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ABSTRACT
Asteroid families are groups of asteroids that share a common origin. They can be the outcome
of a collision or be the result of the rotational failure of a parent body or its satellites. Collisional
asteroid families have been identified for several decades using hierarchical clustering methods
(HCMs) in proper elements domains. In this method, the distance of an asteroid from a
reference body is computed, and, if it is less than a critical value, the asteroid is added
to the family list. The process is then repeated with the new object as a reference, until
no new family members are found. Recently, new machine-learning clustering algorithms
have been introduced for the purpose of cluster classification. Here, we apply supervised-
learning hierarchical clustering algorithms for the purpose of asteroid families identification.
The accuracy, precision, and recall values of results obtained with the new method, when
compared with classical HCM, show that this approach is able to found family members
with an accuracy above 89.5 per cent, and that all asteroid previously identified as family
members by traditional methods are consistently retrieved. Values of the areas under the curve
coefficients below Receiver Operating Characteristic curves are also optimal, with values
consistently above 85 per cent. Overall, we identify 6 new families and 13 new clumps in
regions where the method can be applied that appear to be consistent and homogeneous
in terms of physical and taxonomic properties. Machine-learning clustering algorithms can,
therefore, be very efficient and fast tools for the problem of asteroid family identification.

Key words: methods: data analysis – celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

Asteroid families are groups of asteroids that share a common
origin. They can either be the product of a collision, or they
may results from the rotational fission of a parent body or their
satellites (Pravec et al. 2010, 2018). Collisional asteroid families are
usually identified in domains of proper elements (Hirayama 1923)
that are constants of motion over time-scales of Myr (Knežević &
Milani 2003). Among the methods used for identifying asteroid
families, the hierarchical clustering method (HCM) is one of the
most commonly used. In this method, the distance between two
asteroids in domains of proper elements or frequencies is computed
using a distance metric. If the second object distance from the first
is less than a characteristic threshold called cut-off, the object is
assigned to the first object asteroid family. The process is then
repeated for the second asteroid, until no new members are found.
Interested readers can found more details in Bendjoya & Zappalá
(2002), or in Carruba (2010).

� E-mail: valerio.carruba@unesp.br

Recently, machine-learning clustering algorithms, available in
the PYTHON programming language, have been used with great
success for problems like clusters identification (Pedregosa et al.
2011). Methods such as K-means, mean-shift, and hierarchical
clustering algorithms are now very commonly used among data
scientists, and applied to various different fields, such as biology,
palaeontology, and, as in this work, astronomy. These machine-
learning algorithms have proven to be efficient, fast, and reliable
in problems of supervised learning. Here, we will attempt to
use machine-learning HCMs for the purpose of asteroid families
identification, in domain of asteroid proper elements (a, e, sin i),
we will verify the results with respect to previous works, and,
where possible, we will assert the validity of the new asteroid
groups obtained with such methods by studying their physical and
taxonomic properties.1

Other methods for family identification, based and not based on
HCM, have been recently proposed for the same purpose. Methods

1Some orbital regions, like the Cybele region, are mostly populated by dark,
C-complex asteroids, so that differentiating asteroid families based on their
physical properties in this region is a more difficult task.
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based on cladistic classifications have been recently proposed for
the identification of asteroid families among Jupiter Trojans Holt
et al. (2017). Other approaches, based on the V-shape identification
in domains of (a, 1/D), with a the semimajor axis and D the asteroid
diameter, have been recently used to identify very old families not
easily detectable using standard HCM (Bolin et al. 2017, 2018;
Delbó et al. 2017; Delbó, Avdellidou & Morbidelli 2019).

All these methods have merits and great potential. Here, however,
we will focus our attention on the use of machine-learning tech-
niques in domains of proper (a, e, sin i). Standard HCM has been
used and tested with great success for several years. Since the goal of
this paper is to focus on the possibility of using machine-learning
techniques for the purpose of asteroid families identification, we
believe that a good starting point should be the use of well-known
methods first. The applications of machine-learning algorithms to
new methods remain, of course, an interesting prospect for future
research.

Concerning standard HCM, one problem with its application
is chaining. In high asteroid number-density regions, near families
may overlap and not recognizable as separate entities by the method.
Milani et al. (2014) introduced new approaches to deal with this
problem, by working first with a more limited sample and by
extending the family identification to higher numbered objects at
a later stage. Here, we will focus our attention to the low-number
density regions where standard HCMs can still be used, such as
the Hungaria region, inner, central and outer main belt at high
inclinations (sin i > 0.3), and the Cybele regions, whose boundaries
will be more precisely defined later on in this paper. The problem of
identifying asteroid families in higher number-density regions will
be left as a challenge for future works.

The structure of the paper is as follows. In Section 2, we
will revise the standard HCM and its implementation in machine
learning. Methods to determine the accuracy of machine-learning
routines for identifying families in old and new data bases, such
as accuracy, precision, recall, and areas under ROC curves (AUC)
will also be discussed in this section. In Section 3, we will apply
the new method to data bases of asteroid proper elements in the
five low-number density regions, and check for the validity of old
and newly identified asteroid families, with an emphasis on newly
identified dynamical groups. Finally, in Section 4, we will present
our conclusions.

2 AC C U R AC Y O F M AC H I N E - L E A R N I N G
H I E R A R C H I C A L C L U S T E R I N G A L G O R I T H M S

HCMs have been used to identify asteroid families for several
decades and are a well-established method for the identification
of dynamical asteroid groups. Several articles in the literature
explained in detail the use of this approach; interested readers
could find more details in Zappalá et al. (1990), Bendjoya &
Zappalá (2002), and Carruba et al. (2015), among others. The basic
approach follows these guidelines. First, the distance between pairs
of objects involving a putative parent body and a candidate family is
computed in a domain of proper elements according to a pre-defined
metric. The most commonly used metric distance d is defined as
(Bendjoya & Zappalá 2002)

d = na

√
5

4
×

(
�a

a

)2

+ 2 × (�e)2 + 2 × (� sin i)2, (1)

where (a, e, i) are the proper semimajor axis, eccentricity, and
inclination; the symbol � is associated with the difference between

pairs of proper elements, and a is the mean value of the proper
semimajor of a given pair of asteroids. If the distance between
two objects is less than a value defined as the local cut-off, the
family candidate is assigned to the parent body asteroid group.
The process is then repeated with the new family member now
considered as a parent body until no new members are found.
Beaugé & Roig (2001) define a nominal distance cut-off d0 as
the average minimum distance between all neighbouring asteroids
in the same region of the asteroid. For the 1500 sample of objects
used by Carruba et al. (2015) for their families identification, the
value of d0 was of 138.45 ms−1. Carruba et al. (2015) identified
three reliable dynamical groups: the (87) Sylvia family, with 363
members, the (260) Huberta family, with 58 members, and the (909)
Ulla family, with 30 members.

In this work, we implemented SCIKIT-learn Pedregosa et al.
(2011) hierarchical clustering algorithms for the same problem
of asteroid family identification. Dendrogram clusters of asteroid
distances computed using equation (1) can be automatically ob-
tained almost instantaneously using PYTHON algorithms such as
linkage, and asteroid families obtained for different cut-off values
can be easily identified. For illustrative purposes, Fig. 1 displays a
dendrogram of asteroid distances for the first 50 lowest numbered
objects in the 2015 proper element data base obtained with this
approach. The x-axis displays the sample index of each objects,
defined so that the first asteroid has an index equal to 0 and the
last object has an index equal to 49. As a first step of our analysis,
we evaluate how consistent are the results obtained with the new
approach with respect to those obtained in 2015.

A standard practice when using unsupervised learning algorithms
is to define a confusion matrix Stehman (1997). Given the actual
sample and the one predicted by the hierarchical clustering ap-
proach, four quantities can be defined: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). In our
context, true positives are asteroids identified as family member
by both methods; false positives are asteroids identified as family
members by the machine-learning algorithm alone, or false alarms,
or type-I errors. True negatives are asteroids not identified as family
members by both approaches, and false negatives are asteroids
not identified as family members only by the machine-learning
algorithm, or objects with miss, or type-II errors. Using these
four quantities, we can define the Accuracy, Precision, and Recall
parameters for the outcome of the studied algorithm. The accuracy
is a measure of the overall quality of the prediction and is defined
as

Accuracy = TP + TN

TP + TN + FP + FN
. (2)

The precision measures the ability of the model to avoid prediction
of false data and is defined as

Precision = TP

TP + FP
. (3)

Finally, the recall is an indication of how many real family members
are identified correctly by the machine-learning algorithm, and is
given by

Recall = TP

TP + FN
. (4)

Table 1 displays values of all these parameters for the three families
identified in 2015, and three other not identified in that work, but that
can be retrieved using standard HCM and the 2015 proper element
data base. Overall, the accuracy of the hierarchical clustering
algorithm is always above 89.5 per cent, and very few false negatives
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Machine-learning id. of asteroid groups 1379

Figure 1. A dendrogram of orbital distances for 50 objects in the Cybele orbital region. The vertical axis displays the distance cut-off, while on the horizontal
axis there are the sample identifications of the 50 asteroids in the Cybele region. Vertical lines identify a single cluster; horizontal lines display the merging of
near clusters.

Table 1. Values of true positive (TP), false negative (FN), false positive (FP), true negative (TN), Accuracy, Precision,
and Recall parameters for three studied families in the Cybele orbital region.

Family name TP FN FP TN Accuracy (%) Precision (%) Recall (%)

(87) Sylvia 363 0 23 1113 98.5 94.0 100.0
(260) Huberta 58 0 52 1389 89.5 52.7 100.0
(909) Ulla 30 0 0 1469 100.0 100.0 100.0

(1028) Lydina 67 2 13 1417 99.0 83.8 97.1
(6924) Fukui 15 0 17 1467 98.9 46.8 100.0
(26607) (2000 FA33) 9 0 16 1474 98.9 36.0 100.0

are ever found by this method, with a recall coefficient mostly
equal to 100 per cent, with the only exception of the Lydina family
for which two false negative asteroids were found. The limitation
of this method concerns, however, its precision. Machine-learning
clustering algorithms tend to find more family members that the
standard HCM does, which limits its Precision. This excess of
asteroids assigned to a given family, especially evident for families
located in more densely populated areas, such as Huberta, or (26607)
(2000 FA33), needs to be considered when dealing with families
obtained with machine-learning clustering algorithms. Comparison
with results of standard HCM, as performed in this section, may be
advisable. We will come back to this subject in later article sections.

To further study the accuracy of this method, we also use the
ROC curve approach. ROC curves are a well-established tool
to quantitatively define the efficiency and accuracy of machine-
learning clustering algorithms. A detailed description of how ROC
curves are computed and of the rationality behind them can be found
in Fawcett (2006). In this work, we first computed asteroid distances
with respect to the alleged parent body using the distance metric
given by equation (1). The sample of family members obtained
by the machine-learning HCM is then randomly split into a train
sample (60 per cent of the total) and a test sample (40 per cent).2

2To check how much the results depend on how the sample is divided,
we used the cross-validation approach. In this method, the sample is first
divided into n samples of equal size. One of them is used as a train sample,

A logistic regression algorithm is then applied to the train sample,
and the probability of the test sample to belong to the family is then
assessed based on the results of the train sample.

Basically, logistic regression in its simplest form uses a logistic
function to model a binary variable, with two possible values, such
as pass/fail, win/lose, or alive/dead (Cox 1958). In our case, either
the asteroid belongs to a given family (value =1), or it does not
(value = 0), as a function of its distance in proper element domain
from the possible parent body. For each object, the probability of it
to belong to a given family is computed using a logistic function,
and it varies between 0 and 1. For different values of this probability,
the false positive rate and the true positive rate are then computed.
ROC curves are shown in a the domain of true positive rates versus
false positive rates and the area under the curve (AUC) coefficient,
which has a value between 0.5 (random predictions) and 1.0 (perfect
score), provide a quantitative measure of the goodness of the model.

Fig. 2 shows ROC curves for the six families reported in Table 1.
Values of the AUC coefficients are reported in Table 2. Again,
the isolated Ulla family obtains a perfect 1.00 score, with no false
positive or true negative asteroids. Results for all but one of the

and the others as tests. The efficiency of the method is evaluated for the first
sample, and the procedure is then repeated for the other n − 1 samples. For
the case of family identification, the cross-validation score never dropped
below 94 per cent, suggesting that the problem is rather robust with respect
to the way the sample is divided.

MNRAS 488, 1377–1386 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/1/1377/5526253 by guest on 23 Septem
ber 2019



1380 V. Carruba, S. Aljbaae and A. Lucchini

Figure 2. Area under Receiver Operating Characteristic (ROC) curves for the cases of the identification of the (87) Sylvia, (260) Huberta, (909) Ulla, (1028)
Lydina, (6924) Fukui, and (26607) (2000 FA33) asteroid families obtained from logistic regression algorithms.

Table 2. Values of the AUC coefficients for the ROC
curves shown in Fig. 2.

Family name AUC value

(87) Sylvia 0.991
(260) Huberta 0.970
(909) Ulla 1.000
(1028) Lydina 0.855
(6924) Fukui 0.993
(26607) (2000 FA33) 0.988

studied families are all above 97.0 per cent. Only in relative high
number density orbital regions, such as that of (1028) Lydina, AUC
values drop to 0.855, which is, however, still a very good result.

Based on this analysis, we believe that machine-learning cluster-
ing algorithms appear to be an efficient tool for identifying asteroid

families, with results that are characterized by a highly effi−ient
performance, with AUC values all very close to 1. The Precision
of the families obtained with this method may, however, vary. A
comparison of results obtained with machine-learning clustering
algorithms and standard HCM may, therefore, always be advisable.
In the next section, we will start applying these methods to various
regions of the asteroid main belt, where traditional HCM methods
can be still applied.

3 DYNAMI CAL FA MI LI ES I N LOW-DENSITY
R E G I O N S O F TH E M A I N B E LT

In this section, we will implement the machine-learning clustering
methods defined in the previous section to asteroid families in
suitable regions of the main belt. Following the approach of Carruba
(2010), families are considered robust when they are recognizable
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not only at the nominal cut-off, but for a range of at least 10 ms−1

above and below this value. The minimal number for a group to be
recognizable as a family or a clump depends on the number density
of asteroids in a given region [see for instance Carruba (2010) for
a discussion of this issue]. Here, for the sake of uniformity among
the different orbital region studied, we used a simplified approach
where we considered a group to be a family if there are at least 25
members, and a clump if there are at least 10 members. Groups with
less members will be investigated only if they show signs of being
of particular interests, such as harbouring fission pairs or clusters.

Once the families have been identified, we checked the physical
properties of their members to see if they are consistent with a
common origin. In particular, we used the approach of DeMeo &
Carry (2013), based on the photo-metric data from the Sloan Digital
Sky Survey-Moving Object Catalog data (SDSS-MOC4; Ivezić
et al. 2001), to obtain taxonomic information for objects in that
data base. We then also look for asteroids that have geometric
albedo values in the Wide-field Infrared Survey Explorer (WISE)
and NEOWISE, AKARI, or IRAS data bases (Ishihara et al. 2010;
Ryan & Woodward 2010; Masiero et al. 2012), and that have the
good signal-to-noise ratio described in Spoto, Milani & Knežević
(2015). C-complex asteroids tend to have albedo lower than 0.12,
while S-complex objects have higher albedos. See also Spoto et al.
(2015) for a discussion of most common albedo values among
asteroids classes. Finally, following the approach of Milani et al.
(2019), we verified if the fraction of mass present in the largest
remnant is higher or lower than 75 per cent. In the first case, families
are classified as the outcome of a craterization event, while in the
second case they are more likely to be the product of a fragmentation
scenario.

Recently, it has been shown that asteroid families may not only
form as a result of a collision, but, in some cases, they may be
the outcome of a rotationally induced fission event. With respect
to families formed in collisions, fission clusters tend to be more
compact in proper element domains, and the mass ratio between
the parent body and the other members does not exceed 0.3 (Pravec
et al. 2010, 2018). Since a recent study by Carruba et al. (2019)
suggests that the formation of young asteroid families may trigger
a subsequent chain of formation of fission clusters; in this work, we
also checked for the presence of possible fission clusters. Following
the approach of Carruba et al. (2019), we checked for fission cluster
fission pair candidates whose distance in proper element domain
computed using equation (1) is less than 5 ms−1, and whose mass
ratio is less than 0.3. The validity of these candidate clusters is then
checked using methods that integrate asteroids orbits in the past,
such as backward integration method (BIM) and close encounter
method (CEM).

The BIM obtains estimates of the ages of young asteroid families
by integrating the orbits of possible members in the past and
by checking for the convergence of the longitudes of nodes and
pericenters with respect to those of the alleged parent body. At
the moment of family formation, those angle differences should all
converge to within a few degrees. The CEM checks for the time
of close encounters between pairs of objects in the past. Several
clones of asteroid pairs accounting for the orbital uncertainties and
for the Yarkovsky effect are integrated into the past, and the time of
approach to within a given distance is registered. The median value
of the distribution of close encounters times provides an estimate of
the time of formation of the pair, while the 5th and 95th percentile
of the distribution allow estimating the uncertainty on the age.
Interested readers can found more details on these two methods
on Carruba et al. (2019) and reference therein. Here, we first apply

Table 3. Boundaries of the orbital regions of the main belt studied in this
work. The table reports the zone identification name (where H. I. stands for
highly inclined), the value of amin, the name of the Jupiter mean-motion
resonance associated with that value, the value of amax and its associated
mean-motion Jupiter resonance name, and the minimum value of sin (imin).

Region amin Res. amax Res. sin (imin)
name (au) name (au) name

Hungaria region 1.780 – 2.253 7J:2A 0.000
H. I. inner main belt 2.257 7J:2A 2.465 3J:1A 0.300
H. I. central main belt 2.520 3J:1A 2.818 5J:2A 0.300
H. I. outer main belt 2.832 5J:2A 3.240 2J:1A 0.300
Cybele region 3.290 2J:1A 3.800 5J:3A 0.000

BIM to all the new families, clumps and clusters identified in this
work. To confirm the possible young age of the group, CEM is then
used.

Finally, for the families with a number of members large enough
such that dating methods based on the slopes of V-shapes in (a, 1/D)
domains, where D is the asteroid diameter, we will also attempt to
obtain estimates of the family age based on Spoto et al. (2015)
approach.

As discussed in the introduction, five orbital regions are suitable
for the applications of the new methods of asteroid family determi-
nation: the regions of the Hungaria asteroids, the inner, central and
outer main belt at high inclinations, and the region of the Cybele
asteroids. Table 3 displays the name and the limits in proper a and
sin (i) of the regions studied in this work. We will start our analysis
by analysing the Hungaria orbital region.

3.1 Dynamical families in the Hungaria orbital region

The region of the Hungaria asteroids is delimited by several mean-
motion resonances with Mars at lower a, and by the 7J:-2A mean-
motion resonance with Jupiter at higher a. Only the dynamical
family of 434 Hungaria itself is currently well established (Milani
et al. 2010), while S-complex possible groups at higher inclinations
that were proposed in the past have not yet been confirmed [see
Carruba et al. (2013) and references within for a discussion on
the possible existence of such groups]. The current value of d0 for
asteroids in this region is 68.59 ms−1. Therefore, we also obtained
families for 58.59 and 78.59 ms−1 cut-offs. Our results are shown
in Table A1 in the Appendix.

No new families or clumps were identified in the Hungaria region,
where we only confirm the existence of the namesake family. Three
asteroid pair candidates were confirmed by BIM in the Hungaria
region, those of 84203 (2002 RD133) and 285637 (2000 SS4),
88259 (2001 HJ7) and 337181 (1999 VA117), and that of 145046
(2005 GD2) and 453039 (2007 RB325). All pairs are members of
the Hungaria dynamical family. CEM found ages of 0.069+0.776

−0.049,
0.248+1.319

−0.176, and 1.107+1.530
−0.967 Myr, respectively.

In the next sub-section, we will analyse the dynamical groups in
the high-inclination inner main belt.

3.2 Dynamical families in the highly inclined inner main belt
orbital region

The inner main belt is a dynamically stable island delimited by the
7J:-2A mean-motion resonance with Jupiter at low a, by the 3J:-
1A resonance at high a, and, at low i, by the ν6 secular resonance
(Knežević & Milani 2003; Carruba 2009). Most of the asteroids in
the island are members of the (25) Phocaea family, with just a few
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other possible small groups that have been proposed in the past.
Dynamical groups in domain of proper elements and frequencies
were obtained for this region by Carruba (2009), which, apart from
the Phocaea family itself, identified four other small dynamical
groups. Novaković et al. (2017) studied the dark population of
objects in the Phocaea island, and identified in this restricted domain
the (326) Tamara family, which is not easily retrievable in larger
domains, and will not further discuss in this work. The value of the
cut-off d0 for the H. I. inner main belt current data base is d0 =
110.58 ms−1, so we also obtained groups for d0 = 100.58 and d0 =
120.58 ms−1. Our results are shown in Table A2 in the Appendix.

The families of (6246) Komurotoru, (19536) (1994 JM4), and
(26142) (1992 PL1) found in Carruba (2009) join the larger Phocaea
family and are not confirmed in this work. The Carruba (2009)
clump (17628) (1996 FB5) has only six members and will not
be further discussed. Among the new groups currently detected,
the only clump that satisfied our selection criteria was that of
(7758) Poulanderson, whose age is not obtainable with BIM. It
is a 15 members clump, with a two-sided shape, and taxonomy and
albedo most likely to belong to the C-complex. Consistently with
the analysis of Section 2, Accuracy, Recall, and AUC coefficients
are all very good, with values all above 95 per cent. The Precision
of this group is, however, 73.3 per cent. Four false positive asteroids
and one false negative were found by the machine-learning HCM
for the Poulanderson clump. The properties of this and other clumps
and families identified in this work are listed in Table 4. In the last
column, we report the Precision of the newly identified groups.

There were two asteroid pairs candidates in the inner main belt
that were confirmed by BIM: the pair 51866 (2001 PH3) and 326894
(2003 WV25) that are not members of any dynamical group, and
the pairs (1999 RX33) and (2013 GZ99) that are inside the Phocaea
family. CEM found an age of 0.110+0.305

−0.072 and of 0.055+0.109
−0.032 Myr for

these two pairs, respectively. The next sub-section will deal with
groups identified in the high-inclination central main belt.

3.3 Dynamical families in the highly inclined central main belt
orbital region

The central main belt is separated in proper a from the inner and
outer belts by the 3J:-1A and 5J:-2A mean-motion resonances with
Jupiter. The boundary at lower i is given by the ν6 secular resonance.
The ν5 and ν16 secular resonances cross the regions, dividing it into
several islands, the so-called stable archipelago in the central main
belt (Carruba 2010).

The current value of the cut-off d0 is 106.68 ms−1, and families
were also obtained for cut-offs of 96.68 and 116.68 ms−1. Our
results are displayed in Table A3 in the Appendix. We confirm
and improve the membership of families found in previous works,
such as Carruba (2010), and we identified two new families and
six new clumps not previously known: the families of (694) Ekard,
and (75779) (2000 AC201), and the clumps of (46542) (1987 AD),
(2134) Dennispalm, (4404) Enirac, (59511) (1999 JP14), (21785)
Mechain, and (5438) Lorre. Results are summarized in Table 4. As
for the case of the new clump in the inner main belt, Accuracy,
Recall, and AUC coefficients were all above 90 per cent and, for
brevity, were not reported.

Among the already known families, of particular interest there
were those of (2) Pallas, (1222) Tina, and (5438) Lorre. Pallas is
the third most massive body in the asteroid belt, and its orbit is
one of the most inclined. Understanding the origin of Pallas and
its family has been of the main challenges of asteroid dynamics
since their discovery [see also Carruba (2010) for a more in-depth

discussion of this family]. The family of (1222) Tina is special,
since it is located in a stable island of the ν6 secular resonance, on
anti-aligned librating orbits, that prevent them from experiencing
planetary close encounters (Carruba & Morbidelli 2011). (5438)
Lorre, first identified by Novaković, Hsieh & Cellino (2012) also
using multi-opposition and single opposition asteroids, is one of
the youngest family in the main belt for which an age estimate
with BIM can be obtained. It contains several internal sub-clusters,
most likely originating from rotational fission, as recently found
in Carruba et al. (2019). Other families in the region, according to
the definition given in this work, were detected by previous works,
such as for the case of (10000) Myriostos, identified in Novaković,
Cellino & Knežević (2011).

Concerning the new families listed in Table 4, our results confirm
the trend observed in Section 2: families retrieved by the machine-
learning algorithm tend to be larger than the analogous families
identified by the traditional HCM. Two clumps, those of (46542)
(1987 AD) and (2134) Dennispalm, have values of the Precision
coefficient below 60 per cent and should be considered as dubious.
The largest number of false negative case, 5, was observed for the
case of the (75779) (2000 AC201) family. In general, machine-
learning HCM did a good job in retrieving family members that
were also retrieved by the traditional approach. Finally, for all the
groups, we considered false positive asteroids as candidate members
to be confirmed by later studies.

BIM confirmed the already known case of angles convergence
of (5438) Lorre. The only other possible case of angle convergence
with BIM was, possibly, observed for the 64785 (2001 XW197)
clump. The young age for this cluster, however, is not confirmed by
CEM. The only fission pair candidate that we found in the central
main belt was that of (5438) Lorre and 208099 (2000 AO201). Since
fission clusters inside the Lorre family were already studied in detail
Carruba et al. (2019), we will not further discuss this issue here.
Interested readers can find more information in the cited paper.

Concerning the physical properties of the newly identified groups,
most of the groups are compatible with a C-complex taxonomy,
with just three groups possibly belonging to the S-complex, those
of (2134) Dennispalm, (4404) Enirac, and (59511) (1999 JP14).
Most of the groups may be the outcome of fragmentation events,
with just two families, those of (694) Ekard and (5438) Lorre the
possible outcome of cratering events. There were five two-sided
families in (a, 1/D) domains, four incomplete left shapes, and two
incomplete right shapes. The next sub-section will be dedicated to
the groups identifiable in the outer main belt region.

3.4 Dynamical families in the highly inclined outer main belt
orbital region

The highly inclined outer main belt is the region between the 5J:-2A
and the 2J:-1A mean-motion resonances with Jupiter in proper a and
inclinations above those of the ν6, or, roughly speaking sin (i) > 0.3.
For the outer main belt, current d0 is 77.81 ms−1, and dynamical
groups were also identified for d = 67.81 and d = 87.81 ms−1. Our
results are shown in Table A4 in the Appendix.

The method does not identify new families or clumps in this re-
gion, but confirms all the already known families of 31 Euphrosyne,
781 Kartvelia, 350 Ornamenta, 780 Armenia, 702 Alauda, and 704
Interamnia, extending their membership. Among this groups, of
particular interest are the Euphrosyne family, characterized by its
interaction with the ν6 secular resonance and a possible sources of
NEAs (Carruba, Aljbaae & Souami 2014; Masiero et al. 2015), and
the Alauda family, which is possibly among the oldest asteroid
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Table 4. The main belt region, cluster identification, number of members, the mean albedo values with its uncertainty, defined as one standard deviation, and
the number of objects with albedo values, the number of albedo interlopers, if any, the taxonomic class and the number of objects with such information, the
number of taxonomic interlopers, if any, the qualitative shape in the (a, 1/D) plane (T for families with two sides, L for those with only the left side, and R for
those with only the right side), and if the family is either the outcome of a fragmentation (F, MPB

MT ot
< 0.75) or of a craterization (C, MPB

MT ot
> 0.75) event, and the

Precision coefficient given by equation (3), for the new asteroid families and clumps identified in this work.

Main belt Cluster # of Mean # of albedo Tax. # of tax. V-shape and Precision (%)
region id. members Albedo int. Class. int. fam. type

Inner M. B. 7758 Poulanderson 15 0.06 ± 0.03-2 0 C-1 0 T-F 73.3
Central M. B. 694 Ekard 118 0.10 ± 0.05-28 9 C-3 1 L-C 61.0
Central M. B. 75779 (2000 AC201) 50 0.06 ± 0.01-15 0 C-2 0 T-F 62.0
Central M. B. 46542 (1987 AD) 23 0.06 ± 0.02-8 0 X-1 0 T-F 52.2
Central M. B. 2134 Dennispalm 19 0.30 ± 0.07-2 0 K-1 0 T-F 42.1%
Central M. B. 4404 Enirac 17 0.24 ± 0.23-1 0 −0 0 L-F 88.2
Central M. B. 59511 (1999 JP14) 17 0.27 ± 0.08-4 0 −0 0 R-F 58.8
Central M. B. 21785 Mechain 13 0.12 ± 0.06-6 2 X-2 1 T-F 76.9
Central M. B. 5438 Lorre 12 0.06 ± 0.01-2 0 −0 0 L-C 91.7

Cybele R. 1028 Lydina 93 0.05 ± 0.01-31 0 C-8 0 T-F 74.2
Cybele R. 6924 Fukui 35 0.05 ± 0.01-11 0 X-7 1 T-F 85.7
Cybele R. 19513 (1998 QN7) 35 0.08 ± 0.02-19 1 C-3 0 T-F 37.1
Cybele R. 26607 (2000 FA33) 31 0.06 ± 0.01-17 0 X-2 0 T-F 71.0
Cybele R. 3622 Ilinsky 21 0.09 ± 0.02-7 0 D-1 0 T-F 66.7
Cybele R. 1390 Abastumani 12 0.06 ± 0.04-2 0 D-1 0 L-C 100.0
Cybele R. 522 Helga 11 0.04 ± 0.04-1 0 −0 0 T-C 100.0
Cybele R. 3092 Herodotus 11 0.07 ± 0.02-8 0 D-1 0 R-F 100.0
Cybele R. 102167 (1999 RC223) 11 0.06 ± 0.06-1 0 −0 0 T-F 90.9
Cybele R. 46305 (2001 OW71) 10 0.08 ± 0.08-1 0 −0 0 R-F 100.0

families in the main belt (Carruba et al. 2016). There are two
candidate pairs in the region, those of (62128) (2000 SO1) and
84085 (2002 QU24) in the Kartvelia family, and those of 243446
(2009 FX56) and 368051 (2012 HK36) in the Euphrosyne family,
but neither is confirmed by BIM. The next sub-section will deal
with the dynamical families in the Cybele orbital region.

3.5 Dynamical families in the Cybele orbital region

Following the approach used for the other regions of the asteroid
main belt, we first apply the HCM to objects in the Cybele orbital
region. The cut-off value d0 for this region is 130.3 ms−1, so we also
obtained families at cut-offs of 120.3 and 140.3 ms−1. Our results
are shown in Table A5 in the Appendix. Apart from the previously
identified Sylvia, Huberta, and Ulla groups (Carruba et al. 2015),
we identified five new families and five new clumps in the region
that attend our selection criteria: the families of (1028) Lydina,
(6924) Fukui, (19513) (1998 QN7), (26607) (2000 FA33), and the
clumps of (3622) Ilinsky, 1390 Abastumani, (522) Helga, (3092)
Herodotus, (102167) (1999 RC223) and (46305) (2001 OW71). The
clump of (522) Helga does not strictly satisfy our selection criteria,
since it only has eight members at the lower cut-off. However,
because of its dynamical importance (Helga could be the farthest
family in the main belt, not considering the Hilda asteroids, that
are in the Jupiter mean-motion resonance 3J:-2A, and the Thule
asteroids, in the resonance 4J:-3A), we will keep it in our list none
the less. As expected, the number of members of known families
also significantly increase with respect to previous determinations.

Among the new families, the Lydina and Helga families were
previously proposed by Vinogradova (2014) and Carruba et al.
(2015) for the case of the Helga family, and appear to be confirmed
by this work. We computed values of Accuracy, Recall, AUC, and
precision coefficients for all the new families identified in this work.
With respect to the results shown in Section 2, the values of these

coefficients for the families of (1028) Lydina, (6924) Fukui, and
(26607) (2000 FA33) are different because of the larger data base
of proper elements used with respect to the work of Carruba et al.
(2015). Overall, values of the Precision coefficient were above
66.6 per cent for all but one case, the family of (19513) (1998
QN7) whose existence needs to be confirmed with independent
methods. The number of false negative cases in no cases exceeded
1, consistently with results from Section 2. Again, further studies
are needed to confirm false positive asteroids as family members.

All the new groups and possible fission clusters were studied
with BIM. We only found one possible fission pair that passed
our selection criteria: the pair 16918 (1998 FF32)-411534 (2011
BM107) in the 3622 Ilinsky family has a possible age of � 3 Myr,
but this result is not confirmed by CEM. Overall, we did not find
young clusters in the Cybele region.

We then studied the newly found groups and checked their
physical and orbital properties with the methods described in
Section 3. Our results are shown in Table 4. Most new clusters
are dark, C-complex groups, with very limited numbers of albedo
or taxonomic interlopers. Most of the groups are most likely to
be the outcome of fragmentation’s and show two-sides of their V-
shape in (a, 1/D) diagrams. There were, however, two cratering
groups [those of (1390) Abastumani and (522) Helga] and three
groups with incomplete V-shapes, those of 1390 Abastumani, 3092
Herodotus, and 46305 (2001 OW71). In the next section, we will try
to obtain age estimates and determination accuracies for the largest
families (80 members) or more that we determined so far.

4 AGE ESTI MATES OF NEWLY IDENTI FIED
LARGE A STEROI D FAMI LI ES

In this section, we will focus our attention on the largest asteroid
families identified in this work, the ones with a population large
enough (80 members or more) that dating methods such as those of
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Table 5. The AUC coefficient, the IN and OUT values of the slopes, and the estimated ages, with their errors, for the
new large families (80 members or more) identified in this work.

Family AUC SIN SOUT AgeIN AgeOUT

Id. value (Myr) (Myr)

694 Ekard 0.914 −6.07 ± 3.00 – 284.5+278.0
−94.1 –

1028 Lydina 0.855 −4.48 ± 9.84 5.39 ± 3.95 509.3+1266.4
−350.0 423.3+1161.1
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Figure 3. V-shape slopes in the (a,1/D) plane for the families listed in Table 5.

Spoto et al. (2015) can be used, i.e. the Ekard and Lydina families.
This approach computes the slopes S of the inner and outer parts
of the V-shaped distribution of asteroids in the (a, 1/D) domain.
The age of the family is given by the inverse of the slope divided
by the da/dt drift rate caused by the Yarkovsky effect, which is
tuned to the physical properties of a given family, according to
the method described in section 4.1 of Spoto et al. (2015). Values
of da/dt for the Ekard and Lydina families obtained with this
approach are 1.59 × 10−12 and 1.20 × 10−12 au/d, respectively.
Interested readers can find further information on that paper, or in
Carruba et al. (2018), for an implementation of that method by our
group.

Table 5 displays the AUC coefficient, the IN and OUT values
of the slopes approach, and the estimated ages, with their errors,
obtained with Spoto et al. (2015) for the new large families (80
members or more) identified in this work, while the V-shape slopes
in the (a,1/D) domains for these families are shown in Fig. 3. It
is possible to find only a solution for the IN part of the slope of
the Ekard family, while both solutions can be found for the Lydina
group. However, because of the limited number of members in the
Lydina family (93), errors are quite large. To within these large
errors, the IN and OUT solutions for the age of the Lydina group
appear to be in agreement. The fact that it is possible to date these
two families suggest that results of machine-learning clustering
algorithms appear to produce reliable new dynamical groups.

5 C O N C L U S I O N S

The main purpose of this work was to explore the possibility of
using machine-learning hierarchical clustering algorithms for the
purpose of asteroid families identification. We applied this method
to five regions of the asteroid main belt that are not affected by
the problem of chaining, i.e. the regions of the Hungaria asteroids,
the inner, central and outer main belts at high inclinations, and the
region of the Cybele asteroids. We compared the outcome of this

new approach with the results of standard HCM for the region of
the Cybele asteroids, and we found that the new method is able
to retrieve family members with an accuracy, defined according to
equation (2), above 89.5 per cent. All asteroids previously identified
as members with standard HCM are also retrieved by the new
approach. Values of the areas under the curve (AUC) coefficients
below Receiver Operating Characteristic (ROC) curves for dynam-
ical groups identified with this approach are also very good, and
consistently higher than 85 per cent. The methods was able to
retrieve all known asteroid families in the five regions, including
new members. However, the new approach also consistently tended
to identify more objects as family members than standard HCM,
with a Precision coefficient defined using equation (3) as low as
36.0 per cent. False positive group members obtained by this method
are the main limitation of this approach. Not necessarily all these
false positive members are to be discarded, and the lower number of
family members identified by standard HCM may be an indication
of limitations of the standard method itself. But a cautious study and
comparison of results obtained with the two methods is generally
advisable.

Six new families and 13 clumps were found, for the first time,
using this approach. Fig. 4 displays a (a, sin (i)) projection of the
families (shown as coloured full dots) and clumps (shown as points)
in the high-inclination central main belt and in the Cybele region
that were newly identified in this work. For brevity, we do not
show the location of the (7758) Poulanderson clump identified in
the inner main belt, and we do not print the names of the (4404)
Enirac and (59511) (1999 JP14) clumps in the central main belt, to
avoid overlapping of text. All clumps names in the central main belt
are available in Table 4. The newly identified groups appear to be
relatively uniform in terms of physical and taxonomic properties.
For the two cases for which standard dating methods based on V-
shapes in the (a, 1/D) domain like those of Spoto et al. (2015) can
be applied, those of the Ekard and Lydina families, we found that
ages for these new families can also be obtained, which confirm
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Figure 4. An (a, sin (i)) plot of the newly identified families (full dots) and clumps (points) in the high-inclination central main belt (panel a) and in the Cybele
region (panel b).

the reliability of the outcome of machine-learning hierarchical
clustering algorithms for this task.

Most of the newly discovered groups, with just one exception
in the inner main belt, are found in the high-inclined central main
belt and in the Cybele region. For the case of the central main
belt, this can be explainable in terms of probabilities of collisions.
Central main belt asteroids orbits can interact with both inner and
outer main belt objects more easily than the ‘fringe’ regions, and,
as a consequence, they are more likely to experience collisions than
other asteroid populations. Most asteroid families are indeed found
in the central main belt, and it is only natural to expect a higher
rate of findings of new groups in this region. Regarding the Cybele
asteroids, selection effects may have been at play in the past. Cybele
asteroids tend to be dark, low-albedo objects. They are also further
away from Earth than objects in other regions of the main belt, and
therefore, they are more difficult to be found. Since new surveys
since the work of Carruba et al. (2015) have significantly increased
the population of Cybele asteroids, it is likely that the increased
sample allowed for the identification of families that were not visible
in the past.

Overall, we believe that this preliminary study showed that
machine-learning clustering algorithms have great potential for the
problem of asteroid families identification. While, computationally,
standard and machine learning HCM are both quite efficient, one
advantage of machine learning HCM is the facility with which
new asteroid groups can be identified. Dendrogram clusters of
asteroid distances, such those shown in Fig. 1, are produced almost
instantaneously by machine learning HCM, and obtaining a list of
clusters for a given orbital region is also a straightforward and rapid
procedure. The opposite is not true for standard HCM, at least in
the version implemented by our group. Stalactite diagrams used to
identify families, like that used by Carruba et al. (2015) for the
Cybele region, are computationally demanding and may miss some
asteroid groups. The ease of use of machine learning HCM is, in our
opinion, one of the big advantages of this method. Extending the
use of these approaches to higher number-density regions remains
a challenge for future works.
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Carruba V., Nesvorný D., Aljbaae S., Huaman M. E., 2015, MNRAS, 451,

4763
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