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ABSTRACT
This paper investigates the gravitational trapping of H II regions predicted by steady-state anal-
ysis using radiation hydrodynamical simulations. We present idealized spherically symmetric
radiation hydrodynamical simulations of the early evolution of H II regions including the
gravity of the central source. As with analytic steady-state solutions of spherically symmetric
ionized Bondi accretion flows, we find gravitationally trapped H II regions with accretion
through the ionization front on to the source. We found that, for a constant ionizing luminosity,
fluctuations in the ionization front are unstable. This instability only occurs in this spherically
symmetric accretion geometry. In the context of massive star formation, the ionizing luminosity
increases with time as the source accretes mass. The maximum radius of the recurring H II

region increases on the accretion time-scale until it reaches the sonic radius, where the infall
velocity equals the sound speed of the ionized gas, after which it enters a pressure-driven
expansion phase. This expansion prevents accretion of gas through the ionization front, the
accretion rate on to the star decreases to zero, and it stops growing from accretion. Because of
the time required for any significant change in stellar mass and luminosity through accretion
our simulations keep both mass and luminosity constant and follow the evolution from trapped
to expanding in a piecewise manner. Implications of this evolution of H II regions include a
continuation of accretion of material on to forming stars for a period after the star starts to
emit ionizing radiation, and an extension of the lifetime of ultracompact H II regions.

Key words: hydrodynamics – radiative transfer – stars: formation – stars: massive – H II

regions.

1 IN T RO D U C T I O N

The classic picture of H II region evolution, as described in textbooks
such as Spitzer (1978), envisages a source of ionizing radiation
turning on in a uniformly dense medium and ignores the gravity of
the source. The H II region initially grows with an ionization front
expanding into neutral gas. This so-called rarefied or R-type phase
happens rapidly and the gas structure is relatively unaffected. As the
ionized gas is hotter than the neutral gas, the next stage sees the H II

region grow by pressure-driven expansion, producing a double front
structure where a shock front expands into neutral gas ahead of the
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ionization front. At late times and large size scales, the assumption
that gravity is neglected is valid and this model is very successful in
explaining the dynamics and structures of old and large H II regions
that are studied at optical and infrared wavelengths. However during
early H II region evolution, the neglect of gravity presents a problem
for the formation of massive stars because it assumes feedback from
ionizing radiation will halt accretion as soon as the star turns on,
thereby limiting the mass that can be attained.

In a series of papers, Keto (2002a,b, 2003) expanded on work
presented by Mestel (1954) and examined the evolution of H II

regions at size scales where the gravity of the central source
dominates the gas dynamics. He first studied steady-state solutions
for two-temperature spherically symmetric Bondi accretion (Bondi
1952), whereby a source of ionizing radiation creates a hot (Ti ≈
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104 K) H II region within cold (Tn ≈ 100 K) neutral inflowing gas.
When the H II region is inside approximately the ionized sonic point,
where the flow velocity equals the local sound speed, it is unable
to expand and remains gravitationally trapped. Accretion occurs
from the infalling cold neutral gas and continues inwards towards
the star through the H II region boundary where the gas forms an
ionized accretion flow. As the star accretes mass, its luminosity
increases and the H II region grows in size, not due to pressure
driven expansion, but because of the increasing ionizing luminosity.
Eventually the H II region will grow to surpass the critical radius
close to the sonic point, gravity of the central star will no longer
dominate, and the H II region will begin a pressure-driven expansion.
At this stage, accretion through the ionization front can no longer
occur. Some of the already ionized gas will move outwards along
with the expanding ionization front, but the innermost gas continues
to accrete on to the star, and as the H II region is drained accretion
halts. This marks the maximum mass the star can accrete in a
spherically symmetric system and beyond this stage the H II region
continues its pressure-driven expansion.

In subsequent papers (Keto & Wood 2006; Keto 2007), this work
was extended to consider H II region evolution within rotationally
flattened structures. In this two-dimensional picture, the H II region
grows more rapidly into the lower density regions, creating a bipolar
outflow. Accretion of ionized material continues through the dense
mid-plane until the ionizing luminosity increases the size of the
H II region beyond the critical radius for gravitational trapping in
the mid-plane, thereby shutting off accretion similar to the spherical
case. In some scenarios, however, the mid-plane regions are so dense
that they are shielded from radiation. Consequently, accretion on to
the star through these regions would not be halted by ionization
feedback, but by some other process (Nakano 1989; Yorke &
Sonnhalter 2002; Krumholz et al. 2009; Kuiper et al. 2010; Harries,
Douglas & Ali 2017; Kuiper & Hosokawa 2018).

This picture of massive star formation through gravitationally
trapped H II regions is appealing in that it overcomes the mass
limits set by ionization feedback in the classic picture where gravity
is ignored. It also means that the time-scale for the growth of the H II

region initially depends on the accretion time-scale and is not solely
due to the rate of the pressure-driven expansion. This provides a
potential solution to the lifetime problem for ultracompact (UC)H II

regions; the number of UCH II regions found in the Wood &
Churchwell (1989) survey suggests they have a longer lifetime than
predicted by pressure-driven expansion of an UCH II region into a
diffuse H II region.

This theoretical framework can also explain observations of
massive star-forming regions that show infall velocities in molecular
gas at large-size scales that smoothly match on to infall velocities in
ionized gas at smaller size scales (Keto 2002a; Sollins et al. 2005a).
Observations showing both inflow and outflow (Sollins et al. 2005b;
Klaassen & Wilson 2007; Klaassen et al. 2018) are explained with
the picture of H II region evolution in axisymmetric rotationally
flattened structures.

The analysis presented by Keto (2002b, 2003) and Mestel (1954)
modelled the H II region evolution as a sequence of steady-state
solutions with increasing ionizing luminosity. We extend this
work by running simulations of the same process to provide a
consistent radiation hydrodynamic evolution. In this paper, we
present numerical simulations from our radiation hydrodynamic
code of spherically symmetric ionized accretion flows. Our code
reproduces the main features described in the works of Mestel and
Keto. We find that gravitationally trapped H II regions naturally

arise within the ionized sonic point, but are unstable in spherical
geometries.

Future papers will study the spherically symmetric instability
in more detail and move on to two-dimensional axisymmetric and
three-dimensional simulations. Section 2 describes our radiation
hydrodynamic code, Section 3 presents results for spherical ionized
accretion flows, and we present our conclusions in Section 4.

2 R A D I AT I O N H Y D RO DY NA M I C C O D E

Our code is described in detail in an upcoming paper, but the main
features are briefly outlined here. In order to simulate the plasma
dynamics as it is impacted by the effect of ionization, we have
coupled a magnetohydrodynamical (MHD) code, modified from a
publicly available GODUNOV code1 (Kowal, Falceta-Gonçalves &
Lazarian 2011; Falceta-Gonçalves et al. 2015; Falceta-Gonçalves &
Kowal 2015; Kowal et al. 2017; Santos-Lima et al. 2017), with a
time-independent Monte Carlo radiation transfer (MCRT) code for
photoionization. Even though the code is able to deal with magnetic
fields, for the purposes of this work, these have been neglected. Real
collapsing cores in the interstellar medium are indeed magnetized;
however, the main goal of this work is the direct comparison of our
numerical models to an unmagnetized analytical framework. Also,
not only are full radiative MHD models computationally expensive
compared to an HD approximation, MHD waves would be allowed
to grow, propagate and non-linearly interact with other perturbations
of the fluid. This would make the comparison to the analytical model
irrelevant.

The code evolves compressible fluid dynamics in a 3D Cartesian
grid by solving the set of hydrodynamical equations, solved in the
conservative form as

∂t U + ∇ · F(U) = f (U), (1)

where U is the vector of conserved variables:

U =
[
ρ, ρv,

(
1

γ − 1
p + 1

2
ρv2

)]T

, (2)

F is the flux tensor:

F =
[
ρv, ρvv + pI,

(
γ

γ − 1
p + 1

2
ρv2

)
v

]T

, (3)

and f corresponds to source terms for the given conserved variable
U. ρ represents the gas mass density, I is the identity matrix, v is
the fluid velocity, p is the thermal pressure, and γ is the adiabatic
polytropic index. We use the equation of state p ∝ ργ with γ =
1.001 to mimic an isothermal equation of state, as the cooling
time in the scenario we are considering is much shorter than the
hydrodynamical time-scale.

The spatial reconstruction is obtained by means of a third-
order monotonicity-preserving method (He et al. 2011), with flux
piecewise discontinuity being solved approximately by the HLLC
Riemann solver (Mignone & Bodo 2006). The time evolution is
done by means of the third-order four-stage explicit Strong Stability
Preserving Runge–Kutta method (Ruuth 2006), with a Courant–
Friedrichs–Lewy (CFL) of 0.2.

In the GODUNOV scheme, the hydrodynamical equations are
first solved in conserved form, and any external source term
(e.g. gravity) is calculated as an update to the physical conserved

1https://bitbucket.org/amunteam/godunov-code

MNRAS 485, 3761–3770 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/3/3761/5368368 by Instituto N
acional de Pesquisas Espaciais user on 26 July 2019

https://bitbucket.org/amunteam/godunov-code


Ionized accretion flows 3763

variables (mass, momentum, and energy) afterwards. The gravity
term has been included as a point source mass at the grid centre. For
the sake of simplicity, the gravitational effect of the interstellar gas
on the central source is not being considered in this work, therefore
the point source is assumed to be fixed. Photoionization is also
treated in our numerical scheme as a source term for the energy
equation, being obtained from the MCRT module. The energy
density transferred to the gas as a MC photon packet is absorbed is
δε � 2 × 3

2 nk(TMC − Tn), where n is the number density, k is the
Boltzmann constant, TMC represents the temperature of equilibrium
of the ionized gas (see equation 8), and Tn represents the neutral
gas temperature. The factor of 2 multiplying the thermal energy
difference corresponds to the assumption that ionization generates
ions and electrons in a number twice that of neutral gas.

The principle of MCRT is modelling photon propagation using
probability distributions. For the specific workings of the Monte
Carlo photoionization code we are using, see Wood & Reynolds
(1999), Wood & Loeb (2000), and Wood, Mathis & Ercolano
(2004). For each time-step of the hydrodynamical code, the 3D
density grid is exported to the MCRT module. The MCRT module
is therefore considered time-independent, and equilibrium reached
quasi-instantaneously compared to the dynamical time-scale of the
system. This assumption is adequate given that the typical radiative
time-scales, namely the light crossing-time τ light ∼ Lc−1 and the
recombination time τ recomb ∼ (ne αA)−1, are much shorter than the
hydrodynamical time-scale 
t ∼ L max(u)−1.2

For simplicity, the material in the grid is assumed to be
100 per cent hydrogen, with no heavier elements and no dust. Our
aim is to determine the ionization structure of hydrogen, and assum-
ing pure hydrogen is sufficient for that purpose. Including heavy
elements is important for cooling rates, but their low abundances
and hence small opacities relative to hydrogen do not influence
the radiation transport and the resulting ionization structure of
hydrogen (Wood et al. 2004). We let the fixed gravitational point
source at the centre of the grid also be an ionizing point source
with a specific luminosity. This ionizing source emits packets of
photons isotropically, which are tracked through a random walk of
photoionizations and photon re-emissions until the packet either
escapes the grid or is re-emitted as non-ionizing photons. We
are assuming instantaneous photoionization equilibrium, so there
is no time dependence. We do not consider a full spectrum for
the photon frequencies, but apply a two-frequency approximation
for the MCRT photoionization code (see detailed description and
benchmark tests in Wood & Loeb 2000). Stellar photons, those
originating from the source, are given an energy of 17.9 eV,
representing an average frequency for ionizing photons originating
from a 40 000 K star (see the appendix of Wood & Loeb 2000).
Diffuse photons, meaning the re-emitted ionizing photons, are given
an energy of 13.6 eV, as they have a spectrum which is strongly
peaked around that value. We record the distances travelled by each
photon packet within the grid cells they pass through, along with
whether that distance was travelled by stellar or diffuse photons.

After tracking all photon packets we balance the number of
photoionizations and recombinations per unit of time to obtain the
ionization fraction in each grid cell:

nH0

∫ ∞

νo

4πJν

hν
σν dν = αAnenp. (4)

2Here, L represents the scale of the system, c is the speed of light, ne is the
electron density, αA the recombination coefficient to all levels, and max(u)
is the maximum local speed detected over all cells of the simulated cube.

αA is the recombination coefficient to all levels (e.g. αA ≈ 5.25 ×
10−13 cm3 s−1 for hydrogen at T = 8000 K, based on table 2.1
in Osterbrock & Ferland 2006), h is the Planck constant, Jν is the
mean intensity at frequency ν, and hνo = 13.6 eV. nH0 is the number
density of neutral hydrogen, ne is the number density of electrons,
and np is the number density of protons that we can rewrite as the
number density of ionized hydrogen, nH+ . Assuming pure hydrogen
in ionization equilibrium the number of electrons equals the number
of protons, hence npne = n2

H+ . Using path-length estimators in the
MCRT code (Lucy 1999), the integral can be rewritten for each
cell as

I =
∫ ∞

νo

4πJν

hν
σνdν = Q

NV

∑
lσν, (5)

where Q is the ionizing luminosity, N is the number of photon
packets, and V is the volume of the cell. From our tracking of the
photon packets, we can calculate 
lσ ν ; the sum of all the path-
lengths travelled through that specific grid cell times the cross-
section corresponding to the type of photons (stellar or diffuse)
responsible for each path-length. By splitting the total number
density of hydrogen into a neutral and an ionized component:

nH = nH0 + nH+ , (6)

the equilibrium equation can be rewritten as a quadratic equation:

αAn2
H+ + InH+ − InH = 0. (7)

At the end of each MCRT iteration, we solve equation (7) in each
cell to get the neutral gas fraction, nfrac = nH0/nH. The ionization
fraction, and hence opacity, of each cell is updated to their new
values. The code runs through 10 iterations before we accept the
current ionization structure and opacity values.

In order to get reliable results, the code needs to run through a
substantial number of photon packets; we use 100 000 packets for
the first 7 iterations and 10 times more for the last 3. Considering
the photon density will decrease at larger distances from the source,
the larger the simulation box size, the more photon packets are
needed to get good statistics for the Monte Carlo estimators for the
ionization rate in the outer parts, similar to ray tracing techniques.
Since we are studying spherically symmetric accretion, we have
introduced a radial averaging scheme that uses symmetry to get
better signal-to-noise ratio without having to increase the number
of photon packets. This results in spherically symmetric idealized
3D MCRT simulations. We observe that increasing the number of
photon packets by a factor of 10 does not change the calculated
ionization structure noticeably, but increases the computational
time. Consequently, we assume 10 iterations using our original
number of photon packets combined with the radial averaging
scheme is sufficient.

In reality, there are a number of heating and cooling processes
governing the temperature of the gas, but the net result is a temper-
ature of approximately 8000 K for photoionized solar metallicity
gas, see for example Wood et al. (2004). Although we only need
to consider hydrogen opacity to determine the ionization structure,
setting the temperature of ionized gas to be 8000 K approximates
the existence of other elements that provide cooling to give this
temperature for photoionized gas. By assigning fixed temperatures
for neutral and ionized gas, Tn and Ti, respectively, we can determine
the temperature for any given ionization fraction using the common
approximation (Haworth & Harries 2012)

TMC = Tn + (Ti − Tn)(1 − nfrac). (8)
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Figure 1. Radially averaged steady-state density (left) and inflow velocity (right) from the rad-hydro simulation of material accreting on to a central source
compared to the analytic Bondi accretion solution (Vandenbroucke et al. 2019).

Once the ionized and neutral gas temperatures are given by the
MCRT module, the pressure tensor in the hydrodynamic code is
updated.

The code described above has already been successfully tested
and benchmarked for the standard Spitzer solution of spherical ex-
pansion of an H II region in a uniform medium (Falceta-Gonçalves,
in preparation). This benchmark test (Bisbas et al. 2015) shows our
code reproduces the slow D-type expansion of an H II region. In
Section 3.3, we show that when the ionization radius is held fixed
our code also reproduces the analytic steady-state solution for a fast
two temperature R-type accretion flow.

Throughout our paper, we adopt the usual definitions for D-type
and R-type ionization fronts (Osterbrock & Ferland 2006) where
the relative velocity, vr, between the ionization front and neutral gas
is defined by two critical conditions:

vr ≤ ci −
√

c2
i − c2

n = vD ≈ c2
n

2ci
(9)

and

vr ≥ ci +
√

c2
i − c2

n = vR ≈ 2ci, (10)

where ci and cn are the sound speeds in the ionized and neutral
gas. Velocities lower than vD result in a subsonic D-type front, and
velocities higher than vR results in a supersonic R-type front.

3 R A D - H Y D RO SI M U L AT I O N S O F S P H E R I C A L
I O N I Z E D AC C R E T I O N FL OW S

The purpose of this paper is to investigate the gravitational trapping
of H II regions predicted by steady-state analysis using radiation
hydrodynamical simulations. Starting with a central star where
gravity causes a spherically symmetric accretion flow we are
interested in the gas dynamics when we turn on radiation at size
scales where the infall velocities of the accreting gas exceed the
R-critical condition (equation 10).

We use a non-adaptive Cartesian grid to simulate our region of
interest, we are not concerned with what happens to the gas outside

our simulation box, nor the details of how material gets on to the
central star. In the following simulations, we will not update the
mass and luminosity of the star during accretion. We are dealing
with an accretion rate of ∼4 × 10−7 M� yr−1, which implies a
time-scale of megayears to accrete 1 M� of material on to the star.
Considering our simulations run over tens to hundreds of years,
any significant change in mass and luminosity will occur over time-
scales much greater than those investigated here.

3.1 Steady-state Bondi accretion

We include the gravity of a central star in the code by adding source
terms to the momentum and energy hydrodynamical equations.
When we consider the gravitational pull of the central star to
be the only force acting the result is known as Bondi accretion:
spherically symmetric inflow with a constant accretion rate (Bondi
1952). Before switching on radiation, we want to make sure our
code can reproduce the behaviour associated with Bondi accretion.
We compare the results from our simulations with analytical
expressions for the expected density and velocity as a function
of radius, shown as the blue lines in Fig. 1. For a derivation
of these expressions from the constant Bondi accretion rate, see
Vandenbroucke et al. (2019).

Due to the gravitational force, there will be a progressively
steeper increase in density and velocity closer to the source, with
a singularity at the origin. We resign ourselves to not being able
to resolve the physics close to the source and encase the region
in a mask, inside which we specify a sink of constant density
and in general no change of any variables as the simulation runs.
Effectively any material that would have accreted on to the star
disappears once it passes through the mask.

As an outer boundary condition, we set an external sphere with
constant physical properties. The outer mask is a way of effectively
transforming the cubed computational domain into a sphere, with
less spurious numerical fluctuations. In every simulation presented
in this paper, the region outside the sphere is set to follow the
analytic Bondi accretion profile and provides a constant inflow of
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Table 1. Basic simulation properties. Columns show, respectively, stellar mass, density at the neutral Bondi
radius, neutral gas temperature, ionized gas temperature, radius of inner mask, radius of outer mask, and
number of grid cells in each direction.

M� (M�) ρB (cm−3) Tn (K) Ti (K) Inner mask (au) Outer mask (au) Grid cells

17.87 30 000 500 8000 10.4 38.0 128

Figure 2. Ionization front radius as a function of time during the simulation
of an 17.87 M� central star with constant ionizing luminosity. Zero year
marks the moment radiation is switched on.

material, consistent with the pull from the central mass. To set up
the initial accretion, we define the central mass of the star, M�,
the neutral sound speed, cn, and the density at the neutral Bondi
radius,3 ρB.

When picking the initial parameters of the simulation, we want
to ensure physically plausible values within a size scale where we
can observe radial velocities exceeding the R-critical value; in this
paper, we define a positive radial velocity as pointing towards the
central source. We use the term R-critical radius for the position
where the infall velocity equals the R-critical velocity. At the centre
of the grid, we place an 17.87 M� star. The simulation region must
be closed enough to this star that the infall velocity will be high
enough to observe R-type behaviour once we turn on ionization.
We simulate x, y, z ∈ [−40, 40] au, each direction being divided
into 128 cells. The inner and outer masks have radii of 10.4 and
38.0 au, respectively. The density at the neutral Bondi radius is
30 000 cm−3, and all the gas is neutral with a temperature of 500 K,4

which corresponds to a sound speed of ∼2.0 km s−1. Once the gas
is fully ionized, the temperature increases to 8000 K, and the sound
speed is approximately 11.5 km s−1, which results in an R-critical

3The neutral Bondi radius is where the infall velocity equals the neutral
sound speed.
4The choice of a somewhat high temperature is because the numerical
simulations runtime scales upward as the temperature difference between
ionized and neutral parts increases, and we wanted the simulations to be
concluded in the computational time available.

velocity of vR ≈ 23.0 km s−1. The parameters are summarized in
Table 1 and are also used for the simulations in Sections 3.2 and 3.3.

For the initial set-up of the Bondi accretion simulation, every
parameter in the region of interest between the inner and outer
masks is kept constant, the density is left as the value at the outer
mask boundary, and the velocity is zero. The system is then allowed
to evolve in time, with the gravity of the central star being the only
external force source present. The code reached a steady state which,
in Fig. 1, is shown to match the Bondi profiles. The densities and
velocities plotted are obtained by radially averaging throughout the
simulation box. The entire simulation region has infall velocities
above vR, which is the condition placed upon our chosen initial
parameters. Note the steady-state Bondi profile, which we have been
able to reproduce here, will be the starting point for all subsequent
simulations.

3.2 Accretion on to a source with constant ionizing luminosity

Starting from the stable Bondi accretion structure described in the
previous section, we turn on radiation of a fixed luminosity from the
central star. We pick an ionizing luminosity of Q = 2.5 × 1046 s−1,
chosen such that the star initially ionizes material out to a radius
of ∼32 au. Notice that, because of the use of an internal mask,
the value of Q in the simulations corresponds to the remaining
ionizing photon luminosity at the mask radius, and not the stellar
luminosity itself. Considering the complete ionization of the gas
within the inner mask, we find Q corresponds to ∼3 per cent of the
central source ionizing luminosity, in agreement with a ∼18 M�
star (Vacca, Garmany & Shull 1996).

Based on knowing the ionization fraction in each grid cell, the
ionization radius is determined by radially averaging the neutral gas
fractions, using bins spanning approximately half a cell width, then
looping through these bins in radial order until the neutral fraction
equals or exceeds 0.5. The centre of the corresponding bin is defined
to be the ionization radius. Fig. 2 shows this radius of the ionized
region as a function of time. When we turn on the radiation the star
ionizes a region out to ∼32 au, but then the ionization front proceeds
to shrink until it disappears within the inner mask and then moves
back out. This process recurs on a 7 yr time-scale.

Fig. 3 shows four snapshots of the density and velocity profile
of the system at different times during the first collapse of the
H II region. The different colours correspond to different times and
the vertical lines mark the ionization radius. There is a growing
density peak around the ionization radius that moves inwards as
the H II region shrinks. We can explain the appearance of an initial
density perturbation by considering the jump conditions across the
ionization front. Assuming vn ≥ vR 
 cn, it can be shown that
(Osterbrock & Ferland 2006)

ρi

ρn
≈ 1 + c2

i

v2
n

. (11)

Consequently, there will be a density increase in the ionized gas,
and a corresponding decrease in velocity.
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Figure 3. Radially averaged density (left) and inflow velocity (right) at four different times during the simulation of an 17.87 M� central star with constant
ionizing luminosity. The vertical lines represent the position of the ionization front. Zero year marks the moment radiation is switched on.

Figure 4. Radially averaged steady-state two-temperature density (left) and inflow velocity (right) from our rad-hydro simulation compared to the analytic
solution (Vandenbroucke et al. 2019). The simulation forces an H II region out to the fixed radius Ri = 24.75 au, the vertical line represents the position of the
ionization front.

The increase in density leads to an increased recombination rate,
so the fixed ionizing luminosity cannot ionize to the same radius at
the next time-step of the radiation hydrodynamic simulation. Ma-
terial keeps piling up at the front and the density increases because
the inflow velocity of material is greater outside the ionized region
than inside. As the density peak grows the ionization radius must
shrink further, resulting in the runaway behaviour shown in Fig. 3.

When the ionization front and the density enhancement reaches
the inner mask, we assume it accretes on to the central star. As
the density peak disappears inside the mask the amount of material
inside the ionized region decreases drastically and in response the
ionization front expands. The region outside the ionization front

has returned to a neutral Bondi profile, meaning the problem is
essentially reset and the process repeats. For the parameters of this
simulation, the H II region oscillates from just outside the inner mask
to a maximum radius Rmax ≈ 31 au over a regular period of ∼7 yr.

Peters et al. (2010) also found flickering in their H II simulations.
Whilst we are considering spherically symmetric accretion on to a
single star, Peters et al. (2010) ran a 3D simulation on a much larger
size scale (several parsec) of the collapse of a rotating molecular
cloud. In our case, the contraction of the H II region is triggered by
jump conditions at the R-type ionization front leading to a density
peak, in contrast Peters et al. (2010) flickering was due to large-scale
variations in the accretion flow.
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Figure 5. Ionizing luminosity, QRi , required to maintain an H II region out
to the fixed radius Ri = 24.75 au as a function of time. Zero year marks the
moment radiation is switched on.

Figure 6. Ionization front radius as a function of time during the late-time
simulation of an 17.87 M� central star with constant ionizing luminosity.
Time zero year marks the moment radiation is switched on.

According to Mestel (1954) and Keto (2002b, 2003), if the
initial H II region starts out close enough to the star to be in the
R-type regime it should be possible to prevent expansion, and keep
accretion going with material moving through the ionized region.
Our simulation of this scenario continuously accretes material on
to the star and successfully traps the H II region within a radius
Rmax, but it is not a steady-state solution as we observe recurring
expansion and contraction.

Further investigation into the properties of this instability is being
carried out analytically, with a 3D code, and a 1D code capable of

much higher time and spatial resolution, see Vandenbroucke et al.
(2019). They find the 7 yr time-scale observed roughly corresponds
to the local free-fall time at the ionization front radius, as the
instability is caused by a small increase in density that is accreted
on to the central mask within this time-scale and then reseeded.
Furthermore, the recurring expansion and contraction of the H II

region seems to be a result of the idealized spherically symmetric
geometry caused by the radial averaging of the photoionization in
fully 3D simulations the same behaviour is not observed.

3.3 Steady-state two-temperature accretion

In the previous section, we showed our code produced a gravitation-
ally trapped, but oscillating, H II region. Next, we aim to produce
a steady-state two-temperature accretion solution by forcing the
ionization radius to remain constant in time.

Again we start from a stable neutral Bondi accretion flow, but
instead of switching on a constant ionizing luminosity, Q, we
set the ionizing luminosity, QRi , before each call to the radiation
transfer scheme to be the value that will fully ionize gas out to a
prescribed radius, Ri = 24.75 au. This is determined by balancing
photoionization with radiative recombination (adopting on-the-spot
approximation) inside the radius Ri:

QRi = 
n2αB
V , (12)

where the sum is over all cells with a radius r ≤ Ri, n is the number
density, αB = 2.5 × 10−13 cm3 s−1 is the Case B recombination
coefficient for hydrogen at 8000 K, and 
V is the volume of a cell.

The size of the ionized region is kept constant, and as a
consequence, instead of a high-density peak at the ionization front,
after ∼3 yr the entire ionized region settles to a stable higher density
profile. Fig. 4 shows the final accretion profile follows closely the
analytic solution for steady-state two-temperature Bondi accretion
(Vandenbroucke et al. 2019). As this higher density region builds
up, the luminosity required to ionize it will have to increase until
the steady-state two-temperature accretion structure is reached.
Fig. 5 shows that the ionizing luminosity required to maintain
this structure increases in time to an almost constant value. If
we stop calculating the luminosity, but keep it constant once the
steady-state solution is reached, in time the simulation returns to
the oscillatory behaviour described in Section 3.2 due to numerical
noise in the rad-hydro code.

In conclusion, we only reach a steady-state two-temperature ac-
cretion solution with careful fine-tuning of the ionizing luminosity,
and once the solution is reached it is not stable, evolving into a
runaway instability to any fluctuation (including numerical noise).

3.4 Late-time evolution

As material accretes on to stars and they grow in mass, we expect
their luminosity to grow correspondingly, meaning they can ionize
increasingly larger volumes. As previously mentioned, this increase
in mass and luminosity happens over greater time-scales than those
we are considering; hence, we simulate the evolution of the ionized
region piecewise, keeping the mass and luminosity constant during
each stage. We have so far only considered H II regions close enough
to the star for the infall velocity to exceed vR, where the ionization
front exhibits an R-type behaviour. In this phase, we have found that
the H II region is gravitationally trapped and oscillating. Once the
relative velocity of the ionization front decreases below vD, it will
transition to D-type. At this point, gravity is no longer dominant
and the ionization front experiences a pressure-driven expansion.
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Figure 7. The radially averaged velocity profile at four different times during the late-time H II region expansion, a positive radial velocity corresponds to
inward motion. Zero year marks the moment radiation is switched on. The simulation models an 17.87 M� central star with a constant ionizing luminosity large
enough for the ionization radius to exceed the ionized sonic point (∼200 au). The vertical line represents the position of the ionization front. The horizontal
line marks zero velocity, the point across which the velocity changes direction. The profile is pink where the velocity points towards the central star, and blue
where the velocity points away from the star.

For velocities between vR and vD, there is no single front solution
to the jump across the ionization boundary.

In order to investigate the evolution of the H II region past
the R-critical radius, we repeated the simulation described in
Section 3.2 for different luminosity values ionizing beyond this
radius. The size of the simulation box was increased to x, y, z ∈ [
−480, 480] au, which in turn increased the inner and outer mask
radii to 124.8 and 456.0 au. We found the H II region remains
trapped and oscillating beyond the R-critical radius, until the
ionized region extends beyond the ionized sonic point, at which
point rapid expansion begins. The sonic point, where the infall
velocity equals ci = 11.5 km s−1, lies approximately at 200 au.

The results presented in Figs 6–8 are from a simulation using a
luminosity of Q = 2 × 1046 s−1, where the initial ionization radius
reaches approximately 260 au, exceeding the sonic point and hence
resulting in rapid expansion. The luminosity is smaller than that
previously needed to ionize out to ∼30 au because we are only
ionizing material outside the inner mask, which in this simulation
is further away from the star and thus at a much lower density.

The simulation shows an expanding ionization radius which is
plotted as a function of time in Fig. 6. The discrete jump the
ionization front makes every three to four time-steps is a result of
the grid resolution. During the expansion phase, the neutral material
is moving towards the central star due to gravity just as it would if
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Figure 8. The radially averaged density profile at four different times during the late-time H II region expansion. Zero year marks the moment radiation is
switched on. The simulation models a 17.87 M� central star with a constant ionizing luminosity large enough for the ionization radius to exceed the ionized
sonic point (∼200 au). The vertical line represents the position of the ionization front. The profile is pink where the velocity points towards the central source,
and blue where the velocity points away from the source. Note the decreasing density in the inner H II region where material is accreting and hence draining
the H II region and shutting off accretion.

there was no radiation, until it reaches the expanding dense shell.
The shell, along with most of the ionized material it accumulates,
moves radially outwards, but close to the star ionized material still
accretes. Figs 7 and 8 show the directions of motion of the material
at four different time-steps, with red and blue indicating inflow
and outflow, respectively. The material inside the H II region is not
replenished, since no material crosses the ionization front, meaning
the region is eventually drained.

The transition point from trapped to expanding can be used to
estimate the time-scale of the UCH II region phase. The Wood &

Churchwell (1989) survey indicates 10 per cent of all O and B stars
are surrounded by a UCH II region. This suggests the lifetime of
UCH II regions must exceed 105 yr, which is longer than the time
it would take an UCH II region to evolve to a diffuse H II region
through pressure-driven expansion (Wood & Churchwell 1989).
During the time it takes to accrete enough material on to our central
star to reach a high enough mass corresponding to a high enough
luminosity to ionize past the sonic point, the H II region will remain
trapped. Including this period before the expansion phase begins
increases the total lifetime of UCH II regions.
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4 C O N C L U S I O N S

We have presented the first look at the steady-state models of
H II region evolution within spherically symmetric Bondi accretion
flows by Keto (2002b, 2003) and Mestel (1954) in a radiation
hydrodynamic framework. Our numerical radiation hydrodynamic
simulations reproduce the main features of the analytic steady-
state analyses, namely gravitationally trapped H II regions at early
times and pressure-driven expansion when the ionizing luminosity
increases to produce an H II region extending beyond the critical
radius at approximately the ionized sonic point.

The main difference between the analytical work and our sim-
ulations is the stability of the trapped H II region. Any increase in
density within the ionized region, whether due to jump conditions
across the ionization front or noise in the simulation, initiates a
runaway instability of the H II region. This instability is expected to
occur only in idealized spherically symmetric geometry.

Regardless of the H II region oscillation, our results are in
broad agreement with the analyses by Keto (2002b, 2003) and
Mestel (1954). The implication of this picture on massive star
formation is that accretion of material on to forming stars can
continue even after the star starts emitting ionizing radiation (see
also Kuiper & Hosokawa 2018). This is because the H II region
remains gravitationally trapped, and all velocities are inflowing,
until the ionizing luminosity grows (due to mass accretion) and the
radius of ionization passes the critical radius where pressure-driven
expansion begins. At this stage, the accretion rate on to the star
decreases to zero and the star reaches its maximum accreted mass.
This could change estimates of the accretion rate during the UCH II

phase of formation of high-mass stars as the accretion period can
last for longer. Furthermore, gravitational trapping could also help
explain the surprisingly long lifetimes of UCH II regions.

The next paper in this series will investigate the discovered
instability analytically as well as with a 1D code capable of much
higher resolution than our idealized 3D simulations. The simula-
tions presented in this paper produce spherically symmetric ionized
accretion flows in an isolated system; no rotation or magnetic fields
are introduced. This simplified approach is necessary for a direct
comparison to the analytical model presented by Keto (2002b, 2003)
and Mestel (1954); however, it is not a realistic treatment of the
evolution of H II regions. Future work will explore radiation hy-
drodynamic simulations of rotationally flattened ionized accretion
structures comprising equatorial inflow and simultaneous bipolar
outflows (Keto 2007) and the production of synthetic continuum
and line intensity maps to compare with observations.
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