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Abstract

The metaheuristics have become a powerful tool to solve real-world optimization problems. Its
ease adaptability, usually demands effort to correctly define its components (e.g.: problem repre-
sentation, neighborhood structure, etc.) and parameters to achieve their best performance. Thus,
this paper aims to present an approach on the fine-tuning of metaheuristics combining Design of
Experiments and Racing algorithms. The key idea is a heuristic method, which explores a search
space of parameters looking for candidate configurations near of a promising alternative and con-
sistently finds the good ones. To confirm this approach, we present a case study for fine-tuning a
VNS metaheuristic on the classical Traveling Salesman Problem, and compare its results against a
well established racing method. In general, our approach proved to be effective in terms of the
overall time of the tuning process.

1 Introduction

The algorithms for solving optimization problems, in special the metaheuristics, are highly adaptable
to a wide set of problems. However, this feature usually demands a huge effort in the definition of its
components (e.g.:  problem representation,  neighborhood structure,  etc.)  and parameters to achieve
their  best  performance.  Thus,  since the last  decades  there  has  been a  growing academic interests
around the automated methods to assist in the fine-tuning of metaheuristics, highlighting the use of
Design of Experiments [1, 2, 3], Racing algorithms [4], Neural Networks [5, 6], Fuzzy sets [7], statis-
tical modeling [8, 9] and many others.

In this paper we present an approach on the fine-tuning of metaheuristics combining Design of Ex-
periments (DOE) [10] and Racing algorithms [11, 4] in a heuristic method. The proposed approach
brings together  some characteristics  from different  fine-tuning strategies  of  the  literature,  such as
CALIBRA [12], I/F-Race [13, 4] and ParamILS [14], in a single heuristic method with the ability to
define a search space, and the efficiency to focus the search on candidate configurations within the
aforementioned search space. To validate our approach, we present a case study with the VNS meta-
heuristic applied to the classical Traveling Salesman Problem (TSP).

The rest of the paper presents the problem of tuning metaheuristics and our proposed approach
(Section 2). The Section 3 brings a case study on the fine-tuning of the VNS metaheuristic by means
of different tuning approaches and presents its results. Our final considerations are in Section 4.

2 An Approach on the Fine-tuning of Metaheuristics

In this paper, the problem of fine-tuning of metaheuristics is formalized as: let  M be a metaheuristic
with a set of parameters, that must be tuned to solve a class of problems P. The parameters of M (e.g.:
, , ..., ) admit a finite set of values (in general, discrete or continuous) and its cardinality can vary
according to M and P studied. Let  be a set of candidate configurations, such that    is any set-
ting of M, then the problem can be formalized as a state-space:
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S = (, P) (1)

Broadly, the problem consists of knowing which is the best candidate configuration *   to opti-
mize the performance of M on P. However, its determination is not always simple and, in the worst
hypothesis, it can requires a full search in S.

2.1 Heuristic Oriented Racing Algorithm

To avoid the full search in S and still find a good setting of M to P, we consider an agent (e.g.: a heu-
ristic method) whose the actions modify the state of S (e.g.: by creating candidate configurations).

Given an initial state (e.g: any alternative in S), the heuristic method explores (1) by creating new
candidate configurations at the neighborhood of some best known alternative as a sequence of sets:

0  1  2  ...

From the step k to k+1 the set of candidate configurations is built possibly discarding some inferior
alternatives, based on statistical evaluation of a wide range of problems. Given that some candidate
configurations persist in that set, they are evaluated on more problem instances. Therefore, search a
solution is equivalent to find a path in a graph, that from an initial state reaches the final state, that is,
the best setting for M.

This approach is called Heuristic Oriented Racing Algorithm (HORA), due the way for which the
alternatives are explored through a heuristic method, and its evaluation process by a racing algorithm.

3 Case Study

The HORA method proposed here can be applied on the fine-tuning of different metaheuristics, re-
gardless its nature or parameters number. To illustrate it, we will use as example the configuration of a
basic VNS metaheuristic [15, 16] on instances of the TSP.

The TSP is a NP-hard problem [17] extensively studied in the literature [18, 19], and a standard
benchmark for new algorithm ideas. The VNS metaheuristic is a trajectory method widely applied to
optimization problems, like the TSP. In summary, its strategy is based on dynamical changes in the
neighborhood structure of an incumbent solution, moving to the next one if and only if an improve-
ment is made. At each iteration three important stages must be done: shake, local search and move. A
high-level pseudo-code is given in Figure 1.

procedure vns(S0, Kmax)
 S*  S0

 repeat
  k  1
  repeat
   S’  shake(S*, k)
   S’’  localSearch(S’)
   S*  move(S*, S’’, k)
  until k  Kmax

 until termination criteria is met

Figure 1: Pseudo-code of the basic VNS metaheuristic.

The considered parameters for the fine-tuning process are in Table 1. The parameters levels (low
and high) were chosen on early studies with the metaheuristic.

At the beginning of the tuning process we conduct m experimental studies1 with DOE on different
instances of the TSP from TSPLIB [20]. Its results let us refine the search space of parameters by

1 In this paper, we chosen arbitrarily m = 5, in order to promote diversity for the initial search space of parameters. Thus, at
the end of the experimental studies we have five different results for each parameter.
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defining a more restrict one, bounded by the maximum and minimum values of each parameter in the

training set. Accordingly, the new parameter search space is: n  [1621; 3640], k  [3; 9] and   [2;  4].

Parameter Description Low High

n
k


Number of iterations
Number of neighborhood structures
Length between the neighborhood structures

1000
3
1

5000
9
5

Table 1: The parameters of the basic VNS.

The exploration of the new search space is done through HORA by creating alternatives at the
neighborhood of some best known candidate configuration. For each of the alternatives, we run the
target metaheuristic during 10s on an expanded set of instances2. This process was repeated 100 times

and the result is presented in terms of mean and standard deviation ( ± ) in Table 2.
For comparisons, we chosen a robust fine-tuning method from the literature with a similar evalua-

tion process to that implemented in HORA. Thus, the same tuning process was repeated with a racing
algorithm inspired in I/F-Race method [21] (from here on called RACE). However, the following set-
tings have been considered: n = {1621; 1909; 2198; 2486; 2775; 3063; 3352; 3640}, k = {3; 4; 5; 6; 7;

8; 9} and  = {2; 3; 4}. Since of each possible combination of parameters leads to a different configu-

ration for the metaheuristic, there are 8  7  3 = 168 predefined settings for the VNS in the RACE
scenario. The goal is to select an alternative as good as possible, such that it optimizes the performance
of the metaheuristic. The result is in Table 2.

Parameter
HORA

Settings (  )
RACE

Settings (  )

n
k


2298 ± 562
4 ± 1
3 ± 1

2441 ± 634
4 ± 1
3 ± 1

Table 2: The proposed parameter settings for the basic VNS.

3.1 Experimental Results

The case study results are similar in terms of parameterization (Table 2). However, we emphasize the
differences of the tuning process, such as, the average time of the process, with HORA it takes 7872
seconds, whereas with RACE it demands 14392 seconds. The HORA also stands out in terms of the
overall number of experiments performed, that is, 781 against 1410 from RACE. At the end of the tun-
ing process, remains on average 8 surviving alternatives for HORA and 40 for RACE.

Even though it is not the main objective of this work, we run the basic VNS for each one of the
proposed settings (Table 2) 15 times on 12 instances of the symmetric TSP with the number of cities
varying between 300 and 800. Although the median performance from the metaheuristic tuned through
HORA is slightly better, the results are statistically similar at the significance level of 5%  to the t-Stu-
dent and Wilcoxon tests.

4 Final Considerations

The HORA method, presented in this paper, combines DOE and Racing algorithm to efficiently search
candidate configurations within an improved search space. As shown in the case study (Section 3), its
better performance, relative to a classic strategy from the literature, can be explained by the way of it
explores the search space. That is, by means of a heuristic method, which seeks for good alternatives
in the neighborhood of some best known candidate configuration, and efficiently evaluates them with
a racing method. The results achieved show that the proposed approach is a promising and powerful
tool mainly when it is considered the overall time of tuning process. Additional studies shown the ef-
fectiveness of HORA with other metaheuristics and problems.

2 The expanded set matches 48 instances with less than 1000 cities of the symmetric TSP from TSPLIB.
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