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Abstract: Since the 1980s, mangrove cover mapping has become a common scientific task. However,
the systematic and continuous identification of vegetation cover, whether on a global or regional
scale, demands large storage and processing capacities. This manuscript presents a Google Earth
Engine (GEE)-managed pipeline to compute the annual status of Brazilian mangroves from 1985 to
2018, along with a new spectral index, the Modular Mangrove Recognition Index (MMRI), which has
been specifically designed to better discriminate mangrove forests from the surrounding vegetation.
If compared separately, the periods from 1985 to 1998 and 1999 to 2018 show distinct mangrove area
trends. The first period, from 1985 to 1998, shows an upward trend, which seems to be related more
to the uneven distribution of Landsat data than to a regeneration of Brazilian mangroves. In the
second period, from 1999 to 2018, a trend of mangrove area loss was registered, reaching up to
2% of the mangrove forest. On a regional scale, ~85% of Brazil’s mangrove cover is in the states
of Maranhão, Pará, Amapá and Bahia. In terms of persistence, ~75% of the Brazilian mangroves
remained unchanged for two decades or more.
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1. Introduction

Following global change scenarios, coastal areas are exposed to a wide range of environmental
hazards, including sea-level rise and its associated effects. At the same time, coastal areas are
more densely populated than the hinterland and exhibit higher rates of population growth and
urbanisation [1], hosting almost half of the planet’s population [2]. Nevertheless, coastal areas comprise
only 20% of the Earth’s land area [3].

The Brazilian coastal zone (BCZ) shows the same pattern. Extending approximately 9200 km, this
dynamic landscape of quick physical and socio-economic changes is home to ~18% of the country’s
population, along which 16 out of 28 metropolitan regions lie [4]. The Brazilian coastal zone presents a
very diverse suite of coastal environments that evolved during the Quaternary in response to changes
in climate and sea-level changes, showing an interaction between different sediment supplies and
a geologic heritage that dates back to the breakup of South America and Africa [5]. The Brazilian
mangrove systems are among this diverse suite of coastal environments.
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Globally, mangrove forests are distributed in tropical and subtropical intertidal regions between
approximately 30◦N and 30◦S [6]. In 2000, mangrove forests represented a total area of 137,760 km2,
distributed in 118 countries and making up ~1% of the tropical forests in the world [7]. Mangrove
forests are an evergreen type of vegetation typically distributed from the mean sea level to the highest
spring tide [8] and grow in extreme environmental conditions such as extreme tides, high salinity, high
temperatures and muddy anaerobic soils [9].

Mangrove systems play an essential role in human sustainability, providing a wide range of
ecosystem services, including nutrient cycling, soil formation and wood production. They also
provide fish spawning grounds and carbon (C) storage [10–12], being one of the most productive and
biologically complex ecosystems on earth [13]. Mangroves and coastal wetlands sequester carbon at an
annual rate two to four times greater than that of mature tropical forests and store three to five times
more carbon per equivalent area than do tropical forests [10]. Despite its importance, this environment
is still highly threatened due to population growth and urbanisation processes.

Since the 1980s, mapping and change detection in mangrove areas at the global scale have been
carried out [7,11,14–16]. However, there are few studies in the current literature that include the
systematic and continuous identification of mangroves and associated changes, whether on the global
or regional scale. In Brazil, the first national mangrove map was published in 1991 [17], based on
airborne real aperture radar data collected from 1972 to 1975. At that time, the national mangrove
area was ~13,800 km2. In the same period, Schaeffer-Novelli et al. [18] described the variability in the
mangrove ecosystems along the Brazilian coast. In the last two decades, several papers were published
that focused on regional-scale mangrove mapping and short temporal windows, for example, [19–23]
concentrated on the northern coast, [24,25] focused on the north-eastern coast and [26,27] focused on
the south-eastern coast of Brazil.

In 2010, national-scale mangrove maps, based on 2009 Landsat-5 data, were again published and
the Brazilian mangrove area reported was ~11,143 km2 [28]. Global-scale mangrove maps published
in the last two decades estimated Brazil’s mangrove area to be ~9627 km2 [7,16]. More recently, the
Brazilian Environmental Ministry released the Brazilian Mangrove Atlas, based on 2013 Landsat-8
data, which estimated the national mangrove area to be near 13,989 km2 [29]. However, the current
literature lacks long time series analyses that allow an exhaustive and systematic understanding of
Brazilian mangrove coverage dynamics.

Regardless of the terrestrial cover to be identified, any systematic and exhaustive identification of
patterns, including vegetation patterns, requires large storage and processing capacities. These two
requirements have only recently been circumvented with the advent of cloud computing platforms,
such as Google Earth Engine (GEE) [30] and Amazon Web Services (AWS) [31], combining several
petabytes of orbital and geospatial data with statistical analysis resources on the planetary scale.

Moreover, the integration of remotely sensed time series data in such platforms minimizes one of
the major problems inherent to land use and land cover mapping: the persistent cloud cover over some
areas of the planet [32]. Intertropical coastal zones are no exception to this characteristic. Coastal zones
are severely affected by cloudy conditions due to their proximity to oceans and their position. The GEE
platform provides fast filtering and sorting capabilities, which greatly facilitates searching through
millions of individual images and pixels to select data that meet specific spatial, temporal, spectral
or other criteria [30]. However, there are few spectral mechanisms specifically designed to support
mangrove identification and to distinguish mangroves from surrounding vegetation. Traditionally,
mangrove detection uses classical vegetation indices, such as the Normalized Difference Vegetation
Index (NDVI) [33] and the Normalized Difference Water Index (NDWI) [34,35], visual interpretation,
supervised classification, unsupervised classification and microwave imagery [7,16,23,28,36–41].

This paper presents the annual Brazilian mangrove cover status as part of a continental-scale
analysis from 1985 to 2018 based on Landsat time series data and GEE cloud computing capabilities.
To facilitate the recognition, mapping and monitoring of mangrove forests from surrounding vegetation,
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this study presents and verifies the robustness of a new spectral vegetation index called the MMRI, the
Modular Mangrove Recognition Index.

2. Materials and Methods

Data processing and analysis occurred inside the GEE platform, as shown in Figure 1. All raster
data and their sub-products were derived from the United States Geological Survey (USGS) Landsat
Collection 1 Tier 1 Top of Atmosphere (TOA) data, which include Level-1 Precision Terrain
(L1TP) processed data that have well-characterized radiometric values across the different Landsat
sensors [42–44].
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Figure 1. Data-flow diagram. All processing and analysis occur inside the Google Earth Engine (GEE)
platform. Steps related to image processing are in blue. The steps in green are related to the sample
design. Classification procedures are in yellow. The concordance assessment phase is in red and, finally,
the data availability is in salmon. BQA and SRTM denotes Band Quality Assessment and Shuttle Radar
Topography Mission, respectively.

For each year, Landsat TOA data were used to produce annual cloud-free composites, ranging
from the 1 January to the 31 December. The cloud/shadow removal script takes advantage of the
quality assessment (QA) band and the GEE median reducer. When used, QA values can improve data
integrity by indicating which pixels might be affected by artefacts or subject to cloud contamination [45].
In conjunction, GEE can be instructed to pick the median pixel value in a stack of images. By doing
so, the engine rejects values that are too bright (e.g., clouds) or too dark (e.g., shadows) and picks the
median pixel value in each band over time.

Subsequently, the annual mosaics were sub-set to include only areas where mangrove forests
are likely to occur (e.g., low-lying coastal areas and intertidal zones) and to exclude vast areas where
mangrove forests are not expected to exist (e.g., highlands, areas distant from the shore and open ocean
areas). Sub-setting allows the reduction of processing time and decreases the diversity of flooded
vegetation types, because non-coastal areas were excluded, thereby improving the overall accuracy of
the final maps.

Due to its length and biogeographical characteristics [5,18], the Brazilian coastal region was split
into six (6) distinct sites, as shown in Figure 2.

The following spectral indices were calculated from extracted spectral attributes: the Normalized
Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) [46], the Normalized
Difference Water Index (NDWI), the Modified Normalized Difference Water Index (MNDWI) [47], the
Normalized Difference Soil Index (NDSI) [48] and the proposed MMRI. The MMRI was inspired by
the NDDI, the Normalized Difference Drought Index [49], which is given by the following:
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NDDI =
NDVI − NDWI
NDVI + NDWI

(1)

Since the values of both the NDVI and the NDWI are between −1 and 1, the direct application of
the NDDI would result in an undefined mathematical limit, −∞ to +∞. Thus, the MMRI was based on
a slightly different formulation that uses the MNDWI instead of the NDWI and the modulus of each
index within a normalized difference structure. Therefore, the MMRI is a combination of two classical
indices, a vegetation and a water index, which enhances the mangrove cover contrast. Its equation is
given by the following:

MMRI =
|MNDWI| − |NDVI|
|MNDWI|+ |NDVI| (2)

In the sample acquisition process, the global mangrove cover data [7] was buffered (50 km) and
set as the training boundary. Then, over each annual composite but solely inside the narrowed training
region, a K-means cluster analysis was run, resulting in a refined sampling area for the mangrove and
non-mangrove classes.
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Figure 2. The Brazilian coastal region was split into six (6) distinct sectors. Site 1—Amapá; Site
2—Marajó Island; Site 3—Pará/Maranhão; Site 4—Piauí/Bahia; Site 5—Espírito Santo/São Paulo; and
Site 6—Paraná/Laguna (SC). The north and south boundaries of the Brazilian mangroves are in green.
The black grids represent the WRS-2 Path and Row footprints. The following acronyms represent the
Brazilian coastal states: AL (Alagoas), AP (Amapá), BA (Bahia), CE (Ceará), ES (Espírito Santo), MA
(Maranhão), PA (Pará), PB (Paraíba), PE (Pernambuco), PI (Piauí), PR (Paraná), RJ (Rio de Janeiro), RN
(Rio Grande do Norte), SC (Santa Catarina), SE (Sergipe) and SP (São Paulo).

Having set the refined training region, ~1000 stratified random samples were distributed per class,
mangrove and non-mangrove, per sector per year. Once collected, the samples were statistically filtered
(with the 80th percentile function) and visually inspected to remove inadequate training samples.
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Stratified sampling and statistical filtering are necessary to address imbalanced class problems [50],
allowing the removal of outliers from the sample bag. The presence of imbalanced classes within the
coastal region is a probable scenario, as water surface samples may, in general, greatly surpass other
rare class occurrences (e.g., mangrove cover).

Among supervised and unsupervised methods, GEE presents more than 15 different classifiers.
However, in the last 5 years, nearly 15,000 papers based on random forests (RFs) classifying a variety
of land use/land cover classes were produced. Thus, due to its apparent robustness, the RF algorithm
was selected here as the classification method to categorize the Brazilian coastal zone into two distinct
classes: mangrove (Mg) and non-mangrove (N-Mg). This entire process was then repeated for each
year from 1985 to 2018. Table 1 shows the classifier attributes and classification parameters. In total,
ten classification attributes were used.

Table 1. Classifier attributes and classification parameters. In total, ten (10) distinct attributes were
used. NIR, stands for near-infrared; SWIR1 and SWIR2, short-wave infrareds 1 and 2.

Parameters Values

Classifier Random Forest
Trees 100

Samples ~1000 per class per sector per year
Attributes 10 (Green, Red, NIR, SWIR1, SWIR2, NDVI, EVI, MNDWI, NDSI, MMRI)

Classes 2 (Mangrove and Non-Mangrove)

Due to the pixel-based nature of the classification method and the very long temporal series, a
chain of post-classification filters was applied. The chain starts by filling in possible no-data values.
In a long time series of severely cloud-affected regions, such as tropical coastal zones, it is expected
that no-data values may populate some of the resultant median composite pixels. In this filter,
no-data values (“gaps”) are theoretically not allowed and are replaced by the temporally nearest valid
classification. In this procedure, if no “future” valid position is available, then the no-data value is
replaced by its previous valid class. Up to three prior years can be used to fill in persistent no-data
positions. Therefore, gaps should only exist if a given pixel has been permanently classified as no-data
throughout the entire temporal domain. To keep track of pixel temporal origins, a mask of years was
built, as shown in Figure 3.
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After gap filling, a temporal filter was executed. The temporal filter uses sequential classifications
in a three-year unidirectional moving window to identify temporally non-permitted transitions. Based
on a single generic rule (GR), the temporal filter inspects the central position of three consecutive years
(“ternary”), and if the extremities of the ternary are identical but the centre position is not, then the
central pixel is reclassified to match its temporal neighbour class, as shown in Table 2.

Table 2. The temporal filter inspects the central position of three consecutive years, and in cases of
identical extremities, the centre position is reclassified to match its neighbour. T1, T2 and T3 stand for
positions one (1), two (2) and three (3), respectively. GR means “generic rule”, while Mg and N-Mg
represent mangrove and non-mangrove pixels.

Rule
Input (Year) Output

T1 T2 T3 T1 T2 T3

GR Mg N-Mg Mg Mg Mg Mg
GR N-Mg Mg N-Mg N-Mg N-Mg N-Mg

Next, a spatial filter was applied. To avoid unwanted modifications to the edges of the pixel
groups (blobs), a spatial filter was built based on the “connectedPixelCount” function. Native to the
GEE platform, this function locates connected components (neighbours) that share the same pixel
value. Thus, only pixels that do not share connections to a predefined number of identical neighbours
are considered isolated, as shown in Figure 4. In this filter, at least ten connected pixels are needed to
reach the minimum connection value. Consequently, the minimum mapping unit is directly affected
by the spatial filter applied, and it was defined as 10 pixels (~1 ha).
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The last step of the filter chain is the frequency filter, as shown in Figure 5. This filter takes
into consideration the mangrove occurrence frequency throughout the entire time series. Thus, all
mangrove occurrences with less than 10% temporal persistence (3 years or fewer out of 33) are filtered
out and incorporated into the non-mangrove class. This mechanism contributes to reducing the
temporal oscillation of the mangrove signal, decreasing the number of false positives and preserving
consolidated mangrove pixels.

Finally, contingency table analyses [51,52] were used to compare two distinct products: (1) the
MMRI spectral separability and (2) the Brazilian mangrove/non-mangrove map. The contingency
table cross-tabulates the Mg and N-Mg classes of the reference map and the classified products; thus,
a map-to-map analysis was performed. From the contingency table, the following metrics were
calculated: the overall agreement (OA); the mangrove positive disagreement proportion (MgPDp),
which refers to the proportion of mangrove pixels that are exclusive to the classified maps; and the
mangrove negative disagreement proportion (MgNDp), which is the proportion of mangrove pixels
exclusive to the reference map.
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Figure 5. Red, yellow and green represent mangrove pixels with high (23 or more years, y ≥ 23),
average (between 11 and 22 years, 11≤ y≤ 22) and low (ten years or less, y < 11) occurrence frequencies,
respectively. The top image shows mangrove pixels before applying the frequency filter. The bottom
image shows mangrove pixels after applying the frequency filter. The black boxes are centred on areas
that have been significantly affected by the filter. Note that all mangrove occurrences with less than
10% temporal persistence (3 years in 33 possible years) were filtered out.

To examine the performance of the MMRI mangrove separability, a comparison of distinct
mangrove and classical vegetation indices was performed. Each map was constructed based on a
single-attribute classifier, in which only one of the following spectral indices per execution were
considered: Combined Mangrove Recognition Index (CMRI) [38,53], NDVI [33], NDWI [34] or MMRI.
The CMRI [53] and the NDWI-NDVI difference [38] are technically the same, as both are simple
arithmetical differences between the NDVI and the NDWI, in which the order of the variables changes
from “NDVI − NDWI” to “NDWI − NDVI”. This rearrangement imposes a histogram brightness
reversal but does not amplify the separability between the mangrove and non-mangrove strata. Thus,
for the sake of simplicity, only the NDVI [33], the NDWI [34], the CMRI [53] and the MMRI were
further compared.

Each classification was trained based on the same set of samples, with a total of one thousand
(1000) training samples collected, five hundred (500) per class. The training sample distribution obeyed
a stratified strategy, where the mangrove/non-mangrove data obtained from the Socioeconomic Data
and Applications Center (SEDAC) [54] served as stratifying reference. To assess the performance of
each index in distinguishing between mangrove and non-mangrove pixels and defining how distinct
are the mangrove/non-mangrove strata, a contingency table analysis was performed and the kappa
coefficient (KC) and the Bhattacharya coefficient (BC) were computed.

The testing dataset used to evaluate the performance of each index was independent of the
training dataset. The testing dataset was designed based on a new round of stratified random sampling
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over the same reference [54]. This analysis took place along the Caucaia mangrove patch in the
metropolitan region of Fortaleza in the Northeast Region of Brazil.

The agreement level of the national-scale maps was derived from three distinct dataset sources:
the SEDAC [54] dataset, serving as a reference for the year 2000 mapping; the Global Mangrove Watch
(GMW) Project [16], providing the 2010 reference data; and the Chico Mendes Institute for Biodiversity
Conservation (ICMBio)—Brazilian Atlas of Mangroves [29], which was used to evaluate the 2013
mapping agreement. As before, all samples used to assess the national agreement measures were
entirely independent of the training dataset. A total of twenty thousand (20,000) samples per year
were used, with ten thousand (10,000) samples in each class. Finally, all the results, from the auxiliary
products to the final annual maps, were made publicly available in raster and vector formats on a Web
platform: www.solved.eco.br/mangroveplatform.

3. Results

3.1. Modular Mangrove Recognition Index (MMRI)

Spectral indices may be described as the mathematical combinations of bands used to indicate the
relative abundance of features of interest or to enhance the spectral separability between them. With
this in mind, the MMRIs were compared to already existing mangrove indices and classical vegetation
indices, such as the CMRI [53], the NDVI [33] and the NDWI [34].

Based on a set of modular operations and to present a normalized difference structure (normalized
ratio), the MMRI imposes an enhancement of the mangrove/non-mangrove contrast level while
simultaneously redefining the resultant mathematical limits to fit the usual −1 to 1 interval. Figure 6
shows the visual aspect of each index, as well as a contingency table from which the overall agreement,
the mangrove positive disagreement proportion, the mangrove negative disagreement proportion
and the kappa coefficient were calculated, as well as the Bhattacharya coefficient, which denotes the
spectral distance between mangrove and non-mangrove pixels.

Regardless of the aspect to be considered—whether visual characteristics, contingency table
attributes or the spectral distinction between mangrove and non-mangrove classes—the classification
based exclusively on the MMRI achieved more robust results than did those based solely on NDVI,
NDWI or the difference between these two. All the metrics, the overall agreement, the mangrove
positive disagreement proportion, the mangrove negative disagreement proportion and the kappa
coefficient were better or equivalent in the MMRI classification (Figure 6).

Regarding the agreement metrics, the OA and the KC, the values reported by the MMRI mapping
were ~1.5 and ~4 times higher, respectively, than the values reported by the remaining indices. Likewise,
the disagreement metrics were ~4 times lower in the MMRI results, which indicates a more significant
agreement between the MMRI classification and the reference used.

From the perspective of mangrove and non-mangrove spectral separability, the Bhattacharya
coefficient applied to the MMRI reached the value of 0.22, which is the lowest among all the calculated
coefficients (Figure 6). This suggests that the referred index provides greater distinction between the
mangrove and non-mangrove strata compared to the other evaluated indices. The BC is a spectral
distance metric that measures the overlap between two populations or samples, where a value of zero
represents no overlap and a value of one represents perfect overlap [55].

www.solved.eco.br/mangroveplatform
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indicates mangrove positive disagreement proportion, MgNDp refers to mangrove negative disagreement proportion, KC means the kappa coefficient and BC denotes
the Bhattacharya coefficient.
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3.2. Brazilian Mangrove Status

For the first time in the scientific literature, Brazilian mangrove cover mapping was systematically
and continuously carried out, producing maps and annual statistics ranging from 1985 to 2018, as
shown in Figure 7. Data of this nature allow a better understanding of the dynamics of Brazilian
mangroves, updating the status of this type of coverage throughout the country over a span of 33 years.
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Figure 7. Brazilian mangrove areas from 1985 to 2018. The x-axis represents the years of the study.
The y-axis represents total area of Brazilian mangroves in ten thousand kilometers squared. The
numbers above each bar are the area values for that bar.

In Brazil, mangroves occupied areas of ~9700 km2 in 1985 and ~9900 km2 in 2018, representing
an area increase of ~200 km2. It is imperative, however, not to rush the interpretation that Brazilian
mangroves have experienced a regeneration movement over the past three decades. The percentage
difference between 1985 and 2018 is ~2%.

Compared to previous mappings [16,29,54], which refer to the years 2000, 2010 and 2013,
respectively, the areas reported here are 4% more, 7% more and 28% less, respectively. In absolute
terms, the difference for the year 2000 was ~400 km2, with the value reported by the reference reaching
~9600 km2 and the value calculated here was ~10,010 km2. For the year 2010, the difference was
800 km2, with the reference indicating 10,900 km2, and this manuscript yielding 10,100 km2. Finally,
for 2013, the values differed by ~3900 km2, with 13,989 km2 according to the reference and ~10,020 km2

calculated by us.
The overall pattern shows an upward trend (Figures 7 and 8). However, from 1985 to March 1998,

only the Landsat-5 satellite remained operational. In this period, for the BCZ, the average number of
images per year was ~500. In the last decade between 2008 and 2018, this figure tripled to ~1500 images
per year, as shown in Figure 8.

On a regional scale, the states of Maranhão, Pará, Amapá and Bahia are the federal units with the
most extensive mangrove cover in the country, reaching ~4350 km2 (~46% of the national coverage),
~2100 km2 (~22%), ~830 km2 (~9%) and ~ 670 km2 (~7%), respectively, in 2018. Together, the four
states represent ~85% of Brazil’s mangrove cover, as shown in Figure 9.
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Figure 8. The top image shows the general pattern of fluctuation in the mangrove areas from 1985
to 2018. The solid line represents the variation in mangrove area over time. The dotted line shows
the general trend. The bars show the distribution of Landsat images along the time series. L5 stands
for Landsat-5, L7 refers to Landsat-7 and L8 stands for Landsat-8. The bottom left image shows the
mangrove area variation and trend line from 1985 to 1998. The bottom right image shows the mangrove
areas and trends from 1999 to 2018.
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Figure 9. Brazilian mangrove area in percentage of total mangrove cover per state. The x-axis represents
the coastal states’ two-letter abbreviations, as in Figure 2. The y-axis represents the mangrove area % of
the year 2018.

From the perspective of mangrove cover persistence, ~75% of the Brazilian mangroves remained
unchanged for two decades or more, ~10% remained stable between one and two decades and ~15%
remained stable for ten or fewer years. In this scenario, the state of Amapá is the state that shows
the lowest stability, at ~40%, followed by the states of the south-eastern and southern regions of the
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country, Espírito Santo, Rio de Janeiro, São Paulo and Santa Catarina, which all present levels of
stability between 60% and 65%, as shown in Figure 10.
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Figure 10. Brazilian mangrove cover persistence at the national and regional scale. The top bar
shows the overall mangrove persistence. The bottom graph shows the mangrove persistence per state,
abbreviated as in Figure 2. The x-axis represents the state distributions, whereas the y-axis represents
the mangrove cover temporal persistence percentages (%). Black represents 20 years or more of stability,
dark grey indicates stability between 10 and 20 years and light grey represents stability for less than
10 years.

Since the 1980s, mangrove cover mapping at diverse scales has been carried out, although in
a non-systematic way. Here, three sets of data—two global datasets [16,54] from 2000 and 2010,
respectively, and one national dataset [29] from 2013—were used to test the concordance levels
between the mapping presented in this article and the references cited above. Figure 11 below shows
the contingency tables for the years 2000, 2010 and 2013.

Compared to the year 2000 reference data [54], the mapping developed herein achieves an overall
agreement of 87% (OA = 0.87) and a kappa coefficient of 74% (KC = 0.74), and presents a low proportion
of mangrove negative disagreement, MgNDp = 2% (0.02). There are, however, a large number of
positive disagreements, namely, 2474 pixels or ~25% (0.25).

In relation to the 2010 reference [16], the mapping developed herein also achieves a great level
of overall agreement, with OA = 85% (0.85) followed by a kappa coefficient of 70%, KC = 0.70. The
MgNDp reached ~1% (0.01). On the other hand, the proportion of positive disagreements was ~29%
(0.29).

For the year 2013, based on the data produced by the Chico Mendes Institute for Biodiversity
Conservation (ICMBio) [29], the smallest kappa coefficient and overall agreement were achieved, KC
= 60% (0.60) and OA = 80% (0.80), and the highest negative disagreement proportion was reached,
MgNDp = 40% (0.40). The proportion of positive disagreement was low, MgPDp = 1% (0.01).



Remote Sens. 2019, 11, 808 13 of 19
 Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 

 

 
Figure 11. On the left are the 2000, 2010 and 2013 median composites. In the central portion, red represents the mangroves of the reference data, blue denotes the 
classified mangroves and green represents the agreement between blues and reds. The contingency tables (right) show the agreement levels between the reference 
and classified data. Values on the main diagonal are the numbers of concordant pixels. On the off-diagonal, those above are positive differences and those below 
are negative differences. OA stands for overall agreement, MgPDp means the mangrove positive disagreement proportion, MgNDp refers to the mangrove negative 
disagreement proportion and KC denotes the kappa coefficient. 

Figure 11. On the left are the 2000, 2010 and 2013 median composites. In the central portion, red represents the mangroves of the reference data, blue denotes the
classified mangroves and green represents the agreement between blues and reds. The contingency tables (right) show the agreement levels between the reference and
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Remote Sens. 2019, 11, 808 14 of 19

3.3. Filter-Chain Influence

In total, four different filters may have influenced a resultant classification: gap-fill, temporal,
spatial and frequency filters. The first one, gap-fill, may only add mangrove data into a given year; it
is an exclusively positive filter (PF). The last two, the spatial and frequency filters, will only remove
mangrove pixels from a given year and are therefore negative filters (NF). The temporal filter is the
only filter that may add or remove mangrove classifications, depending on the pixel temporal trajectory.
Below, Figure 12 and Table 3 categorized and aggregated each pixel, year by year, according to its
filtered or no-change aspect, which varied as follows: positive filter (mangrove addition), negative
filter (mangrove removal) or unmodified (no change).
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Figure 12. On the left is the 1988 MMRI median composite: dark green represents mangroves, light
green is non-mangroves and blue is water. In the centre is the 1988 Landsat-5 band 543 median
composite. On the right, PF denotes a positive filter (mangrove addition), NF stands for a negative
filter (mangrove removal) and NC stands for no change.

Table 3. Annual filter-affected area, in percentages. PF% indicates a positive filter (mangrove addition),
PN% stands for a negative filter (mangrove removal) and NC% denotes an unfiltered pixel (no-change).

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

PF% 21 17 18 17 28 24 38 40 47 47 51 47
NF% 23 18 15 14 18 22 13 13 17 14 09 11
NC% 79 83 82 83 72 76 62 60 53 53 49 53

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

PF% 27 26 13 05 04 03 04 04 05 03 05 04
NF% 10 20 16 12 17 20 18 18 17 16 17 19
NC% 73 74 87 95 96 97 96 96 94 97 95 96

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

PF% 06 04 05 10 09 12 07 07 07 10
NF% 13 18 22 22 22 19 19 23 24 10
NC% 94 96 95 91 91 88 93 93 93 90

The mean percentage values for positive and negative filters were relatively low: 17% and 18%,
respectively. On the other hand, the annual average values for the no-change pixels were quite high:
82%. The highest quantity of positive filtering happened in 1995, whereas the lowest appeared in 2006.
The highest (24%) and lowest (9%) values of negative filtering appeared in 2017 and 1995, respectively.
From 2000 until 2018, the NC percentages were always above the average.
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4. Discussion

For the first time in the scientific literature, Brazilian mangrove cover has been systematically and
exhaustively mapped. Although data of this nature allow a better understanding of the dynamics of
mangrove coverage, it is necessary to understand the effects of the non-homogeneous distribution of
Landsat data throughout the time series to avoid superficial interpretations regarding the recorded
fluctuations in the country’s mangrove areas.

In scenarios of low data frequency, such as the period from 1985 to 1998, it is reasonable to observe
a degradation of the quality of “cloud-free composites” since these are based on the median behaviour
of pixels composing the orbital data stack. Therefore, the smaller the number of pixels for a given
position of the matrix, the higher the likelihood of including atmospheric and radiometric noise as
part of the composite, and thus, the decision of the classifier is less accurate in distinguishing between
the categories of mangrove and non-mangrove.

When compared separately, the periods from 1985 to 1998 and 1999 to 2018 show distinct trends,
as shown in Figures 8 and 9. The first period, from 1985 to 1998, shows an upward trend with a positive
slope, as shown by the equation y = 10.64x + 9827.7. Aside from environmental and human-related
changes that are present in this period, most of this pattern of growth seems to be related more to
the uneven distribution of Landsat data throughout the 33 years than to a regeneration movement of
Brazilian mangroves. From 1989 to 1998, the PF% values were greater than 20%; for five of those years,
the PF% values were greater than 40%.

The second period, from 1999 to 2018, when the PF% values are primarily smaller than 10% and
the NC% values are above 85%, a slightly negative slope is shown, presenting a trend of mangrove area
loss, which is evidenced by the equation y = −3.13x + 10070 and compatible with the global standard
expected for mangrove coverage in recent decades [56].

In absolute terms, the direct difference between the years 2000 and 2018 shows an area loss of
approximately 70 km2: a difference of ~0.6%. However, it is interesting to note that there is a wave-like
pattern present in the variation in mangrove areas. Upon comparing the data from 2003, which has
the largest reported area of mangroves, and the 2017 data, which has the smallest quantified area,
the absolute difference is ~200 km2, which represents an area loss of ~2%, a value almost three times
greater than that previously reported by the comparison between 2000 and 2018.

This pattern may be associated with intra-annual oceanographic and climatic variables (rainy and
dry seasons), which alter the prevailing tide and humidity conditions in the median composites [57–60].
On one-year intervals, especially over areas often covered by clouds such as the BCZ, the definition
of additional image-selection parameters (e.g., the tide condition and the dominant climatic pattern)
greatly reduces the number of images available, which makes spatial analysis over shorter time
frames impractical.

Regarding the concordance levels, when compared to the year 2000 data [54], an overall agreement
of 87% and a kappa coefficient of 74%, KC = 0.74, were reached. However, for this reference,
there is a large quantity of positive disagreements, which is reflected by the MgPDp of ~25%.
Nevertheless, most of these positive differences may be associated with unfiltered clouds and shadow
residues in the reference, which were included as part of the non-mangrove class and thus generated
positive disagreement.

In comparison to the 2010 data [16], there is significant overall agreement between the published
data and our mapping effort, reaching an overall agreement of 85% and a kappa coefficient of 70%.
However, the MgNDp is approximately 29%, which is likely to be associated with differences between
the edges of the mangrove classes (border errors) and to the inclusion of the coastal rivers’ dendritic
patterns as part of the mangrove reference class.

For 2013, the year with the greatest mangrove area difference between the reference and our map,
approximately 28% (~3900 km2), and the lowest overall agreement and kappa coefficient, 80% and
60%, respectively, the mangrove concept adopted by the reference was different. Unlike the previous
concepts, [29] focused on ecosystem identification rather than mangrove forests [16,54]. Thus, the
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omissions are quite high and the MgNDp reaches nearly 40%. Furthermore, the reference was created
through visual interpretation and, therefore, had a reduced need for the application of spatial filters.
As a result, the reported omissions are minorly associated with border differences and are mostly
attributed to the inclusion of “apicuns” (salt marshes) as part of the mangrove reference class.

Moreover, it is necessary to highlight the difficulties of implementing continental-scale mapping
in a systematic and exhaustive way. The uneven distribution of Landsat data, scarce prior to 1998
and much more frequent in the last two decades, imposes obstacles within the construction of annual
cloud-free composites because the quantity of orbital data is greatly unbalanced over time.

Increasing the composites’ temporal windows to three or more years may be important to sharply
select data that match specific climatic and oceanographic conditions. In addition, the use of multiple
satellite families (Landsat and Sentinel, for example) should also be considered as an alternative to
increase the frequency of observations.

Compared to previous mappings produced on an approximately annual timeframe, without
considering the prevailing tide and climatic conditions and focusing on mangrove vegetation mapping,
the results expressed herein are spatially coherent, reaching a kappa coefficient of 0.7 and an overall
agreement above 0.85, as seen in Figure 11.

Along with a broader temporal window, the restriction of the climatic pattern (rainy or dry), as
well as the selection of data in specific tide conditions, whether high or low, can reduce the wave-like
pattern associated with the reported mangrove areas. Furthermore, the addition of more detailed
land use/land cover classes seems to be essential to the ability to identify and separate natural coastal
changes from anthropogenic coastal changes, as a more detailed pixel trajectory would allow a more
accurate identification of human interference.

From the standpoint of MMRI robustness, compared to other indices, the MMRI seems to
provide a greater distinction between the mangrove and non-mangrove strata, which facilitates
the discrimination of such classes by automatic classifiers. The new index can be used in conjunction
with multiple families of satellites, digital elevation models (DEM) and microwave data and, whenever
possible, can incorporate information from the main domains and subdomains of remote sensing,
space, time, spectra and context.

The next steps of this research include the creation of a mechanism capable of identifying tidal
conditions from orbital data, the expansion of the analysis to the South American continent, and the
insertion of new classes of coastal environments such as “apicuns”, beaches and dunes, aquaculture
and urban areas, which would help separate human-related changes from natural coastal changes.

5. Conclusions

This manuscript detailed a GEE-managed pipeline to discriminate mangrove forests from
surrounding vegetation. The developed pipeline is scalable and suitable for large-scale mangrove
cover analyses, allowing systematic and continuous mapping of the Brazilian mangrove cover and
producing maps and annual statistics ranging from 1985 to 2018. When compared to previous
research at global and national scales, the data produced have high levels of spatial and statistical
agreement. All the data produced are available for download through the website http://www.solved.
eco.br/mangroveplatform and will be transferred to the MapBiomas project (www.mapbiomas.org) in
MapBiomas Collection 4.0.

The developed spectral index, MMRI, was demonstrated to be robust and helped to increase the
spectral separability between the mangrove and non-mangrove classes. The expansion of the temporal
window for the construction of mosaics, the restriction of the climatic pattern (rainy or dry) and the
ability to discern between the predominant tidal regimes, whether high or low, may help reduce the
area fluctuations associated with the coverage of mangroves.

http://www.solved.eco.br/mangroveplatform
http://www.solved.eco.br/mangroveplatform
www.mapbiomas.org
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