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The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to
probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the
first time the modified GW form propagation from the inspiraling of compact binary systems within the
context of fðTÞ gravity in order to obtain new forecasts/constraints on the free parameter of the theory.
First, we show that the modified waveform differs from the GR waveform essentially due to induced
corrections on the GWs amplitude. Then, we discuss the forecasts on the fðTÞ gravity assuming simulated
sources of GWs as black hole binaries, neutron star binaries and black hole–neutron star binary systems,
which emit GWs in the frequency band of the Advanced LIGO (aLIGO) interferometer and of the third
generation Einstein Telescope (ET). We show that GW sources detected within the aLIGO sensitivity can
return estimates of the same order of magnitude of the current cosmological observations. On the other
hand, detection within the ET sensitivity can improve by up to 2 orders of magnitude the current bound on
the fðTÞ gravity. Therefore, the statistical accuracy that can be achieved by future ground based GW
observations, mainly with the ET detector (and planed detectors with a similar sensitivity), can allow strong
bounds on the free parameter of the theory, and can be decisive to test the theory of gravitation.
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I. INTRODUCTION

The detection of gravitational waves (GWs) in recent
years opened a new spectrum of possibilities to inves-
tigate cosmic phenomena and fundamental physics (see
[1] for a summary of all GW detections up to the present
time). Beyond the present performance of the LIGO
and Virgo interferometers, with a third generation of
detectors the precision GW astronomy will become a
reality. As remarkable examples, we mention a planned
third generation of the LIGO interferometer (called
LIGO Voyager [2]) and the Einstein Telescope (ET)
[3,4]. Such GW observatories will allow for observations
with signal-to-noise ratios that are several times larger
than the current aLIGO.
Certainly, current and future GW observations will play

an important role in unraveling open problems in modern
cosmology, as a complementary source of information
to probe dark energy and modified theories of gravity.
After the recent GW170817 and GRB 170817A events, the
modified gravity theories have been screened by imposing

strong constraints over them [5–9] (see also [10] for the
latest review), following an exclusion principle applicable
to those models which predict that the speed of GWs is not
equal to the speed of light.
Furthermore, the detection of GWs from the merger of

compact binary systems, as black holes and neutron star
binaries, allows one to infer the luminosity distance without
the need of a calibration with respect to another source.
In this sense, these systems have been called “standard
sirens.” Therefore, if the redshift of the GW sources are
measured by using other techniques, the GW observations
will provide an independent tool to constrain the expansion
history of the Universe and to test alternative theories of
gravity in a cosmological setting.
Recently, it has been shown that modifications in the

underlying gravity theory can affect not only the speed and
the waveform of the GWs, but also their propagation
through cosmological distances. Hence, in the context of
modified theories of gravity a new equation for the GW
luminosity distance arises, which is distinct from its
electromagnetic version [11]. Therefore, such an effect is
a new opportunity to test or even to rule out alternative
theories of gravity [11,12]. In the present article, such
corresponding corrections on fðTÞ gravity are presented for
the first time.
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Amongst various modified gravity theories available at
the present [13,14], the fðTÞ-teleparallel modified gravity
theories gained a massive interest in the scientific com-
munity [15–42] due to its dual ability to mimick the early
and late accelerating phases of the Universe without the
inclusion of a dark energy fluid (see [43] for review). The
fðTÞ theory is a class of torsion-based modified gravity
theories where the torsion scalar, T, plays an equivalent role
to the Ricci scalar in the Einstein-Hilbert action.
Recent theoretical developments in fðTÞ gravity in the

context of GWs were made in [44–47]. In particular, the
first extraction of the observational constraints using GWs
physics through a stochastic primordial GW within the
context of fðTÞ-teleparallel modified gravity was presented
in [48]. On the other hand, connections between observa-
tion and theory in the context of GWs from compact
binaries within the fðTÞ gravity/cosmology have not been
investigated so far, and here we present such results for the
first time in the literature, which we believe to be one of the
most important issues to analyze when treating phenom-
enological scenarios and their feasibility. In the present
work, we obtain forecasts on the parameter estimation
in the fðTÞ gravity for observations of compact binary
coalescences by the Advanced LIGO (aLIGO) and for the
ET. In general, as we will see later the main effect of the
fðTÞ gravity is to modify the GW propagation between
the GWs source and detector. Therefore, we focus on the
modified GW luminosity distance obtained in the context
of the fðTÞ gravity, which is a cumulative effect over the
distance to the source [49].
The manuscript is organized as follows: In the next

section, we present the equations that determine the
propagation of GWs in the fðTÞ gravity. In Sec. III, we
quantify the modification in the GW form compared with
the GR theory. In Sec. IV, we summarize the statistical
methodology used in the parameter estimation. In Sec. V
we present the forecasts for GW observations with the
LIGO em ET detectors. Finally, we present our concluding
remarks and perspectives in Sec. VI.

II. TENSOR PERTURBATION IN f ðTÞ GRAVITY

In this section we briefly review the main aspects of the
fðTÞ gravity, the resulting Friedmann equations as well as
the equations of motion of the tensor modes.
In the framework of torsional gravity one uses the tetrad

fields eμA as the dynamical variables, which form an
orthonormal base in the tangent space of the underlying
manifold M, which is endowed with a metric tensor gμν ¼
ηABeAμeBν , where the tetrad metric is ηAB ¼ diagð−1; 1; 1; 1Þ.
Throughout this work we use Greek indices to denote the
coordinate space and Latin capital indices for the tangent
space. Furthermore, unlike the GR theory, which uses
the torsionless Levi-Civita connection, here we use the

curvatureless Weitzenböck connection Γ
wλ

νμ ≡ eλA∂μeAν [50].

Thus, the gravitational field is described by the torsion
tensor

Tλ
μν ≡ Γ

wλ

νμ − Γ
wλ

μν ¼ eλAð∂μeAν − ∂νeAμ Þ: ð1Þ

In the specific case of the teleparallel equivalent of
general relativity (TEGR), the Lagrangian is the torsion
scalar T, constructed as follows [50]:

T ≡ 1

4
TρμνTρμν þ

1

2
TρμνTνμρ − Tρμ

ρTνμ
ν; ð2Þ

and the corresponding action reads

S ¼ 1

16πG

Z
d4xeT; ð3Þ

where e ¼ detðeAμ Þ ¼ ffiffiffiffiffiffi−gp
and G is the Newton’s gravi-

tational constant (we set the speed of light to c ¼ 1).
If we use TEGR as the starting point for torsional

modified gravity, the simplest modification is the action
for the fðTÞ gravity, which is given by

S ¼ 1

16πG

Z
d4xefðTÞ: ð4Þ

The variation of the above action with respect to the
tetrads leads to the field equations, namely

e−1∂μðeeρASρμνÞfT þ eρASρ
μν∂μðTÞfTT

− fTeλAT
ρ
μλSρνμ þ

1

4
eνAfðTÞ ¼ 4πGeρAΘρ

ν; ð5Þ

where fT ¼ ∂f=∂T, fTT ¼ ∂2f=∂T2, and Θρ
ν denotes the

energy-momentum tensor of the matter sector. In Eq. (5)
we have introduced, for convenience, the “super-potential,”
namely

Sρμν ≡ 1

2
ðKμν

ρ þ δμρTαν
α − δνρTαμ

αÞ; ð6Þ

where the contorsion tensor is defined as follows:

Kρ
μν ≡ 1

2
ðTμ

ρ
ν þ Tν

ρ
μ − Tρ

μνÞ: ð7Þ

Applying the fðTÞ gravity in a cosmological framework
and imposing the homogeneous and isotropic geometry, we
have the diagonal tetrad eAμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ. This
vierbein corresponds to the spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, namely

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð8Þ
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with aðtÞ the scale factor; and inserting it into the general
field equations (5), we obtain the following Friedmann
equations:

H2 ¼ 8πG
3

ρm −
f
6
þ TfT

3
; ð9Þ

_H ¼ −
4πGðρm þ pmÞ
1þ fT þ 2TfTT

: ð10Þ

In the above equations H ≡ _a=a is the Hubble function,
with dots denoting derivatives with respect to t, and ρm and
pm are the energy density and pressure for the matter
perfect fluid, respectively.
Let us now study the perturbations of the fðTÞ gravity

around the FLRW cosmological background, focusing on
the tensor sector.
Following [44] the tetrad can be decomposed as

eAμ ðxÞ ¼ ēAμ ðxÞ þ χAμ ðxÞ, which satisfies the equation
gμνðxÞ ¼ ηABeAμeBν ¼ ηABēAμ ēBν , where ēAμ represents the part
of the tetrad corresponding to metric components, and χAμ
represents the degrees of freedom related to local Lorentz
transformation. Therefore, in what follows we focus only on
ēAμ ðxÞ. Actually, the full version of the teleparallel gravity
and its modification need to include the spin connection
(see [51]). Then, for a fðTÞ theory with tetrads and spin
connections, we vary the action with respect to the tetrads
and obtain a set of equations about the tetrads and spin
connection. This set of equations is local Lorentz invariance
since the change of tetrads given by Lorentz transformation
is “eaten” by the spin connection. In order to solve these
equations in an easy way, we choose a frame that let spin
connection be zero. This means we break the local Lorentz
invariance by our own hand. Thus, the additional compo-
nents of tetrads such as χAμ are present. See also the recent
work [30] for a more extended discussion on this.
Now, the tetrad ēAμ ðxÞ can be perturbed around the FLRW

geometry in scalar, vector and tensor modes. Since we are
interested in GWs, let us consider only the transverse
traceless tensor mode hij and set the other modes to zero. In
this case, the perturbed tetrad reads

ē0μ ¼ δ0μ;

ēaμ ¼ a

�
δaμ þ

1

2
δiμδ

ajhij

�
;

ēμ0 ¼ δμ0;

ēμa ¼ 1

a

�
δμa −

1

2
δμiδjahij

�
; ð11Þ

which leads to the usual perturbed metric, namely

g00 ¼ −1; i0 ¼ 0; gij ¼ a2ðtÞhij: ð12Þ

Inserting (11) into (1) we obtain the components of the
torsion tensor perturbed to first order:

Ti
0j ¼ Hδij þ

1

2
_hij

Ti
jk ¼

1

2
ð∂jhik − ∂khijÞ; ð13Þ

and, on the other hand, the torsion scalar (2) is unaffected at
the linear order reading

T ¼ Tð0Þ þOðh2Þ; ð14Þ

with Tð0Þ ¼ 6H2 the zeroth-order torsion scalar. Such a
result is valid even if the scalar and vector perturbations are
included, this lies behind the fact that in the fðTÞ gravity
the GWs do not have extra polarization modes [45].
Moreover, the perturbed superpotential can be written as

Si0j ¼ Hδij −
1

4
_hij; and Sijk ¼

1

4a2
ð∂jhik − ∂khijÞ:

ð15Þ

Now, inserting the perturbed quantities into the field
equations (5), assuming that the background Friedmann
equations (9) and (10) are satisfied and that there is no
anisotropic stress contribution from the energy-momentum
tensor, we obtain the equations of motion of GWs in the
fðTÞ cosmology, namely

ḧij þ 3Hð1 − βTÞ _hij −
1

a2
∇2hij ¼ 0; ð16Þ

where the derivative fT is calculated at T ¼ Tð0Þ, and we
have introduced the dimensionless parameter [44]

βT ≡ −
_fT

3HfT
: ð17Þ

Finally, Eq. (16) can be rewritten in terms of the
conformal time1 as follows:

h̃00ij þ 2H
�
1 −

3

2
βT

�
h̃0ij þ k2h̃ij ¼ 0; ð18Þ

where we have assumed that the Fourier modes of the
tensor perturbations h̃ij obey the Helmholtz equation
∇2h̃ij þ k2h̃ij ¼ 0, with the wave number k. Therefore,
as first shown in [44], from the above equation one can
deduce that the speed of GWs is equal to the speed of light,

1The conformal time τ is related to the cosmic time by
dτ ¼ dt=aðtÞ.
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and thus the experimental constraint of GW170817 is
trivially satisfied in the fðTÞ gravity.

III. MODIFIED GW PROPAGATION
IN f ðTÞ GRAVITY

Since the GW amplitude is inversely proportional to the
luminosity distance, the modification in the amplitude that
comes from Eq. (18) can be interpreted as a correction to
the GW luminosity distance on general theories of modified
gravity, as argued in Refs. [11,12]. The effective luminosity
distance, or equivalently an effective GW amplitude cor-
rection, has been recently investigated in several contexts of
modified gravity (see, e.g., Refs. [52–62]). In this section,
we are presenting the corresponding version, in the context
of fðTÞ gravity, for the first time.
Considering the formulation of the GW propagation and

following the methodology presented in [11,12], a general
expression for the effective luminosity distance in fðTÞ
gravity can be written as

dGWL ¼ dEML exp

�
−
3

2

Z
z

0

dz0

1þ z0
βTðz0Þ

�
; ð19Þ

where βT was previously defined in Eq. (17). Here, dEML is
the standard luminosity distance for an electromagnetic
signal, namely

dEML ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ ; ð20Þ

which is the same for gravitational radiation in the GR
theory.
In order to move on, we need to specific a model of fðTÞ

gravity. Without loss of generality, we will consider the
power-law one, which is one of the most viable for
cosmology, although our methodology can be applied
for any fðTÞ functional form. The power-law scenario
corresponds to [18]

fðTÞ ¼ T þ αð−TÞb; ð21Þ

where α and b are parameters. Inserting (21) into (9) at the
present time we obtain

α ¼ ð6H2
0Þ1−b

�
1 −Ωm0 −Ωr0

2b − 1

�
; ð22Þ

where Ωm0 and Ωr0 are respectively the current values of
the matter and radiation density parameters, and H0 is the
present value of the Hubble parameter. Thus, the only
additional free parameter of the theory is b. By taking
b ¼ 0 one recovers GR (i.e., ΛCDM cosmology).
Figure 1 shows the GW correction on the effective

luminosity distance as a function of redshift z for some
selected values of b. One can notice that positive (negative)

values of b induce dGWL > dEML (dGWL < dEML ). Therefore,
since the amplitude of GWs is ∝ 1=dGWL , b > 0 ð< 0Þ
causes a decrease (increase) in the GW amplitude. We
found that within the range of values of b we have chosen,
the differences in dL are less than 15% for all z. Notice also
that for z ≪ 1 we have dGWL ≃ dEML , and hence significant
deviations from GR are not expected for small redshifts.

IV. PARAMETER ESTIMATION

In what follows, we briefly introduce the foundations of
a Fisher analysis and define the calculations used to find the
estimated bounds on our free parameters, which will be
presented in the next section.
The most accurate way to determine statistical limits on

new free parameters (additional parameters with respect to
a fiducial model, in our case, the GR theory) is through a
Bayesian analysis. In such an approach, one calculates
the full posterior probability distribution of the full param-
eter baseline of the model, given a set of observations/
experiments. Within the GW context, for a high enough
signal-to-noise ratio (SNR) [63,64], an approximation to
the Bayesian procedure, a Fisher analysis, can be used to
provide upper bounds for the free parameters of the models
by means of the Cramer-Rao bound [65,66]. Also, a Fisher
analysis is useful to investigate forecasts on future experi-
ments [67], as is the case of the present work.
In a Fisher analysis, one assumes that the likelihood

probability function has a single Gaussian peak, and
approximates the behavior of the signal about that peak
through a Taylor expansion. The result is a measure of the
variance and of the covariance of the parameters in the
template model through integrals that depend only on
the templates and on the spectral noise density of the
detector. In what follows, we summarize the main details of
the calculation. We refer the reader to Refs. [68–72] for a
discussion and implementation of the Fisher analysis to

FIG. 1. The term dGWL =dEML quantifying the deviations with
respect to GR is shown as a function of the redshift z for the
following selected values of b ¼ −0.01;−0.001; 0.001, and 0.01
in green, black, red and blue, respectively.
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estimate parameters in binary systems, which are the
systems we consider in the present article.
Given a waveform model, hðf; θiÞ, with the free param-

eters θi, the root-mean-squared error on any parameter is
determined by

Δθi ¼
ffiffiffiffiffiffi
Σii

p
; ð23Þ

where Σij is the covariance matrix, i.e, the inverse of the
Fisher matrix, Σij ¼ Γ−1

ij . The Fisher matrix is given by

Γij ¼
�∂h̃
∂θi j

∂h̃
∂θj

�
; ð24Þ

and the inner product between two waveform models is
defined as

ðh̃1jh̃2Þ≡ 2

Z
fupper

flow

h̃1h̃
�
2 þ h̃�1h̃2
SnðfÞ

df: ð25Þ

In the inner product, the superscript star stands for
complex conjugation, and SnðfÞ is the detector spectral
noise density. With this definition of the inner product, the
SNR is defined as

ρ2 ≡ ðh̃jh̃Þ ¼ 4Re
Z

fupper

flow

jh̃ðfÞj2
Sn

df: ð26Þ

In order to move on we need to consider a GW form.
For our purposes, let us take a post-Newtonian waveform
known as TaylorF2, which uses the stationary phase
approximation for the waveform at 3.5PN expression for
the orbital phase of an inspiraling binary system with
aligned spins [73–78]. For a coalescing binary with
component masses m1 and m2, in the frequency domain
and in the angle-averaged approximation, the gravitational
waveform reads

h̃ðfÞ ¼ Af−7=6eiΦðfÞ; ð27Þ

where A is the amplitude, which takes the form

A ∝ M5=6
c =dGWL ; ð28Þ

and to 3.5 PN order the phase waveform ΦðfÞ is given by

ΦðfÞ ¼ 2πftc − ϕc −
π

4
þ 3

128ηv5

�
1þ

X7
i¼2

αivi
�
; ð29Þ

where the coefficients αi are the corrections up to 3.5PN
order, which includes the spin parameters χ1 and χ2 of
each component of the binary system (for the definition
of the coefficients see, e.g., [79]). Other parameters are
v ¼ ðπMfÞ1=3, M ¼ m1 þm2, η ¼ m1m2=ðm1 þm2Þ2,

and Mc ¼ ð1þ zÞMη3=5 as being the inspiral reduced
frequency, total mass, symmetric mass ratio, and the
redshifted chirp mass, respectively. The quantities tc and
ϕc are the time and phase of coalescence, respectively. In
order to simplify the analysis, the positions of the sources in
the sky are assumed to be known and, hence, in what
follows the angles in the celestial sphere do not enter as
parameters. Therefore, our baseline parameter model is
given by

θi ¼ fM; η; χ1; χ2; tc; fc; bg; ð30Þ

where b is the parameter of the model that characterizes the
deviations with respect to the GR theory.
Assuming Eqs. (19) and (28), one can promptly see that

for βT ¼ 0 the GW amplitude from inspiraling of compact
binary systems in the GR is recovered, as expected. In
general, the modified GW form for binary systems in the
inspiral phase is completely determined by the combination
of Eqs. (19)–(30). In what follows, we will be concerned
only with modifications due to the fðTÞ gravity in the
inspiral part of the waveform. Also, a similar methodology
has been adopted using the parametrized post-Einsteinian
framework [80,81].

V. FORECASTS FOR GROUND-BASED
INTERFEROMETERS

In this section, we investigate the consequences of the
above modified GW form propagation obtained in the
context of the fðTÞ gravity, focusing on forecasts for two
specific ground-based GW detectors, namely, aLIGO [82]
and ET [83]. Figure 2 shows Sn for both detectors.
In what follows, we apply the Fisher information, as

presented in the last section, to estimate new constraints on
b by means of gravitational waves from compact binary
coalescences. It is worth stressing that such a procedure has
never been done before in the literature.

FIG. 2. Detector spectral noise density for the Advanced LIGO
(aLIGO) and Einstein Telescope (ET).
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In our simulations, we consider three types of compact
binary systems, applied to both detectors.
(1) Black hole–black hole (BBH).—The black hole

masses are chosen to be uniform in the interval
½10–30� M⊙ under the condition m1 ≳m2 and
η < 0.25. The spin magnitudes χ1, χ2 associated
with each mass, are chosen to be uniform in the
interval ½−1; 1�.

(2) Neutron star–neutron star (BNS).—The distribution
of the neutron star masses is chosen to be uniform
within ½1–2� M⊙, also under the condition m1 ≳m2

and η < 0.25. In this case, in the mock data gen-
eration let us take χ1 ¼ χ2 ¼ 0.

(3) Black hole–neutron star (BBHNS).—The black hole
mass is chosen to be uniform in the interval
½10–30� M⊙ with χBH chosen to be uniform in the
interval ½−1; 1�. For the NS, let us take the range of
masses ½1–2� M⊙ with χNS ¼ 0.

The BH mass range is chosen to be compatible with the
masses of the BHs already detected and cataloged by the
LIGO/VIRGO team [1]. Also, these values are compatible
with the frequency range from which it will be possible to
observe such binary systems with the ET [3,4]. The NS
mass range is fully compatible with theoretical models and
NS observations.
The redshift distribution of the sources is taken to be of

the form [84]

PðzÞ ∝ 4πd2CðzÞRðzÞ
HðzÞð1þ zÞ ; ð31Þ

where dC is the comoving distance and RðzÞ describes
the time evolution of the burst rate and is defined to be
RðzÞ ¼ 1þ 2z for z ≤ 1, RðzÞ ¼ 3=4ð5 − zÞ for 1 < z ≤ 5
and null for z > 5.
The generation of catalogs is carried out as follows. We

first simulate the redshift measurements according to the
redshift distribution. At every simulated redshift, we
randomly sample the mass and spins of the BH and NS
according to the above specifications. Then, we calculate
the SNR of each event and confirm that it is a GW detection
if ρ > 8 (SNR > 8). For every confirmed detection, we
calculate the modified waveform and the inverse of the
Fisher matrix in order to estimate the borders of our free
baseline parameter. In all cases, unless stated otherwise,
we consider b ¼ 0 as the injection value to run the
analysis. When performing the integration for aLIGO we
assume the entire frequency band on Sn [82]. For the ET,
we assume flow ¼ 1 Hz and fupper ¼ 2fLSO, where fLSO ¼
1=ð63=22πMzÞ is the orbital frequency at the last stable orbit
[84], with Mz ¼ ð1þ zÞM. Also, let us take Ωm0 ¼ 0.308
and H0 ¼ 67.8 km=s=Mpc [85]. In what follows, we
present our main numerical results.
It is worth emphasizing that we are deriving constraints

(forecast analysis) on b directly evaluating how the

gravitational signal h̃ðfÞ is modified due to the expansion
of the Universe in the context of the fðTÞ gravity, when the
signal is generated by the source until it reaches the GWs
detector. On the other hand, the most common procedure in
the literature is to assume GW sources to determine the
luminosity distance, as standard sirens, associated with
each event, and then using the luminosity distance mock
events to get constraints on the cosmological parameters.
It is important to realize that we are not following this
procedure. However, notice that within the approach used
here, i.e., the evaluation of the free parameter of the theory
directly by the GW signal/strain, one has stronger con-
straints in the case of few detected events, such as the case
of simulations using the aLIGO sensitivity. Hence, it is not
only more reasonable, but it seems also more promising
to investigate deviations from GR by assuming directly
modifications on h̃ðfÞ in the statistical forecast (see [80,81]
and references therein for a similar methodology as that
applied here, but within the parametrized post-Einsteinian
framework context).
In what follows, we present and discuss our statistical

results.

A. Advanced LIGO

In this subsection, we present our results considering the
aLIGO detector. As an example, in the left panel of Fig. 3
we show a mock catalog with several BBH events assuming
the noise power spectral density for aLIGO. The redshift of
each source is generated between 0 and 2. In the left panel,
we show the SNR associated with each event as a function
of the redshift. The black line corresponds to SNR ¼ 8. As
expected, we can see SNR ∝ z−1, and we note than for
z≳ 1.5 most of the sources have SNR < 8.
Similarly, in the middle panel, we show a mock catalog

for BNS events. For z≳ 0.13, the sensitivity of the aLIGO
is not high enough to detect BNS events with SNR > 8.
Thus, GWs from BNS events from our mock data can
only be observed at very low redshifts. Recall that the
GW170817 event occurred at z ≃ 0.009 with SNR ≃ 33.
Our mock sources presented very similar values when
evaluated at z ≪ 1.
Finally, in the right panel, we show the SNR as a

function of z for a mock catalog of BBHNS events. In this
case, most of the GW sources with z≳ 0.4 have SNR < 8.
In order to impose new constraints on b, we set the

network SNR threshold to be a real detection to SNR ¼ 8
and only sources with SNR > 8 are kept in our analysis.
Therefore, when using the aLIGO sensitivity, the BNS
events are not taken into account to constrain the b
parameter, once only sources at z ≪ 1 present SNR > 8
as noticed above. This is because it is necessary to have
intermediary and high redshift observations in order to
probe modifications in the gravitational theory.
The left and right panel of Fig. 4 shows estimates/borders

on b at 68% confidence level (C.L.) for a BBH (BBHNS)
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mock catalog for 0 < z < 1 (0 < z < 0.5), on each specific
z, assuming only events with SNR > 8. It is important to
keep in mind that we are conducting a forecast analysis.
Thus, only upper (lower) values on the free parameter of the
theory, centered on b ¼ 0 (GR), are the outputs from the
Fisher information. It is very important because we will
have an estimate of what the maximum sensitivity con-
straints on the theory (in our case b) will be in the future.
For comparison, let us take some recent estimates on the

parameter b using cosmological probes. In [23,24] a joint
analysis with geometric data show that b ∼Oð10−2Þ, in
[25] a robust analysis using cosmic microwave background
anisotropy data show that b ∼Oð10−3Þ. Therefore, notice
that the constraint via GWs on fðTÞ gravity within aLIGO
sensitivity will be similar to those imposed via cosmologi-
cal probes.

B. Einstein Telescope

In this subsection, we present our results now consid-
ering the ET detector. The ET is a third-generation
ground-based detector of GWs and it is envisaged to be

10 times more sensitive in amplitude than the advanced
ground-based detectors in operation, covering the fre-
quency band ranging from 1 to 104 Hz.
Unlike current detectors, from the ET conceptual design

study, the expected rates of BNS detections per year are of
the order of 103–107 [83]. However, we can expect only a
small fraction (∼10−3) of them accompanied with the
observation of a short γ-ray burst. If we assume that the
detection rate is in the middle range aroundOð105Þ, we can
expect to see Oð102Þ events with the short γ-ray burst per
year. Therefore, we can simulate 100–1000 BNS events,
as being a reasonable number of events.
Since the ET is composed of three independent inter-

ferometers (not correlated), the combined SNR can be
written as

ρ ¼
X3
i¼1

ðρðiÞÞ2: ð32Þ

As an example, the left panel of Fig. 5 shows a mock
catalog of BBH events assuming the ET noise power

FIG. 4. Left panel: Estimates on b at 68% C.L. assuming BBH events on every specific redshift within range z ∈ ½0; 1� from the
perspective of the aLIGO power spectral density sensitivity. Right panel: The same as the left panel, but for BBHNS events up to the z-
limit where such events can be detected.

FIG. 3. Left panel: Signal-to-noise ratio (SNR) as a function of z for several BBH simulated events assuming Advanced LIGO noise
power spectral density sensibility. Middle panel: The same as the left panel, but for BNS events. Right panel: The same as the left panel,
but for BBHNS events. In all panels the black lines represent SNR ¼ 8.
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spectral density. In themiddle panel, we show amock catalog
considering BNS sources. Here, it can be clearly seen how
much the ET is more sensitive than aLIGO, especially for the
BNS sources. Using the ET, we can have BNS events, i.e.,
sources with SNR > 8, up to z ≃ 1.5. BBH events can be
observed up to high z values with a significant high value of
SNR. Thus, with the ETwe have the opportunity to detect (or
simulate) sources with larger z, including BNS sources. On
the right panel, we show SNR vs z for BBHNS mock events,
and we find that SNR > 8 is also predominant up to high z
likeBBHevents, but forBBHNS the SNRvalues decay faster
and present lower SNR values when compared to BBH
events. Notice also that now the BNS sources (and BBHNS
sources) can cross the barrier z ≃ 0.60. Thus, it is possible to
go to redshifts for which the Universe experiences the
transition between the decelerated and accelerated phases.
It is also evident that by assuming the ET we have a bigger
SNRassociatedwith the events, being possible to estimate the
parameters with greater precision.
The left panel of Fig. 6 shows estimate sensitivity on b at

68% C.L. for a mock BBH source between z ¼ 0 up to

z ¼ 4. Similarly, we show also in the middle and right
panels the BNS and BBHNS sources. Notice that now there
is enough sensitivity to observe at high redshifts. As
noticed before, and shown in Fig. 5, a GW detection of
BNS sources is very difficult for z≳ 1.5. For all three cases,
the increasing of the error bars with redshift is explained by
the decrease of the SNR, which is inversely proportional to
the redshift. Therefore, for the ET detector, the estimates on
b are Oð10−4Þ, Oð10−3Þ and Oð10−3Þ for BBH, BNS and
BBHNS, respectively. On the other hand, if we consider
only z ≪ 1, we obtain b ∼Oð10−5Þ for BBH sources and
Oð10−4Þ for BBHNS. In comparison with the recent
estimates on b [23–25], we have that BBH and BBHNS
sources can improve current estimates up to 2 orders of
magnitude and BNS sources presented very similar results
when compared to BBH source from aLIGO. For a
concrete comparison, if one observes the bounds b ∼
Oð10−5Þ −Oð10−4Þ from future GW events, and we take
the current best fit values on b, the estimates sensitivity may
be accurate enough to probe fðTÞ gravity at ∼99% C.L.
beyond GR.

FIG. 5. Left panel: Signal-to-noise ratio (SNR) as a function of the z for several simulated BBH events assuming the ET spectral
density sensibility. Middle panel: The same as the left panel, but for BNS events. Right panel: The same as the left panel, but for BBHNS
events. In all panels the black line represents SNR ¼ 8.

FIG. 6. Left panel: Estimates on b at 68% C.L. assuming several BBN events on every specific redshift within range z ∈ ½0; 4� from
the perspective of the ET power spectral density sensitivity. Middle panel: The same as the left panel, but for BNS events. Right panel:
The same as the left panel, but for BBHNS events.
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C. Comparison with GR

In this section, we summarize how future GW detections
will constrain fðTÞ theories relaxing the condition b ¼ 0 as
input value on the GWs catalog simulation.
It is well known that a particular choice for the value of

the parameter can bias the results in the forecast analysis.
Otherwise, a natural input value for the parameter is the one
predicted by the most accepted theory, GR in our case,
justifying our choice b ¼ 0 in the preceding sections. Let
us now relax this assumption by supposing that b lies in the
interval b ∈ ½−0.01; 0.01�, which is in complete agreement
with the current constraints on fðTÞ gravity, and let us
generate simulated GW catalog events with the same
specifications as before, but with b sampled in this range.
Figure 7 shows the estimates at 68% C.L. on b assuming

BBH source on every specific redshift within the range
z ∈ ½0; 1� from the perspective of the aLIGO sensitivity.
Except for possible very low z GWs events, with high SNR
values (see Fig. 3 for better clarification), most of the events

to be measured at highs z are compatible with b ¼ 0 at
significant statistical reliability, e.g, > 95% C.L.
Figure 8 shows the constraints at 68% C.L. on b within

the ET power spectral density noise. Once the ET will be
up to 10 times more sensitive in amplitude than aLIGO, it
will be also able to measure GW events with higher SNR,
leading to great precision on the intrinsic parameters of
the theory. We can note that the estimates on b from BBH
(left panel), that its majority (to be at low or high z) can
constrain b ≠ 0 even at 99% C.L. The new borders on b
from BBHNS (middle panel) and BHS (right panel) for
GW events at high z are well compatible as b ≃ 0. On the
other hand, GWevents at very low z can lead to significant
non-null values on b.
It is important to mention that we are not taking into

account possible systematic effects in our analysis to
simulate the GW events at low z. Our estimates are taking
only instrumental errors on each GW events. For instance,
peculiar velocity due to the clustering of galaxies and weak
lensing effects, are factors which can induce contributions
on the estimates of the error bar on the free parameters of
the theory at low z (peculiar velocity) and high z (weak
lensing), respectively. Possibly taking into account these
systematic effects will be possible for checking deviations
from the GR within fðTÞ gravity only from BBH events via
ET sensitivity.

D. Luminosity distance from GWs

Lastly, let us discuss the GWs as standard sirens in order
to determine the luminosity distance from their detection in
the context of the fðTÞ gravity. It is important to note that
the approach developed in this section is different from
what was presented in the previous section regarding the
estimate of the parameter b. This section provides a guide
for readers who are interested in using standard sirens to do
forecast analysis on any fðTÞ parametric theory. Therefore,
it may be of general interest of the community. In addition,

FIG. 7. Estimates at 68% C.L. on b from a random b sample
assuming BBH source on every specific redshift within aLIGO
power spectral density noise. All events have SNR > 8. The
black solid line at b ¼ 0 corresponds to GR.

FIG. 8. Left panel: Estimates at 68% C.L. on b assuming BBH source on every specific redshift within the ET sensitivity. Middle
panel: The same as the left panel, but for BBHNS. Right panel: The same as the middle panel, but for a mock catalog with BNS. All
events assumed here have SNR > 8. The black solid line at b ¼ 0 corresponds to GR.
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this methodology can also be adapted to any GW detectors,
such as DECIGO, LISA, etc.
Following a standard procedure, we now apply the

Fisher matrix to estimate the error on the measurement
of the luminosity distance within the fðTÞmodified gravity
context. Let us denote the luminosity distance by dL (as
usual), thus it is only to replace the notation of dGWL .
Assuming that the errors on dL are uncorrelated with

errors on the remaining GW parameters, we have

σ2dL ¼
�∂h̃ðfÞ

∂dL ;
∂h̃ðfÞ
∂dL

�
−1
: ð33Þ

Once that h̃ðfÞ ∝ d−1L , hence σdL ¼ dL=ρ. Note that h̃ðfÞ
for fðTÞ gravity is completely defined by Eqs. (27)–(29).
The amount ρ (the SNR) from a GW signal in inspiraling
of compact binary systems within fðTÞ gravity can be
evaluated via Eq. (26).
However, when we estimate the practical uncertainty

of the measurements of dL, we should take the orbital
inclination into account. The maximal effect of the incli-
nation on the SNR is a factor of 2 (between ι ¼ 0° and
ι ¼ 90°). Therefore, we add this factor to the instrumental
error for a conservative estimation σdL ¼ 2dL=ρ. Another
error that we need to consider is σlensdL

due to the effect of
weak lensing, and we assume σlensdL

¼ 0.05zdL as in [86,87].
Thus, for the ET, the total uncertainty on the luminosity
distance is given by

σ2dL ¼
�
2dL
ρ

�
2

þ ð0.05zdLÞ2: ð34Þ

In order to generate a mock catalog using modified
gravity, it is necessary to enter with non-null values for
the parameter b. Hence, let us consider the following
reasonable choice, b ¼ 0.01. Figure 9 shows an example

of a catalog with observed events of luminosity distance for
a BNS from our fiducial modified gravity model.
Such catalogs are quite general, and can be used to

investigate any class of models or properties within fðTÞ
gravity. For examples of the usage of mock data of
luminosity distance within GR in investigations in several
different contexts, see, e.g. [88–109]. As already argued,
our estimates on b in the previous sections are directly
evaluated from the GW signal/strain h̃ðfÞ, because such an
approach is believed to be more robust. On the other hand, a
mock catalog for the luminosity distance versus z also can
be used to investigate any aspect of the fðTÞ gravity which
is related to such a geometric test, in the same manner it is
usually done for the GR theory.

VI. FINAL REMARKS

The main result of the present study is that future
ground based detections of high redshift GWs from
binary systems are very promising in testing the theory
of gravity. The sensitivity achieved by the ET detector or
a similar third generation interferometer is enough to
improve the current estimates on the free parameter
within fðTÞ gravity up to 2 orders of magnitude. On
the other hand, in the case of detections with the aLIGO,
our forecast analysis indicates that is possible to con-
straint the free parameter of the theory similarly to those
imposed via current cosmological probes. Thus, it may be
interesting to use GW data from aLIGO in possible joint
analysis in the presence of another cosmological test in
future investigations, to break possible degeneracy in
cosmological parameters, once these events begin to be
detected.
We have also obtained some mock catalog for luminosity

distance measurements and their estimated errors, which
can also be used to probe any parametric fðTÞ functions
present in the literature, which can be of general interest to
the community.

FIG. 9. Left panel: Catalog with observed events of luminosity distance from BNS from our fiducial fðTÞ gravity model. Right panel:
The same as in the left panel, but assumed a mock of BBHNS events.
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Notice that all the constraints were derived by evaluating
directly the induced modifications in the waveform h̃ðfÞ
from the inspiraling of compact binary systems due to a
change in the gravity theory. With such an approach, it is
possible to have stronger constraints in the case of few
detected events. To apply similar methodology as devel-
oped here can be promising to investigate some general
theories of gravity [110] and to derive new statistical
expectations on such models, whether by GWs signal
from binary systems or from a primordial stochastic
background. Also, the development of the parametrized
post-Einsteinian framework for fðTÞ gravity as a gener-
alization and a direct comparison with the results presented
here will be promising.
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