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ABSTRACT
One of the most challenging task of testing activity is the generation
of test cases/data.While there is significant amount of studies in this
regard, there is still need to move towards approaches that can gen-
erate test case/data based only on source code since many software
systems mostly have the source code available and no adequate
documentation. In this paper a newmethodology, called Singularity,
is introduced to generate unit test data for C++ applications based
on Model Checking, a popular technique for test case generation.
Our approach, which is to be supported by a tool, automatically
translates C++ code into a model which resembles a Statechart
model and then into the notation of the NuSMV Model Checker.
Later, we rely on a technique based on the HiMoST Method, pro-
ducing counterexamples from the Model Checker that are, in fact,
the test cases/data themselves. We have applied our approach to a
few C++ case studies analyzing how feasible it is for automatic test
data generation.

CCS CONCEPTS
· Software and its engineering → Software testing and de-
bugging; Model checking; Software verification.
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1 INTRODUCTION
Software production is a continuous activity. The omnipresence of
technology in the modern era suggests large and constant software
production in unlimited different areas. All that code must be tested
somehow. Quality of all such produced software systems must be
ensured, and hence Verification & Validation (V&V) activities can
be employed for this goal [2]. Moreover, software testing [6] is
the most used V&V activity in practice. Ideally, adequate software
documentation should exist to support code production and enable
testing based on established specifications. However, sometimes
the code itself is the only documentation that is available. It is not
uncommon to find software systems that are in production and
whose documentation is extremely poor [5]. In such situations,
the use of source code alone to generate tests case/data should
be considered, where code robustness needs to be evaluated. This
work handles the situation where source code is already available
for the software, but functional aspects of the program are perhaps
poorly documented or documented but no longer credible.

Unit testing is widely used in industry and developers are famil-
iar with writing test suites [16]. This specific type of test verifies
if the functionality of a small part of the program is correct. It is
also interesting to note that another topic mentioned in this paper,
the C++ programming language, is still one of the most used pro-
gramming language in the global development scenario, as recently
corroborated by the TIOBE index [20].

From this perspective, the present work proposes a new method-
ology for automatic generation of software test data from existent
C++ code. This methodology, called Singularity, presents a collec-
tion of processes to read the source code, extract the states and
transitions, build a model of the software under test and apply it
as an input to a Model Checker tool. Using special properties that
force the Model Checker to generate counterexamples, test data are
generated aiming at achieving higher code coverage of the source
file without the need of documentation or software specification.

The use of counterexamples, i.e. traces of execution where a
given propertie is not satisfied, to generate test cases is a very
popular approach [9], being a very convenient technique that can
be fully automated, quite flexible and, under proper circumstances
1, very efficient. To create unit test case/data without requiring a
documentation, based only on the source code, is a very attractive

1In scenarios of a limited size and without parallel content to avoid state explosion

72



SAST 2019, September 23ś27, 2019, Salvador, Brazil Eras, et al.

approach with great appeal to practitioners. To the best of our
knowledge, no other approach generates test cases/data based only
on the C++ source code using Model Checking counterexamples.
Explore the feasibility of such scenario is one of the goals of the
present methodology.

This paper is structured as follows. Section 2 provides a review
of the main issues used to develop this work. Section 3 explains
the approach to achieve unit test generation from source code,
using counterexamples of Model Checking process. This section
also brings the details for constructing the models, describing the
algorithms. In Section 4 an analysis of the approach is made by
applying it to six different case studies and collecting the results
to verify the feasibility of Singularity. Related work is discussed in
Section 5. Finally, Section 6 concludes the paper and comments the
future of this research.

2 BACKGROUND
In this section, we present a brief review of the main topics related
to this paper.

2.1 Software test
The intricate nature of a computer program requires the use of
computational methods to perform tests that efficiently cover the
system under evaluation. According to Fraser [11], testing remains
the most important approach to verify the quality of a software
product, and it is desirable that it is automated because manual
testing requires a huge effort and is error-prone.

A testing process can be composed of several activities, being
functional or structural. According to Jorgensen [15], functional
tests are based on the principle that any program can be considered
a function that maps values from its input domain to an output
range. This type of test is commonly known as "black box test",
where the contents of the box (the implementation of the program
under test) is unknown, and the operation of the black box is known
only in terms of its inputs and outputs. Structural tests or white box
tests are, in contrast to functional tests, based on knowledge of the
implementation of the program being tested. They have the ability
to see what’s "inside the box" and identify test cases based on how
the function is implemented. There is also theModel Based software
test technique where the generation of test cases is based on models
of the system and allows for system test cases to be elaborated even
without the software code itself, early in the software product life
cycle.

Another important concept is the level of testing. The level of
testing depends on the phase of software development where the
test will be accomplished. According to Delamaro [7], it starts at
the component level (unit) and is progressively expanded until it
encompasses the entire system. In a unit test, a single component is
tested and the main goal is to find defects in the component. At the
integration level, several components are tested as a group and the
interactions among the components are investigated. At the system
level, the entire system is tested and it is necessary to ensure that
the system works according to its requirements, and furthermore
features such as reliability and performance are evaluated. At the
acceptance level, the client evaluates the system and issues a verdict
if it meets the expected functionality.

2.2 Unit Tests
According to Pressman et al. [18], the unit testing is the effort to
verify the smallest unit of software, the so-called module. Important
control paths are tested to discover errors within the boundaries of
the module, limiting the complexity of the tests and the complexity
of the errors found within the unit tests restricted field of action. A
unit test is always based on white box.

The unit test activity is usually considered part of the coding
process. Once the syntax of a source code has been developed and
reviewed, a unit test is created for that code. Each test case must be
associated with a set of expected results.

2.3 Model Checking
According to Delamaro [7], a model allows the discovery of knowl-
edge about the system, being usable as an oracle for tests, defining
what would be an appropriate or erroneous behavior. For this, the
correctness of a model must be ensured, i.e., it needs to be tested
in the same way as the system itself. Proved that the model is ade-
quate, it becomes of great value for generating test scenarios. An
important point is the model format: it is possible to describe the
actions performed by a system through a graph where the nodes
represent the states and edges represents the transitions between
the states. This technique is called the "State Transition System".

Figure 1: Schematic view of Model Checking. [2]

According to Baier [2], Model Checking requires a precise and
unambiguous statement of the properties to be examined. The sys-
tem model is commonly generated automatically from a model de-
scription that is specified in some appropriate programming dialect
(such as C++ for example). Specification properties prescribes what
the system should and what the system should not do while the
model reports what the system actually does. The Model Checker
examines all relevant states of the system to see if they satisfy
the desired property. A model can satisfy the properties when all
states are in agreement with the property under consideration or
generating a counterexample if any state violates some property.
The counterexample describes an execution path beginning in the
initial state of the system towards the violation state. Following
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this path, a user can reproduce the scenario, thereby obtaining use-
ful debugging information and adapting the model (or property)
according to the detected error. An overview of this process can be
seen in Figure 1.

2.4 Using Model Checking Counterexamples as
Test Cases

The work of Fraser [11] describe testing data generation withModel
Checker as the interpretation of the counterexamples as test cases.
Provided a model of the system under test, a set of special properties
might be used to force the Model Checker to generate counterex-
amples. Those properties are called trap properties. A trap property
models a characteristic of the system and claims it as false, the
generated counterexample exhibits an execution trace where the
system characteristic is true. A trace is a sequence of system states,
so it’s possible to interpret this as a test data. This technique easy
produces paths in a system for a given scenario. For example, one
may provide a trap property telling to the Model Checker tool that
the final state of a model is never reached. The counterexample will
show a path thought the system leading from the initial state to
the final state.

However, Model Checker tools are originally meant to formal
verification, not test case/data generation. This twisted use of the
technique may not be accepted in the industry and some known
issues take place. In [10], the author discusses some points relate
to this approach, two of then are briefly considered in this section.

The Model Checker tool validates a model against a property, so
the validity of the result depends on the validity of the model. A
model that does not describe the system correctly does not produce
a valid result. This issue is confronted by the Singularity method-
ology by extracting the model from the code itself. Even if the
extraction process may not be perfect, the generated test cases can
conceivably be analysed by the user for adjustments.

Model Checkers do exhaustive analysis of an input model. This
often leads to state explosion depending on the size of the input.
To avoid this trouble, Singularity methodology concentrates test
case generation on unit tests. Thus, this problem is minimized
by the limited size of the input. The number of model states is
proportional to the number of instructions on the code, which is
expected to be small most of the time. Parallel programming, a
common source of state explosion, is not supported by Singularity,
which also contributes to the reduced number of states during the
Model Checking process.

3 THE SINGULARITY METHODOLOGY
This section briefly describes Singularity methodology. Its structure
is composed by four components: Reader, Extractor, Generator and
Constructor. The main workflow is shown in Figure 2.

3.1 The Reader component
The first component is responsible for reading the C++ source
code and transform it in some data structure ready to be used by
the methodology. A tree structure is created from the source code
containing every instruction of the code, organized by the scope
blocks.

Figure 2: The Singularity methodology structure

3.2 The Extractor component
To use a Model Checker, one must have a system model to be tested
in the form of a state transition system. The extractor is responsible
to iterate the incoming C++ tree and extracting states and transi-
tions from it. This process generates a metadata representing the
structure of the original code using the C++ language scopes as
hierarchy levels and each statement line as a state, as well as simu-
lating a code execution in search of a sequence of state transitions.
This process is divided into two parts, a state extractor function
and a transition extractor function, as shown in Algorithm 1.

Algorithm 1 Extractor

input: C++ tree
output: states, transitions

1: states← stateExtractor(C++ tree)
2: transitions← transitionExtractor(C++ tree)
3: return states, transitions

The transformation of C++ source code into states is accom-
plished by interpreting each statement line that generates a new
scope (block of code that delimits the validity of a variable, usually
indented or between braces) as a level state and each line that does
not generate a new scope as a plain state. Algorithm 2 describes
the procedure for extracting states.

Algorithm 2 stateExtractor

input: C++ tree
output: states

1: states← initializeSet()
2: for node ∈ C++ tree do
3: if node generates a new scope then
4: state← generateLevelState(node)
5: else
6: state← generatePlainState(node)
7: end if
8: states.add(state)
9: end for
10: return states
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For the state diagram to be complete, each state must be con-
nected through a set of transitions. The transitions are inferred
simulating an execution of the file being tested. The input C++ file
is expected to contain classes and functions. The trasitionExtrac-
tor() function generates a virtual main() function where objects are
instantiated for all classes contained in the input file and calls all
public functions of those classes. If there is any standalone function
in the source code, these will also be called. From the first statement
of the main function, a recursive call is made to simulate a code
execution. This way, the process forces a coverage of the C++ file. In
Algorithm 3, the instruction sequence of the transitions extracting
function is shown.

Algorithm 3 trasitionExtractor

input: C++ tree
output: transitions

1: transitions← initializeSet()
2: if �main() function then
3: Createmain() functiom
4: Instatiate objects for all classes
5: Call public methods from all objects and all standalone

functions
6: end if
7: initialState← first line ofmain() function
8: identifyAllPossibleNextStates(initialState)
9: function identifyAllPossibleNextStates(state)
10: nextStates← identifyTransitions(state)
11: for next ∈ nextStates do
12: transitions.add(create a transition to next state)
13: if next , finalState then
14: identifyAllPossibleNextStates(next)
15: end if
16: end for
17: end function
18: return transitions

3.3 The Generator component
The generator component is responsible for transforming the data
structure that represents a state transition diagram into a model
ready to be used by the NuSMV Model Checker. This step of the
methodology is made by a variation of HiMoST method [6]. The
generator component proposed here has as input a state transition
diagram generated by the Extractor component, which differs from
Statecharts [12] used in HiMoST method because it has no history
or parallelism. It is also different in the way CTL properties are
generated, instead of using the Dwyer [8] patterns in properties
specifications combined with the states of the diagram by the TTR
algorithm [3], the properties are generated by trap properties found
in the work of Fraser et al. [11]. The complete process performed
by the generator module is divided into five functions that can be
seen in Algorithm 4.

The Algorithm 5 describes the first of the five functions of the
Generator component. Three variables are created to describe a
model of the system under test: state variable, event variable and

Algorithm 4 Generator

input: states, transitions
output: NuSMV Model

1: variables← createVariables(states, transitions)
2: initials← createInitialStates(states, transitions)
3: next← createNext(initials, states, transitions)
4: properties← createProperties(variables, states, transitions)
5: return NuSMV model← generateNuSMV(variables, states,

transitions, properties)

decision variable. Those variables have a set of values (states) ex-
tracted from the C++ code. The state variable holds information
about the plain states and the decision structures from level states.
A decision structure, when present in the code, uses Boolean events
to define its execution flow. The existence of Boolean events sets
the decision variable to be created. All other events different from
Boolean ones are stored in the event variable.

Algorithm 5 createVariables

input: states, transitions
output: variables

1: stateVariable← initializeSet()
2: for state ∈ states do
3: if state == ’plainState’ then
4: stateVariable.add(state)
5: else if state.type == ’decision’ then
6: stateVarable.add(state)
7: end if
8: end for
9: eventVariable← initializeSet()
10: Boolean← False
11: for transition ∈ transitions do
12: if transition.event , ’TRUE’ ∨ transition.event , ’FALSE’

then
13: eventVariable.add(transition.event)
14: else
15: Boolean← TRUE
16: end if
17: end for
18: if Boolean then
19: decisionVariable← initializeSet()
20: return variables← stateVariable ∪ eventVariable ∪

decisionVariable
21: end if
22: return variables← stateVariable ∪ eventVariable

Once the variables have been defined, the initial state of each
variable must be established by the createInitialState() function. Dur-
ing the creation of the transitions by the extractor module, a main()

function was used to simulate an execution stream. This function
however is not tested. Therefore, the initial state of each variable
must begin outside the main() function. The decision variable is
obviously an exception, its initial value is simply set to False.

The createNext() function, seen in Algorithm 6, creates the set of
next states for each variable in the NuSMV model. After finding the
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initial state in the transition set, a recursive call is made to create
transitions for all states, events and decisions, always avoiding visit
the main() function.

Algorithm 6 createNext

input: initials, states, transitions
output: next

1: next← initializeSet()
2: for transition ∈ transitions do
3: if transition.origin == initialState then
4: createTransitions(transition)
5: break
6: end if
7: end for
8: function createTransitions(transition)
9: next.state.add(create state transition)
10: if transition.event == binary then
11: next.event.add(create decision transition)
12: else
13: next.event.add(create event transition)
14: end if
15: if transition.destiny , finalState then
16: if transition.destiny < main() function then
17: createTransitions(transition.destiny)
18: else
19: nextValid← find next transition out of main()

20: createTransitions(nextValid)
21: end if
22: end if
23: end function
24: next← clear duplicated transitions
25: return next

The createProperties() function takes as input the states and tran-
sitions sets. The work of Fraser et al. [11] includes several properties
for the generation of test cases regarding the coverage of the tested
system. These properties, called trap properties, are a logical nega-
tion for each element of a model, forcing a coverage of the path
traveled by that element in the given model. Three trap properties
are used to cover the model by the Singularity methodology: the
negation of events, the negation of transitions, and the negation of
decision guards. These properties, called case 1, case 2 and case 3
respectively, cover the three types of variables created in Algorithm
5: states, events, and decisions.

The case 1 property in Equation 1 is applicable to the events.
Denying each value assumed by the event variable generates a
counterexample for each event with a path that leads to the con-
firmation of that event. This counterexample is used to generate a
unit test.

∀□¬(event = e),∀ e ∈ events (1)

The case 2 property in Equation 2 uses the values of the Boolean
transitions, stating that when it is in a particular state of origin
and a certain Boolean transition value occurs, the next state will
be different from the destination state. This property is written for
each Boolean transition, for both TRUE and FALSE values (guard

condition). Thus, this properties will generate a counterexample
for both paths of the transition.

∀□ oriдin ∧ дuard → ∃⃝ ¬ destiny (2)

For all non-Boolean events, the case 3 property shown in Equa-
tion 3 is used. Note that the first expression of case 3 property is
equal to case 2 property. The second part states that a transition
from a state other than the origin will always lead to the destination,
which is immediately invalid for the model under test. This prop-
erty guarantees at least one counterexample for each non-Boolean
transition.

{

∀□ oriдin ∧ дuard → ∃⃝ ¬ destiny

∀□ oriдin ∧ ¬ дuard → ∃⃝ destiny
(3)

Here, all the elements needed to create a NuSMVmodel is fulfilled
and the generateNuSMV() function is responsible for generation of
the input file of the Model Checker, following the expected order of
elements found in a NuSMV input file. In a linear way, the state and
event variables are created from the set of variables, the decision
variable is created if it exists, the initial states from the set of initial
states, the transitions from the set of transitions, and finally the
properties from the set of properties. This final NuSMV file will be
consumed by the next component to generate the counterexamples.

3.4 The Constructor component
The last component of Singularity methodology, seen in Algorithm
7, is responsible for generating the unit tests from the counterex-
amples of the Model Checker. Here the NuSMV Model Checker is
called and the model to be tested is verified. It is expected that coun-
terexamples are generated with the execution of the Model Checker.
The list of counterexamples is iterated and for each counterexample
a unit test is generated. In other words, each counterexample is
a test case. It was established that only counterexamples with a
number of states greater than 2 will be considered in the generation
of unit tests, as suggested by HiMoST [6]. Each counterexample is
iterated by its states. These states describe a point in the execution
path to be visited in C++ code.

Algorithm 7 Constructor

input: NuSMV model, states
output: C++ unit test

1: C++ unit test← generate file
2: counterexamples← NuSMV(NuSMV model)
3: for counterexample ∈ counterexamples do
4: if number of states in counterexample > 2 then
5: test← generate C++ function
6: for state ∈ counterexample do
7: test← generate C++ instruction from states
8: end for
9: C++ unit test← test
10: end if
11: end for
12: C++ unit test← eliminate duplicated tests
13: return C++ unit test
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4 EXPERIMENTAL ANALYSIS
This section presents the execution of Singularity over six different
case studies. The results obtained describe the efficiency of test case
generation and the code coverage using the counterexamples with
the larger number of states. A tool is not fully implemented yet, so
most of the experiment was conducted manually.

4.1 Description of Case Studies
The methodology was applied to six case studies. Three of them are
part of a scientific application called GeoDMA, while the other are
simpler academic examples. GeoDMA [17] [14] is a tool developed
in C++ under FOSS (free and open source software) license and acts
as a plugin for the TerraView Geographic Information System [13].
Three class files written in C++ from the GeoDMA source code
directory were selected as input to the Singularity methodology for
obtaining test cases. The selected case studies will be called input

in this section.

• input 1 : The "context" class from the GeoDMA source li-
brary is a C++ code with approximately 115 lines of code
without the comments. It has 8 functions, an operator and
the constructors.
• input 2 : The "generalFunction" class from the GeoDMA
source library has approximately 137 lines of code without
the comments. It contains a unique function with several
decision structures.
• input 3 : The "intersectionCache" class from the GeoDMA
source library has approximately 128 lines of code without
the comments, 3 functions, a destructor and a large try catch
section with 3 exceptions handler.
• input 4 : The "inheritance" file has 23 lines of code, two
classes and describes a simple inheritance scenario in object
oriented programming.
• input 5 : The "strategy" file has 34 lines of code, four classes
and describes a simple strategy design pattern scenario with
polymorphic function calls.
• input 6 : The "triangle" file has 46 lines of code, two classes
and several decision structures to solve the classic triangle
classification problem where given three integers it evalu-
ates if the numbers describe a valid triangle and classifies it
according to the sides.

4.2 Metrics Definition
In order to analyze the results, three metrics were defined. Given
the six inputs and three trap properties, several counterexamples
were obtained. Only the counterexamples with more than 2 states
were considered valid. Each input generates a test scenario with
many states, events, and transitions. Each trap property generates
several different properties for each input according to its states,
events, and transitions. The three metrics are defined as:

• Efficiency: the ratio of generated counterexamples for each
trap property
• Effectiveness: the number of valid counterexamples for each
input
• Coverage: the code coverage considering the biggest coun-
terexample encountered for each property

Sta. Eve. Dec. Prop. Count. Efficiency
input 1 35 4 yes 88 88 100,00%
input 2 48 0 yes 146 146 100,00%
input 3 55 9 yes 161 161 100,00%
input 4 4 2 no 8 8 100,00%
input 5 4 2 no 10 10 100,00%
input 6 21 5 yes 74 74 100,00%
Total 167 22 66,67% 487 487 100,00%

Table 1: Model variables and efficiency percentage for each
input

4.3 Results and Analysis
Each input creates a model to be verified by the Model Checker
tool. A model is composed by states, Boolean events or "decisions",
non-Boolean events, transitions, and properties. Every input has
a different number of states. A state is every node in the C++ tree
marked with a unique ID, or every line of code where some flow
of execution happens, such as statements and decision structures.
Functions and classes declarations, "namespace" declarations, open
and close brackets, visibility keywords or any other kind of code
line where any significantly compute happens are not considered
as a state. Not all inputs have events and decisions. Some inputs,
like 4 and 5, have no decision structure so no Boolean event was
used. The input 2 shows non-Boolean events. A non-Boolean event
is any output string, returning object or exception thrown. Every
input has transitions and properties. A property is generate by the
trap properties seen in Section 3, named case 1, case 2, and case 3.
Each "case" generates several properties to be verified by the Model
Checker using the states, events, and transitions.

Table 1 shows the number of states, events, transitions, and
properties for each input, as well as the number of generated coun-
terexamples. Dividing the number of properties of each input by
its respective number of counterexamples produces the efficiency
value. The Singularity methodology achieved 100% efficiency for
the six tested input.

Each input generates a number of counterexamples, but only the
traces with more than 2 states is considered a valid counterexample.
The total (which is called ‘bulk’) and the valid number of coun-
terexamples tend to be different. The effectiveness of each input is
calculated by Equation 4.

effectiveness =

number of cases
∑

case=1

(

validcase

bulkcase

)

(4)

Table 2 shows the number of bulk and valid counterexamples for
each input divided by case 1, case 2 and case 3 trap properties. It
also shows the effectiveness percentage for each input and the total
effectiveness as the sum of every single effectiveness value divided
by 6 (simple mean). The Singularity methodology owns 44, 97% of
total effectiveness.

The six inputs generates a total of 264 valid counterexamples.
It’s not feasible to test code coverage of every trace without an
automated tool. Thus, the biggest counterexample of each case
in each input was considered to achieve code coverage. For code
coverage, comments and imports were not considered as lines of
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Bulk Valid Effectiveness
input 1 4 76 8 3 36 8 53,41%
input 2 - 124 22 - 60 22 56,16%
input 3 9 130 22 8 58 22 54,66%
input 4 2 - 6 2 - 1 37,50%
input 5 2 - 8 1 - 0 10,00%
input 6 4 52 18 4 23 16 58,11%
Total 21 382 84 18 177 69 44,97%

Table 2: Bulk counterexamples and valid counterexamples
for each input and effectiveness percentage

case 1 case 2 case 3 lines Coverage
input 1 55 54 43 86 58,91%
input 2 - 39 22 112 27,23%
input 3 18 26 23 82 27,24%
input 4 13 - 18 21 73,81%
input 5 20 - - 27 74,07%
input 6 29 26 26 49 55,10%
Total 135 145 132 377 52,73%

Table 3: Covered lines for each case, total number of lines
and total coverage

code. Table 3 shows the number of code lines that were covered by
each case in each input, as well as the total of lines for each input.
The coverage was calculated by Equation 5.

coverage =

∑number of cases
case=1

(

covered lines
total l ines

)

number o f cases
(5)

The coverage for each input is given by the summation of the
covered lines divided by the total lines for each case, divided by the
number of cases. The total coverage is given by the simple mean of
all individual coverages. Singularity methodology achieved 52.73%
of code coverage considering only a unique big counterexample.

5 RELATED WORK
This section presents somework related to the approach used by the
Singularity methodology, some using Model Checker counterexam-
ples to generate test cases, other generating unit tests and some just
mentioning similar techniques, considering its own particularities.

Yoshida et al. [21] introduced KLOVER, a methodology for auto-
matic generating tests for embedded system implemented in C or
C++, using an analysis technique called "symbolic execution". The
methodology generates unit level tests, and claims to provide excel-
lent test coverage. The proposed approach generates the necessary
environment to isolate the input code and delivers unit tests writ-
ten in Google Test framework, gtest. The main difference between
KLOVER and Singularity is the use of Model Checking: Yoshida’s
methodology aims to collect the required data for an execution
and ensure the code coverage by using symbolic execution while
the solution proposed by the Singularity methodology relies on
counterexamples of a Model Checker.

Beyer [4] proposes a variation of BLAST Model Checker for au-
tomatic generation of test cases from counterexamples with respect

to a given property p. Given a code written in C programming lan-
guage, it finds all paths where the given property p is satisfied, thus
generating a tests suite capable of cover all points of the code where
p (usually a security property) is true. The proposed approach was
used to find, for example, points in a code where access is allowed
only within a valid password (root access) and has been tested for
locating "dead code" in C applications with up to 3 × 105 lines of
code, reporting a false positive free coverage with a fully automated
process.

Another work that uses counterexamples of a Model Checker for
generating test cases was written by Rayadurgam et al., [19] where
a method for automatic test case generation for structural coverage
criteria is presented. A complete sequence of tests is automatically
generated from Model Checker counterexamples achieving a pre-
defined coverage for any software that can be represented as a
finite state machine. The generation of counterexamples uses trap
properties to force coverage of the input code, adopting exactly the
same properties used by the Singularity methodology presented in
that work. The method usage was exemplified with a small critical
safety avionics systems.

Paul Ammann [1] proposes the use of Model Checking to gen-
erate test cases from the software specifications. The proposed
method uses mutants based tests to generate counterexamples,
solving the common problem of "equivalent mutants" (mutations in
the code that do not affect its operation), since this mutation type
is simply satisfied by the Model Checker and does not generate any
counterexample. Test case generation uses these counterexamples
and reduce the number of outputs by eliminating equivalent tests
and prefixes. The method was applied to a code written in Java
language.

6 CONCLUSIONS AND FINAL REMARKS
This paper has proposed a new methodology of test case/data gen-
eration from C++ code called Singularity. The process is divided in
four components and relies on Model Checking counterexamples to
generate the test cases and consequently, unit tests. The methodol-
ogy uses three different trap properties to force the counterexamples
generation. The chosen trap properties, named case 1, case 2, and
case 3 achieved 100% efficiency in counterexamples generation for
the six case studies, which means that all trap properties generates
a counterexample in all six inputs. This certainly does not happen
all the time, as some input can generate no counterexamples at all
despite using a large number of trap properties, but even consider-
ing only the present scenario, it is still a promising result for the
approach . About 45% of generated counterexamples were consid-
ered valid and if specifically only inputs 1 to 3 are analyzed (which
are actually real case studies), 54, 74% of effectiveness is achieved.
Using only the biggest trace of the delivered counterexamples as
test case, an average of 52, 73% of code coverage is reached, a good
result since a unique test was applied. The largest inputs 1, 2, and
3 obtained a smaller coverage with a single counterexample but
the smaller input obtained a considerable coverage with a single
test. If the totality of valid counterexamples could be applied to
the case studies a broad code coverage may be achieved. Another
positive characteristic of the methodology is about the concern of
state explosion within test case generation by the model checker.
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This problem is mostly solved in Singularity considering the small
scale of a unit test. All scenarios tend to be limited by the size of a
single C++ file, considering that each state is equivalent to one line
of the code.

The tool to support our methodology is under development and
needs to be concluded. The experimentation presented in this paper
was basically manually conducted although this does not affect the
outcomes of our research. The main contributions of this work are a
detailed description of the methodology so that the implementation
of a tool to support it is straightforward, and an experimental
evaluation showing the feasibility of our approach. Once having a
tool, several tests can be conducted and many improvements may
be identified in the methodology.

Nevertheless, some challenges need to be addressed within the
test case generation approach. When a unit test is written, the
test function must be able to test the desired C++ file independent
of its context, i.e. a unit test must be a standalone test. In order
to execute a C++ file, some resources are needed perhaps from
other files, hardware characteristics, specific types of input, some
software library or any kind of particularity, known as overhead.
To create a unit test for a file with a large overhead is challenging.
A deeper study in this area is required, specially topics about stubs
or mocks. Another similar problem resides in the functions input
types, when for example, some specific numerical value is needed
to simulate a desired path through a conditional structure in the
code. Guessing a value for a guard condition is not a trivial task.
This problem opens a wide field of different research. And finally,
the input C++ language is very broad and there is a lot to predict
about the entering source code. Things such as templates, pointers,
design patterns or regular expressions are not yet supported by
the methodology and there are some more functionalities in C++
language to be explored. However, there is still room to improve the
methodology in a different direction, by creating compatibility with
programming languages different than C++. Other object-oriented
languages such as JAVA, Objective C or C# are strong candidates
for the Singularity methodology if a demand arises.
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