
On the Feasibility of Probabilistic Model
Checking to Analyze Battery Sustained

Power Supply Systems

Marina Dioto1(B), Eduardo Rohde Eras2,
and Valdivino Alexandre de Santiago Júnior2

1 Instituto Edson Mororó de Moura (ITEMM), Parque Tecnológico
São José dos Campos, São José dos Campos, SP, Brazil

marina.dioto@itemm.org.br
2 Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758,

São José dos Campos, São Paulo, SP, Brazil
eduardorohdeeras@gmail.com, valdivino.santiago@inpe.br

Abstract. Probabilistic Model Checking is a Formal Verification
method which is able to guarantee, according to a specified probabil-
ity, the correctness of a system that presents stochastic behavior. It is an
approach which has been applied to several different application domains
such as biology, communication and network protocols, security, depend-
ability, just to name a few. In this paper, we realize about the feasibil-
ity of Probabilistic Model Checking to analyze power supply systems.
We modelled and evaluated two types of systems: a solar power system
and batteries of artificial satellites. Our findings show that Probabilistic
Model Checking provides accurate results and can be used as a com-
plementary approach to traditional simulation tools for Model-Driven
Development of complex industrial applications.

1 Introduction

Power supply systems are a set of elements combined together in order to feed an
electrical scheme. They are essential because they guarantee the full operation
of the hardware during the time that the system was projected to perform. They
must be developed with quality due to losses that can happen on their lack or
malfunctioning. On this second scenario, they can also represent a risk to the
people and the environment around, since they are based on power electronics.
Although power supply systems comprise a wide range of source types, on this
paper we will focus on battery sustained organizations. These are important to
structures that do not have access to an energy generation source all the time,
like photovoltaic panels. On these, the battery represents a power accumulator,
bringing flexibility to the energy usage distributed along time. However, batter-
ies are intrinsically unstable and reactive components. So, they must operate
within a specific window of safety and reliability. This window is determined by

c© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11620, pp. 743–757, 2019.
https://doi.org/10.1007/978-3-030-24296-1_59

744 M. Dioto et al.

a combination of parameters that, if overreached, could lead the battery to enter
on thermal runaway. This reinforces the need for a robustness system.

To achieve this robustness, a strategy is to use Model Driven Development
(MDD), which is a methodology that focuses on graphical representations and
pre-built application components to enable visually construction of complex
applications. This approach is meant (i) to increase productivity and design
speed by maximizing compatibility between systems through reuse of standard-
ized models; (ii) to simplify the design process due to models of recurring design
patterns in the application domain; (iii) to reduce cost as a result of the replace-
ment of real objects to computational models; (iv) to improve communication
between individuals and teams due to patterned and visual language; and (v) to
increase reliability as it enables several methods of validation and verification.

The main techniques used in MDD are Unified Model Language (UML),
simulation, model transformation, code automatic generation and formal meth-
ods. Formal verification is a formal method approach defined as a mathematical
analysis to prove or not the correctness of a system in relation to a certain spec-
ification or property. The methods for formal verification are basically divided
in theorem proving and model checking. The latter is an automated technique
that, given a finite state model of a system and a formal property, systematically
verifies whether this property is satisfied by a certain state in the model [1].

A branch of this technique is the probabilistic model checking, which consid-
ers probabilistic temporal logic and models. It is important to complex systems,
since these are subject to various phenomena of a stochastic nature, making it
difficult to guarantee its absolute correctness.

In this context, the objective of this work is to study the feasibility of prob-
abilistic model checking to analyse battery sustained power supply systems. We
believe that it is relevant to perceive the benefits of a mathematical MDD-based
approach to improve the quality of such systems which may be components of
applications such as satellites, aircrafts, and mobile phones.

This paper is structured as follows. Section 2 presents an overview of Proba-
bilistic Model Checking. Section 3 shows the case studies we considered in this
research. In Sect. 4, we provide details on how we modelled both systems under
the stochastic/probabilistic perspective. The evaluation of results is provided in
Sects. 5, and 6 contains the information of related work and discussion. In Sect. 7,
conclusions and future directions are described.

2 Probabilistic Model Checking

A given stochastic process {X0,X1, ...,Xn + 1, ...} at the consecutive points of
observation 0, 1, ..., n+ 1 constitutes a Discrete-Time Markov Chain (DTMC) if
the following relation on the conditional probability mass function (pmf), that
is the Markov property, holds for all n ∈ N0 and all si ∈ S: [2]

P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, ..., X0 = s0) = P (Xn+1 = sn+1|Xn = sn)
(1)

On the Feasibility of Probabilistic Model Checking 745

On DTMC it is used Probabilistic Computation Tree Logic (PCTL), a
branching-time temporal logic, based on the Computational Tree Logic (CTL).

Continuous-Time Markov Chains (CTMCs), on the other hand, are distinct
from DTMCs as state transitions may occur at arbitrary instants of time and
not merely at fixed, discrete time points. A given stochastic process {Xt : t ∈ T}
constitutes a CTMC if for arbitrary ti ∈ R

+
0 , with 0 = t0 < t1 < ... < tn <

tn +1,∀n ∈ N, and ∀si ∈ S = N0 for the conditional probability density function
(pdf), the following relation holds: [2]

P (Xtn+1 = sn+1|Xtn = sn, Xtn−1 = sn−1, .., Xt0=s0) = P (Xtn+1 = sn+1|Xtn = sn)
(2)

On CTMC it is used Continuous Stochastic Logic (CSL), which also extends
CTL.

The probabilistic model checker used in this paper is PRISM [2], which com-
ports both PCTL and CSL.

3 Power Supply Systems

3.1 Solar Power System

The probabilistic model of a solar photovoltaic power system described in [3]
is based on Markov Chain Theory, modeling a stochastic insolation and load
demands. The main goal of the original paper is to present a new approach to
simulate a standalone photovoltaic system considering the probabilistic charac-
teristics not explored by other computer simulations at the time.

Figure 1 is based on an original illustration from the paper, where we can see
the basic structure of the photovoltaic system. The energy captured by the solar
array is sent to the electrical demand or to the batteries, if the load demand
is less then the array output. When the array output is not enough to supply
the load demand, the batteries are used to do it. This flow is guaranteed by the
controllers.

Fig. 1. Standalone photovoltaic power system

According to [3], “the insolation and the load demand are both random and
accordingly the battery will behave in some stochastic fashion”. The paper also

746 M. Dioto et al.

suggest to use discrete time to evaluate the system, which leads us to use a
Discrete Time Markov Chain (DTMC) to create the model. So, considering a
stochastic process [Xt : t ≥ 0], at each moment t in time, we have a state space
W composed by the battery charging state S, the insulation level I and the load
demand L:

W = {S, I, L} (3)

where:

s = S1, ..., Sm

i = I1, ..., In

l = L1, ..., Ly

so:

W = [w = (Si, Ij , Lk) : i = 1, ...,m; j = 1, ..., n; k = 1, ..., y]

The insolation I value is generated in a stochastic way. The next insolation
level depends only upon the current state, which creates a Markov behavior. The
load demand is also unpredictable, but the paper suggests an average daytime
Ld and nighttime Ln load demands given by the formulas:

Ld =
L ∗ Hd

24

Ln =
L ∗ Hn

24
where L is the total load demand, Hd is the average daytime hours and Hn is the
average nighttime hours. The next battery State of Charge is given by a serie of
equations called the energy flow equations. They predict two cases:
Case 1: Smin < S1 < Smax. If the current battery charging state is between the
minimum and the maximum levels of charge, the next state S2 is given by the
systems of equations:

AO ≥ Ld

⎧
⎪⎨

⎪⎩

S2 = S1 + AO − Ld − Ln

b

b = 1 + f ∗ (r − 1)
f = Ln

L

(4)

AO < Ld

⎧
⎪⎨

⎪⎩

S2 = S1 + AO−L
b

b = 1 + f ∗ (r − 1)
f = L−AO

L

(5)

Where AO is the array output, b is the battery efficiency, r is the battery
round trip efficiency and f is the fraction of the load met by the battery.
Case 2: S1 = Smin. If the current state is the minimum charging state of the
battery, the next state when the array output is greater than or equal to the
load demand is given by the exactly same Equation System 4 shown in case 1,

On the Feasibility of Probabilistic Model Checking 747

but if we have a greater load demand then the array output, we don’t leave the
minimum charging state of the battery:

S2 = S1 = Smin

In both cases 1 and 2, if the next charging state predicted by the equation
overflows the limits established by the constants smin and smax, there is a set
of cutoff equations to follow:

S2 < smin ⇒ S2 = Smin

S2 > smax ⇒ S2 = Smax

3.2 Batteries of Artificial Satellites

A block diagram model for a battery charging and discharging system in artifi-
cial satellites is developed in [4], based on macroscopic principles which can be
generalized to a wide variety of topologies and technologies of power supply and
batteries. The main goal of the original paper is to discuss the causes and effects
of thermal avalanches in these applications.

Figure 2 is based on the paper, in which it is possible to see the basic structure
of a satellite power supply system. Its operation can be divided in two periods.
The first one, during sunlight exposure, is refereed as “solar”. In this case the
satellite is fed by a Solar Array Generator (SAG), which is also responsible to
recharge the battery (BAT) through a Battery Charge and Heating Controller
(BCHC), also responsible to control a heater to maintain the optimum temper-
ature of the batteries. The other phase is during the absence of solar exposition,
referenced as “eclipse”. In this, the BAT is responsible to supply the satellite
while connected through a Battery Discharging Regulator (BDR), which regu-
lates the voltages.

Fig. 2. Satellite power supply system block diagram

The orbital condition of the satellite, which alternates between the solar and
the eclipse stages, creates a periodic excitation to the BAT. During the solar

748 M. Dioto et al.

period, the input current seen by the battery is positive, which comes from the
BCHC (iBCHC) performing its charge. During the eclipse, it becomes negative,
causing its discharge to the BDR input (iBDR).

To consider this situation, the author defines the following Boolean variable:

s =

{
1, if 0 < t < Ts

0, if Ts < t < T
(6)

in which t is the time, the interval (0, Ts) represents the solar period and the
interval (Ts, T), the eclipse period. This Boolean variable is therefore periodic
with period equal to T.

Due to the endothermic and exothermic characteristics of the battery charg-
ing and discharging processes, the aforementioned excitation, in turn, causes a
heat exchange defined by q(t). This varies in time accordingly to the state that
the model is: during charge q(t) = qc and during discharge q(t) = qd, forcing it
to warm up and cool down alternatively.

Regarding the thermal representation of the battery, the author defines a
model in which the input is the heat q(t), from the periodic excitation of the
logic model, and the output is the battery temperature. The dynamics of the
thermal model is therefore described as Eq. (7).

dx =
1

Cbat
f(x) +

1
Cbat

q(t) (7)

in which x is the battery temperature, Cbat is the thermal capacitance, and f(t)
is the heat and cooling source function, defined as

f(x) =

⎧
⎪⎨

⎪⎩

PM − k2(x + 273)4, if x < 0
k1(x − 10)2 − k2(x + 273)4, if 0 ≤ x ≤ 10
−k2(x + 273)4, if x > 0

(8)

in which PM is power, k1 is the coefficient of the heating source and k2 is the
coefficient of the radiator.

4 Modeling and Properties Formalization

4.1 Solar Power System Modeling and Properties Formalization

In order to model the suggested scenario from the original paper [3], the first
approach is to recreate the state structure based on a 3-tuple W = (S, I, L) seen
at 3. Using the Prism syntax to model a Discrete Time Markov Chain (DTMC),
one module was created for each element of the tuple:

On the Feasibility of Probabilistic Model Checking 749

DTMC

module battery_state
\\Module contents

endmodule

module insolation
\\Module contents

endmodule

module load
\\Module contents

endmodule

Using this approach, there is no W variable: its existence is implied by the
state of each module. But, as suggest by the paper, a single 24 h day will be
simulated, so a time module was created to control the battery state through
the hours:

module time
t : [0..24] init 0;
[c]t < 24 -> (t’ = t + 1);

endmodule

The t time variable runs in the 0, ..., 24 integer range, beginning at 0. The
next state is achieved by the sum of 1 at the time variable until this reaches 24 h.
Note a c synchronization variable at the front of the step guard condition: this
variable also appears at the battery_state module to guarantee a synchronous
transition of the charging state within the hours of the day.

The insolation module runs a binary variable to simulate the stochastic
behavior of the sun condition: if the state is equal to 0 (no sun at all) it has 50%
chance to turn into 1 (sunny) or stay at the same state. The same unpredictable
approach is used if the current state equals 0.

module insolation
i : [0..1] init 1;
[]i = 0 -> 0.5:(i’ = 1) + 0.5:(i’ = i);
[]i = 1 -> 0.5:(i’ = 0) + 0.5:(i’ = i);

endmodule

The paper originally considers a constant insolation in their simulations, but
here we decided to test this feature to verify the versatility of the Prism model
checker.

750 M. Dioto et al.

The load demand was also suggested to be constant in the paper. Here,
however, we created a stochastic behavior of the load in the load module:

const int L = 3; //Maximum load

module load

l : [0..L] init 1;

[]l > 0 & l < L -> 0.5:(l’ = l + 1) + 0.5:(l’ = l - 1);

[]l = 0 -> 0.5:(l’ = l + 1) + 0.5:(l’ = l);

[]l = L -> 0.5:(l’ = l - 1) + 0.5:(l’ = l);

endmodule

The daily load provided was 240 amp-hrs in the paper, but the use of a big
integer as a constant would create a state explosion. So, this value was simplified
by a factor of 100 and rounded. The maximum load L was empirically rounded
up from 2, 4 to 3 to provide stability to the model, considering the inclusion of
a stochastic insolation and load demand, both absent in the original simulation.
The load l variable runs in the 0, ..., 3 range in a probabilistic motion, in which
the next state is given by the three conditions seen in the module.

The battery charging state is simulated in the battery_state module. Here,
all the guard conditions have the synchronous variable c found in the time
module. This is meant to create a state time-slice each hour.

module battery_state

s : [s_min..s_max] init ceil((3 * s_max) / 4);

//case a: AO >= Ld

[c](s > s_min & s < s_max) & s < s2 & (i * AO) >= Ld-> (s’ = s + 1); //a1

[c](s > s_min & s < s_max) & s > s2 & (i * AO) >= Ld -> (s’ = s - 1); //a1

[c](s > s_min & s < s_max) & s = s2 & (i * AO) >= Ld -> (s’ = s); //a1

[c](s = s_min & (i * AO) >= Ld) -> (s’ = s + 1); //a2

//case b: AO < Ld

[c](s > s_min & s < s_max) & (i * AO) < Ld -> (s’ = s - 1); //b1

[c](s = s_min & Ld > (i * AO)) -> (s’ = s); //b2

[c]s = s_max -> (s’ = s);

endmodule

In this module, the state s variable runs in a range limited by two constants:
the maximum and the minimum battery load found in the paper:

const int s_max = 42; //Ampere hour
const int s_min = ceil(s_max * 0.5); //Maximum DoD = 50%

The maximum DoD (Depth of Discharge) was limited to 50%, as suggested
by the paper. The 4200 Ah (Ampere hour) was shrunken to 42, using the 100

On the Feasibility of Probabilistic Model Checking 751

reduction factor to avoid state explosion. The initial state of the s variable was
a value in the middle of the maximum and minimum charging state.

The energy flow equations provided in the Eqs. 4 and 5 were used to find
the next battery charging state. Cases “a” and “b” were predicted considering
an array output greater or smaller than the load demand. The increment or
decrement in the battery level is given by comparing the current value of s with
the next state s2 value, given by the equations:

//Load
formula Ld = l * Hd/24; //Daytime Load
formula Ln = l * Hn/24; //Nighttime Load

//Case a
formula f = Ln/l;
formula b = 1 + f * (r - 1);
formula s2 = s + (i * AO) - Ld - Ln/b;

Given the fact that when the array output AO is less than the load demand
the battery charge always decreases, the “Case b” equations were not used. The
value of the s variable was decreased by 1 instead. When the battery is in its
minimum level, it can only rises in “Case a” or remain in “Case b”. Once reached
the maximum level of charge, the battery will stay there and the simulation is
finished.

In order to verify the model, four properties were proposed to check the
probability that the battery will get full or empty at the end of the day:

P>0.1[t = 24 ∧ s = 42]
This property verifies if the state s is maximum (42) at the end of

24 h, with a probability grater than 10%. In the Prism notation, we have
P>0.1[F(t=24&s=42)].

P<0.1[t = 24 ∧ s = 21]
Similar to the anterior, this property verifies if the state s is minimum (21)

at the end of 24 h, with a probability less than 10%. In the Prism notation, we
have P<0.1[F(t=24&s=21)].

The next two properties state the actual probability of the given scenarios to
happen:

P��[t = 24 ∧ s = 42] (9)

P��[t = 24 ∧ s = 21] (10)
The property shown in the Eq. 9 verifies the actual probability to end the day

at full charge while the property in the Eq. 10 verifies the probability of running
out of battery in one day. In the Prism notation, the properties are, respectively,
P=?[F(t=24&s=42)] and P=?[F(t=24&s=21)].

752 M. Dioto et al.

4.2 Batteries of Artificial Satellites Modeling and Properties
Formalization

To model the proposed scheme from the original paper [4], it was used CTMC,
as the central variable of interest, the temperature, is defined by the a rate dx.
All the elements that have influence on this variation were identified and one
module was created for each, using Prism syntax:

module time
\\Module contents

endmodule

module orbital_logic
\\Module contents

endmodule

module temperature
\\Module contents

endmodule

module heat_cooling_source
\\Module contents

endmodule

The t variable on the time module runs in the 0, ..., T integer range, beginning
at 0. It represents the satellite orbit and behaves as a clock to the other modules.
Its next state is given by the sum of 1 at the variable until it reaches T , when it
returns to 0, characterizing its cyclic nature.

module time
t : [0..T] init 0;
[] t < T -> (t’ = t + 1);
[orbit_end] t >= T -> (t’ = 0);

endmodule

The orbital_logic module represents the system’s output response from
the clock excitation. It runs the state variable s, which is a binary, and the heat
variable q(t). When t < Ts (solar period), s = 1, and when t ≥ Ts (eclipse
period), s = 0, as stated on Eq. (6). The heat variable q(t) is also a two state
element, with a constant value qc during charge (solar period) and a constant
value qd during discharge (eclipse period).

module orbital_logic
s : [0..1] init 1;
q: [Qmin..Qmax];
[solar] t < Ts -> 1:(s’ = 1) + 1:(q’ = qc);
[eclipse] t >= Ts -> 1:(s’ = 0) + 1:(q’ = qd);

endmodule

On the Feasibility of Probabilistic Model Checking 753

The temperature flow distribution provided in Eq. (7) is expressed as the
function for dx.

formula dx = ((invCbat)*(f + q));

This is used to estimate the battery temperature on module temperature,
which runs the variable x. The rate of which the temperature is modified is
determined by dx. As Prism do not understand negative rates, it was necessary
to break the command into three different situations: dx < 0 (dx is negative),
dx > 0 (dx is positive) and dx = 0 (dx is zero). The last one does not impact in
change on x. Also, it is detected if the temperature is bellow the absolute zero
(Xmin), evidencing an error in the code; and if the temperature is higher then
the maximum accepted before the battery enters thermal runaway (Xmax).

module temperature

x: [Xmin..Xmax];

[dx_negative] dx < 0 & x>Xmin -> (-dx):(x’=x-1);

[dx_positive] dx > 0 & x<Xmax -> (dx):(x’=x+1);

[dx_zero] dx = 0 -> 1:(x’=x);

[alert] x>=Xmax -> 1:(x’=x);

[error] x<=Xmin -> 1:(x’=x);

endmodule

The heat_cooling_source module basically transcripts Eq. (8). It runs a
variable f that substitutes f(t), which assumes different functions at three tem-
perature sections.

module heat_cooling_source

f : [fmin..fmax];

[temperature_range1] x < 0 ->

1:(f’ = ceil(Pm - (k2*pow((x+273.0), 4))));

[temperature_range2] x >= 0 & x <= 10 ->

1:(f’ = ceil(k1*pow((x-10.0), 2) - k2*pow((x+273), 4)));

[temperature_range3] x > 10 ->

1:(f’ = ceil(-k2*pow((x+273.0), 4)));

endmodule

It was used cost and rewards to reason about quantitative measures relating
to model behaviour: to count the number of cycles, checking how many times it
passed through orbit_end; and to compute the alerts and errors.

rewards "cycles"
[orbit_end] true : 1;

endrewards

rewards "alert"
[alert] true : 1;

endrewards

754 M. Dioto et al.

rewards "error"
[error] true : 1;

endrewards

With the aim of verifying the model, four properties were developed using
the patterns presented on [5].

P<0.1[♦[T, T]x = Xmax]

Being a Transient State Probability pattern, this property checks if the prob-
ability of having a thermal runway before t < T is less than 10%. In the Prism
notation, we have P>0.1[F(T,T) x=Xmax].

P≥0.9[�[0, 100]x > Xmin]

As a Probabilistic Invariant, this property certifies if no error will occur in the
next 100 units of time, with a probability of at least 90%. In Prism, it becomes
P>=0.9[[0, 100] x > Xmin].

P≥0.95[♦[0, 6015]s = 0]

This property was created using the Probabilistic Existence pattern. It cer-
tifies if a transition to the eclipse state should occur within 6015 seconds in 95%
of the cases. In Prism, it is P>=0.95[F[0, 6015] s = 0].

R“cycles” =?[C ≤ 100000]

This is a Cumulative Rewards pattern and it sums the number of cycles per-
formed. In Prism, the same property is written as R{"cycles"}=? [C<=100000].

5 Results Evaluation

5.1 Solar Power System Results

In this section, we present the results of our approach applied to the solar power
system. The original values were simplified by the factor of 100 to avoid state
explosion and were rounded to fit the discrete nature of the state model.

By verifying the four properties, we achieved the following results (Table 1):

Table 1. Results of the properties for the Solar Power System

Property Result

P>0.1[t = 24 ∧ s = 42] True

P<0.1[t = 24 ∧ s = 21] True

P��[t = 24 ∧ s = 42] 0.17649027

P��[t = 24 ∧ s = 21] 0.08091588

On the Feasibility of Probabilistic Model Checking 755

The simulation in the original paper predicted a scenario in which the system
is supplied for 98, 3% of the time. With ∼8,09% of probability to run out of
battery at the end of the day, a 92% of system reliability is a very close result to
the original one. The author of the paper achieved 13.32% of maximum battery
in his simulations, while we got ∼17,64% of full charge at the end of the day,
another close result.

5.2 Batteries of Artificial Satellites Results

Verifying the four properties stated on Sect. 4 for the satellite model, the follow-
ing results were achieved (Table 2):

Table 2. Result of the properties for the Satellite Power System

Property Result

P<0.1[♦[T, T]x = Xmax] True

P≥0.9[�[0, 100]x > Xmin] True

P≥0.95[♦[0, 6015]s = 0] True

R“cycles” =?[C ≤ 100000] 1.0

Making a simulation on Prism, it was obtained the two curves bellow. On
the first one, it is possible to see the interaction between all variables, mainly
the periodic ones. On the second one, the temperature element was isolated in
order to have a closer look in its behavior (Figs. 3, 4).

Fig. 3. Satellite Power System Simulation: variables interaction.

756 M. Dioto et al.

Fig. 4. Satellite Power System Simulation: temperature variation.

6 Discussion of Related Work

In this section, we focus on some relevant studies addressing the analysis of
power supply systems.

In [6] the author introduces a battery power supply model based on discrete-
time VDHL. It is done an event-driven simulation at a very high level of abstrac-
tion. The objective is to estimate battery life-time during design optimization.
Different than the strategy used in this paper, the battery is represented only
as an electrical circuit.

A mathematical simulation is done in [7] using experimental data to calculate
parameters used on the model. The aim is to predict the battery state of charge
of a hybrid solar-wind power supply system.

Another simulation method explored for the analysis of satellite power supply
subsystem in [8] is the subspace identification. In this paper it is used n4sid
together with control techniques to improve fidelity of CBERS-4 operational
simulator.

A satellite power supply subsystem is also modeled in [9], but using Simulink.
In this case, it was analysed the different performances for each configuration of
the solar arrays.

Also in the space application, [10] uses Virtual Test Bed (VTB), an interdis-
ciplinary computational environment, to model, simulate and virtual-prototype
the battery power supply system. The author uses the results obtained to com-
pare different chemicals.

It is possible to perceive the plurality of techniques in the literature to model
and simulate battery sustained power supply systems. However, all of them have
in common the deterministic approach. In other words, it is used past data or
mathematical equations to predict the system’s exact behavior. Probabilistic
Model Checking, on the other hand, considers the stochastic characteristic of
the battery. In this way, the objective is not to reproduce a past scenario as it
happened once, but to infer patterns and probabilities about that system.

On the Feasibility of Probabilistic Model Checking 757

7 Conclusions

In this paper, it is discussed the use of Probabilistic Model Checking on battery
sustained power supply systems. We considered two systems in our analysis: a
solar power supply system based on DTMC and a satellite power supply system
based on CTMC. The results achieved show a behavior similar to the expected,
proving the feasibility of the method. Besides, it is obtained a series of prob-
abilistic assumptions to help on the development and maintenance of projects
using the studied subsystems. Since batteries are passive and unstable elements,
it is difficult to predict its behavior, even through past data comparison. Thus,
Probabilistic Model Checking turned out to be a more realistic estimation in this
case than other methods based on reproduction of scenarios. Future directions
include the investigation of other probabilistic models such as Markov Deci-
sion Processes (MDPs) and Probabilistic Timed Automata (PTA) as well as
the application of probabilistic model checking to analyze other power supply
systems.

Acknowledgments. The authors would like to thank ITEMM for the help in carrying
out this work and CNPq for the financial support on the process number 130878/2018-9.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

3. Safie, F.M.: Probabilistic modeling of solar power systems. In: Annual Reliability
and Maintainability Symposium, 1989. Proceedings, pp. 425–430. IEEE (1989)

4. de Magalhães, R.O.: Esudo de avalanche térmica em um sistema de carga e descarga
de baterias em satélites artificiais. Ph.D. thesis, INPE (2012)

5. Grunske, L.: Specification patterns for probabilistic quality properties. In:
ACM/IEEE 30th International Conference on Software Engineering, ICSE 2008,
pp. 31–40. IEEE (2008)

6. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: A discrete-
time battery model for high-level power estimation. In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pp. 35–41. ACM (2000)

7. Zhou, W., Yang, H., Fang, Z.: Battery behavior prediction and battery working
states analysis of a hybrid solar–wind power generation system. Renew. Energy
33(6), 1413–1423 (2008)

8. Rodrigues, I.P., Rego, L.F.M., Coimbra, T.d.S., Gruppelli, G.P., Ambrósio, A.M.:
Identification and control techniques applied to an operational satellite simulator.
Congresso Brasileiro de Automática, 22. (CBA) (2018)

9. Farid, H., El-Koosy, M., El-Shater, T., El-Koshairy, A., Mahmoud, A.: Simula-
tion of a LEO satellite electrical power supply subsystem in-orbit operation. In:
Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhi-
bition, Valencia, Spain (2008)

10. Jiang, Z., Dougal, R.A., Liu, S.: Application of VTB in design and testing of
satellite electrical power systems. J. Power Sources 122(1), 95–108 (2003)

