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ABSTRACT
The formation of massive stars is a longstanding problem. Although a number of theories of
massive star formation exist, ideas appear to converge to a disc-mediated accretion scenario.
Here, we present radiative hydrodynamic simulations of a star-accreting mass via a disc
embedded in a torus. We use a Monte Carlo based radiation hydrodynamics code to investigate
the impact that ionizing radiation has on the torus. Ionized regions in the torus midplane are
found to be either gravitationally trapped or in pressure-driven expansion depending on whether
or not the size of the ionized region exceeds a critical radius. Trapped H II regions in the torus
plane allow accretion to progress, while expanding H II regions disrupt the accretion torus
preventing the central star from aggregating more mass, thereby setting the star’s final mass.
We obtain constraints for the luminosities and torus densities that lead to both scenarios.

Key words: radiative transfer – methods: numerical – stars: massive – H II regions – accretion
discs.

1 IN T RO D U C T I O N

Massive stars (from 10 up to above 100 solar masses) represent
a minority of the stars in the stellar initial mass function (Massey
2003). They have, however, a profound impact on their environment
as their feedback mechanisms (winds, outflows, radiation pressure,
photoionization, supernovae) inject vast amounts of energy and
momentum leading to dynamical and chemical changes in the
surrounding gas (e.g. Kennicutt 1998).

Despite their importance, the formation of massive stars remains
in many ways unclear. One of the reasons modelling massive star
formation is challenging is that, in comparison with low-mass stars,
there is very little observational information (Beltrán & de Wit
2016). This is due to the fact that massive stars form quickly
and hence the sites where ongoing massive star formation can
be observed are rare. As a consequence of their rapid formation,
massive proto-stars do not have time to clear out their surroundings
and are, therefore, deeply concealed in the innermost region of an
infalling envelope of gas and dust (Cesaroni et al. 2007). This makes
mm and sub-mm wavelength observations the only way to probe
deep into the core region (Beltrán & de Wit 2016). Observations are
further complicated by the fact that the closest massive proto-stars
are at least a kiloparsec away (Zinnecker & Yorke 2007; Tan et al.
2014). These large distances imply that sub-arcsecond resolution is
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required in the measurements if we are to resolve, for instance, disc
structures.

Due to all these challenges at the observational front it is not
clear how massive stars accrete. Early works considered spherically
symmetric accretion on to the massive proto-stars (Keto 2003),
whereas more recent papers seem to have focused on to a disk
accretion mode (e.g. Haemmerlé et al. 2016; Harries, Douglas &
Ali 2017; Kuiper & Hosokawa 2018; Jankovic et al. 2019).

One of the main problems with spherical accretion is often the
inability of the star to keep accreting past the 40 solar mass mark.
This mass ceiling arises because radiative feedback eventually leads
accretion to stop completely; thereby preventing the star acquiring
more mass. One such feedback mechanism is radiation pressure
on dust grains. A (proto)star could emit enough radiation such that
the pressure on dust would be stronger than its gravitational pull,
reversing the flow direction, and preventing further accretion (Kahn
1974). However, the maximum attainable mass of the star before
this reversal happens depends highly on the dust grain properties
that are being taken into account (Wolfire & Cassinelli 1987).

Another mechanism that may shut down accretion is ionizing
radiation. The Kelvin–Helmholtz time-scale for a massive star is
much shorter than the time it would take the star to reach its final
mass at a realistic accretion rate (e.g. Krumholz et al. 2009). As
a result, in order to form, massive stars must continue accreting
even after the onset of hydrogen fusion in their core, that is, when
they join the zero age main sequence (e.g. Zinnecker & Yorke
2007). After the onset of fusion, the massive star begins emitting
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considerable amounts of ionizing radiation and, therefore, we can
expect the formation of an ionized (H II) region around it.

Classically, H II regions have been thought as pressure-driven
bubbles expanding through space (Spitzer 1978). Consider the
simple scenario of a point source isotropically emitting at a certain
ionizing luminosity, characterized by an emission rate of ionizing
photons. The resulting ionization is counteracted by the rate of
recombination of atoms to their neutral state, characterized by a
recombination rate. The H II region will expand rapidly up to the
point at which these two rates exactly counterbalance each other.
In a spherically symmetric scenario, this would be referred to as
a Strömgren sphere (Strömgren 1939). Although the H II region
has a number density that is only twice that of the neutral gas,
its temperature will be around two orders of magnitude higher.
Therefore, the pressure inside the ionized bubble is much larger
than in its surroundings and the ionized region will begin expanding
into the neutral gas via a shock front. As it expands, its density
decreases and thus the recombination rate falls, meaning that the
same luminosity is able to ionize out to a larger radius. The
expansion will continue until the bubble is able to re-establish a
pressure equilibrium with the neutral region.

If H II regions behaved like that around forming massive
(proto)stars, this would imply that accretion is no longer possible
once the star starts emitting ionizing radiation. However, the works
of Mestel (1954) and Keto (2002) showed that this simple picture
changes dramatically if the gravity of the central point mass is taken
into account. In this case, material crossing the ionization front is
subject to two forces: the gravitational force, pulling the material
inward, and the force due to the pressure gradient at the ionization
front, pushing outwards. As long as the gravitational force is greater
than the pressure gradient, the H II region will not be able to expand.
This is referred to as a‘trapped’ H II region and allows material to
keep flowing through the ionization front towards the central star.
In other words, trapped H II regions make it possible for accretion
to continue even after the star starts emitting significant amounts of
ionizing photons.

The condition for a trapped H II region has been shown to be
satisfied if its size does not exceed a critical radius roughly equal to
the sonic radius (the point at which the escape velocity is the same
as the sound speed).

However, as a star evolves and its ionizing luminosity increases,
the H II region will increase in size. As a result, the trapped ionized
region can eventually grow past this critical radius and evolve into
an expanding H II region. The existence of a trapped phase implies
that a star could, in theory, extend its accretion period for as long
as the trapped H II region phase lasts.

A perhaps more natural solution to the issues brought up by
radiation pressure and photoionization is to assume that massive
stars, as their low-mass counterparts, accrete mainly via a disc.
This is to be expected as accreting material is likely to have a
tangential velocity component, and a disc is a natural mechanism
that allows for the redistribution of angular momentum. Indeed,
despite differing in the way large-scale accretion occurs,1 both
models, Core Accretion (McKee & Tan 2003) and Competitive
Accretion (Bonnell & Bate 2006; Bonnell et al. 2001), seem to agree
that accretion on to the protostar probably takes place via a disc (Tan

1In the core collapse model, the maximum mass of the star is pre-determined
by the size of the parent clump whereas in competitive accretion a number
of stars form simultaneously in a common gravitational potential and stars
located at the bottom of the potential can have much higher accretion rates.

et al. 2014). Furthermore, an increasing body of observations of tori
and discs around forming massive stars has been building up, even
though the current evidence for discs limits itself to stars below 30
solar masses (for a review, see Beltrán & de Wit 2016).

There are several numerical simulations of massive star for-
mation, but due to the complex nature of the problem they vary
significantly in what physics is included, usually containing one or
more of the following factors: radiation pressure, photoionization,
magnetic fields, outflows, and stellar evolution models (see, for
instance, Harries et al. 2017; Kuiper & Hosokawa 2018). These
simulations tend to focus on either the effect of one or two physical
processes in 3D or they include the impact of many processes
but compromise in resolution and/or make the simulations 2D by
assuming additional symmetries for the system.

In this paper, we choose to focus on the impact of ionization
feedback effects on a massive star accreting via a disc embedded in
a torus. Keto (2007), predicted the existence of three stages in the
evolution of an ionized region in an accretion disc scenario: a fully
trapped H II region, an H II region trapped in the torus but not in the
poles, and an H II region in expansion everywhere. The H II region
would progress from one scenario to the next as its central source
gets more massive and starts emitting larger amounts of ionizing
radiation. We aim here to simulate this scenario and assert if and
under which conditions trapped H II regions can be expected.

The paper is organized as follows. In Section 2, we describe
the code being used and the initial conditions of our simulations.
We also include in this section convergence and stability against
fragmentation tests. In Section 3, we present the main results
obtained from the simulations. In Section 4, we discuss how and
under which conditions massive stars could form based on our
results. Finally, we present our main conclusions in Section 5.

2 ME T H O D

The simulations are performed using the publicly available code
CMACIONIZE2 (Vandenbroucke & Wood 2018). It uses a standard
finite-volume method for the hydrodynamics with an HLLC Rie-
mann solver and is coupled to a Monte Carlo radiation transfer
module, similar to the one employed in Wood, Mathis & Ercolano
(2004).

We use a static 3D Cartesian grid with resolutions ranging from
643 to 2563 cells to model an accretion torus around a star, for a
range of stellar masses and ionizing luminosities. Both mass and
luminosity are kept constant at any one simulation. This should
not pose a problem as the time-scales for the development and
evolution of the HII regions in these simulations are far shorter than
the time-scales in which the stellar properties change.

The size of our cubic simulation box is taken to be 0.1 per cent
which is the same order of magnitude of the rotating cores seen
around massive stars (Beltrán & de Wit 2016), but we can rescale
the length unit of the simulation if required (see Section 2.2). The
boundaries of the simulation box were set to be open so material
can flow in and out of the box. Gravity from the star is modelled
through a source term in the momentum equation, as an external
point mass located at the centre of the simulation box. In order to
avoid numerical issues caused by the diverging gravitational force
at small radii, we apply an inner spherical mask with a radius of
0.01 per cent, corresponding to 10 per cent of our box size in length.
Within this masked region, we do not solve the hydrodynamics,

2https://github.com/bwvdnbro/CMacIonize
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meaning that material that flows into the mask is no longer tracked.
Boundary conditions at the mask are set to inflow, but no specific
conditions are set to be satisfied at the mask radius, such that it
doesn’t have any dynamical effects on the rest of the simulation
box. Because we do not follow the material within the mask, we also
do not account for the ionizing luminosity absorbed by the masked
material. Therefore, the luminosity used in each of our simulations
is simply a fraction of the true luminosity emitted by the star. We do,
however, compute a luminosity correction (see Section 2.7) which
allows us to estimate the full luminosities emitted by the stars in
our simulations.

We perform the simulations with an isothermal equation of state.
Simulations are split in two types: hydrodynamical-only (HD)
simulations and simulations with both hydrodynamics and ionizing
radiation (RHD). HD simulations start from a very general initial
setup which is outlined in detail in Section 2.1 and are let to
evolve freely for 50 000 years in order to obtain a stable accretion
scenario. The resulting accretion structure consists of a torus and
models which we expect to find around a star that has just started
emitting ionizing radiation. The torus may vary in shape and density,
depending on the initial parameters. We discuss the impact of each
of the input parameters has on the structure later, in the results
section. Once a stable accretion structure is attained, the output of
the HD simulation is used as the initial conditions for the RHD runs.

In the RHD runs, the mass at the centre also acts as a point
source that emits ionizing photons isotropically. The photons can
be either absorbed by the gas or re-emitted until they leave the grid
(for more details see Vandenbroucke & Wood 2018). The ionizing
luminosities are set based on the expected value for the mass found
at the centre of the simulation box. For simplicity, throughout the
paper, we use only ‘luminosity’ to refer to the ‘ionizing luminosity’,
unless specified otherwise. At each Monte Carlo time-step, we emit
106 ionizing luminosity packets from the central source and iterate
10 times to obtain sufficiently converged ionization fractions for
each cell. A two-temperature approximation is used: fully ionized
gas has a temperature Ti = 8 000 K whereas fully neutral gas has
a temperature Tn = 500 K, see Lund et al. (2019). Partially ionized
gas temperatures are calculated as a linear combination of the two
cases based on the actual ionization fraction of a cell.

2.1 Initial setup

The Bondi radius, RB, is defined as the radius where the accretion
speed equals the sound speed for a spherically symmetric accreting
star, and is given by:

RB = GM�

2c2
s

, (1)

with G being the gravitational constant, M� the mass of the star, and
cs the sound speed, which itself is given by:

cs =
√

kT

μmmp

, (2)

where k is Boltzmann’s constant, mp is the proton mass, and μm the
mean molecular weight of the gas, such that μm = 1 for fully neutral
hydrogen and μm = 0.5 for fully ionized hydrogen. Thus, our sound
speed has a specific range of values under the two-temperature
approximation:√

kTn

mp

≈ 2.0 km/s < cs < 12.8 km/s ≈
√

kTi

0.5mp

(3)

The values for the density and tangential velocity are set as a
function of their value at the Bondi radius, ρB and vB:

ρ(r) = ρB

(
RB

r

)1.5

(4)

and

v(r) = vB

(
RB

r

)0.5

eθ , (5)

Where eθ is the tangential unit vector in cylindrical coordinates:

eθ = − y

R
ex + x

R
ey, (6)

with R =
√

x2 + y2 the cylindrical radius.
The Bondi density, for a Bondi accretion scenario, is related to

the density at infinity through the following relation:

ρB = ρ∞e3/2 ≈ 4.48ρ∞ (7)

Assuming that on scales larger than the size of our simulation box
the accretion flow is Bondi-like, the density at infinity would be
representative of the density of the interstellar medium.

The tangential velocity has the same radial dependence as the
Keplerian velocity, defined as:

vK =
(

GM�

r

)0.5

(8)

The Keplerian velocity at the Bondi radius is simply:

vB =
(

GM�

RB

)0.5

=
√

2cs (9)

and thus independent of the star’s mass. For convenience, we start
the hydrodynamical simulations with Keplerian velocities at each
cylindrical radius.

2.2 Hydrodynamics

The hydrodynamic equations of conservation of mass and momen-
tum for an isothermal equation of state, ignoring the self-gravity of
the accreting gas, are:

∂ρ

∂t
+ ∇(ρv) = 0, (10)

∂v
∂t

+ v · ∇v + c2
s

ρ
∇(ρ) + GM�

r2
er = 0, (11)

where ρ, v, t, and r are the density, the velocity, the time, and
the distance, respectively, and er is the radial unit vector. One
interesting aspect of the equations above is that they are scale-
invariant in density. In other words, we could multiply the density
by any constant factor and this would not alter the qualitative results
we get. Therefore, once we run a simulation for a star of a certain
mass, we already have all the simulations for any value of the initial
parameter ρB we might have chosen.

The HD runs are also scale-invariant under the ratio M�/r.
Suppose we were to re-scale in space and time, such that r becomes
Cr and such that t becomes Ct, where C is a constant re-scaling
factor. Then, the mass and momentum equations become:

C

(
∂ρ

∂t
+ ∇(ρv)

)
= 0 (12)

C

(
∂v
∂t

+ v · ∇v + c2
s

ρ
∇(ρ) + CGM�

r2
er

)
= 0 (13)
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Note that, if the mass of central star in the simulation were to
be C times larger (Mnew

� = CMold
� ), then the equations would not

differ from our initial ones. This implies that simulations done in a
simulation box of size L and stellar mass M� will appear identical
to one done with a box of size CL with stellar mass CM�, with the
caveat that the latter will evolve a factor of C faster.

In other words, the accretion structures formed in simulations
with higher central masses have the same density and velocity
profiles we would expect to see in the smaller inner regions of
simulations of a lower mass star. This re-scaling can be demon-
strated to work numerically by re-scaling simulations with different
masses and showing that the re-scaled hydrodynamical quantities
follow a common profile. This is done later in this section, in Section
2.5. However, it should be noted that, this is only true if the effect
of self-gravity is not included.

2.3 Radiation hydrodynamics

In the simulations that include radiation, in addition to the hydrody-
namical equations, we need to take into account the balance between
photoionization and radiative recombination, which is given by the
photoionizing equilibrium equation:

QH (�) = αA

m2
H

∫
(1 − xH (x))2 ρ2(x)dV , (14)

where QH(�) is the photoionizing luminosity of the star (which
for each simulation is considered a constant), αA is the (constant)
recombination rate to all excited states of hydrogen, mH is the
mass of hydrogen, and xH the neutral fraction of hydrogen and
the integral is computed over the entire volume of the simulation
box.

The recombination rate we use is given by the fit by Verner &
Ferland (1996) which, for a temperature of 8 000 K used in this
work, is αA = 4.896 × 10−13cm3 s−1. The diffuse radiation field is
also taken into account by tracking the photons that are absorbed
and re-emitted as ionizing ones. Photons recombine to the ground
state at a recombination rate of α1 = 1.773 × 10−13cm3s−1 and thus
the probability of a photon being re-emitted as an ionizing photon
is PR = α1/αA ≈ 0.36.

We can obtain the volume that will be ionized for a given
photoionizing luminosity by assuming a sharp transition from a
completely ionized (xH = 0) to a completely neutral (xH = 1) gas,
and by realizing that diffuse re-emission boosts the photoionizing
luminosity with an additional factor 1

1−PR
, such that the photoion-

izing equilibrium equation becomes:

QH (�) = αB

m2
H

∫ SI

S0

ρ2(x)dV , (15)

where S0 represents the inner boundary of the ionized volume, SI

represents the ionization front (which can have an arbitrary shape),
and αB = αA(1 − PR) = αA − α1 is the total radiative recombination
rate to all levels above the ground state (i.e. the total radiative
recombination rate to levels 2 and higher).

Here, unlike in the HD runs, a particular density has to be chosen,
as this will determine the number of recombinations occurring
and thus the impact a certain luminosity will have on the torus.
However, the RHD simulations are scale-invariant in the ratio
ρ2/QH, as the numerator determines the number of recombina-
tions and the denominator the number of ionizations per unit
time.
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Figure 1. The density profile of for a 20 solar mass star through the torus
axis for three different resolutions (643, 128, and 2563 cells). The result for
the two highest resolutions are clearly converged. The small difference at
0.01 per cent is due to the fact our masked region has an integer number of
cells which makes its edge slightly different for the three resolutions.

Table 1. All these simulations are equivalent according to the scaling
relation. Thus, we can model smaller radii within the masked regions by
considering simulations of larger and larger masses.

Scaling factor C Central Mass (M�) Length

0.1 10 0.1 L
1 100 1 L
10 1000 10 L

Table 2. Re-scaling factors that need to be applied for the different
hydrodynamical variables of the simulations.

Quantity Units Re-scaling

Length [L] L −→ CL
Mass [M] M −→ CM
Time [T] T −→ CT
Density [M]/[L]3 ρ←→ρ/C2

Velocity [L]/[T] v −→ v
Angular velocity 1/[T] � −→ �/C

2.4 Convergence

We ran the simulations at three different resolutions: 643, 1283, and
2563 cells. We found that, for most of the simulations, the three
resolutions present little difference when compared to one another,
as can be seen in Fig. 1. The simulations in the remainder of this
work have a resolution of 2563. We do not consider using a higher
resolution as this would demand too much computational time to
run all required models and would make little difference to the
qualitative results obtained.

2.5 Testing the scalability

In Section 2.2, we have shown analytically that the length and
mass units can be re-scaled such that there is no change to the
hydrodynamical evolution of the system. We explore this in this
paper as a way of using one simulation to represent a number of
different scenarios. We can see from Table 1 that a simulation with a
central mass of 100 solar masses can be re-scaled to either represent
the smaller scales of a simulation with a central mass of 10 solar
masses or to represent larger scale of a 1000 solar mass simulation.

Clearly, re-scaling implies that the units of length, mass, and time
have changed and, therefore, the hydrodynamical properties need
to change accordingly as specified in Table 2.
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An alternative way to see this is by investigating the units for
the hydrodynamical quantities and how they link to the simulation
parameters. The velocity unit immediately links to the sound speed
of the gas and hence its temperature, which we assume constant for
all simulations. This means that the length unit and time unit will
have a fixed ratio for all simulations. The mass unit of the system
is clearly set by the choice of central point mass M. Once the mass
and sound speed are chosen, the Bondi radius is also unequivocally
fixed. In principle, this should fix the density unit, but since the
solution of the hydrodynamical equations does not depend on the
density (as explained in Section 2.2) this is not the case. Thus, we
use a constant ρB, which defines the density at the Bondi radius,
in order to fix the density. The only parameter left to choose is the
box size, which will determine which part of the underlying general
solution we sample.

As a result, we expect all simulations to have a general profile
for each of the hydrodynamical quantities, which can be expressed
in terms of Bondi units (Bondi radius, Bondi density, etc) and that
can then be adjusted to represent any desired set of values.

In order to prove that this is indeed applicable numerically, we
have re-scaled the simulations in order to show that a universal
profile exists for each hydrodynamical quantity, as shown in Fig. 2.
The description of the re-scaling procedure for each quantity is laid
out below.

2.5.1 Width of the torus

We define the torus within our simulations to have a certain thickness
based on where the majority of the gas within the simulation is
concentrated. In order to compute the width of the torus, we plot a
density profile from a simulation slice (perpendicular to the torus
plane) for each radius from the central point mass. We then fit a
Gaussian to the profile and define the material that represents the
torus to be the material that lies in between the half maxima points.
One such density slice with the Gaussian fitting is illustrated in
Fig. 3.

This procedure is repeated for every simulation. These simu-
lations are then re-scaled according to Table 1 and expressed in
terms of Bondi units to show that their profile is the same. Finally,
we fit a power law y = c × xm to obtain an expression for the
general profile. The final fitted parameters for the power law were
m = 1.51, c = 0.79. In order to obtain the physical values for
any particular simulation, we can simply multiply both the radius
and the width of the torus by the Bondi radius of that particular
simulation.

2.5.2 Density

Similarly to the torus width, we first re-scale the simulations in
terms of the Bondi radius. The density values are then divided by
the Bondi density found for this particular re-scaling, such that
ρ(r=RB ) = 1. Recall that the density can be re-scaled by a constant
factor at will. By doing that we obtain a universal profile to which
we fit a power law y = c × xm + c0, with parameters m = −1.88,
c = 0.57, c0 = 0.43. In order to adjust the profile to a particular
simulation we multiply the radius, R, by the desired Bondi radius
RB and the density by the correction factor, ρcorr:

ρcorr = 1

M2ρB

(16)

2.5.3 Tangential and angular velocity

As discussed earlier in this section the velocity does not change with
the re-scaling of the simulations, as both the time and length units are
re-scaled by the same factor. The angular velocity, however, does
require re-scaling as it has units of inverse time. We divide each
velocity and angular velocity value by their Keplerian counterpart
(vK = √

GM/R and � = vK/R). The values are then expressed in
Bondi units such that at the Bondi radius the values for the velocity
and angular velocity equal one. We then fit a power law, as it was
done for the density, to the obtained profiles. The fitting values
obtained for the angular velocity, �, m = −1.58, c = 0.99, c0 =
0.01 and for the tangential velocity, v, m = −0.52, c = 1.17, c0 =
−0.17.

The correction back to SI units is done by multiplying either
simulation by their Bondi counterparts:

vcorr = vB =
√

2cs (17)

�corr = �B =
√

2cs

RB

(18)

2.6 Toomre Q calculation

As the models we are currently studying do not include self-gravity,
in order to have a consistent accretion scenario, we need to check
if we expect fragmentation to occur within the torus. Given a thin
accretion disc, we can assess its local stability against fragmentation
by calculating the Toomre Q parameter (Toomre 1964), defined as:

Q = csκ

πG

, (19)

where κ is the epicyclic frequency

(
κ =

√
r d�2

dr
+ 4�2

)
and 


is the surface density of our disc. In simple terms, the numerator
of the Toomre parameter is representative of the thermal (cs) and
rotational (�) energies, whereas the denominator is representative
of the gravitational energy. For instability, gravity must be dominant
both over the rotational and the thermal energy. Thus, for Q 

1, the disc is stabilized by rotation and will not collapse, while
for Q � 1 the disk is likely to fragment. Note that as we use
an isothermal equation of state the value cs is fixed for the HD
simulations, and, thus, the thermal support is constant with radius.
The rotational support, in contrast, is larger for smaller radii where
the angular velocity is higher. Therefore, the stability of the disc
is directly linked to the relative rate of increase in density and
velocities as we approach smaller radii, such that we have two
cases: (1) if the rate of increase in angular velocity is larger than the
rate of increase in density, the rotational support increases more than
linearly to the gravitational de-stabilizing effect, meaning that the
torus would become more stable for smaller radii; (2) if the density
increases more than linearly to the angular velocity, the torus gets
more unstable for smaller radii. From our universal profiles obtained
in the last subsection, we can see that for our simulation the second
case applies and our disc will be more unstable with smaller radii.
In order to determine if our simulations are or are not unstable, we
require estimates for a disc surface density. Because the Toomre
Q parameter only applies to a thin disc, for any point in the disc,
the scale height has to be much smaller than the radius. We use a
height as 0.01 of the radius, which gives us the same error in the
calculation of the Q parameter for every radius. The surface density

 = 0.01R × ρ, with both R and ρ being expressed in Bondi units.
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Figure 2. Basic hydrodynamical quantities re-scaled to Bondi units to show the existence of a common profile. The panels show, from top to bottom and left
to right: the width of the torus, the density at the torus plane, the tangential velocity with respect to the Keplerian velocity and the angular velocity in respect
to the Keplerian angular velocity. Every simulation had identical initial conditions except for the mass which is indicated by the colors: 40 M� (blue), 50 M�
(yellow), 60 M� (green), 70 M� (red), 80 M� (purple), 90 M� (brown), 100 M� (pink). Power laws were fitted to each profile and are shown as dashed lines.

We compute the ratio QB = �/
 in Bondi units based on the general
profiles obtained in the last section in order to obtain a universal
profile for the Toomre Q parameter shown in Fig 4. The Toomre Q
in Bondi units (QB) is related to the true Toomre Q of any simulation
by the following expression:

Q = cs

πG
∗ QB ∗ Fconv, (20)

where Fconv is the conversion factor to SI units defined as:

Fconv = �corr


corr
(21)

=
[√

2cs

RB

]
×

[
1

M2ρBRB

]
(22)

=
√

2cs

M2ρBR2
B

(23)

Clearly, the value of Q is going to differ significantly depending
on which densities and masses are considered, as illustrated in
Fig. 5. Nevertheless, the general trend is that the torus becomes
more unstable for smaller radii.

2.7 Ionizing luminosity correction

Our simulations use an internal mask of radius 0.01 per cent. For the
RHD runs, the region inside the mask is assumed to be ionized and,
therefore, no radiation is absorbed. Therefore, the true luminosity of

our central source is the value we set in the simulation plus an offset
due to the number of photons we expect to have been absorbed
inside our masked region.

In order to have an estimate of how much radiation has been
absorbed within the masked region, we make use of the homology
of the hydrodynamic simulations as discussed in Section 2.2. We
can use of the profiles obtained in Fig. 2 to model the density and
and shape of the torus for any simulation for the radii smaller than
the one used for our mask. Given these values, we can estimate the
luminosity absorbed within the mask.

The homology implies that, for a specific choice of realization
with density ρ(x) = ρBρ ′(x′), the ratio

QHB
= m2

H QH (�)

αBρ2
BM4

� R3
B

=
∫ S′

I

S′
0

ρ ′2(x′)dV ′, (24)

will be independent of that specific choice of realization of the
general density profile, where all quantities in the integral have
been replaced with their corresponding Bondi unit counterparts. To
find a general expression for the Bondi luminosity that is absorbed
within some sphere with radius S ′

M (the radius of the mask in
Bondi units), we will assume that this absorption can be reasonably
approximated by absorption of the torus, with the width and density
profiles following the fitted power-laws in Section 2.5. Assuming
cylindrical symmetry, the Bondi luminosity is then:

QHB
= 2π

∫ r ′
M

r ′
0

ρ ′2(r ′)h′(r ′)r ′dr ′ = 2π
(
f (r ′

M ) − f (r ′
0)

)
, (25)
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Figure 3. Top: A density plot of a simulation of a 35 solar mass star. The blue
line shows the slice used for the density profile in the bottom image. Bottom:
The density profile of the slice (blue dots) and the corresponding Gaussian
fit (blue line). The dashed lines show the value for the half maximum and
the heights (z) in the disk at which it occurs. The shaded light blue region
shows the region that we consider to compose the torus.

Figure 4. The profile for the QB in Bondi units, which can be re-scaled to
find the Toomre Q profile of any simulation.

Figure 5. Toomre values for different masses. The colours associated with
each mass are as in Fig. 2. The horizontal lines show the where Q = 1
for different Bondi densities. Anything below a particular horizontal line is
Toomre-unstable and anything above is Toomre-stable.

with

f (r ′) = f0(r ′) + f1(r ′) + f2(r ′), (26)

f0(r ′) = hn

he + 2ρe + 2
(r ′)he+2ρe+2, (27)

f1(r ′) = 2hnρ0

he + ρe + 2
(r ′)he+ρe+2, (28)

f2(r ′) = hnρ
2
0

he + 2
(r ′)he+2, (29)

3 R ESULTS

3.1 Hydrodynamical simulations

We first ran a number of HD simulations in order to obtain a torus
to be used as initial conditions for the RHD runs. In these runs,
the gravitational contraction in directions normal to the set rotation
is halted by centrifugal forces, leading to a natural flattening of
the system into a torus and to a rarefaction of the polar regions.
Parameter space has been explored by changing the mass of the
central star and the tangential velocity (keplerian, sub- and super-
keplerian). Here, we analyse how each of these affects the final torus
structure.

3.1.1 Changing mass

Due to the larger gravitational force, larger central masses lead to
higher centrifugal speeds at any given radius. In turn, this leads
to a stronger flattening of the torus, making the torus thinner and
denser. This is illustrated by Fig. 6, where we plot the Gaussian
fitting used to estimate the surface density of the torus for distinct
stellar masses.
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Figure 6. The Gaussian fit (as in Fig. 3) for simulations with different
central masses (20, 40, 60, and 80 solar masses). The dots are weighted
according to the stars mass and show the simulation data, while the lines
correspond to the fitted Gaussian. We can clearly see that as the mass
increases the fitted Gaussian gets narrower and peaks at higher values
indicative of a thinner, denser torus.

Figure 7. The evolution in the ratio of the torus and polar densities for
different central masses. For lower masses, the torus is only a couple of
times denser than the polar regions. For higher masses, the differences in
density exceed an order of magnitude.

Another effect is that polar regions become more rarefied. We
quantify this by the parameter η(x) = ρTorus(r = x)/ρPolar(z = x),
where x is the distance from the central point mass. The value of
ρTorus(r) at each x is obtained by averaging the value of the density at
a certain radius in the midplane of the torus r = x. For the ρPolar(z),
we average the densities along the torus normal at distance |z = x|
from the central point mass. We characterize the density contrast for
the entire box with a single value η = 〈η(x)〉 obtained by averaging
all the values η(x) for x values ranging from just above the mask
radius to the half the box size.

The values found are shown in Fig. 7. The density contrast
increases with mass and can be as low as η = 2 for a central
mass of 10 solar masses and as high as η = 16 for the case with 80
solar masses.

3.1.2 Changing tangential velocity

Throughout the paper, we use Keplerian velocities as an initial
condition for our torus. Since in the HD simulations, the medium is
completely neutral, the temperature of the gas is 500K, making the
Keplerian velocity at the Bondi radius 2.8 km s−1. Using velocities
lower than the Keplerian velocity leads to a thicker, less dense torus
whereas super-Keplerian velocities lead to the opposite effect.

Figure 8. Density slice for a Bondi luminosity of 2.13 × 10−3. The ion-
ization contours are shown in yellow (75 per cent ionized), red (50 per cent
ionized), and black (25 per cent ionized). We can see from the ionization
contours that the H II region is completely trapped and almost spherical in
shape.

Figure 9. Density plot of a slice of an RHD simulation with a Bondi
luminosity of 0.273. The contour lines show different ionization fractions
(0.75, 0.5, and 0.25 for yellow, red, and black, respectively). Due to the
reduced density, the H II region expands farther in the poles than in the
torus, giving the ionized region an hourglass shape. The H II region is not
smooth due to the noise in the Monte Carlo method.

3.2 Radiation hydrodynamics simulations

The results of the RHD simulations can be broadly divided into
three categories:

(i) Fully trapped H II region
(ii) H II region trapped in the torus midplane but in pressure-

driven expansion in the polar axis
(iii) H II region in pressure expansion at all axis

These are shown in Figs 8, 9 and 10, respectively. The outcome of
each simulation is naturally dependant on the values of the density,
which will regulate the recombination rate, and the luminosity,
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Figure 10. A 100 solar mass star simulation with luminosity of 2.73. Black,
red, and yellow contour lines are indicative of regions where 25 per cent,
50 per cent, and 75 per cent of the gas is ionized, respectively. As it can
be seen, the H II region is trapped in the torus plane but the polar regions,
due to their much lower densities, have been completely ionized and have
undergone pressure-driven expansion.

which will determine the number of hydrogen atoms being ionized
at any point in time (see equation (15)). The simulation results
will also depend on the difference in density between the torus
plane and the polar axis quantified by η. If η is close to 1, there
is no path through which the photons can escape more easily and
a roughly spherical H II region forms around the star. This is seen
in simulations for stars around 10 solar masses or lower (Fig. 8).
For more massive stars, the η parameter is larger, indicating that
the photons will find more resistance when travelling in the torus
midplane in comparison to the polar axis. As a result, the polar
regions get ionized to much larger radii than the torus; leading to a
roughly hourglass shaped H II region (see Fig. 9). Because of this
difference in density and, consequently, the extent of the H II region,
we can expect that the transition from a trapped to an expanding
ionized region will also happen distinctly in different directions.
If we assume, as in the spherical scenario, that transition to the
expansion phase happens at some critical radius, then some parts of
the H II region will enter the expansion phase before others.

Let the critical luminosity QC
H be the luminosity that is just

large enough to ionize out to this critical radius. Owing to the
fact that the density is different in different directions in our
simulations, there will be a different critical luminosity for each
direction. The lowest critical luminosity, Q

CL
H , is the one that will

lead to an expanding ionized region at the line of lowest density:
the polar axis. Conversely, the line of highest density through the
torus midplane, will be hardest to fully ionize and will have the
highest critical luminosity Q

CH
H . Whenever the set luminosity in the

simulation is between these two extremes, Q
CL
H < QH < Q

CH
H , the

resulting scenario will be a trapped H II region in the torus plane
and an expanding one at the poles (Fig. 10). Because the ionizing
luminosity is proportional to the density squared, the range of values
for which this scenario occurs also depends on the η parameter:

Q
CH
H

Q
CL
H

∝
(

ρtorus

ρPolar

)2

∼ η2 (30)

From Fig. 7, we can see that a larger stellar mass implies a larger
value of η. As a result, the luminosity range that leads to case (ii)
will increase with mass too.

Finally, there is the case where the luminosity is large enough
to ionize both polar and torus axis out to a radius larger than their
critical radii (QH > Q

CH
H ), creating an expanding ionized bubble

(Fig. 11). One could, therefore, think of our three possible scenarios
presented above as a natural evolution of the system. As the mass
and, consequently, the ionizing luminosity increase, an initially fully
trapped H II region could get progressively larger, until it enters
the expansion phase at the poles. The star would stop accreting
through the poles but accretion would continue through the torus
plane. Luminosity will continue rising until the star emits enough
luminosity to ionize the torus beyond the critical radius. This would
halt accretion completely, setting the final mass of the star.

4 D ISCUSSION

As it was said in the Introduction, massive stars need to be able
to continue accreting after the onset of fusion, which leads to the
emission of copious amounts of ionizing radiation. It is therefore
essential that H II regions remain trapped for time-scales long
enough to allow the required mass build-up to occur. With respect
to the factors under consideration in our simulation, the ability to
trap the H II region is going to depend on the following:

(i) Critical radius – set by the value of the central point mass
(ii) Ionizing Luminosity – set by the source(s) at the centre
(iii) Torus Density – set by the initial density and velocity and

by the central point mass

In the rest of the section, we discuss how the trapping of the
H II region might occur in light of our results as well as discussing
limitations of our approach to the problem.

4.1 Luminosity corrections

The results presented assume that the ionizing radiation incoming
from the mask is isotropically emitted from its centre. Furthermore,
the luminosity escaping the mask must be only a fraction of the one
emitted by the star. We can, however, correct our luminosities using
the method described in Section 2.7, which is based on the profiles
obtained for the torus width and the density.

4.1.1 Testing the correction

In order to test this luminosity correction, we first perform a
mock correction to a known value. The scalability implies that for
rescaled simulations, the size of the mask is inversely proportional
to the mass. Thus, we may verify if we can reproduce the critical
luminosity values obtained by a high mass (Mlarge) simulation by
correcting the luminosity absorbed between its rescaled mask radius
and the rescaled masked radius of an otherwise identical lower mass
simulation, Msmall:

Q
CH

HB (Mlarge) = Q
CH

HB (Msmall) + 2π

∫ RMask (Msmall )

RMask (Mlarge)
ρ2hrdr (31)

We use the the critical luminosity for expansion in the midplane
Q

CH

HB for the 100M� as a proxy and compare it to the critical values
of simulations from 40–90 solar masses corrected for the radiation
absorbed in the region between the re-scaled masked radii. The
values we use for the critical luminosity are the lowest luminosity
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Figure 11. Top: Torus density profiles at different times showing the evolution of an expanding H II region with Bondi luminosity 2.73. Bottom: Density slices
of the simulation in the top panel. Degrees of ionization are shown by the black, red, and yellow lines as in Fig 10. Pink and yellow arrows show outflows
and inflows, respectively. The whole H II region is ionized past the critical radius and enters the expansion phase. In the last snapshot, we can observe that the
inside of the H II region is drained as material inside the ionized region accretes to the star, but no more material traverses the ionization front.

Table 3. Critical luminosities for different masses. These values are not
corrected to account for luminosity absorbed within the mask.

Mass of Central Star
(M�)

Log of Critical
Luminosity (s−1)

40 44
50 44.5
60 45
70 46
80 47
90 48.5
100 50

values which caused the midplane of the disc to enter pressure-
driven expansion for a simulation of a particular mass. The original
values (before re-scaling) are laid out in Table 3 for reference, all
for simulations with ρB = 1 × 10−20.

The test correction is illustrated in Fig. 12. The top figure shows
the relative size of the correction between the different simulations
in Bondi units. The bottom plot shows the corrected value obtained
for the critical luminosities. Should our values of the critical
luminosity and corrections be exact, all critical luminosities should
be the same. However, with the exception of the 90 and 80 solar
mass simulations, the critical values obtained are larger than the
expected value. This indicates that our correction provides an upper
limit for the critical values. In other words, simulations for which the
ionized region in the torus is in pressure-driven expansion for our
corrected simulations would also be in pressure-driven expansion
for a simulation run with a much smaller mask.

Hence, even though we cannot claim the sizes of the H II region
would be the same as the ones in our simulations, we are able to find
an upper limit in the transition between the trapped and expanding
scenarios within the torus midplane. Therefore, we can obtain an
upper limit on the maximum luminosity a star can have while still
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Figure 12. Top: Correction in Bondi luminosites for different masses as a
function of the size of the corrected region (equivalent to the difference in
radii of the re-scaled mask for the simulation in question and that of the
100 solar mass simulation). Colours are the same as in Figs 2 and 5 and
the dot’s size is scaled according to the mass it represents. By definition,
the correction to the 100 solar mass simulation is zero. Bottom: Critical
Bondi luminosities for the 100 solar mass (uncorrected) and lower mass
simulations (corrected to include radiation absorption from radii above the
mask of the 100 solar mass simulation).

being able to sustain an accretion disk from which it can keep
accreting mass.

4.1.2 Luminosity comparison to models

We are interested in analysing which scenarios would create a
suitable environment for a massive star to continue accreting via
a disc given the large amount of ionizing radiation it emits. With
that aim, we correct the critical luminosity values obtained in
our simulations to a radius of 1 × 10−4 per cent and compare
these values with ionizing luminosities given by stellar evolution
models. This radius for the correction was chosen because all our
simulations, except one, are unstable at this radius, such that all
calculations of luminosities are overestimates of the true value.
Here, we use estimates of the true ionizing luminosities of massive
stars which were obtained from the stellar evolution model of
Sternberg, Hoffmann & Pauldrach (2003). The values for the critical
luminosities for different densities (dashed lines) plotted against
model luminosities (continuous green line) are found in Fig. 13.
For Bondi densities of ρB = 10−19 g cm−3 and larger, we can
expect the H II region to always be trapped in the midplane. For
Bondi densities of ρB = 10−21 g cm−3 and smaller, we can expect
the H II region to be in expansion. For intermediate Bondi densities,
10−21 ≤ ρB ≤ 10−19 g cm−3, the H II region starts expanding within
the midplane for some particular mass.

4.2 Stability via multiplicity

As explained in the last subsection, the fate of the torus and H II

region is strongly dependent on the density. One aspect that might
be of importance to the analysis of the disk resistance against the
ionizing radiation is the stability of the disc itself. In Fig. 14, we plot
the radius at which we expect fragmentation to start taking place
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Figure 13. Dashed lines: critical luminosities for trapping H II regions in
the torus plane for different Bondi densities. Continuous green line: the
expected luminosities for a each stellar mass according to the stellar model
of Sternberg et al. (2003). If the expected values are above the critical
luminosity, the H II region will enter the pressure expansion phase in the
disc axis. Dashed green line: mimics the effect of having a massive star
emitting at the expected values but also having companion stars with a
combined mass of 20 solar masses. We can see that for this line the number
of cases for which the H II region is trapped increases.

Figure 14. The radii below which the simulations would be Toomre-
unstable plotted for different stellar masses and Bondi densities. The curve
for the ρB = 10−19 only has values for masses between 40 and 50 solar
masses because for all other masses it is completely unstable for every
radius, as shown in Fig. 4.

which is based on the data already shown in Fig. 5. We can see that
for a number of scenarios studied we expect fragmentation to occur.

We speculate on the impact such fragmentation could have on
our results. One of the effects fragmentation could have is on the
interaction of radiation and the torus. Fragmentation implies that
clumpy regions would form and, alongside them, lower density
channels through which luminosity can escape (Wood et al. 2013).
This means that regions at larger radii in the torus might get more
easily ionized than our simulations would suggest. In turn, this
might mean that the torus potentially enters D-type expansion
for considerably lower luminosities than the upper limit found.
Fragmentation could also lead to the formation of other proto-
stars in the inner region of the torus. Interestingly, if other smaller
proto-stars form, they could contribute to the gravitational potential
more than they contribute to the increase in ionizing luminosity. As
discussed previously, a larger gravitational attraction would imply
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that the torus would evolve to be denser and thinner and therefore
more difficult to ionize. In order to model this effect, we plot the
model luminosities as if they were emitted by a star 20 solar masses
larger than the true value. This mimics a massive star accompanied
by a number of proto-stars with combined mass of 20 solar masses,
but which do not emit significant amounts of ionizing radiation in
comparison to the massive star. This is represented in Fig. 13 by
the dashed green line. As it can be seen, the increase in mass has a
stabilizing effect: the masses that would enter the expansion phase
for the 10−19 g cm−3 curve (portion for which the green line – true
luminosity – is above the dashed line – critical luminosity values)
are now all trapped (the green line is now fully bellow the dashed
line). For the 10−20 g cm−3 curve, this also implies that the trapped
scenario would occur for lower masses than if we had a single
star. Therefore, if more than one star is forming simultaneously
to a large mass star, the torus/disc would be more stable against
ionizing radiation and could keep feeding the stars for longer. This is
interesting as O stars are found to be in a binary and multiple system
much more often than other types of stars (Sana et al. 2012). Perhaps,
this high binarity is linked to the fact that maintaining a torus to
form a massive star is more likely if there is core multiplicity. In this
case, massive stars are not necessarily only competing for material,
but actually need the other companion stars to form. However, a
verification if this is actually the case would require simulations with
self-gravity that properly analyse the effect of fragmentation of the
inner disc and its interaction with the incoming ionizing radiation
which is beyond the scope of this paper and is deferred to a later
study.

4.3 Torus evolution

Although we do not simulate a self-consistent evolution of the mass
of our star and the corresponding torus changes, it is important that
we understand how the trapping of the H II region would change
as a star gets more massive. It was pointed out previously that for
higher masses the torus in our simulations is found to be thinner
and denser. As a star accretes, it is therefore reasonable to assume
that its torus will try to adapt to the star’s mass gain by following a
similar trend. Clearly, it takes time for the torus material to adapt to
a new configuration dictated by the central mass. If the time taken
by the torus to readjust is much longer than the accretion time-
scale, the torus will not change dramatically its shape or density
throughout the star’s accretion history. Hence, it is likely the torus
of the massive stars is going to be less dense and easier to ionize than
what we consider in our simulations. If, conversely, the torus is able
to conform quickly to the growth of the star, then our simulations
for different masses for a given Bondi density, can be thought of
as snapshots through the evolution of a single star. We can use this
extreme scenario as an upper limit for how much the torus can be
expected to change throughout the stellar evolution. Fig 15 shows
the relative increase in ionizing luminosity (based on the stellar
evolution model by Sternberg et al. (2003)) and the torus surface
density squared for this limiting case.

Recall that the size of the H II region depends on the ionization
balance and that the amount of ionizing photons required scales
with the square of the density. We can see from Fig. 15 that the rate
of increase in density squared on the torus axis is much larger than
the rate of increase in luminosity of the star as it evolves. We can
conclude that, if a star were to evolve in such a way, once an H II

region is trapped in the torus it will either always be trapped, or it
will quench as the luminosity coming from the star will be able to
ionize up to progressively smaller radii in the torus plane. In this
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Figure 15. The rate of increase in torus density and ionizing luminosity as
a star increases its mass. The values are normalized with respect to the torus
density and ionizing luminosities of a 20 solar mass star.

case the star’s final mass needs to be halted by other means than
ionizing feedback.

4.4 Mass reservoir

Until now, we have assumed that the mass of the torus and the star
could keep increasing indefinitely, that is, we assumed an infinite
mass reservoir. A more likely scenario would be to have a finite
amount of mass that can be accreted. Material located at a distance
Rlim from the central star for which the free-fall time is larger
than the period for which the massive star accretes will clearly
never be able to contribute to the star’s mass. Therefore, it follows
straightforwardly that the mass of the star will never be able to
exceed the mass available within the boundaries of Rlim. In addition,
limiting the amount of material available can limit the maximum
density of the torus thus making the torus optically thinner and more
prone to having an expanding H II region.

4.5 Mask effects

As pointed out in Section 2, we use an inner mask of 0.01 per
cent around our point mass. It is, therefore, reasonable to question
how the results might change had we considered a smaller mask. It
was already shown earlier in this section that the luminosity values
corrected to include radiation absorbed in most of the masked region
give a good estimate for the H II region scenario (expanding or
trapped) within the torus. The size of the mask does imply that
the H II region trapped within the first few cells from the mask
could be more compact (trapped at smaller radii in the disc). It is,
however, not the aim of this paper to quantify the extent of the
ionized region, but, instead, to obtain a general view of possible
scenarios and constrain expected luminosities for which the ionized
regions would no longer be trapped.

It is worth pointing out that any simulation of a torus or a disc has
a masked region in the sense that accretion on to the stellar surface
is not resolved. Even though some simulation resolve accretion to
a single cell, this cell is still equivalent to a very small masked
region in which the hydrodynamics and radiative transfer effects
cannot be taken into account. The size of the mask used in our
simulations was based on the fact that, at mask scales and below,
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a number of simulations (Peters et al. 2010; Klassen et al. 2016)
as well as observations (Beuther et al. 2017) indicate the existence
of substructure and sometimes multiple accreting stars (Krumholz,
Klein & McKee 2007; Peters et al. 2010). In light of the lack of self-
gravity in our simulation and, henceforth, our inability to evaluate
such scales appropriately, we have set a mask around these smaller
scales and focused on the larger picture effect of ionizing radiation
on the environment. In addition, should a disc truly exist around
a single star at scales smaller than the mask used, we can still re-
scale the simulations to these smaller scales. In other words, the
qualitative results regarding the possible shapes of the H II regions
would still hold, albeit for different luminosities and density values.

5 C O N C L U S I O N S A N D O U T L O O K

Massive stars must extend their accretion time-scale by accreting
through trapped H II region. We find three different scenarios for
H II regions:

(i) Trapped in both torus and polar regions
(ii) Trapped in the torus and in D-type expansion in the polar

region
(iii) In D-type expansion in all directions.

We show we expect trapped H II regions for simulations with
initial density at the Bondi radius of ρB = 10−19 g cm−3 or higher.
Regardless of the central stellar mass, if an H II region is trapped at
one point, the ionized region will remain trapped as the star gains
more mass, unless some process other than ionization is responsible
for a change in the torus structure. The simulations show that if the
central mass is increased, the torus structure is denser and more
resistant to radiation given a certain luminosity. This indicates that
if multiple stars are forming alongside the massive star such that
they contribute to the gravitational potential but not to the emission
of ionizing luminosity, it would be possible to sustain the existence
of disc for longer.

More simulations are needed including self-gravity to have a
thorough understanding of how ionization and discs interact in
cases where fragmentation is expected to take place. This particular
topic is going to be addressed in future work. Other factors may
play an essential role in the stability and structure of the torus,
such as magnetic fields, stellar winds, and radiation pressure.
Future simulations will explore these effects looking at each, in
turn. Although our model is idealized, it allows us to focus our
investigation on the impact of photo-ionization on the torus which
would have been challenging to attribute specifically to ionization
in a more complete model.

AC K N OW L E D G E M E N T S

NS would like to thank CAPES for a graduate research funding. BV
and KW acknowledge support from STFC grant ST/M001296/1.

DFG thanks the Brazilian agencies CNPq (no. 311128/2017-3) and
FAPESP (no. 2013/10559-5) for financial support.

We would like also to thank Ian Bonnell for helpful advice.

REFERENCES

Beltrán M. T., de Wit W. J., 2016, A&A Rev., 24, 6
Beuther H., Walsh A. J., Johnston K. G., Henning T., Kuiper R., Longmore

S. N., Walmsley C. M., 2017, A&A, 603, A10
Bonnell I. A., Bate M. R., 2006, MNRAS, 370, 488
Bonnell I. A., Bate M. R., Clarke C. J., Pringle J. E., 2001, MNRAS, 323,

785
Cesaroni R., Galli D., Lodato G., Walmsley C. M., Zhang Q., 2007,

Protostars and Planets V. University of Arizona Press, Tucson, p. 197
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