura	. 27
Figura 4.1. Perfil térmico do forno com Tset = 300 °C	. 30
Figura 4.2. Perfil térmico do forno com Tset = 200 °C	. 31
Figura B.1 – Diagramas de forças do sistema	. 37

LISTA DE TABELAS

<u>Pág</u>.

Tabela 4.1. Conversão de RPM para g	. 32
Tabela A.1 – Forno no mesmo plano do braço com Tset de 200 °C	. 33
Tabela A.2 – Forno no mesmo plano do braço com Tset de 300 °C	. 34
Tabela A.3 – Forno com inclinação de 45° e Tset de 200°C	. 34
Tabela A.4 – Forno com inclinação de 45° e Tset de 300 °C	. 35
Tabela A.5 – Forno perpendicular ao braço com Tset de 200 °C	. 35
Tabela A.6 – Forno perpendicular a braço com Tset de 300 °C	. 36

SUMÁRIO

<u>Pág</u>.

1	INTRODUÇÃO	13
2	UTILIZAÇÃO E OPERAÇÃO DA CENTRIFUGA	14
2.1	Posicionamento da carga no forno	16
2.2	Operação do módulo de potência e do forno	18
2.3	Inversor de frequência	21
2.4	Coleta de dados de temperatura	24
3	SEGURANÇA E OBSERVAÇÕEs GERAIS	28
3.1	Limites de operação do equipamento	
3.2	Cuidados gerais	29
4	DETALHES DO EQUIPAMENTO	30
4.1	Perfil térmico do forno	30
4.2	Conversão de aceleração (RPM x g)	31
APÉ	ÊNDICE A – PERFIL TÉRMICO DO FORNO	33
APÉ	ÊNDICE B – FATOR DE CONVERSÃO DA ROTAÇÃO PARA	
ACE	ELERAÇÃO	37

1 INTRODUÇÃO

Em 2015 iniciou-se o desenvolvimento de um novo equipamento, em substituição do anterior (Figura 1), e com o objetivo de auxiliar nos estudos na linha de pesquisa de solidificação de materiais em microgravidade, realizada pelo grupo de Física e Tecnologia dos Materiais do Laboratório Associado de Sensores e Materiais (TECMAT/LABAS).

Figura 1.1. Antiga centrifuga do LAS/INPE

O novo equipamento foi projetado com dois objetivos:

- a) Ensaios solidificação de ligas metálicas com baixo de fusão sob altas acelerações;
- b) Simulação das condições de lançamento (rotações) do VSB-30.

Neste documento será apresentado somente os procedimentos que deverão ser utilizados para a realização de ensaios de solidificação em altas acelerações.

2 UTILIZAÇÃO E OPERAÇÃO DA CENTRIFUGA

A centrifuga consiste de uma estrutura metálica com um braço acoplado a um motor, na extremidade deste braço tem um forno fixado com auxílio de uma dobradiça.

Figura 2.1. Centrifuga LABAS/INPE

A utilização da centrifuga para realização de experimentos em altas acelerações com o forno aquecido é relativamente simples. Para isso, é necessário acionar somente dois controladores, são esses: o inversor de frequência, para acionamento do motor; e o modulo de potência, para o forno (Figura 2.2).

Antes da utilização do equipamento, deve-se ter certeza de que não haverá objetos ou pessoas na trajetória do braço e do forno/termopar.

Figura 2.2. Sistema de acionamento da centrifuga.

2.1 Posicionamento da carga no forno

O compartimento de carga do forno possui diâmetro de 1,3 cm por 16 cm de comprimento (Figura 2.3). Nele é possível colocar amostras verticalmente e, dependendo do tamanho da amostra, acoplar até dois termopares.

Figura 2.3. Vista em corte do forno

Para acessar o compartimento de carga do forno, deve-se retirar os quatro parafusos localizados na parte inferior e posicionar a amostra dentro do tubo,

também é possível posicionar um termopar para coletar os dados de temperatura durante o experimento, para isso é só inseri-lo no furo central, conforme indicado na Figura 2.4.

Figura 2.4. Posicionamento dos parafusos e entrada para o termopar

Caso exista a necessidade de acoplar dois termopares é necessário trocar a peça indicada na Figura 2.5, para isso basta somente retirar o parafuso, indicado pela seta amarela, que se encontra na lateral do tubo.

Figura 2.5. Peças com entrada para um ou dois termopares.

Peça de liga de Al (2 termopares) Peça de Inox (1 termopar)

ATENÇÃO! A peça em que é possível utilizar dois termopares foi fabricada em alumínio, ou seja, sua temperatura de trabalho é inferior se comparado a peça fabrica em aço inoxidável. Recomendasse trabalhar com temperaturas inferiores a 500 °C.

O tubo de aço inoxidável utilizado como porta amostras somente é recomendado para temperaturas de até 500 °C. Se houver necessidade de temperaturas maiores que 500 °C deve-se utilizar o porta amostra feito em quartzo com a peça de aço inoxidável que possui um trilho, indicado pela seta amarela na Figura 2.6.

Figura 2.6. Porta amostras para ensaios com T > 500 °C

2.2 Operação do módulo de potência e do forno

Para ligar o forno deve-se conectar o cabo vermelho do módulo de potência no conector do forno. Conforme indicado na Figura 2.7.

Figura 2.7. Esquema de conexão entre o modulo de potência e o forno.

Após conectar o cabo vermelho ao forno pode-se ligar o módulo de potência. Para isso, deve-se acionar a chave acima do fusível e em seguida a chave do disjuntor, conforme indicado na Figura 2.8.

Figura 2.8. Chaves utilizadas para ligar o módulo de potência

Após o acionamento do módulo de potência, será apresentado duas temperaturas no display, em vermelho a medida pelo termopar acoplado no forno, ou seja, a temperatura dentro do forno, e em amarelo a temperatura de desejada ou temperatura set. Para alterar a temperatura set basta utilizar os botões com a seta para cima ou para baixo, conforme indicado na Figura 2.9.

Para ligar o forno, deve-se apertar 4 vezes o botão indicado na Figura 2.10, ou até que apareça no display em vermelho a palavra *"run"*. Então, deve-se apertar as setas para cima ou para baixo, até que o display apresente em amarelo a palavra *"yes"*. Clicando mais uma vez no botão com a seta em círculo o display apresentará as informações de temperatura (Figura 2.8).

Figura 2.10. Botão para ligar o forno.

2.3 Inversor de frequência

Para ligar o motor e colocar na aceleração é necessário acionar a chave localizada do lado direito do inversor de frequência, conforme apresentado na Figura 2.11.

Figura 2.11. Posicionamento da chave que deve ser acionada.

Então, para ligar o inversor de frequência deve-se apertar seu botão verde, conforme indicado pela seta amarela na Figura 2.12.

Figura 2.12. Posicionamento do botão verde no inversor de frequência.

ATENÇÃO! Assim que o botão verde for acionado, o motor é ligado (girando o braço, por consequência) com a última rotação utilizada no equipamento.

Para escolher a aceleração do motor (RPM) deve-se apertar o botão com uma seta para cima ou para baixo, conforme indicado pelas setas amarelas na Figura 2.13, caso a rotação desejada esteja muito distante da mostrada no display do inversor, também é possível pressionar e segurar por um tempo os mesmos botões até que no display esteja mostrando o RPM desejado para o experimento.

Figura 2.13. Posicionamento dos botões para determinar a aceleração do motor.

Após utilização, deve-se apertar o botão vermelho, para desligar o motor, indicado pela seta amarela na Figura 2.14, e fechar a chave do painel (Figura 2.11), para desligar o inversor de frequência.

Com o motor desligado, deve-se aguardar a frenagem do braço, para por fim, acessar o forno.

Figura 2.14. Posicionamento do botão vermelho no inversor de frequência.

2.4 Coleta de dados de temperatura

A coleta de dados de temperatura é realizada utilizando um *data logger* com entrada para dois termopares. Para dar início na aquisição de dados é necessário posicionar o sensor sob o *data logger*, conforme apresentado na Figura 2.15. O sensor deve estar conectado ao computador através de uma das portas USB.

Com o sensor em sua posição, deve-se abrir o *software* LogChart II. Caso o computador não possui o *software* é possível baixa-lo no endereço: <u>http://www.novus.com.br/arquivos/534929</u>.

Assim que o *software* for aberto a interface, presente na Figura 2.16, será exibida. Para iniciar a coleta de dados de temperatura basta clicar no botão verde escrito "GO".

Figura 2.16. Interface do LogChart II.

Assim que clicar no botão "GO" abrirá uma janela com os parâmetros da coleta de dados, conforme apresentado na Figura 2.17, após configurar os parâmetros do ensaio basta clicar em "Ok".

tulo: NOME DA AMOSTRA	
ormações Gerais odelo: LogBox-AA imero de Série: 10023349 ata/Horário do Registrador: 15/05/2018 14:53:20 ata/Horário atual: 15/05/2018 14:53:37 uisições Canais	Versão do Firmware: 1.15 Capacidade da Memória: 16382 aquisições Número de aquisições: 16382 aquisições
Intervalo: 00:00:01 Acionar Bateria Externa: 0.0 • s Tempo estimado: 04:33:02	☐ Repetições Diárias Horário Inicial: 10:13:39 ÷ Horário Final: 10:13:39 ÷
Início das Aquisições Imediato Start via Palm C Data: 25/08/2003 ▼ Horário: 00:00:00 ▼ C Via Botão de Start C Entrada Digital	Final das Aquisições Memória Cheia Não Parar (Memória Circular) Após Data: 25/08/2003 Horário: 10:13:39

Figura 2.17. Parâmetros de configuração.

Após clicar "Ok" a janela de um aviso abrirá, conforme apresentada na Figura 2.18, se todos os parâmetros estiverem corretos basta clicar em "sim", caso

exista a necessidade de alterações deve-se clicar em "não", retornando assim aos parâmetros de configuração (Figura 2.17).

Aviso
O envio da configuração vai apagar os dados da memória (aquisições)
existentes no registrador. Se necessário, escolha 'Não' e faça a coleta
dos dados primeiro.
Deseja sobrescrever a configuração do registrador mesmo assim?

Sim

Não

Figura 2.18. Aviso de confirmação dos parâmetros de configuração.

Com os parâmetros configurados, as medição se iniciarão, o sensor deve ser retirado e o ensaio com ratação poderá ser realizado. Ao fim do experimento basta posicionar o sensor novamente sob o *data logger* e clicar no pequeno caminhão azul, indicado pela seta amarela na Figura 2.19. Logo em seguida o gráfico será apresentado. Para salva-ló no formato do LogChart II (.lch) basta em ir em Arquivo > Salvar, já para o arquivo em .txt deve-se clicar em Arquivo > Exportar.

Em caso de ensaios estáticos, é possível acompanhar a temperatura na amostras. Para isso basta clicar no botão com um pequeno *display*, indicado na Figura 2.20, que uma janela será aberta, mostrando a temperatura em tempo real.

Figura 2.20. Monitor de temperatura.

3 SEGURANÇA E OBSERVAÇÕES GERAIS

Como o equipamento é um protótipo desenvolvido para estudos científicos algumas questões de segurança do operador e da máquina devem ser observadas.

3.1 Limites de operação do equipamento

O equipamento foi desenvolvido para estudos de solidificação em ligas com baixo ponto de fusão, logo o tempo solidificação nesses estudos, em geral, é breve. Por isso, a seguir tem-se algumas recomendações a respeito da aceleração/ rotação:

- O limite máximo de aceleração é 10 g ou 100 RPM, sendo que não é recomendável manter nessa aceleração por mais de 2 horas (tempo máximo aconselhado);
- Para tempos maiores, até 5 horas de experimento. Deve-se utilizar rotação máxima de 3 g ou 55 RPM;
- Para tempos maiores de 5 horas, desaconselhasse a utilização desse equipamento em qualquer aceleração.

Assim como o limite de rotação o forno também possui limitações, são essas:

- Temperatura de set máxima deve ser 800°C;
- Deve-se envolver a amostra com materiais que resistam a alta temperatura e que possam servir como absorvedores, ao menos na parte acima e abaixo da amostra, afim de proteger o espaço vazio do compartimento de carga no caso de vazamento de metais em forma líquida ou outros líquidos;
- Não recomendasse a utilização de materiais que possam volatizar em temperaturas altas.

3.2 Cuidados gerais

O operador deve tomar alguns cuidados ao utilizar a centrifuga, são esses:

- Não exceder os limites apresentados na seção 3.1 deste documento;
- Não ficar próximo ao equipamento enquanto o braço está girando;
- Se atentar a temperatura externa do forno antes de pôr as mãos nele;
- Verificar se existe algum objeto na trajetória de rotação braço;
- Acompanhar o experimento;
- Desligar imediatamente o equipamento a qualquer ruído, cheiro ou iluminação incomum durante seu funcionamento;
- Se atentar a versão do manual, por que como o equipamento é um protótipo, melhorias poderão ser feitas;

4 DETALHES DO EQUIPAMENTO

4.1 Perfil térmico do forno

Os perfis térmicos para temperatura set de 300 °C (Figura 4.1) e 200 °C (Figura 4.2) foram obtidos experimentalmente. O procedimento consistiu na coleta da temperatura utilizando um termopar, que era deslocada em cada centímetro do compartimento de carga do forno a cada 15 segundos ($\Delta t = 15$ s).

Figura 4.1. Perfil térmico do forno com Tset = 300 °C

Figura 4.2. Perfil térmico do forno com Tset = 200 °C

Os pontos para geração dos gráficos do perfil térmico do forno estarão no Apêndice A.

4.2 Conversão de aceleração (RPM x g)

A aceleração em g é determinada pelo produto da aceleração centrípeta pela aceleração da gravidade na Terra (9,80665 m/s²).

$$g = \frac{a_c}{a_g} \tag{4.1}$$

Onde: $a_c e a$ aceleração centrípeta e $a_g e a$ aceleração da gravidade na Terra.

Os principais valores de conversão estão apresentados na Tabela 4.1.

g	RPM
1	0
2	45
3	55
4	64
5	71
6	78
7	84
8	90
9	95
10	100

Tabela 4.1. Conversão de RPM para g

A metodologia adotada para determinação do fator de conversão estará demonstrada no Apêndice B.

APÊNDICE A – PERFIL TÉRMICO DO FORNO

Os perfis térmicos foram obtidos com a utilização de um termopar que a cada 15 segundos era deslocado 1 cm no interior do forno, sendo a temperatura coletado instantes antes de mover o termopar. Para isso, o forno foi mantido ligado durante 1 hora, a fim de homogeneizar sua temperatura interna. Na coleta de dados o forno ficou em 3 posições, perpendicular ao braço, com 45° de inclinação e no mesmo plano que o braço, e com duas temperaturas de entrada (Tset), 200 °C e 300° C. Os dados obtidos estão apresentados nas Tabelas A.1 até A.6.

L (cm)	T₁ (°C)	T ₂ (°C)	T₃ (°C)	Tmédia (°C)
0	227	210	225	220,67
1	249	238	249	245,33
2	261	255	265	260,33
3	271	268	276	271,67
4	280	282	287	283,00
5	285	293	296	291,33
6	287	299	301	295,67
7	287	300	301	296,00
8	282	297	297	292,00
9	272	289	289	283,33
10	260	273	275	269,33
11	245	257	260	254,00
12	228	239	243	236,67
13	208	217	223	216,00
14	181	191	195	189,00
15	133	149	156	146,00
16	113	127	126	122,00

Tabela A.1 – Forno no mesmo plano do braço com Tset de 200 °C.

L (cm)	T ₁ (°C)	T ₂ (°C)	T ₃ (°C)	T _{média} (°C)
0	313	313	325	317,00
1	346	337	343	342,00
2	360	365	364	363,00
3	379	387	380	382,00
4	394	402	393	396,33
5	405	416	404	408,33
6	409	419	406	411,33
7	404	419	405	409,33
8	390	411	398	399,67
9	375	397	386	386,00
10	348	379	370	365,67
11	298	355	346	333,00
12	252	328	303	294,33
13	184	295	264	247,67
14	158	252	190	200,00
15	140	195	185	173,33
16	125	167	165	152,33

Tabela A.2 – Forno no mesmo plano do braço com Tset de 300 °C.

L (cm)	T1 (°C)	T ₂ (°C)	T₃ (°C)	Tmédia (°C)
0	222	220	230	224,00
1	246	245	243	244,67
2	265	266	260	263,67
3	284	281	275	280,00
4	299	295	291	295,00
5	308	304	302	304,67
6	312	309	307	309,33
7	310	310	308	309,33
8	304	304	304	304,00
9	290	294	294	292,67
10	277	280	278	278,33
11	260	262	260	260,67
12	237	240	240	239,00
13	213	194	209	205,33
14	182	163	170	171,67
15	135	126	137	132,67
16	130	116	132	126,00

Tabela A.3 – Forno com inclinação de 45° e Tset de 200°C.

L (cm)	T ₁ (°C)	T ₂ (°C)	T ₃ (°C)	T _{média} (°C)
0	318	319	327	321,33
1	351	343	351	348,33
2	373	373	374	373,33
3	390	395	394	393,00
4	409	409	412	410,00
5	420	420	425	421,67
6	423	423	429	425,00
7	420	420	428	422,67
8	407	416	419	414,00
9	375	400	405	393,33
10	330	378	385	364,33
11	297	350	350	332,33
12	262	315	306	294,33
13	251	276	230	252,33
14	217	218	210	215,00
15	183	180	179	180,67
16	162	154	160	158,67

Tabela A.4 – Forno com inclinação de 45° e Tset de 300 °C.

Tabela A.5 – Forno perpendicular ao braço com Tset de 200 °C.

L (cm)	T1 (°C)	T ₂ (°C)	T₃ (°C)	Tmédia (°C)
0	215	238	253	235,33
1	238	258	265	253,67
2	253	273	279	268,33
3	267	289	287	281,00
4	279	301	296	292,00
5	290	311	302	301,00
6	294	316	304	304,67
7	297	317	302	305,33
8	294	313	298	301,67
9	285	301	289	291,67
10	274	287	275	278,67
11	257	266	262	261,67
12	238	249	245	244,00
13	206	222	217	215,00
14	183	180	185	182,67
15	174	135	144	151,00
16	123	121	125	123,00

L (cm)	T1 (°C)	T ₂ (°C)	T₃ (°C)	T _{média} (°C)
0	329	323	326	326,00
1	355	353	359	355,67
2	374	377	375	375,33
3	394	395	395	394,67
4	407	411	411	409,67
5	416	425	418	419,67
6	420	431	422	424,33
7	419	431	421	423,67
8	413	422	412	415,67
9	396	408	400	401,33
10	372	389	380	380,33
11	344	363	358	355,00
12	305	324	335	321,33
13	202	278	305	261,67
14	162	217	266	215,00
15	140	176	211	175,67
16	120	160	176	152,00

Tabela A.6 – Forno perpendicular a braço com Tset de 300 °C.

APÊNDICE B – FATOR DE CONVERSÃO DA ROTAÇÃO PARA

ACELERAÇÃO

Para determinação do fator de conversão da rotação (RPM) para aceleração (g) admite-se que: o referencial adotado é o forno; o forno é um ponto de massa *m* localizado no em seu centro de gravidade (cg); a massa da amostra é desprezível; e todas as forças do sistema atuam no centro de gravidade do forno. Então as forças atuantes no forno estão representadas na Figura B.1.

Figura B.1 – Diagramas de forças do sistema.

Onde: \vec{P} é o peso; \vec{T} é a tração; \vec{T}_y é a componente de \vec{T} no eixo y do plano cartesiano; \vec{T}_x é a componente de \vec{T} no eixo x do plano cartesiano; e β é o ângulo de inclinação do forno em relação ao braço. Logo, o fator de conversão é expressado por:

$$n = \frac{a_c}{g}$$

Equação B.1

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)	Manuais Técnicos (MAN)
Teses e Dissertações apresentadas nos Cursos de Pós-Graduação do INPE.	São publicações de caráter técnico que incluem normas, procedimentos, instruções e orientações.
Notas Técnico-Científicas (NTC)	Relatórios de Pesquisa (RPQ)
Incluem resultados preliminares de pesquisa, descrição de equipamentos, descrição e ou documentação de programa de computador, descrição de sistemas e experimentos, apresenta- ção de testes, dados, atlas, e docu- mentação de projetos de engenharia.	Reportam resultados ou progressos de pesquisas tanto de natureza técnica quanto científica, cujo nível seja compatível com o de uma publicação em periódico nacional ou internacional.
Propostas e Relatórios de Projetos (PRP)	Publicações Didáticas (PUD)
São propostas de projetos técnico- científicos e relatórios de acompanha- mento de projetos, atividades e convê- nios.	Incluem apostilas, notas de aula e manuais didáticos.
Publicações Seriadas	Programas de Computador (PDC)
São os seriados técnico-científicos: boletins, periódicos, anuários e anais de eventos (simpósios e congressos). Constam destas publicações o Internacional Standard Serial Number (ISSN), que é um código único e definitivo para identificação de títulos de seriados.	São as sequências de instruções ou códigos, expressos em uma linguagem de programação compilada ou inter- pretada, a ser executada por um computador para alcançar um determi- nado objetivo. São aceitos tanto programas fonte quanto executáveis.
Pré-publicações (PRE)	

Todos os artigos publicados em periódicos, anais e como capítulos de livros.