
An Architecture for Dynamic Web Services that Integrates
Adaptive Object Models with Existing Frameworks

Antonio Dias
National Institute for Space Research

INPE
São José dos Campos, São Paulo

Brazil
antoniodiasabc@gmail.com

Eduardo Guerra
National Institute for Space Research

INPE
São José dos Campos, São Paulo

Brazil
guerraem@gmail.com

Phyllipe Lima
National Institute for Space Research -

INPE
São José dos Campos, São Paulo

Brazil
phyllipe_slf@yahoo.com.br

Abstract

Nowadays, web services became one of the main alternatives for
communication between software systems and even inside the com-
ponents of the same application. In some domains, the change of
requirements happens frequently, demanding flexibility from the
architecture of the applications, and consequently also in the web
services that they provide. In this context, the goal of this work is to
provide an architecture that can be used for dynamic web services,
allowing services to be changed and introduced at runtime. To ful-
fill these requirements this work proposes the usage of Adaptive
Object Models (AOM) combined with existing web service frame-
work, using dynamic adapters to integrate and decouple them. The
framework Esfinge AOM Role Mapper received features to imple-
ment the behavioral part of the AOM model and to map the AOM
rule objects with metadata to methods with code annotations in the
dynamic adapters. The proposed architecture passes the adapters
generated at runtime to the existing framework, which provide
the web service based on its methods and code annotations. An
evaluation based on a case study performed scenario-based tests
to verify the architecture capability to create and change dynamic
web services. Additionally, a modularity analysis verified the cou-
pling between classes that use both frameworks. As a result, the
proposed architectural solution was able to implement the dynamic
web services in all the scenarios keeping the classes that handle the
AOM model decoupled from the classes responsible for providing
the web services.

CCS Concepts

· Software and its engineering→Object oriented frameworks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBCARS ’19, September 23–27, 2019, Salvador, Brazil
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7637-2/19/09. . . $15.00
https://doi.org/10.1145/3357141.3357602

Keywords

AdaptiveObjectModel, Software Engineering, Framework,Metapro-
gramming, Web Services, Reuse

ACM Reference Format:
Antonio Dias, Eduardo Guerra, and Phyllipe Lima. 2019. An Architecture
for Dynamic Web Services that Integrates Adaptive Object Models with
Existing Frameworks. In XIII Brazilian Symposium on Software Components,
Architectures, and Reuse (SBCARS ’19), September 23–27, 2019, Salvador, Brazil.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3357141.3357602

1 Introduction

In the development of complex systems, design rarely meets all
architectural needs, as new attributes may arise in an entity or
a new method to compose important functionality that was not
identified in the initial phases of a project. An alternative to solving
these issues is the use of a more flexible and dynamic architectural
style, which allows adaptation to requirements changes at runtime.
The architectural style called the Adaptive Object Model (AOM)
[16] defines entity types, equivalent to classes, as instances based
on the metadata that is read at runtime. This architecture style
enables entity types to be changed dynamically by changing their
metadata, which as a consequence should modify the application
behavior.

Web Services are one of themost popular approaches to exchange
information between applications, and even between components
of the same application. A recent study indicates that changes in
web services can be frequent [1, 3], and especially more granular
micro-services would benefit from an adaptive architecture, with
capabilities to create new services and change existing ones.

The creation of web services in applications usually rely on the
use of frameworks. Those frameworks, that we refer as łtraditional
frameworks", usually use reflection and annotations to access the
structure of static classes. The main difficulty to use AOM to create
dynamic web services is because existing frameworks do not work
with AOM entities, since they have a different structure.

The goal of this work is to propose an architecture that can
integrate existing traditional frameworks for web services with
AOM entities, in a way that changing the entity type structure
enables the creation of new services and change the existing ones.
To achieve this, the architecture uses Esfinge AOM Role Mapper1,
which is an AOM framework that can create dynamic adapters [12]
that wraps the AOM entity in an interface that follows the Java

1esfinge.sourceforge.net/AOM.html

13

SBCARS ’19, September 23ś27, 2019, Salvador, Brazil Antonio Dias, Eduardo Guerra, and Phyllipe Lima

Beans standard and can be consumed by traditional frameworks.
New features were added in Esfinge AOM Role Mapper during this
work to introduce the dynamic behavior to the AOM model and
implement its mapping to static methods that could be consumed
by frameworks. The proposed architecture was evaluated in a case
study that assesses if the requirements for changing web services
behaviors are being achieved and to evaluate the coupling between
the AOM framework and the web services framework.

2 Adaptive Object Model

Adaptive Object Model is an architectural style for systems in which
classes, attributes, relationships, and behaviors are represented as
metadata consumed at run time, and the same code can be used to
process different classes that are not known at compile time. This
enables systems built with this architecture to be flexible and can be
modified at runtime, not only by programmers but also by business
analyst or users, allowing changes to be done and made available
quickly. This flexibility allows the domain to evolve as part of the
business.

Fig. 1 presents the first model of the AOM architecture proposed
by [18]. The entity metadata is stored in the XML data entry, that
passes in the XML Parser and in the Metadata Interpreter before
being stored at runtime in the metadata repository. This metadata
is used to create domain objects that follow the AOM structure.
The domain objects have their persistence mechanisms that can be
relational databases or XML/XMI files.

Figure 1: Adaptive Object Model [17]

AOM architecture is comprised of the following core patterns:
Type Object, Property, Type Square, Accountability and Rule Object.

2.1 AOM Core Patterns
The Type Object pattern [9] is used in situations where the number
of sub-classes that a class may need can not be determined during
the system development. This pattern solves this situation by rep-
resenting the sub-classes that are not known at development time
as instances of a generic class that represents the type of an object.

The Property pattern [6] is applied in situations where instances
of the same class can have different types of properties. The Prop-
erty pattern solves this problem by representing the properties of
an entity using a class and causing that entity to have a collection
of instances of that class.

In the AOM architectural style, Type Object and Property pat-
terns are used combined, resulting in the Type Square pattern [16].
In this one, the Type Object is used twice - once to represent the
entities and entity types of the system and once to represent the
properties and property types. Using Type Square pattern, new
types of entities with different types of properties can be created.
Likewise, existing entity types can be changed at runtime, since
modeling is done at the instance level.

The Accountability [16] pattern allows the relationship between
entities to be represented by an object (usually an instance of an
Accountability class). Each Accountability object is associated with
an Accountability Type object, which represents the relationship
type. Because the associations between entities are represented at
the level of instances, the types of relationships between entities
can be created and modified at runtime.

Rule Object is a pattern used to create abstractions for both
simple and complex business rules [17]. The Rule Object defines a
default interface for a family of algorithms so that clients can work
with any of them. If the behavior of an object is defined by one
or more instances of Rule Object, then it can be easily changed by
changing its instance. In the AOM architectural style, classes that
use the Rule Object pattern are often associated with entity types,
where they implement operations on the methods of a class.

The core AOM structure, composed by the patterns Type Object,
Property, Type Square, Accountability and Rule Object, is presented
in Figure 2. The operational level is used to represent the domain
objects instances, which contains the information that is of interest
to the application. The knowledge level represents the application
metadata, which describes the application entities. Relating to an
object-oriented language, the operational level is similar to objects
while the knowledge level is similar to classes.

Figure 2: Core AOM structure, based on [15]

2.2 AOM Frameworks
AOM Applications usually implement the patterns in classes that
are coupled with the application domain. These are called domain-
specific AOM models. Since traditional frameworks do not support
the structure of AOM entities, the application developers usually
create their own components that are specific for its AOM models,
such as for persistence and graphical interface. Since the application
AOM model and its respective components depend on the domain,

14

An Architecture for Dynamic Web Services that Integrates Adaptive Object Models with Existing Frameworks SBCARS ’19, September 23ś27, 2019, Salvador, Brazil

it is hard to reuse them in other AOM applications. This makes
AOM applications expensive to develop.

Focusing on the optimization of the development time, some
AOM frameworks, such as Oghma [5] and Ink [8], provide AOM
classes that do not depend on the domain. These are called domain-
independent AOM frameworks. Due to the high level of abstraction,
they provide a very complete structure, but they require various
configurations for its use. In addition to providing an AOM struc-
ture, they also include components, such as for the persistence of
entities. Even though this solution allows some kind of reuse, it is
not compatible with the usage of traditional frameworks, and the
application is limited to the framework proprietary components.

The Java framework Esfinge AOM Role Mapper proposes a dis-
tinct approach. It provides an API based on a domain-independent
AOM model, however, it provides adapters that can be used to rec-
ognize a domain-specific AOMmodel based on its code annotations.
It also provides dynamic adapters [12] that generate classes based
on the Java Beans standard that wraps the AOM entities. Since the
dynamically generated adapters provide an API similar to static
classes, the AOM entities can be used and consumed by traditional
frameworks, increasing the reuse possibilities. The Esfinge AOM
Role Mapper framework is described with more details in section 3.

Prior to this work, the Esfinge AOM Role Mapper framework did
not implement the behavioral model of an AOM structure, usually
implemented with the Rule Object pattern. The Rule Object is used
to represent behavior in an entity, just as methods represent it in
a class. The behavioral model of the AOM frameworks represents
the logic linked to the entities, being used to create and change
business rules in systems that have frequently changing require-
ments. To enable the dynamic definition of web services, this work
implemented the behavioral model the Esfinge AOM Role Mapper
framework, mapping the Rule Objects to methods in the Java Beans
dynamic adapters. Section 4 presents this implementation with
more details.

3 Esfinge AOM Role Mapper

Esfinge AOM Role Mapper is the AOM framework used as the basis
by this work, implemented in Java, and available open-source 2.
It is part of a larger project called Esfinge that embrace several
innovative metadata-based frameworks.

The Esfinge Role Mapper AOM framework works with three dif-
ferent types of models. The domain-specific AOM models that can
be provided by the application, a proprietary domain-independent
model, and dynamically generated Java Beans model. The main
functionality of the framework is to map AOM structures from a
domain-specific to a domain-independent AOM structure and from
the domain-independent AOM structure to dynamically generated
Java Beans model. Code annotations and descriptor files are used
to provide additional information for creating the adapters. The
idea is to make possible a hybrid model, which can be composed
of entities defined by each of the approaches. For example, an en-
tity defined as Java Bean could be added as a property in an AOM
entity. This increases the possibility of reuse of these entities and

2esfinge.sourceforge.net/AOM.html - documentation available in portuguese

gives more freedom to AOM application developers. A graphical
representation of these mappings is shown in Figure 3.

Figure 3: AOM Framework Model Representation

In real applications that use AOM as the architectural style, the
AOMmodel is usually implemented only in entities where flexibility
is a requirement, using only the required patterns [7]. Other enti-
ties also follow a static model adopted by the target programming
language, containing fixed attributes and access methods. Even
in classes representing AOM entities, for example, there might
be static properties that represent peculiarities of the application
domain [12].

To address these two issues, the Esfinge RoleMapper AOM frame-
work provides a solution that meets the following requirements:

(1) Allow the use of componentsmade for a domain-independent
AOM application for entities from a domain-specific AOM
model;

(2) Allow the use of traditional frameworks based on reflection
and code annotations in domain-independent and domain-
specific AOM entities.

4 Dynamic Behaviour on AOM

This section describes the following improvements developed on
Esfinge AOM Role Mapper to support dynamic behaviour:

(1) Implementation of the Rule Object pattern in the frame-
work’s domain-independent model;

(2) Mapping the Rule Object pattern from a domain-specific
AOM model to the domain-independent AOM model of the
framework;

(3) Mapping of the Rule Objects from the domain-independent
AOMmodel to methods on static class methods (Java Beans);

(4) Metadata mapping in AOM Rule Objects for annotations in
methods.

The first step was to create classes that implement the Rule
Object in the domain-independent AOM model provided by the

15

SBCARS ’19, September 23ś27, 2019, Salvador, Brazil Antonio Dias, Eduardo Guerra, and Phyllipe Lima

framework. The adapters were then updated so that domain-specific
AOM objects could be mapped to this structure. From this mapping,
the class that creates adapters for the domain-specific AOM entities
can recognize Rule Object implementations and map behavior to
the framework structure. Finally, the behavioral model was also
added in the generation of adapters for the static classes API (Java
Beans), allowing the use of these objects adapted with traditional
frameworks that work with the invocation of methods by reflection.
In this mapping, Rule Objects metadata becomes annotations in
their adapters methods. This feature is important because web
service frameworks use annotations to map methods to services.

4.1 Adding Rule Object in
Domain-independent AOMModel

This section describes how the behavioral model was implemented
in the domain-independent AOM model of Esfinge AOM Role Map-
per. The first change was the creation of the RuleObject interface,
establishing a contract for classes that implement entity behav-
ior. The RuleObject interface extends the HasProperties inter-
face to be able to receive additional metadata, as the IEntity and
IEntityType interfaces. Next, we created the BasicRuleObject
class that implements the RuleObject interface and inherits the
ThingWithProperties class so that the behavioral model has its
properties, according to the diagram shown in Figure 4.

The RuleObject interface should be implemented by classes
that represent the behavior of AOM entities. The new behavior
should be implemented in the execute() method. This method
receives two parameters, the first parameter being the entity in
which the method is executed, and the second parameter an array
of Objects which represent the parameters that the method receives
for its execution.

To allow the addition of a RuleObject to an AOM entity type,
the addOperation() method has been added in the IEntityType
interface. It receives as parameters the name of the rule and an
instance of a class that implements the RuleObject interface. The
RuleObject is internally stored on a map, and should be located
using its name.

The method executeOperation() was added to the IEntity

interface. It is used to execute the operation on a given entity. It
has two parameters, which are the rule name that will be executed
and an array of Object with the parameters expected by the Rule
Object. The rule name is the same name that was used to add the
operation on the IEntityType interface.

The GenericEntity and AdapterEntity classes implement the
IEntity interface, and use the method executeOperation() to
obtain the RuleObject of the corresponding entity type and invoke
the execute() method with its parameters.

4.2 Usage Example of Domain-independent
API

This section presents an example of how the domain-independent
API is used to create an Entity Type with a Rule Object and execute
its respective logic. The first step is to create the object of type
IEntityType. The Listing 1 shows the creation of an IEntityType

named product with the attributes creationDate of type Date, and
name of type String. Both attributes are mapped as required.

Listing 1: Creating the Entity Type with Properties and a
Rule Object

1 //create entity type instance

2 IEntityType productType = new GenericEntityType("Product");

3

4 //creating property types

5 GenericPropertyType creationDatePropertyType = new

GenericPropertyType("creationDate", Date.class);

6 creationDatePropertyType.setProperty("notempty", true);

7 GenericPropertyType namePropertyType = new GenericPropertyType("name",

String.class);

8 namePropertyType.setProperty("notempty", true);

9

10 //adding property types to the entity type

11 productType.addPropertyType(creationDatePropertyType);

12 productType.addPropertyType(namePropertyType);

13

14 //adding a rule object in the entity type

15 productType.addOperation("creationTime", new CalculateTime("creationDate"));

The last line of code from Listing 1 shows the creation of the
RuleObject and its addition to the entity type. The CalculateTime
class extends the BasicRuleObject class that implements the inter-
fce RuleObjectwith its executemethod. Its constructor receives a
String parameter that should have the name of an attribute of type
Date from the entity type. The implementation of CalculateTime
is not presented but it aims to calculate the number of years from
the date contained in the attribute until now.

As can be seen in that example, the CalculateTime class could
be reused for another operation in the same entity type referring
to others attributes. The rule object implementations can receive
parameters to configure its execution, enabling several different
behaviors being executed by the same class.

Listing 2 shows the creation of an entity from the Product entity
type. It sets values for the properties and executes the operation.
As can be seen in Listing, the method executeOperation() was
invoked passing the String added with the rule object. Since the
method return is of type Object, it should be cast for a specific
class.

Listing 2: Creating an Entity and executing its operation
1 //create entity

2 IEntity product = productType.createNewEntity();

3

4 //adding property values

5 product.setProperty("name", "Notebook");

6 product.setProperty("creationDate", new GregorianCalendar(2010, 09 ,

23).getTime());

7

8 //executing operation

9 int years = (Integer) product.executeOperation("creationTime");

10 assertTrue("Considering SBCARS 2019 date", 9, years)

4.3 Rule Object Based in Expression Language

Expression Language (EL)3 is a language used in Java projects
where you create simple expressions that have direct access to the
attributes of objects considering the Java Beans standard. To allow
the definition of logic based on expressions defined in the entity
type metadata, the framework Esfinge AOMRoleMapper provide in
its class library an implementation of the RuleObject interface that
executes an Expression Language passed in its constructor. The use
of this type of Rule Object allows the configuration of expressions
that need to be changed at runtime. By having operations based

3docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

16

An Architecture for Dynamic Web Services that Integrates Adaptive Object Models with Existing Frameworks SBCARS ’19, September 23ś27, 2019, Salvador, Brazil

Figure 4: AOM RoleMapper after Behavioral Model

on a configured expression, the logic can be easily modified by
changing this expression.

For this, the ELContextAOM class was created to represent the
context where the EL will be executed. This class has three at-
tributes. The first one, functionMapper, map the EL functions.
The second one, variableMapper, map variables, and the third
one, compositeELResolve, interpret the variables and solve their
value. Listing 3 displays the ELContextAOM class.

Listing 3: Class ELContextAOM for Expression Language ex-
ecution

1 public class ELContextAOM extends ELContext {

2 private FunctionMapper functionMapper;

3 private VariableMapper variableMapper;

4 private CompositeELResolver elResolver;

5

6 public ELContextAOM(FunctionMapper functionMapper, VariableMapper

variableMapper, ELResolver... resolvers) {

7 this.functionMapper = functionMapper;

8 this.variableMapper = variableMapper;

9 elResolver = new CompositeELResolver();

10 for (ELResolver resolver : resolvers) {

11 elResolver.add(resolver);

12 }

13 }

14 public static EvaluationContext createContext(Class<?> functionClass,

Map<String, Object> attributeMap) {

15 VariableMapper vMapper = mapVariables(attributeMap);

16 FunctionMapper fMapper = mapFunctions(functionClass);

17 ELContextAOM context = new ELContextAOM(fMapper, vMapper, new

ArrayELResolver(), new ListELResolver(),

18 new MapELResolver(), new BeanELResolver());

19 return new EvaluationContext(context, fMapper, vMapper);

20 }

21 public static Object execute(String expr, Class<? extends Object>

objectClass, Map<String, Object> map) {

22 EvaluationContext ec = ELContextAOM.createContext(objectClass, map);

23 ValueExpression result = new

ExpressionFactoryImpl().createValueExpression(ec, expr,

Object.class);

24 return result.getValue(ec);

25 }}

To create an operation based on EL rules the ExpLangRuleObject
class was created. It implements the RuleObject interface to have
the same abstractions as rule objects and receives the target ex-
pression in its constructor. Its execute() method uses the class
ELContextAOM to add the AOM attributes as EL variables and exe-
cute the expression. After the addition in the entity type, the rule
object can be executed as any other.

4.4 Mapping Rules from a Domain-specific
AOM

Esfinge AOM Role Map supports domain-specific AOMs created by
applications. It uses code annotations to map the AOM elements.
Through them, the framework identifies and creates the adapters
that make the connections between the specific domain entity and
the independent domain entities.

This section focus on the annotations created to map methods
and rule objects. Information about other mappings, such as for
entities, entity types and properties, can be obtained in previous
publications [12]. To perform the behavior mapping, three annota-
tions were created:
• @RuleClass - Configure the interfaces used for Rule Objects
in the target domain-specific model;
• @RuleMap - Configure an attribute in the Entity Type that
contains a map of Rule Objects. This map should have as
generic types a String as the key and an interface with
@RuleClass as the entry;
• @RuleMethod - Used to configure methods with behavior
in two distinct scenarios. It can configure a method of an
interface with @RuleClass as the method that represents
the operation, as well as fixed methods in the entity type

17

SBCARS ’19, September 23ś27, 2019, Salvador, Brazil Antonio Dias, Eduardo Guerra, and Phyllipe Lima

class that should be mapped as Rule Objects in the domain-
independent model;

Listing 4 presents an example of mapping from an interface
that represents a Rule Objects in a domain-specific AOM model. It
can be observed that the interface is mapped with the @RuleClass
annotation and the executeLogic() method is mapped with the
@RuleMethod annotation.

Listing 4: Domain-specific Rule Object interface
1 @RuleClass

2 public interface SensorLogic{

3 @RuleMethod

4 Object executeLogic(Sensor s, Object... params);

5 }

Listing 5 displays the domain-specific entity typemapping, named
SensorType. This class is used to create dynamically types of sensor,
which can have different attributes and operations. The instances
of these types should have the class Sensor, which is not presented
in the paper. To map this class to the domain-independent entity
the @EntityType, @PropertyType and @CreateEntityMethod an-
notations were used. They map the code elements to its respective
role in the AOM model, but since they are not the focus of this
paper, they will be not further explained.

Listing 5: Map a RuleObject
1 @EntityType

2 public class SensorType {

3

4 @RuleMap

5 private Map<String, SensorLogic> operations = new HashMap<>();

6

7 @PropertyType

8 private Set<SensorPropertyType> propertyTypes = new

HashSet<SensorPropertyType>();

9

10 public void addPropertyTypes(SensorPropertyType propertyType) {

11 propertyTypes.add(propertyType);

12 }

13

14 @RuleMethod

15 public int miliUnitValue(Sensor s, String property){

16 return entity.getProperty("property") * 1000;

17 }

18

19 @CreateEntityMethod

20 public Sensor createSensor() {

21 Sensor sensor = new Sensor();

22 sensor.setSensorType(this);

23 if (operations == null) {

24 operations = new HashMap<>();

25 }

26 return sensor;

27 }

28 }

The attribute operations receive the annotation @RuleMap, which
maps the the attribute used to map the entity operations. The an-
notation @RuleMethod is used on the method miliUnitValue(),
configuring that this fixed method should be included in the list of
Rule Objects in the domain-independent model.

It is very common for entities and entity type classes in a domain-
specific AOM to have common methods that are available to all
types. Since thesemethods are not available in a domain-independent
model, they should be mapped to Rule Objects.

Listing 6 presents a code example that creates the adapters based
on the domain-independent API from the domain-specific entity
Sensor. In the presented source code, an entity type and an entity

instance is created based on the domain-specific model, and further,
this entity is adapted to the domain-independent API, which is used
to invoke the rule objects. As can be seen, the rule object added
dynamically and the one based on an existing method on the entity
type class are invoked the same way.

Listing 6: Invoking the RuleObject in the adapted entity
1 //Create entity type with 2 property types

2 SensorType sensorType = new SensorType();

3 sensorType.addLogic("convertUnits", new ConvertUnits());

4

5 SensorPropertyType prop1 = new SensorPropertyType();

6 prop1.setName("unit");

7 prop1.setPropertyType(String.class);

8 sensorType.addPropertyTypes(prop1);

9

10 SensorPropertyType prop2 = new SensorPropertyType();

11 prop2.setName("value");

12 prop2.setPropertyType(Integer.class);

13 sensorType.addPropertyTypes(prop2);

14

15 //create entity

16 Sensor sensor = sensorType.createSensor()

17

18 //adapt entity to domain-independent model and set values

19 AdapterEntityType adaptedEntityType = AdapterEntityType.getAdapter(sensorType);

20 AdapterEntity entity = AdapterEntity.getAdapter(adaptedEntityType, sensor);

21 entity.setProperty("unit", "m");

22 entity.setProperty("value", 20);

23

24 // execute the Rule Object added

25 Object result1 = entity.executeOperation("convertUnits", "value", "feet");

26

27 // execute mapped fixed method

28 Object result2 = entity.executeOperation("miliUnitValue", "value");

4.5 Rule Objects to Methods in the Java Beans
Adapter

The Esfinge AOM Role mapper has a feature to generate dynami-
cally Java Beans adapters from entities from the domain-independent
model. Another feature developed for the behavior model in these
adapters was the insertion a method for each Rule Object. To gen-
erate the adapter class bytecode at runtime, it uses the ASM frame-
work4. Each method generated to represent a Rule Object has the
behavior to invoke it in the encapsulated entity.

In the example of Listing 7 a Java Bean adapter is created based
on an entity and the method that represents a Rule Object in the
adapter is invoked using reflection. Passing the Java Bean adapter
to a traditional framework it would be able to invoke its method by
reflection as it does in a regular class.

Listing 7: Entity Generation with RuleObject
1 //create entity type and entity

2 IEntityType productType = new GenericEntityType("Product");

3 productType.addOperation("operation", new ExampleRuleObject());

4 IEntity product = productType.createNewEntity();

5

6 //create Java Bean adapter

7 AdapterFactory af = AdapterFactory.getInstance("mapping.json");

8 Object beanAdapter = af.generate(product);

9

10 //invoke adapted method by reflection

11 Method m = beanAdapter.getClass().getDeclaredMethod("operation",

Object[].class);

12 Object result = m.invoke(personAdapter, null);

Esfinge AOM Role Mapper domain-independent model also pro-
vides methods to add custom metadata to the elements. Based on a

4https://asm.ow2.io/

18

An Architecture for Dynamic Web Services that Integrates Adaptive Object Models with Existing Frameworks SBCARS ’19, September 23ś27, 2019, Salvador, Brazil

mapping defined in a JSON file, when generating the Java beans
adapter, the framework add code annotations to these elements. So,
the metadata added to the RuleObject is adapted to annotations
on the target method. An example of the JSON file is presented
in Listing 8. In this listing, three types of metadata are mapped to
annotations from the Spring framework 5.

Listing 8: JSON file example to map adapted object
1 {

2 "restcontroller":[

3 {"target":"class"},

4 {"annotationPath":"org.springframework.web.bind.annotation.RestController"}

5],

6 "autowired":[

7 {"target":"attribute"},

8 {"annotationPath":"org.springframework.beans.factory.annotation.Autowired"}

9],

10 "nomeendpoint":[

11 {"target":"method"},

12 {"annotationPath":"org.springframework.web.bind.annotation.RequestMapping"},

13 {"parameter_1": "value"}

14]

15 }

This feature is important to enable the usage of the adapters by
existing frameworks, since many of them locate the method to be
invoked by the presence of annotations. For instance, web services
methods usually uses annotations to identify methods to be used
as web services endpoints.

5 Proposed Architecture for Dynamic Web
Services

This section presents the architecture being proposed for dynamic
web services. Its main requirements are to enable the creation
and modification of web services at runtime. Another important
requirement is to reuse existing web services frameworks, which is
important to enable the introduction of dynamic services in existing
applications.

The main idea for the architecture to generate web services is
following these steps: (a) an AOM entity is created dynamically
based on the metadata provided; (b) an adapter based on static
classes is generated with the annotations mapped to its metadata;
and (c) a web service framework loads the generated classes to
provide services based on its annotated methods. So, providing new
metadata or changing the existing data it is possible to respectively
create new web services or change the behavior or contract from
the existing ones. A concrete architecture using Esfinge AOM Role
Mapper for AOM and Spring as the web services framework was
defined to implement the proposed solution. Figure 5 presents the
structure created for the architecture.

As shown in Figure 5, the Application class runs the application
and instantiates the BeanRegistration class, which is responsible
for registering objects created with the AOM architecture. It in-
stantiates the BeanFactory class where AOM-adapted objects will
be created. The BeanFactory class instantiates the EntityFactory
class and creates the AOM entity, which according to the type of
configuration of the AOM entity type that can be an instance of En-
tityType or AdapterEntytiType. It then returns this created object

5spring.io

to the BeanFactory class that creates the dynamic adapter with the
respective methods and annotations.

The Esfinge AOM Role Mapper uses the properties contained in
the RuleObject itself to map the metadata into annotations during
adapter generation. Then, the BeanRegistration records this object
in Spring, which recognizes the object through the @RequestCon-
troller annotation and the method mapped with the @RequestMap-
ping annotation. After that, it makes the new web service available
to meet client requests through the HTTP protocol.

6 Case Study

To evaluate if the proposed architecture for web services reaches its
goals presented in the previous section, a case study was elaborated.
Its focus is to verify how the creation of web services at runtime
is accomplished through the addition of behavior in AOM entities
by the framework Esfinge AOM Role Mapper reusing functionality
from the framework Spring, designed to work with static classes.
For this assessment to be considered successful, from the behavior
inserted in the entities should be possible to use the functionality
of the Spring framework to generate web services without a direct
coupling between the code that works with the AOM entities and
the code that use Spring framework to generate the services.

Following Basili’s Goal-Question-Metric-GQM [2], the purpose
of this case study is:

To analyze the use of the AOM Role Mapper framework with
the purpose of using reflection-based frameworks andmetadata
for AOM applications, regarding the invocation of behavior
of AOM entities, from the researcher’s point of view, in the
context of applications that provide the web services that must
be created and modified dynamically.

The case study is guided by the following research questions:
• Q1 - Is it possible to use the web services framework functional-
ities that invoke methods by reflection for AOM entities, adding
services and modifying behavior from changes in the entity?
• Q2 - Is it possible to decouple the code that generates and
manipulates the AOM entities of code that invokes the features
of the web services framework?

To answer the research questions an application with the archi-
tecture presented in Section 5 was created6. It uses Esfinge AOM
ROle mapper as the AOM frameworks and Spring as the web ser-
vices framework.

In order to answer the research question Q1, we executed the
application with metadata to create web services. We simulated dif-
ferent scenarios based on the creation of dynamic web services and
verified if the solution was capable to behave as expected. To evalu-
ate the functional part related to the dynamic creation and change
of web services (Q1), we used test scenarios based on [10], which
contemplates a scenario-based evaluation of given software archi-
tecture. Four scenarios different scenarios were designer, executed
and evaluated.

To answer the research question Q2, a dependency analysis
was performed in the code created for the case study. A Design
Structure Matrix (DSM) [14] was used to evaluate the coupling

6github.com/antoniodiasabc/dynamicwebservice

19

SBCARS ’19, September 23ś27, 2019, Salvador, Brazil Antonio Dias, Eduardo Guerra, and Phyllipe Lima

Figure 5: Architecture of the solution developed for the case study

between components that use the Spring and Esfinge AOM Role
Mapper frameworks. A DSM is a square matrix where rows and
columns represent the elements of a system and the cells represent
the relationships between the elements in its row and column. DSM
is used to evaluate the coupling between software components in
many recent research papers, such as [13] and [4].

6.1 Scenario-based Evaluation
The tests developed to use the capabilities of creating adapters
for AOM entities from the Esfinge AOM Role Mapper framework.
These entities have metadata attached to the Rule Objects that are
mapped to generate Spring framework annotations on the adapter.
In this way, the framework must recognize the annotations to create
web services, which will invoke the Rule Objects to respond to the
requests of the clients.

Entities and entity types are created from a configuration file,
named application.properties. A service of the Spring framework
reads the properties of this file to create the entity from the RoleMap-
per AOM domain-independent model, encapsulates the entity in
the adapter with static classes API, and from the reading of the
annotations of the class by reflection makes its methods such as
web services. The name of the web service that serves this request
is also informed in the configuration file. It is also metadata that
is annotated and read by the Spring framework. After these map-
pings, values are entered in the entity properties that are used in
the method execution. The following four scenarios were created
to verify the architecture behavior:
• Create a dynamic web service that accesses the value from
an entity property;
• Create a dynamic web service that executes a formula de-
fined in expression language (EL) that use values from entity
properties;
• Create a dynamic web service based on a Rule Object that
receives parameters;

• Create a new dynamic web service based on data entered on
an HTML page form;

All scenarios were structured and executed, and the architecture
was able to provide the expected dynamic behavior for each of them.
Due to space restrictions, it is not possible to present the detailed
information about all scenarios, but as an example, the next section
presents the steps to execute one of them.

6.2 Creating Dynamic Web Service
This scenario is intended to test the creation of a service without
using parameters, from a Rule Object added at runtime in the entity.

Test Procedure: To run the tests the following steps will be per-
formed:

(1) Change the configuration of the application.properties file;
(2) Run the unit test running Spring:

- Create web service;
- Publish the web service;
- Execute the client requesting the web service;
- Get the response to the request;
- Compare the result with the expected value and for Spring
execution.

(3) Check the Spring log to confirm that the service has been
correctly mapped.

Configuration: Listing 9 displays the configuration used to create
the entity that has mapped behavior method to create the magne-
tometer/intensity name web service to run this test scenario.

Listing 9: Configuration file for this scenario
1 entitytype.name = Magnetometro

2 entitytype.properties = direcao;sentido;intensidade

3 entitytype.ruleobject.rulename = retornaIntensidade

4 entitytype.ruleobject.class = org.inpe.RetornaIntensidade

5 entitytype.ruleobject.metadata.nomeendpoint = magnetometro/intensidade

6 entity.direcao.param = 350

7 entity.sentido = N

8 entity.intensidade = 50

20

An Architecture for Dynamic Web Services that Integrates Adaptive Object Models with Existing Frameworks SBCARS ’19, September 23ś27, 2019, Salvador, Brazil

Test Source code: The Listing 10 presents the test developed for
this scenario. This test is executed as an integration test that invokes
the web service from the outside.

Listing 10: Creating object directly mapping dynamic
method as web service

1 @Test

2 public void testMapDynamicMethod() {

3 beanRegistration.handleResults("magnetometro");

4 try {

5 this.mockMvc.perform(get("/magnetometro/intensidade")).andDo(print())

.andExpect(status().isOk())

6 .andExpect(content().string("50"));

7 } catch (Exception e) {

8 e.printStackTrace();

9 }

10 }

Result: As a result, during Spring execution, the log displays
the magnetometer/intensity web service recognition, showing the
name of the generated method, as presented in Listing 11. The test
was run successfully and returned the expected result.

Listing 11: Spring Execution Log Mapping a method to web
service

1 RequestMappingHandlerMapping : Mapped "{[/magnetometro/intensidade]}" onto

public java.lang.Object

magnetometroAOMBeanAdapter.retornaIntensidade(java.lang.String,

2 java.lang.Object...) throws org.esfinge.aom.exceptions.EsfingeAOMException

6.3 Modularity Analysis
The coupling analysis between the classes developed to perform
this activity was done using the Design Structure Matrix (DSM)
generated by the JArchitect tool. The generated DSM shows the
dependencies between the classes created in the case study for
creating web services and the RoleMapper and Spring AOM frame-
works. The objective is to verify the low coupling between these
classes and the frameworks used, confirming that no class of the
case study depends at the same time of the Spring framework and
the Esfinge AOM Role Mapper framework. Figure 6 presents the
DSM between the classes developed in the case study and the two
frameworks used.

Figure 6: Dependency of the classes for creatingweb services
at run time with the Spring and Esfinge frameworks

By analyzing the dependencies between the case study classes
and the AOMRoleMapper framework, 17 dependencies can be iden-
tified between the EntityFactory class and the AOM Role Mapper
Esfinge framework. The BeanFactory class presents 11 dependen-
cies with the Esfinge AOM Role Mapper framework. Neither of the
two classes that have dependencies with the Spring framework.

Analyzing the classes of the case study that interact with the
Spring framework, it is verified that: the Application class has
three dependencies; the BeanRegistration class has 16 dependen-
cies; the CreateWebServiceController class has two dependen-
cies, and the DynamicArgumentResolver class has three dependen-
cies. None of them depend on AOM Role Mapper. The rule classes
used in the test scenarios present four dependencies each with
the RoleMapper AOM framework. This dependency is with the
BasicRuleObject class that is extended to for the class to imple-
ments the Rule Object API.

6.4 Analysis
The analysis of the results of this case study is focused on answering
the research questions.

Q1: Is it possible to use the web services framework functionalities
that invoke methods by reflection for AOM entities, adding services
and modifying behavior from changes in the entity?

Four test scenarios with different characteristics were designed
and executed successfully showing that the proposed architecture is
capable of implement web services that can be dynamically created
and changed. Spring framework was able to successfully consume
the dynamically generated Java Beans adapter created based on the
AOM entity properties and Rule Objects. The web services were
created based on the adapter methods and annotations, which were
generated based on the mapping with AOM custom metadata. All
web services worked as expected in all test scenarios presented.

Q2: Is it possible to decouple the code that generates and manip-
ulates the AOM entities of code that invokes the features of the web
services framework?

The modularity analysis performed based on the DSM has shown
that it is possible to structure that architecture in a way that classes
that works with the Esfinge AOM Role Mapper framework do not
depend on Spring and vice-versa. The adapters dynamically gen-
erated by the AOM framework are loaded by Spring as a regular
application class and all the AOM structure is wrapped inside that
adapter. Even the adapter generator uses an external file to map
custom metadata to Spring annotations and does not have a di-
rect dependence on them. With this decoupling, the introduction
of dynamic web services would not change the structure of an
application that already have static ones implemented.

The decoupling between the web services functionality and the
generation of dynamic entities is an evidence that it would be
possible to change these frameworks by others that presents similar
characteristics. To support AOM, we do not find another framework
that generates the same kind of dynamic adapter, however for web
services there are other frameworks that provide web services based
on method annotations.

21

SBCARS ’19, September 23ś27, 2019, Salvador, Brazil Antonio Dias, Eduardo Guerra, and Phyllipe Lima

7 Related Work

In this section we present previous work performed by other re-
searchers and developers regarding dynamic web services genera-
tion and composition.

Web service composition is a much explored field, that aims
to create value-added services by integrating available services.
According to [19], there is a mass of web services with the same
functionalities, but with different Qos (Quality of Services) values
and uncertainties of the services’ application environment. To over-
come this, the authors proposed a a two-stage approach solution.
In the first stage, the top K-Web service composition schemes based
on each services’ historical QoS values are selected. In the second
stage, before selecting the best service for each task, QoS values of
each candidate service are predicted based on the improved case-
based reasoning, and the best service is selected according to the
predicted QoS values. Through QoS prediction,the reliability of the
composite Web service can be greatly enhanced.

The work performed by [11] deals with automatically generating
abstract web services. This a concept used to specify the function-
ality of certain types of Web services, that significantly benefits
their discovery and composition. Usually, the approach to generate
abstract services is a manual process that demands intensive hu-
man intervention. The authors proposed a process to automate this
by forming a service community, which is a functionality-based
service organization that groups together services providing sim-
ilar functionalities. From this community it is possible to extract
common functional features of services, generating the maximum
number of abstract services as possible. To demonstrate the effi-
ciency, the authors performed a comprehensive experimental study
on real world web service data.

We did not find in the literature any work for an architecture
that aims to provide a web services infrastructure capable of adding
and changing the behavior of existing services at runtime as it is
proposed by this work.

8 Conclusion

This paper proposed an architecture for the dynamic creation of
web services, using AOM and existing traditional frameworks. The
base AOM solution was provided by Esfinge AOM Role Mapper,
which received new features to implement the behavioral part of
the AOM model. This framework was chosen because it generates
Java Beans adapters based on the AOM entities. Spring framework
was chosen as the web services framework for its adoption in the
software development industry.

A case study was designed and executed to evaluate the target
architecture. For the functional point of view, four test scenarios
were executed successfully showing that the proposed architecture
is capable to provide functionality to enable the dynamic creation
and change of web services. A modularity analysis revealed that it
is possible to decouple the usage of the AOM frameworks from the
usage of the web services framework, presenting an evidence that
this solution can work with other frameworks and that a structure
of an application that provide web services might be maintained to
introduce the proposed solution. One limitation of the case study is

that it was developed using only the Spring framework. Although
it is widely used in the web development industry, it is possible
that other frameworks may have details that are not implemented
by the current stage of the solution.

As future works, the following research can be considered: ex-
tend Esfinge AOM Role Mapper framework to create new mapping
possibilities; verify the viability of the solution for other frame-
works; verify the impact of this solution in other quality attributes,
such as performance and reliability; and, experiment this approach
in a real application.

References

[1] D. B. F. C. de Almeida and E. M. Guerra. 2016. Evolution of XSD Documents and
Their Variability During Project Life Cycle: A Preliminary Study. In Computa-
tional Science and Its Applications – ICCSA 2016. Springer International Publishing,
Cham, 392–406.

[2] V. R. Basili and H. D. Rombach. 1988. The TAME project: towards improvement-
oriented software environments. IEEE Transactions on Software Engineering 14, 6
(1988), 758–773.

[3] D. Benincasa. 2015. Evaluation of web services contracts and their variability
during project’s life cycle (Master’s thesis). Master’s thesis. Instituto Nacional de
Pesquisas Espaciais, São José dos Campos, SP, Brazil.

[4] R. Benkoczi, D. Gaur, S. Hossain, and M. A. Khan. 2018. A design structure
matrix approach for measuring co-change-modularity of software products. In
Proceedings of 15th International Conference on Mining Software Repositories (MSR).
IEEE, 331–335.

[5] H. S. Ferreira, F. F. Correia, and A. Aguiar. 2009. Design for an adaptive object-
model framework. In Proceedings of the 2009 International Conference on Model
Driven Engineering Languages and Systems (MoDELS’09). IEEE.

[6] M. Fowler. 1996. Analysis patterns: reusable object models. Addison-Wesley.
[7] E. Guerra and A. Aguar. 2014. Support for Refactoring an Application towards

an Adaptive Object Model. In Computational Science and Its Applications : ICCSA
2014. Springer, Berlin, 73–89.

[8] A. Hen-Tov, L. Nikolaev, L. Schachter, R. Wirfs-Brock, and J. W. Yoder. 2010.
Adaptive object-model evolution patterns. In Proceedings of the 8th Latin American
Conference on Pattern Languages of Programs. Latin American Conference on
Pattern Languages of Programs, ACM, 5.

[9] R. Johnson and B. Woolf. 1997. Type Object. In Pattern Languages of Program
Design. Vol. 3. Addison-Wesley, 47–65.

[10] Rick Kazman,Mark Klein, and Paul Clements. 2000. ATAM:method for architecture
evaluation. Technical Report. Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

[11] X. Liu and H. Liu. 2012. Automatic Abstract Service Generation fromWeb Service
Communities. In 2012 IEEE 19th International Conference onWeb Services. 154–161.
https://doi.org/10.1109/ICWS.2012.41

[12] Patricia Megumi Matsumoto and Eduardo Guerra. 2014. An Approach for Map-
ping Domain-Specific AOMApplications to a General Model. Journal of Universal
Computer Science 20, 4 (2014), 534–560.

[13] Roozbeh Sanaei, Kevin Otto, Katja Hölttä-Otto, and Jianxi Luo. 2015. Trade-off
analysis of system architecture modularity using design structure matrix. In
Proceedings of ASME 2015 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. V02BT03A037.

[14] A. Yassine. 2004. An introduction to modeling and analyzing complex product
development processes using the design structure matrix (DSM) method. Urbana
51, 9 (2004), 1–17.

[15] J. W. Yoder, F. Balaguer, and R. Johnson. 2001. Adaptive object-models for imple-
menting business rules. Urbana 51 (2001), 61801.

[16] J. W. Yoder, F. Balaguer, and R. Johnson. 2001. Architecture and design of adaptive
object-models. ACM Sigplan Notices 36, 12 (2001), 50–60.

[17] J. W. Yoder and R. Johnson. 2002. The adaptive object-model architectural style.
In Software architecture, Jan Bosch, Morven Gentleman, Christine Hofmeister,
and Juha Kuusela (Eds.). Springer, 3–27.

[18] J. W. Yoder and R. Razavi. 2000. Metadata and Adaptive Object-Models. In Object-
Oriented Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, 104–112.

[19] Z.Liu, D. Chu, Z. Jia, J. Shen, and L. Wang. 2016. Two-stage approach for reliable
dynamic Web service composition. Knowledge-Based Systems 97 (2016), 123 –
143. https://doi.org/10.1016/j.knosys.2016.01.010

22

