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Objective magnetic vortex detection
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Magnetic coherent vortical structures are ubiquitous in space and astrophysical plasmas and their detection
is key to understanding the nature of the intrinsic turbulence in those conducting fluids. A recently developed
method to detect magnetic vortices is explored in problems of two- and three-dimensional magnetohydrodynamic
simulations. The integrated averaged current deviation, the normed difference of the current density at a point
and the mean current density in the domain, integrated along a magnetic field line, is proved to be objective, i.e.,
invariant under rotations and translations of the observer. The method is shown to detect accurately the boundary
of magnetic vortices in two-dimensional simulations, as well as magnetic flux ropes in three dimensions.
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I. INTRODUCTION

Vortices are the natural building blocks of turbulence, since
the nonlinear energy cascade where large vortices break up
into smaller vortices is thought to be responsible for the
scaling laws found in kinetic energy spectra in fully de-
veloped turbulence [1]. These persistent coherent structures
that enclose regions with high vorticity have been studied
for decades in hydrodynamical problems, but there is still
no standard definition of what a vortex is or how it can be
detected (see, e.g., Haller et al. [2] and references therein). In
the context of space and astrophysical plasmas, it is usually
imperative to consider the presence of magnetic fields, with
their own vortical structures. In two spatial dimensions, these
structures exhibit a curling in-plane magnetic configuration,
with field lines encircling or spiraling around a center. Kinney
et al. [3] formally defined magnetic vortices as axisymmetric
monopole patterns in the current field. In three dimensions,
magnetic vortices constitute a bundle of helical field lines in a
tubular region. This work focuses on frame invariant detection
of two-dimensional (2D) and three-dimensional (3D) mag-
netic vortices in magnetohydrodynamic (MHD) simulations.

A number of papers have studied current sheets, mag-
netic islands, vortices, and magnetic reconnection in two-
dimensional incompressible MHD turbulence. For example,
Orszag and Tang [4] introduced a two-dimensional prototype
model for numerical simulation of small-scale structures (sin-
gularities) of vortices and current sheets in an incompressible
MHD flow, and showed that 2D MHD turbulence is less singu-
lar (containing less small-scale structures) than 3D hydrody-
namic turbulence, but more singular than 2D hydrodynamic
turbulence. Biskamp and Welter [5] investigated the dynam-
ics of 2D decaying incompressible MHD turbulence using
two types of initial states: (i) a generalization of the initial
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conditions of [4] to facilitate the generation of small-scale
structures, and (ii) an initial state having dominant scales that
are small compared with the system size, defined by a broad
spectrum of modes with random phases, to allow an inverse
cascade to develop. They obtained a turbulent power spectrum
that exhibits both Kraichnan and Kolmogorov spectral indices
in the inertial range and a modified dissipation scale driven by
intermittency in the dissipation range. Politano et al. [6] per-
formed high-resolution simulations of the Orszag-Tang model
of MHD turbulence at Reynolds numbers of several thousand,
yielding kinetic and magnetic energy spectra that display an
inertial range extending over one decade of wave numbers,
and a dissipation range where resistive tearing instabilities
destabilize current sheets generated by the inertial dynamics,
leading to the formation of small-scale magnetic islands. They
tested the generality of their results of the Orszag-Tang vortex
by considering flows with random initial conditions. Wu and
Chang [7] reported the onset and interactions of localized co-
herent structures in two-dimensional MHD simulations. They
noticed that the structures can merge locally and sporadically
in the absence of a background magnetic field. When there
is a background sheared magnetic field, the structures tend to
align with the background current sheet, a process that was
related to an intermittent turbulence model for the Earth’s
magnetotail. Armstrong and Craig [8,9] studied viscous and
resistive losses in transient magnetic reconnection driven by
the Orszag-Tang vortex and concluded that viscous dissipa-
tion in solar flaring plasmas can account for a significant
fraction of the flare energy release.

In three spatial dimensions, magnetic vortices are often
known as flux ropes [10]. Inside these tubular or cylindrical
regions with spiraling or helical magnetic field lines, the axial
magnetic field is much larger than the magnetic field outside.
However, this definition does not provide a precise descrip-
tion of the vortex boundary, since a user-defined magnetic
threshold is required to determine whether field lines are
considered inside or outside the rope. Hence, several works
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on flux tubes or ropes display those structures by plotting the
isosurfaces of the magnetic field or current density, where
the user chooses some energy level to define the surface to
be plotted. For example, in a 3D data set assembled using
the relaxation scaling experiment device, Sears et al. [11]
detected the signature of flux ropes transversal to a horizontal
plane as regions where the contours of flux rope current
density Jz(x, y) fall below a certain threshold. Isosurfaces
and contour plots of different quantities related to the parallel
current and helical magnetic field components were used to
locate flux ropes in MHD simulations of the Pegasus Toroidal
Experiment in [12]. In [13] the thresholding is applied to the
magnetic helicity mapping, a quantity defined as the magnetic
helicity normalized by the magnitude of the magnetic field,
integrated along the field lines. The difficulty in defining
vortex boundaries also occurs in two dimensions, where the
vortex centers can be identified as local extrema of the current
[3], but their boundaries must be inferred in some way from
contour plots.

Rempel et al. [14] proposed a new and simple way to
define magnetic vortices based on the integrated averaged
current deviation (IACD), which is the integral of the normed
difference between the current density along a magnetic field
line and the current density averaged in the spatial domain.
The vortex boundary is defined as the outermost convex
contour surrounding a local maximum of the IACD field. The
method is based on an adaptation of the Lagrangian averaged
vorticity deviation (LAVD), introduced by Haller et al. [2] for
kinematic vortices and recently employed in the detection of
coherent swirls in an ocean general circulation model simula-
tion of the Gulf of Mexico [15]. A few preliminary results on
IACD were shown in [14] using numerical simulations of a
nonlinear dynamo. In the present paper, we apply the IACD
to magnetic vortex detection in a series of two- and three-
dimensional MHD simulations to test its robustness in differ-
ent circumstances, both in compressible and incompressible
flows. The IACD method is shown to be effective in detecting
vortex boundaries in which the magnetic field lines spiral
together without reconnecting and spreading away. In three
dimensions, the field lines from boundaries found on a plane
section keep their coherence in a tubular region, showing that
the method can be employed to detect flux ropes. Possible
applications in the context of solar plasmas are discussed. We
also prove that IACD vortices are objective, which means that
they remain unchanged under translations and rotations of the
coordinate frame. This point is fundamental in a definition of
a magnetic vortex, and is a hallmark of the IACD method.
If a detection method is not objective it means that a perfectly
straight magnetic field line could be classified as a twisted line
when measured with respect to a rotating frame (see Fig. 5 in
[16]).

In Sec. II, we discuss the important concept of objectivity,
which guarantees that an operator is invariant under contin-
uous changes of an observer. The concept is applied to the
LAVD and IACD operators. A precise definition of a magnetic
vortex is provided. Section III contains a detailed proof of
the objectivity of IACD. Section IV presents the results of
MHD simulations in three situations: two-dimensional in-
compressible simulations with Orszag-Tang vortices as initial
conditions, two-dimensional incompressible simulations with

random vortices as initial conditions, and three-dimensional
compressible simulations of interlocked flux rings as initial
conditions. Section V gives the conclusions.

II. OBJECTIVE KINEMATIC AND MAGNETIC VORTICES

A. Objectivity

The concept of objectivity refers to invariance under
time-dependent transformations of a reference frame or
observer [17]. The invariance of a quantity is important in the
context of vortex identification because a detection technique
must be able to correctly classify a flow region as a vortex
independent of the observer. The topic has been extensively
discussed in the literature (see, e.g., [18]).

The invariance of a physical quantity is also important
when there is no time evolution involved, i.e., in steady
flows. For example, the description of coherent structures in
an instantaneous magnetic field might depend on the frame
used, since an observer O translated and rotated in relation to
another observer Ō may see the magnetic field lines with a
different topology. As an example, suppose that observer O
measures the following magnetic field at time t0:

B(x) =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠x, x ∈ R3. (1)

The magnetic field lines observed by O at time t0 are
shown in Fig. 1(a) and reveal diverging lines surrounding a
saddle fixed point in the middle of the box. The field lines are
solutions of the initial value problem

dx
ds

= B(x(s)), x(s0) = x0, (2)

where x(s) is the position vector and s is a scalar parameter
related to the distance l along the field line by dl = |B|ds.

Next, suppose that observer Ō is rotated and translated in
relation to O, such that position vectors are related by the
following Euclidean transformation:

x̄ = c(s) + Q(s)x, s̄ = s + a, (3)

where Q(s) is an arbitrary orthogonal rotation matrix, c(s)
is a translation vector, and a is an arbitrary real constant.
Following Eq. (2), the magnetic field observed by Ō can be
obtained by deriving Eq. (3):

B̄ = d x̄
ds

= dc
ds

+ dQ
ds

x + Q
dx
ds

= c′ + Q′x + QB

= c′ + Q′Q�(x̄ − c) + QB, (4)

where � denotes the transpose operator.
Now, suppose that Q and c are given by

Q =
⎛
⎝ cos(s) 0 sin(s)

0 1 0
−sin(s) 0 cos(s)

⎞
⎠, c =

⎛
⎝0

0
0

⎞
⎠. (5)

Then, for s = 2.1, the field lines computed from B̄ as observed
by Ō behave as in Fig. 1(b). The field lines reveal swirling
patterns that could be classified as a magnetic vortex. This
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FIG. 1. Magnetic field lines computed from a vector field mea-
sured by two different observers: (a) an observer O detects a saddle
point structure and (b) another observer Ō rotated and translated in
relation to O detects a magnetic vortex.

shows that magnetic field lines are not an objective quantity,
since the same magnetic structure could be classified as either
a saddle point or a vortex core, depending on the observer.
A practical situation is the study of magnetic structures in
space and solar plasmas as observed by different satellites
at a given time. One would like them both to agree on the
kind of structure observed, and correcting the orientation of
one satellite to match the other does not solve the problem,
since they could both accuse the detection of a vortex when in
fact they are observing a rotated saddle structure. An example
similar to the one in Fig. 1 is provided by [19] in the context
of continuous rotations of a frame in two-dimensional time-
dependent velocity fields.

The problem described above is essentially the same as
computing the streamlines traced by a passive scalar in a
steady velocity field as t evolves. In the case of magnetic field
lines, the line parameter s is used in place of t , and one can

discuss objectivity in terms of position and s. Suppose that an
event is characterized by observers O and Ō, respectively, by
(x, s) and (x̄, s̄), which are related by a Euclidean transforma-
tion as in Eq. (3). Then, a point difference vector v is defined
as objective or frame indifferent if it conserves its magnitude
in different frames; thus, v is objective if it transforms as

v̄ = Q(s)v, (6)

since the rotation matrix preserves the length of a vector. Also,
in the context of steady fields, a tensor is said to be objective
if

T̄ = Q(s)TQ(s)�. (7)

Equations (3), (6), and (7) can be applied when describing
the properties of a steady flow or a magnetic vector field at a
given time.

B. Objective vortex detection

1. Lagrangian averaged vorticity deviation

Most of the existing methods for defining or detecting
vortices are not objective. Haller et al. [2] developed a method
to define coherent kinematic vortices objectively. Consider a
velocity field u in a spatial domain U . A fluid particle at initial
position x(t0) = x0 ∈ U follows a trajectory in space given by
solutions of the initial value problem

dx
dt

= u(x, t ), x(t0) = x0. (8)

The Lagrangian averaged vorticity deviation is defined as

LAVDt0+τ
t0 (x0) =

∫ t0+τ

t0

|ω(x(t ), t ) − 〈ω(t )〉|dt, (9)

where τ is a given time interval related to the typical life-
time of the vortices that are to be found, ω = ∇ × u is the
vorticity, and 〈ω(t )〉 is the spatial mean of the vorticity at
time t . An objective kinematic Lagrangian vortex is, then,
defined as an evolving convex material domain VL(t ) such
that VL(t0) is filled with a set of level curves (for two-
dimensional flows) or surfaces (for three-dimensional flows)
of LAVDt0+τ

t0 (x) with outward nonincreasing LAVD values.
In practice, one can search for kinematic Lagrangian vortices
in a two-dimensional flow by computing the LAVD field
on the plane, extracting the initial positions of vortices as
the local maxima of LAVD, and then computing a vortex
boundary as the outermost convex closed contour of LAVD
surrounding a vortex center, i.e., a local LAVD maximum.
In three-dimensional flows, the above procedure can be used
to find the intersection of a vortex with a plane in the flow
domain.

In order to take into account small deviations from convex-
ity that are always present in data with finite resolution, the
convexity deficiency was introduced by [2]

ε := Ac − Ach

Ac
, (10)

where Ac is the area enclosed by the contour extracted and Ach

is the area enclosed by its convex hull. Thus, an outermost
closed contour is classified as a vortex boundary if ε is
less than a given threshold. The threshold value is problem
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dependent and must be chosen after some trial and error.
It must be small enough to avoid classifying the numerical
approximation of nonconvex structures as convex and large
enough to account for the ragged edges resulting from the
discretization of the LAVD field. Previous experiments with
observational and simulated data in two and three dimensions
using a LAVD field with 5122 [2] or 5123 [14] grid points
revealed good results using ε between 10−3 and 10−5.

2. Integrated averaged current deviation

In order to detect magnetic vortices, Rempel et al. [14]
introduced a variation of the LAVD technique based on the
magnetic field and the current density. Consider the magnetic
field line equation [Eq. (2)] at t = t0. Then, the IACD is
defined as

IACDs0+ξ
s0

(x0) =
∫ s0+ξ

s0

|J(x(s), t0) − 〈J(t0)〉|ds, (11)

where J = ∇ × B/μ0 is the current density and 〈J(t0)〉 is
the mean current density. Note that, differently from LAVD,
the calculations of IACD are performed for a fixed time
t0, due to the fact that the field line equation, Eq. (2), is
defined for a fixed time. The IACD is an objective quantity,
which guarantees its invariance under arbitrary, continually
varying observer changes along magnetic lines. Thus, given
arbitrary rotation matrix Q(s) and translation vector c(s), if
J̄ = Q(s)J + c(s), then

|J̄ − 〈J̄〉| = |J − 〈J〉|, (12)

as demonstrated in Sec. III.
For a given parameter interval [s0, s0 + ξ ], a magnetic

vortex is defined as a convex domain VL(t0) such that VL(t0)
is filled with a set of tubular level curves or surfaces of
IACDs0+ξ

s0
(x0) with outward nonincreasing IACD values; the

boundary of VL(t0) is the outermost convex level curve or sur-
face of IACDs0+ξ

s0
(x0) in VL(t0). The numerical computation of

magnetic vortices in two- and three-dimensional fields follows
the same procedure described above for objective kinematic
vortices, just changing LAVD by IACD.

The parameter ξ determines the length along the field lines
inside the structure to be considered as a coherent magnetic
vortex and is usually chosen after some trial and error, de-
pending on each problem. In three-dimensional systems, ξ is
related to the length of magnetic flux ropes, so larger values of
ξ should be used to detect longer ropes, which will typically
be thinner than the ropes found with smaller ξ , as illustrated
in Sec. IV B.

Solving Eq. (2) requires integrating field lines in a con-
tinuous space domain. Since we are working with discrete
data for B obtained from numerical simulations of the MHD
equations, we use cubic splines interpolation for the B field
and solve Eq. (2) with a fourth-order Runge-Kutta integrator.

III. PROOF OF THE OBJECTIVITY OF IACD

The objectivity of LAVD was demonstrated in [2] using the
velocity gradient tensor and the definition of the spin tensor.
We follow a similar approach for IACD based on the magnetic
gradient and current density tensors. The magnetic gradient

Z
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P
field line

P z

x

y

r

^

^

^ Y
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FIG. 2. “Lagrangian” and spatial coordinates of a deformable
body.

tensor components can be written as [20]

∇B =
⎛
⎝∂xBx ∂yBx ∂zBx

∂xBy ∂yBy ∂zBy

∂xBz ∂yBz ∂zBz

⎞
⎠.

The magnetic gradient tensor can be written in terms of its
symmetric (S) and antisymmetric (A) parts,

∇B = S + A, (13)

where

S = ∇B + ∇B�

2
, (14)

A = ∇B − ∇B�

2
. (15)

Substituting the components of ∇B in A, we obtain the
following matrix:

A = 1

2

⎛
⎜⎝

0 ∂yBx − ∂xBy ∂zBx − ∂xBz

∂xBy − ∂yBx 0 ∂zBy − ∂yBz

∂xBz − ∂zBx ∂yBz − ∂zBy 0

⎞
⎟⎠.

(16)

From Ampère’s law,

∇ × B = (∂yBz − ∂zBy)x̂ + (∂zBx − ∂xBz )ŷ

+ (∂xBy − ∂yBx )ẑ = μ0J. (17)

Thus, matrix A can be written as

A = μ0

2

⎛
⎝ 0 −Jz Jy

Jz 0 −Jx

−Jy Jx 0

⎞
⎠ ⇒ A = μ0

2
J, (18)

where J is defined as the current density tensor [20]. This
tensor has the property that J = −J�.

Now, let r = r(R, s) be a spatial vector position and R =
R(r, s) the associated material vector position, where s is a pa-
rameter. The components of r and R provide the “Lagrangian”
and spatial coordinates, respectively. Figure 2 illustrates the
Eulerian and Lagrangian position vectors of a point P in a
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(a)

(b)

(c)

FIG. 3. Orszag-Tang vortices at t0: (a) the magnetic field vectors,
(b) an enlargement of the central region of (a), and (c) line integral
convolution plot showing the magnetic field lines. The large arrows
indicate the location of an X point.

body represented by the red line. In a frame following the field
line parametrized by s (the “Lagrangian” frame), the material
coordinates are fixed for a given s.

The material coordinates are used to define the undeformed
reference configuration and the spatial coordinates define the
deformed current configuration. In this sense, the Lagrangian

(a)

(b)

FIG. 4. Orszag-Tang vortices at t = 1: (a) the magnetic field
vectors and (b) line integral convolution plot showing the magnetic
field lines.

description of the deformation gradient tensor is given by

F = ∂r
∂R

=

⎛
⎜⎝

∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

⎞
⎟⎠. (19)

The transformed deformation gradient tensor is given by

F̄ = ∂ r̄
∂R

= ∂ (Q(s)r + c(s))

∂R
= Q

∂r
∂R

⇒ F̄ = QF . (20)

The derivative of the deformation gradient tensor with
respect to the parameter s is defined by

F′ = ∂F
∂s

= ∂

∂s

(
∂r
∂R

)
= ∂

∂R

(
∂r
∂s

)
⇒ F′ = ∂B

∂R
, (21)

where we used the field line equation ( ∂r
∂s = B) and the fact

that the material coordinate R does not depend on the parame-
ter s. From Eq. (21), we can write the magnetic gradient tensor
in terms of the deformation gradient tensor as

F′ = ∂B
∂R

= ∂B
∂r

∂r
∂R

⇒ F′ = ∇BF ⇒ ∇B = F′F−1 . (22)
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(a)

(b)

FIG. 5. Orszag-Tang current density at t0: (a) the normalized
magnitude of the current density and the vortices detected as convex
closed curves (black) from the contour plot of |J| and (b) the line
integral convolution plot of the magnetic field lines (dark gray) and
the field lines starting from initial conditions (light gray [yellow
online] circles) on the J vortex boundary shown in (a) (red).

Using Eqs. (20) and (22) we can show that the magnetic
gradient tensor is not objective,

∇̄B̄ = F̄′F̄−1 = (QF)′(QF)−1

= (Q′F + QF′)(F−1Q−1)

= Q′FF−1Q� + QF′F−1Q�

= Q′Q� + Q∇BQ�, (23)

where the fact that Q is an orthogonal matrix was used
(Q� = Q−1).

We can use the results from Eq. (23) to prove that the
antisymmetrical part of ∇B, Eq. (15), is not objective either:

Ā = ∇̄B̄ − ∇̄B̄�

2

= 1

2
[Q′Q� + Q∇BQ� − (Q′Q� + Q∇BQ�)

�
]

= 1

2
[Q′Q� + Q∇BQ� − QQ′� − Q∇B�Q�]

= 1

2
[Q(∇B − ∇B�)Q� + 2Q′Q�]

Ā = QAQ� + Q′Q�, (24)

(a)

(b)

FIG. 6. Orszag-Tang IACD at t0 with ξ = 100: (a) the normal-
ized IACD field and the vortices detected as convex closed curves
from the contour plot of IACD and (b) the line integral convolution
plot of the magnetic field lines (dark gray) nearby one of the vortices.
The circles are initial conditions on the vortex detected by IACD and
the yellow lines are the corresponding magnetic field lines obtained
by solving Eq. (2).

where the relation Q′Q� = −QQ′� was used [21]. The cur-
rent density tensor J, being proportional to tensor A, Eq. (18),
is also not objective.

Although the antisymmetrical tensor A is not objective, the
averaged deviation is an objective quantity:

Ā − 〈Ā〉 = QAQ� + Q′Q� − 〈QAQ� + Q′Q�〉
= QAQ� + Q′Q� − Q〈A〉Q� − Q′Q�

= Q(A − 〈A〉)Q�. (25)

Although we have shown that the averaged deviation of the
antisymmetrical tensor is objective, we are interested in the
objectivity of the current density tensor. For this purpose, let
us write the tensor A in Eq. (18) in index notation,

Ai j = −μ0

2
εi jkJk,

Ai je j = −μ0

2
εi jkJke j = μ0

2
εik jJke j, (26)

Ae = μ0

2
(J × e),
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FIG. 7. Orszag-Tang current density at t = 1: the normalized
magnitude of the current density and the small vortices detected as
convex closed curves (rings) from the contour plot of |J|.

where e is an arbitrary objective vector in R3, εi jk is the
Levi-Civita tensor [22], and J is the current density vector
associated to tensor A.

From Eq. (24),

Ae = Q�ĀQe − Q�Q′e. (27)

Now, using the objective transformation ē = Qe we can
rewrite Eq. (27) as

Ae = Q�Āē − Q�Q′Q�ē. (28)

Analogously, we can define a vector α associated with the
tensor Q′Q�. Following in Eq. (26), since Q′Q� is an an-
tisymmetrical tensor, its dual vector α is a non-null vector
uniquely defined by [23]

Q′Q�ē = μ0

2
(α × ē). (29)

By substituting Eqs. (26) and (29) into Eq. (28) we obtain

μ0

2
(J × e) = Q� μ0

2
(J̄ × ē) −

[
Q� μ0

2
(α × ē)

]

J × e = Q�(J̄ × ē) − Q�(α × ē)

J × e = [(Q�J̄) × (Q�ē)] − [(Q�α) × (Q�ē)]

J × e = (Q�J̄) × e − (Q�α) × e

J × e = [Q�J̄ − Q�α] × e

J = Q�J̄ − Q�α. (30)

The transformation described in Eq. (30) demonstrates that the
current density vector is not an objective quantity. However,
using Eq. (30), we obtain that the averaged current deviation
is an objective vector:

J − 〈J〉 = Q�J̄ − Q�α − 〈Q�J̄ − Q�α〉
= Q�J̄ − Q�α − Q�〈J̄〉 + Q�α

= Q�(J̄ − 〈J̄〉). (31)

Therefore, the IACD method, Eq. (11), is objective, for

|J̄ − 〈J̄〉| = |Q(J − 〈J〉)| = |J − 〈J〉|. (32)

(a)

(b)

FIG. 8. Orszag-Tang IACD at t = 1, with ξ = 25: (a) the nor-
malized IACD field and the vortices detected as convex closed curves
from the contour plot of IACD and (b) the line integral convolution
plot of the magnetic field lines (dark gray) and the field lines starting
from initial conditions (light gray [yellow online] circles) on an
IACD vortex boundary shown in (a).

Note that the mean value 〈J〉 is also not an objective
quantity, since by taking averages in Eq. (30) we have

〈J〉 = Q�〈J̄〉 − Q�α. (33)

In the particular case when 〈J〉 = 0, 〈J̄〉 = α, which is not
null, since α is uniquely defined by Eq. (29), where Q is an
arbitrary rotation matrix.

IV. RESULTS

A. Two-dimensional incompressible MHD

In dimensionless conservative form, the ideal MHD equa-
tions for an incompressible fluid are

∂u
∂t

= −∇p − ∇ · (uu − BB), (34)

∂B
∂t

= −∇ · (uB − Bu), (35)

∇ · u = 0, (36)

∇ · B = 0, (37)

where u is the velocity, B is the magnetic field, and p is
the total pressure. Equations (34)–(37) are solved in a square
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 9. Random vortices Eulerian fields at t = 300 (upper panel) and t = 386 (lower panel): (a, d) magnetic vectors, (b, e) magnetic field
streamlines, and (c, f) current density.

domain with sides L = 2π and periodic boundary conditions
in both directions. Numerical integration is performed with a
finite difference method proposed by Wu [24], where a fifth-
order weighted essentially non-oscillatory (WENO) scheme
is used in the spatial discretization, a variable-step fourth-
order Runge-Kutta method is employed for time integration,
and the incompressibility condition is enforced through the
fractional-step method of Kim and Moin [25]. The numerical
resolution is 512×512 grid points. In the following sections,
Eqs. (34)–(37) are solved with two different sets of initial
conditions.

1. Deterministic initial conditions: Orszag-Tang vortex

The Orszag-Tang (OT) vortex is defined by the following
stream function ψ and magnetic potential a:

ψ (x, y) = 2(cos x + cos y), (38)

a(x, y) = cos 2x + 2 cos y. (39)

Figure 3 shows the state of the magnetic field at t0 =0.01,
where Fig. 3(a) depicts the magnetic field vectors and
Fig. 3(b) is an enlargement showing the X point formed at
the vortex interface. The magnetic field lines are exhibited
in Fig. 3(c) as a line integral convolution (LIC) plot, which
displays the integral curves of (Bx, By) in different shades of
gray. After one time unit, the magnetic field structures are
distorted as in Fig. 4. The vectors near the interface between
the two central vortices have become larger, thus increasing

the magnetic shear and consequently enhancing the current
density in that region.

As indicated by Eq. (11), the IACD is a measure of the
deviation of the current density from its mean value, inte-
grated along magnetic field lines. In order to distinguish the
qualities of IACD from the current density itself, we compare
the vortex detection using J and IACD. Figure 5 illustrates
the detection using J at t0. Figure 5(a) shows a color plot
of |J| (normalized by max(|J|)) with two vortices indicated
by black lines. Those vortices were found by employing the
algorithm described in Sec. II B, where first a local maximum
of the magnitude of the current density field is found, then
the outermost closed convex contour line surrounding that
maximum is extracted using MATLAB’s contourc function.
Figure 5(b) shows the magnetic field streamlines superposed
by one of the two vortices (red line). The yellow spots are
initial conditions from where the magnetic field lines are
computed using Eq. (2). It can be seen that most lines spread
away from the vortex region; therefore, the coherent structure
identified from J is not a good representation of a magnetic
vortex.

Next, we compute the IACD field at t0 using Eq. (11) with
ξ = 100 and a convexity deficiency of ε = 10−3; the result
is shown in Fig. 6. The top panel is the IACD field (normal-
ized by max(IACD)) and the vortices centered on two local
maxima, denoted by the yellow lines. When initial conditions
for Eq. (2) are chosen on the outermost convex contour sur-
rounding an IACD maximum (red spots in the lower panel),
the resulting magnetic field lines (yellow) remain confined
to the vortical area, just inside the region surrounded by
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(a)

(b)

FIG. 10. Random vortices current density field at t = 300:
(a) surface plot of the |J| field with rings denoting the outermost con-
vex closed level curves surrounding selected local maxima; (b) the
same as (a) but in a 2D color plot.

the separatrix lines starting at the two neighboring X points,
which can be seen in the LIC plot.

When the current density and IACD are applied to vortex
detection at t = 1, the results are as shown in Figs. 7 and 8,
respectively. The current density failed to identify large vor-
tices in the domain, as the main coherent structures are the
current sheets formed at the vortex interfaces due to the
strong magnetic shear. The shear also impacts the vortex
detection using IACD, since its computation is based on
|J|. Nonetheless, at t = 1 it still manages to extract the
main vortical regions, as seen in Fig. 8. For larger t , the
shear increases even further, which impacts the numerical
computation of the closed contours; thus thresholds in |J|
need to be imposed if one wants to use these techniques
to find the vortical structures. Since IACD is based on the
curl of B, it will be large on regions with rotation of mag-
netic field lines as well as shear regions, a problem shared
with the LAVD operator in velocity fields. For a discus-
sion on problems related to kinematic vortex detection in
strong shear regions of observational velocity fields using
LAVD, as well as possible solutions to these problems,
see Silva et al. [26].

We now proceed with a different example where the initial
conditions produce a result that may be more relevant to
turbulence studies.

(a)

(b)

FIG. 11. Random vortices IACD at t =300 from s0 =0 to s0+ξ ,
with ξ = 100: (a) surface plot of the IACD field with rings denoting
the outermost convex closed level curves surrounding selected local
maxima; (b) the same as (a) but in a 2D color plot.

2. Random initial conditions: Wu-Chang model of magnetotail

In this section, the MHD model for vortex interactions
presented by Wu and Chang [7] is adopted to test the IACD
method. The initial conditions are given by random velocity
and magnetic fields, where the magnetic field is specified by
a flux function. In the Fourier space, the two components of
the velocity and the magnetic flux function are proportional
to k2 exp (−αk2), where α = 0.01 is adopted, so the initial
kinetic energy spectrum is peaked at k = 10. The initial
condition is such that the maximum amplitude is 0.2 for the
velocity field and 0.3 for the magnetic field.

Figure 9 depicts the system state at t = 300 (upper panels)
and t = 386 (lower panels). Figures 9(a) and 9(d) plot the
magnetic field vectors, Figs. 9(b) and 9(e) are line integral
convolution (LIC) plots, showing the instantaneous stream-
lines of the magnetic field, and Figs. 9(c) and 9(f) show the
current density plots. The arrows in the upper panel point to a
couple of magnetic vortices that move with the flow until they
coalesce and merge into a single vortex, indicated by arrows
in the lower panel.

In order to show this vortex-vortex interaction in more de-
tail, we proceed to extract the vortex boundaries by applying
the algorithm described in Sec. II B. First, we perform the
analysis using the current density alone. Thus, a local max-
imum of the magnitude of the current density field is found
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FIG. 12. Random vortices magnetic field lines at t = 300 from
s0 = 0 to s0 + ξ , with ξ = 100. The white lines denote the field lines
starting from initial conditions (white circles) on an IACD vortex;
the light gray (green online) lines denote field lines starting from
surrounding initial conditions.

and the outermost closed convex contour line surrounding
that maximum is extracted. Figure 10 shows two views of
the magnitude of the current density at t = 300 with a set of
vortices found with the given algorithm, where a convexity
deficiency ε = 10−3 was adopted. A comparison between
Figs. 9(b) and 10(b) seems to suggest that the numerically
computed vortex boundaries from the |J| field are underes-
timated and wider vortical regions should be expected. The
choice of larger values of ε (within reasonable limits) does
not significantly change the results, which are related to the
intrinsic ruggedness of the |J| field. This problem is not
present in the IACD vortices, shown in Fig. 11, where the
IACD field is computed at time t = 300 from Eq. (11) with
s0 = 0 and ξ = 100. The IACD method managed to correctly

detect the magnetic vortex boundaries, outside which the mag-
netic field lines will tend to disperse away. This can be seen
in Fig. 12, which shows an enlargement of the rectangular
region in Fig. 11. The white circles denote a set of initial
conditions on the vortex boundary computed from the IACD
field; the white lines represent the trajectories of these initial
conditions under the magnetic field line equation [Eq. (2)].
Note that all magnetic field lines stay together in a coherent
bundle surrounding the vortex center for ξ = 100 s units.
However, when we start from initial conditions outside the
IACD vortex (green circles), the resulting magnetic field lines
spread away in different directions (green lines). Therefore,
the IACD method can detect magnetic vortex boundaries more
precisely than the |J| method in this example.

Back to the previously mentioned vortex merging, Fig. 13
shows an enlargement of the upper left corner of the domain
box, where the merging pointed out in Fig. 9 occurs. The up-
per panels represent the magnetic vectors and the lower panels
the LIC plots of the magnetic streamlines at different times,
until the two vortices coalesce into a larger vortex. These
coalescence events are important because they form local
sites of enstrophy production, conversion, and dissipation [3].
The boundaries of these vortices were computed with IACD
using ξ = 100 and are shown in Fig. 14, in both color scales
[Figs. 14(a)–14(d)] and surface plots [Figs. 14(e)–14(h)]. The
moment when the merging is effected can be defined by
the presence of only one peak in the IACD surface plot in
Fig. 14(h).

B. Three-dimensional compressible MHD

The previous section showed that the IACD can be used to
accurately detect magnetic vortex boundaries in planar fields,
where the structures detected were shown to match the LIC

(a)

(e) (f)

(b) (c) (d)

(g) (h)

FIG. 13. Random magnetic vortices merging: magnetic field vectors at (a) t = 362.34, (b) t = 372.32, (c) t = 384.54, and (d) t = 386.82,
respectively; (e–h) the line integral convolution plots corresponding to the magnetic field lines of (a–d). The arrow points to two vortices that
coalesce at t = 386.82.
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(a) (b)

(c) (d)

(e) (f)

FIG. 14. Random magnetic vortices merging in the IACD field: magnetic vortices detected from the IACD field at (a) t = 362.34,
(b) t = 372.32, (c) t = 384.54, and (d) t = 386.82, respectively; (e–h) surface plots of IACD corresponding to (a–d).

plots of the magnetic streamlines. However, the qualities of
IACD can be better appreciated in 3D fields. In this section,
the IACD operator is employed in detecting coherent mag-
netic structures in three-dimensional numerical simulations of
the resistive MHD equations for a compressible isothermal
gas. The model equations are the same as used in [27] for
simulations of hydromagnetic turbulence,

∂u
∂t

+ u · ∇u = −∇p

ρ
+ J × B

ρ
+ Fvisc, (40)

∂A
∂t

= u × B + η∇2A, (41)

∂ ln ρ

∂t
+ u · ∇ ln ρ = −∇ · u, (42)

where u is the velocity, B is the magnetic field, ρ is the
density, cs is the isothermal sound speed, p is the pressure,
J = ∇ × B/μ0 is the current density, with μ0 the constant
vacuum permeability, A is the magnetic vector potential, and
η is the constant magnetic diffusivity. The pressure gradient
is written as ∇p/ρ = c2

s ∇ ln ρ, where c2
s = p/ρ is constant.

The viscous term is given by Fvisc = ν(∇2u + ∇∇ · u/3 +
2S · ∇ ln ρ), where ν is the constant kinematic viscosity and S
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FIG. 15. Interlocked magnetic flux rings at t = 0.

is the traceless rate of strain tensor,

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j∇ · u

)
, (43)

FIG. 16. Magnetic field lines from random initial conditions at
t = 100: (a, b) two views of the same data from different angles.

(a)

(b)

(c)

FIG. 17. Horizontal magnetic field components on z = 0 at
t = 100: (a) horizontal components (Bx, By ) of the magnetic field
vectors, (b) two-dimensional streamlines of the magnetic field com-
puted using only the horizontal components, and (c) the IACD field
with two magnetic vortices (black lines).

where δi j is the Kronecker delta. The domain is a square
box with sides L = 2π and periodic boundary conditions,
which implies that mass is conserved, 〈ρ〉 = ρ0, where ρ0 is
the initial uniform density and the brackets denote volume
average. Nondimensional quantities are adopted where length
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is in units of L/2π , u is in units of cs, ρ is in units of ρ0, and
B is in units of (μ0ρ0c2

s )1/2.
Equations (40)–(42) are solved with sixth-order centered

finite differences in space and third-order variable-step
Runge-Kutta in time, using the PENCIL CODE [28] in a square
box with sides L = 2π and periodic boundary conditions. The
initial conditions are u = 0, ρ = ρ0 = 1. The magnetic initial
condition consists of a pair of interlocked magnetic tori, or
flux rings, both with the same flux and with inner radius
Ri = 0.3 and outer radius Ro = 1, as seen in Fig. 15; inside
the tori ∇ × B = 0 and the initial B profile across each ring is
a Gaussian. One torus is aligned with the plane z = 0 and the
other with the plane x = 0. The initial tori setup is provided
with the PENCIL CODE and described in the code’s manual;
variations of this problem with two or three interlocked rings
were previously studied by Kerr and Brandenburg [29] and
Del Sordo et al. [30], respectively. We set η = ν = 0.003 and
adopt a numerical resolution of 1283 grid points.

The tension due to the curvature of the flux tubes initially
shrinks the rings and induces a velocity [29]. Eventually,
magnetic reconnection takes place and the topology of the
field lines is changed. The configuration of the magnetic field
lines after t = 100 time units is shown in Fig. 16. The complex
entanglement plotted from random initial conditions hides the
inherent order present in the magnetic coherent structures
that are still embedded in the field. We start searching for
those structures by considering their horizontal components

on the plane which sections the middle of the box at z = 0.
Figures 17(a) and 17(b) show the horizontal components of
the magnetic field vectors (Bx, By) and their two-dimensional
streamlines, respectively. The presence of two large swirling
regions interacting via the periodic boundary conditions can
be seen. However, this view of the field on the plane does not
take into account the torsion of the lines in the z direction, thus
concealing the true complexity of the structures in the box.
Figure 17(c) shows the IACDξ=2000

s0=0 (x0) scalar field, where x0

belongs to a grid of points on the plane and the closed black
curves delineate two magnetic vortices located in the central
region of the box. Note that, although the large swirling
structure seen in Fig. 17(b) certainly has an impact on the
coherence of the field lines in the short term, it is not the main
convex coherent structure for a long integration of field lines
with ξ = 2000.

The coherence of the structures identified by IACD in
Fig. 17(c) can be seen in Fig. 18, where we plot the magnetic
field lines (red) emanating from the two vortex contours
(black). The left panels refer to the smaller vortex of Fig. 17(c)
and the right panels to the larger vortex. The lower panels
are the same as the upper panels, but with the inclusion of
a few magnetic field lines from random initial conditions. It
is remarkable that IACD is able to detect the magnetic flux
ropes among such a complex entanglement of field lines, espe-
cially considering that the boundary was calculated only on a
plane.

(a) (b)

(c) (d)

FIG. 18. Magnetic flux-rope reconstruction at t = 100 with ξ = 2000: (a) magnetic field lines (dark gray [red online] lines) emanating
from the small vortex boundary (black line), (b) magnetic field lines from the large vortex boundary; (c, d) the same as in (a) and (b), but with
the inclusion of magnetic field lines emanating from random initial conditions (light gray [green online]).
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(a)

(b)

FIG. 19. Magnetic flux-rope reconstruction at t = 100 with
ξ = 500: (a) the IACD field on the midplane z = 0, with one
magnetic vortex (black line), and (b) magnetic field lines (red lines)
emanating from the vortex boundary (black line).

As previously mentioned in Sec. II B 2, the parameter ξ in
Eq. (11) basically controls the length and shape of the vortices
detected by IACD. In Fig. 19, we illustrate what happens
when a smaller value of ξ is adopted for the same magnetic
field used in Figs. 17 and 18. The IACDξ=500

s0=0 (x0) field in
Fig. 19(a) is much simpler than in Fig. 17(a), since the field
lines are short enough to stay away from the boundaries. A
single wide vortex is found and a few magnetic field lines
from its boundary are plotted in Fig. 19(b). The structure will
lose coherence and the field lines will spread out if longer
integration is conducted to compute the field lines.

V. DISCUSSION AND CONCLUSIONS

In the past decade, objective (observer-independent)
Lagrangian techniques have prevailed in the detection of
coherent structures in hydrodynamic flows by means of the
theory of Lagrangian coherent structures (LCS), with a set of
mathematical tools being developed to precisely define hyper-
bolic (manifold lines), parabolic (jet cores), and elliptic (vor-
tices) LCS [2,31]. Following that tendency, a series of works

has employed LCS techniques to detect structures in plasmas
from numerical simulations of the MHD equations [32–34] as
well as observational data of the solar photosphere [26,35,36].
In [14], the first definition of a magnetic vortex based on the
theory of LCS was introduced in the form of the IACD opera-
tor, which was explored in the present paper by means of three
MHD examples, namely, a two-dimensional incompressible
Orszag-Tang vortex, two-dimensional incompressible random
vortices, and three-dimensional compressible interlocked flux
rings. The IACD was shown to precisely detect the outer
contour of the coherent magnetic structures that keep the mag-
netic field lines bundled together, even among surrounding
turbulence. A comparison with detection using the current
density alone proved the superiority of the IACD, which is
also invariant to spatially dependent rotations and translations
of the observer, which the current density is not (see Sec. III).
The method can be used in conjunction with the squashing
factor Q [35–37] to investigate magnetic reconnection in
simulated and observational plasmas, since the IACD can
identify the main structures involved in the reconnection while
the Q operator detects the quasi-separatrix layers, which are
the main magnetic reconnection sites between those struc-
tures [12]. A possible application is the reconnection of the
solar emerging flux ropes with the coronal field [38]. Detec-
tion of the boundary layers in interacting magnetic flux ropes
is also crucial for understanding the origin of intermittent
turbulence in the solar wind, with resulting non-Gaussian
statistics and cross-scale coupling [39,40]. Additionally, flux
ropes are found in coronal mass ejections (CMEs), giant
releases of plasma from the Sun. These flux ropes are formed
in the low corona and carried away through the interplanetary
medium, where they can reconnect with magnetospheres [41].

The vortex merging observed in our two-dimensional ran-
dom vortex simulations (Sec. IV A 2) was previously applied
by Wu and Chang [7] to the observation of bursty bulk flows
in the Earth’s magnetotail. In fact, sequential releases of tilted
flux ropes due to reconnection were observed in the Earth’s
magnetotail by Hietala et al. [42], where the magnetic flux
ropes were reconstructed by a combination of two-spacecraft
timing for their global orientation and Grad-Shafranov re-
construction (GSR) for their local orientation. The GSR
method models the magnetic field structure traversed by a
spacecraft [43] and is the same technique employed in [39]
to reconstruct interplanetary magnetic flux ropes. Another
example of the use of the GSR method is the reconstruction
of flux ropes from ACE and Wind spacecraft data, which was
recently used to study flux ropes merging in the solar wind by
Zheng et al. [44]. This renders support for the use of IACD not
only in numerical simulations, but also in observational data.
Perhaps an even better natural laboratory for this technique
is the Sun, where the vector magnetic field can be measured
by space instruments such as the Helioseismic and Mag-
netic Imager (HMI) onboard the Solar Dynamics Observatory
(SDO) [45]; alternatively the horizontal magnetic field in the
solar surface can be estimated from the photospheric flow,
as proposed by Yeates et al. [35]. In conclusion, we believe
that IACD is a novel and simple objective tool that can be
used to detect magnetic vortices in numerical simulations and
observations of space and astrophysical plasmas.
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