
Detecting and Reporting Object-Relational Mapping
Problems: An Industrial Report

Marcos Felipe Carvalho Nazário
Federal University of Pará
Evandro Chagas Institute

Belém, Brazil
marcosnazario@iec.gov.br

Eduardo Guerra
National Institute for Space Research

São José dos Campos, Brazil
eduardo.guerra@inpe.br

Rodrigo Bonifácio
University of Brası́lia

Brasilia, Brazil
rbonifacio@unb.br

Gustavo Pinto
Federal University of Pará

Belém, Brazil
gpinto@ufpa.br

Abstract—Background: Object-Relational Mapping (ORM)
frameworks are regarded as key tools in the software engineer
arsenal. However, developers often face ORM problems, and the
solution to these problems are not always clear. To mitigate these
problems, we created a framework that detects and reports a
family of ORM problems. Aims: The aim of this work is to
assess how practitioners perceive our framework, the problems,
they face, and the eventual points for improvements. Method: We
first report an observational study in which we curated 12 ORM-
related problems, which are implemented in our framework.
We then conducted a developer experience (DX) study with
13 developers (10 well-experienced and 3 students) to assess
their experience with our framework to implement six ORM-
related tasks. Results: All participants agreed that our framework
helped them to finish the programming tasks. The participants
perceived that our framework eases the ORM modeling, has
precise error messages, and employs ORM best practices. As
a shortcoming, however, one participant mentioned that some
custom annotations are not very intuitive. Conclusions: Our
findings indicate that developers are willing to use frameworks
that catch ORM problems, which create opportunities for new
research and tools.

I. INTRODUCTION

Nowadays, developers often take advantage of Object-
Relation Mapping (ORM) frameworks to provide a conceptual
abstraction between objects in object-oriented languages and
data stored in the underlying database [2]. ORM technologies
intercede between object-oriented architecture system and
the relational environment [8]. This constitutes, in effect, a
“virtual object database” that can be handled from within the
programming language.

The use of ORM frameworks greatly reduces the effort
of not only communicating with a database but also dealing
with basic database operations (e.g., insert, update, read, and
delete), since changes to objects are automatically propagated
to the corresponding database records. It then may come as no
surprise that ORM frameworks are widespread in the software
development industry. As an example, a survey1 pointed
out that 67.5% of Java developers use ORM frameworks
to communicate with the databases. However, these ORM
frameworks may be underused or overused. For instance,
in a recent work, the authors observed that redundant data
problems in ORM code could deteriorate the performance of

1https://zeroturnaround.com/rebellabs/java-tools-and-technologies-
landscape-for-2014/

an enterprise system [2]. Due to the lack of works in this
direction, we believe that other concerns might exist.

Through our own experience in dealing with an enterprise
system, we perceived that it is not uncommon for developers
to misuse ORM code by, for instance, using the wrong
annotation, or referring to the wrong column. We call such
kind of problems as “ORM problems”. Unfortunately, the
development team did not have access to the production
database (or replication of it) in the early stages of software
development. Therefore, such ORM problems only became
visible when the development team had to integrate the ORM
code with the production database, which often happens during
the deployment of the source code to the production environ-
ment. Based on our experience, we noted that ORM-related
problems are very domain specific; therefore tools such as
Findbugs [6] provide little or no guidance in this context.

After years dealing with ORM problems, we curated a
catalog of these problems and automated their detection in
a framework. This framework is underuse in our company
for over five years now, and our experience suggests that
several mapping problems have been avoided. Our framework
consists of static analyzing ORM code looking for the ORM
problems. We use bytecode instrumentation to (1) obtain the
ORM code and to (2) create several assertions that check
whether the ORM code contains one (or more) of the curated
ORM problems. We also provide enhanced error messages
that aid developers to fix the ORM problem found. After
cataloging the mapping problems and proving a framework to
automatically identify and report these problems, we conduct
a developer experience (DX) study [4] with 13 participants
to better understand the framework’s limitations and eventual
points for improvements.

II. BACKGROUND
Java Annotations. Annotations are one of the most used Java
programming language construct [3]. Introduced in version 5,
annotations enable metadata inclusion directly into the source
code. This characteristic permits maintaining the source code
and metadata together, improving application maintenance.
Annotations can be seen as a “stamp” that can, e.g., help
compilers to detect other classes of errors. Several Java frame-
works take advantage of annotations. Particularly relevant to
this study is the JPA framework.

Java Persistence API (JPA). Released in 2009, JPA is the
specification for object-relational mapping with Java. ORM978-1-7281-2968-6/19/$31.00 ©2019 IEEE

frameworks such as Hibernate (that implements the JPA
specification) are growing in demand in developers commu-
nities [8]. Hibernate alleviates developers from implementing
routines demanded to address the relationship between objects
and database relations. JPA (and consequently Hibernate)
makes extensive use of annotations. Consider Listing 1, which
presents an entity class, i.e., a class that represents a table in a
relational database that does not have any other responsibility.

Listing 1. Example of a JPA Entity class
1 // Imports omitted
2 @Entity
3 @Table(schema = "public", name = "COLOR")
4 public class Color {
5
6 @Id
7 @Column(name = "CODE", nullable = false)
8 private String code;
9

10 @Column(name = "NAME", length = 80,
nullable = false)

11 private String name;
12
13 @Column(name = "ENABLE", nullable = false)
14 private Boolean enable;
15 }

In this example, there are several annotations including:
(1) @Id to map a primary key, (2) @Column to map a
column, and (3) @Table to map a table. An extensive list
of annotations (and their purposes) is available in the JPA
official website2.

III. THE CONTEXT

In 2010, the first author of this work was the software
architect in a development team composed by one software
coordinator, one data analyst, and seven software developers.
The majority of them had at least three years of software devel-
opment experience. The enterprise system under development
automated the process for obtaining credit lines for the first
and second sectors of the economy.

The defined architecture was chosen considering the exper-
tise of the development team and the technologies approved
by the company. The enterprise system was written in Java,
following a typical MVC architecture. In particular, the en-
terprise system used Hibernate for dealing with ORM code,
and JSF, a web framework. As of today, the enterprise system
has 306 classes with 33,457 lines of code. There are 82 entity
classes in the enterprise system, totalizing 15,731 lines of code
(47.02% of the total of lines of code). The enterprise system
has only 10 testing classes created by the development team.
The other testing classes are created by the framework, using
the strategy described in Section V-B. Our framework, on the
other hand, has 51 classes, comprehending 6,971 lines of code.
The software development process followed two main steps:

Step 1: Creating the schema. After the requirement was
stable it was sent to the database administrator, which was
in charge of creating the database schema (in a DDL format).
The database administrator also specified restrictions such as
the null or not null, data type, data length, as well as the
primary keys and foreign keys. It is important to note that the

2https://jcp.org/en/jsr/detail?id=317

client required the development team to follow a prefix pattern
in every column. For instance, a column of type date should
be prefixed with “DT ” and a string should be prefixed with
“TX ”. The database administrator modeled the schema in
his local workspace. Since the database administrator worked
on several requirements at the same time, his workspace was
always ahead of and more complex than the workspace of
the development team. The database administrator was also
responsible for ensuring that the different environments (e.g.,
testing and production) were seamlessly replicated. Since the
database administrator was often working in more than one
schema, it usually took some time to replicate them.

Step 2: Creating the entity classes. After the database schema
was done, the requirements along with the schema were sent to
the development team to implement the entity classes. At this
moment, the development team had no access to the database
of the database administrator. Then, the development team
had to rely on the text-based schema and the requirements
to manually create the entity classes. The object-relational
mapping was done using the annotations provided by JPA.

We also used the Bean Validation framework3, which
provides additional annotations that aid developers to pose
constraints in the entity classes (e.g., the @NotNull and
@NotEmpty annotations). Afterward, the development team
had to create classes that communicate with the database. At
this moment, the developers had to test the entity classes using
different strategies, such as mocking the database or using
an in-memory database. Once the communication with the
database was established, the development team was able to
create tests cases to make sure that the access the database was
working properly. After that, several ORM problems popped
up frequently. The next section presents an analysis performed
in the recurrent problems to categorize and classify them.

IV. THE MAPPING PROBLEMS

During our experience implementing the entity classes and
database integration, we often faced some ORM problems. We
organized them in terms of: 1) Problems with the database
schema and 2) Problems with the entity classes.

A. Problems with the database schema
In this category, most of the problems were due to the fact

that the database administrator had to implement the schema
manually. They are described next.
P1 Employing the wrong prefix in the column’s name (e.g.,

prefixing with a TX when an EN was needed);
P2 Misspelling the names of schemas, tables, or columns

(e.g., names with accents);
P3 Forgetting to create constraints (e.g., did not create a

foreign key constraint);
P4 Forgetting to apply the same DDL at different environ-

ments (e.g., testing and production).

B. Problems with the entity classes
Since the development team had only access to the DDL

of the database, they could not rely on reverse engineering
tools to create the data entity classes. Instead, they have to

3https://beanvalidation.org/1.0/spec/

re-implement the DDL in Java code. During this process, a
new class of problems emerged. They are listed below.
P5 Misspelling the name of the schema, tables, and columns

(similar to P2, but in the Java code);
P6 Mismatching JPA annotations (e.g., using @Column

when a @JoinColumn was needed);
P7 Employing the wrong constraint attributes in a @Column

or a @JoinColumn annotations (e.g., not defining the
nullable or length attributes);

P8 Forgetting to use an important annotation (e.g.,
a @Temporal annotation in a date datatype, a
@Enumared in an Enum datatype, or a @Table in a
class). This leads an implicit default mapping which is
not always the one desired;

P9 Forgetting to define at least one primary key using the
@Id or the @EmbeddedId annotation.

P10 Forgetting to implement the Serializable interface.
According to the JPA specification, all entities must
implement the Serializable interface;

P11 Forgetting to use Bean Validation annotations to reinforce
JPA annotations (e.g., not using Bean Validation to con-
straints such as nullable, length and others from
@Column and @JoinColumn);

P12 Naming the attributes or methods of the class in non-
compliance with the Java standard, e.g., the use of char-
acters with an accent. This happens because developers
usually copy the name of the attributes directly from the
requirements and forgot to remove them);

It is important to note that, by default, JPA supports explicit
and implicit mapping. The explicit mapping is when the
developer declares the JPA annotations in the source code on
classes and fields. The implicit mapping is when the developer
does not declare the annotations in the code then JPA uses
conventions for classes and fields mapping. When developers
forget to declare an annotation, the usage of implicit mapping
can lead to problems such as P7, P8, and P12.

C. The consequences of these problems

During the integration with the database, some of the (so
far hidden) problems reported in the previous sections started
to appear to the development team. These problems eventually
lead to the following consequences:
C1 When using @Column instead of @JoinColumn (i.e.,

P7), the JPA tries to serialize the whole foreign key
object, and save it in a cell. Depending on the version of
the JPA provider, this could lead to an error called data
truncation4 or an error of not allowed property5. When
the mapping is done correctly, the JPA only stores the
value of the foreign key in the column.

C2 When using implicit table mapping (i.e., P8), the JPA
per default assumes that the default schema is “public”,
leading to an error called table not found6.

C3 When using implicit column mapping for an Enum
datatype (i.e., P8), the JPA assumes that the default
behavior is to save the ordinal position declared at the

4https://stackoverflow.com/q/27756137
5https://stackoverflow.com/q/4121485
6https://stackoverflow.com/q/4365857

Enum constant in the column. However, in general, when
using an Enum type, developers want the name of the
Enum constant as the value7. In summary, the column
expects a text and a number is sent instead. The number
is then converted to text and persisted in the database.
This behavior does not raise any errors or warnings.
Developers may only perceive the wrong behavior when
inspecting the rows in the database.

C4 When using implicit column mapping for the date
datatype (i.e., P8), JPA assumes that the default behavior
is to save the only date without the clock time. This
consequence do not raise any error or warning, but may
not always produce the correct behavior, and only looking
at the rows in the database one could see this problem.

These problems showed that the development team had
serious issues that needed to be handled. Unfortunately, these
issues were hardly prioritized because the company was more
interested in delivering new features of the enterprise system
to the clients. The development process was often behind the
schedule, which generated several extra hours often used to fix
the listed problems. However, no effort was placed to find the
root cause of them. This decision has placed a lot of burden
and stress in the development team.

V. THE PROPOSED SOLUTION

The aforementioned problems (and their consequences)
share a common root cause: they were all driven by the
mismatch between the database schema and the manual map-
ping done in the entity classes. In this work, we mitigate
this problem by proposing a framework focused on finding
and reporting ORM problems. Our framework tackles these
problems by implementing three modules:

1) A custom classes and annotations module (§ V-A).
2) An automatic generation of unit tests module (§ V-B).
3) An improved error report module (§ V-C).

A. Custom classes and annotations module

Our framework provides custom classes and annotations.
Some of the custom annotations are wrappers of other annota-
tions, in particular, because most of the developers that joined
the development team were unaware of the Bean Validation
annotations available (which has more 20 native annotations).
Our customization kept the same behavior of the native
annotations, but start with the @Verify prefix. For instance,
the @Email annotation was wrapped in the @VerityEmail
custom annotation. This small change allows one to quickly
auto-complete the kind of annotation needed. This approach
was aiming to reduce errors like P11.

Although some custom annotations were implemented
to work as a wrapper of the Bean Validation annota-
tions, some other annotations were introduced, such as the
@VerifyDuplicityRecord annotation. For instance, in
our company, almost every requirement has a duplicity rule. It
indicates that duplicate records are not allowed in the database.
In general, two approaches are used to implement this require-
ment. In the first one, the developer had to query for all stored
records in the table, which is a very computation-intensive

7https://stackoverflow.com/q/2751733

operation, in particular, because the ORM framework has to
map each database record with the corresponding object. In
the second approach, the developer has to write a tailored SQL
query (with fewer columns) to verify the existence of duplicate
elements on the database. Since this second approach is less
costly than the first one (it does not need to map rows into
objects, and does not select all columns), we automated this
behavior in the @VerifyDuplicityRecord annotation.

Finally, our framework also provides custom classes that
help developers by providing default behavior. For instance,
we provide the PersistenceObject class, which ev-
ery entity class should inherit from. This class offers a
default implementation for the equals(), hashCode(),
toString(), clone(), and compareTo() methods,
which mitigate misuses such as wrong hashing algorithm or
wrong sorting criteria. It is also straightforward to change
the behavior of these methods. If a new field is added or
removed in the entity class, the methods are equals() and
hashCode() are automatically updated accordingly.

B. Automatic generation of unit test modules
In this module, our framework automatically generates unit

test classes. It uses the Java Reflection API to achieve this
goal. When generating unit test classes for entity classes, our
framework checks whether the entity classes, for instance, (1)
implement the Serializable interface, (2) have the default
Java methods (e.g. equals(), hashCode()), or (3) employ
other custom annotations.

Moreover, the framework also provides a testing superclass
named TestModelBase that is responsible asserts the be-
havior of the subclasses. Any test class should then inherit
from the TestModelBase class to guarantee a default way
for testing the entity classes. Although every entity class
should have an equivalent test class that extends from the
TestModelBase, we observed quite often that developers
forgot to create the test class. We then created an assertion
that checks if the testing class exists; if that is not the case,
the framework generates one automatically. More concretely,
the entity Color should have a test class named TestColor
which is a subclass of TestModelBase; if the testing class
does not exist, then the framework creates one during its
execution. After the framework is done with its analysis, all
automated generated unit classes are discarded. We opted to
discard the tests because (1) they are very cheap to create
(around three seconds in our enterprise system) and (2) they
do not have any other role in the project.

This superclass employs the groups of test strategy, i.e., the
tests are categorized into groups and invoked in precedence
order. In essence, the TestModelBase class checks if all the
assertions of each group holds true. If one group of tests fail,
its dependencies are not invoked. The six groups of tests (with
their precedence order) are the followings: (1) the serializable
group, (2) the default methods group, (3) the bean validation
group, (4) the connection group, (5) the annotation group, and
(6) the JPA group. Due to space constrains, we provide at most
three assertions per group of group.

The serializable group (3 assertions). This is responsible to
check if the field serialVersionUID is present since all
JPA entities must be serialized (Fix P10). More precisely:

1) If the field is declared with final and static mod-
ifiers.

2) If the field has private visibility.
3) If the field has an unique number among the other entity

classes.

The default methods group (6 assertions). This group is
responsible to assert the behavior of JPA entities, for instance:

1) If the entity class is a subclass of
PersistenceObject.

2) If at least one instance field of the entity class is
annotated with @ApplyComparable.

3) If the name of the entity class has accents (Fix P12).

The annotation group (4 assertions). This group is respon-
sible for checking all the remaining custom annotations, for
instance:

1) If the class is annotated with
@VerifyRelationships.

2) If any instance fields are annotated with
@VerifyDuplicityRecord (Fixes C5)

3) If each entry of @VerifyRelationship is up to
date. It verifies if each entry references a valid rela-
tionship or if a new one must be added (Fixes C6).

The JPA group (24 assertions). This group is responsible to
check misuses in the JPA annotations, for instance:

1) If an instance field annotated with @Embedded is also
annotated with @Valid in order to verify cascading
(Fixes P11).

2) If an instance field annotated with @JoinColumn
is also annotated with @ManyToOne or @OneToOne
(Fixes P6).

3) If an instance field annotated with @Column or
@JoinColumn has the nullable attribute set to
false is also annotated with @VerifyNotNull
(Fixes P11).

There are also other assertions that do not pertain to any par-
ticular group, such as verifying if there is an open connection
with the database. With these test strategies, our framework
eliminates most of the commons ORM problems that were
already mentioned before. Overall, for a small JPA entity
class with two attributes and 12 annotations, our framework
creates one unit test class with 60 assertions. If any of these
assertions fail, the project is not able to compile. Therefore,
developers are required to follow the guidelines proposed in
the framework.

C. Enhanced error messages module
Throughout our experience using the JPA framework, we

observed that the error messages are not always intuitive. Take
as an example of an error related to data truncation, already
mentioned as a consequence C1 of P7. The traditional error
message raised is the following:
Data truncation: Data too long for column
’movie’ at row 1 org.hibernate.exception.
DataException: could not insert:
[com.model.Timetable]

This error message, although provides a glimpse of the
problem (e.g., the data inserted on column ‘movie’), places

little guidance on how to fix it. Moreover, this error message
misses an opportunity to exploit the ORM problem that is,
indeed, the root cause of the problem. Therefore, developers
may not easily perceive its fix. To mitigate non-intuitive
error messages like the above one, in our work we place a
particular effort in creating errors messages that pinpoint the
causes and also suggest the fix. If our automatic generated
unit tests flag any ORM problems, our framework produces a
customized error summary by adding descriptive messages. As
an example, the previous default JPA error message is replaced
for the following customized error message.
The attribute ‘movie’ in the class ‘com.
model.Timetable’ is annotated with @Column
but should be annotated with @JoinColumn.

We believe that our set of assertions, as well as the curated
error messages, can be useful to help developers overcome
object-relational mapping problems. Moreover, since most of
the assertions are created automatically, we also alleviate the
developers with a non-trivial effort. Taking into consideration
these three modules, our framework has 51 classes, compre-
hending 6,971 lines of code.

VI. THE DEVELOPER EXPERIENCE (DX) STUDY

Our framework has been applied in the enterprise sys-
tem described in Section III for five years now. After the
framework became integrated into our development process,
the number of ORM problems found in production reduced
significantly. The successful usage of the proposed framework
in our enterprise system is initial evidence that it can bring
benefits to projects that present the same characteristics.

To exploit the benefits (and eventual limitations) of our
framework, we conducted a Developer Experience (DX) study.
According to Fagerholm et al [4], DX could be defined as an
approach for capturing how developers think about their activ-
ities within their working environments. DX assumes that an
improvement in the developer experience could have a positive
impact on, e.g., sustained teams and projects performance.

The goal. The goal of this study is to verify if a developer
(with very different skill levels) can use the proposed frame-
work successfully, identifying its strong points and opportuni-
ties for improvement.

The participants. We recruited 13 participants to perform
this experience, in which 10 work in the industry, and 3
undergrad students. The participants were recruited following
a convenience sample: they are close contacts to the authors
of this paper, although none of them had previous experience
with our framework. Two of the participants, however, had no
experience with ORM code. On average, they have 6.7 years
of experience with Java programming (4.9 years with ORM
programming). We refer to them as P1–P13.

The experiment. We asked the participants to perform six
ORM tasks, varying from creating columns, creating a 1
to N relationship, to creating an N to N relationship. The
participant had to create other entity classes throughout the
experiment. The experiment was conducted locally with 5
participants, and remotely with the other 8 participants. For
the remote participants, we provide them a virtual machine

TABLE I
DESCRIPTION OF THE PARTICIPANTS

Job role Java Exp. ORM Exp. Time taken

P1 Software Engineer 3 years 1.5 year 3.5 h
P2 Student 1.5 year 7 months 3.5 h
P3 Software Engineer 14 years 14 years 2.0 h
P4 Software Engineer 16 years 14 years 2.5 h
P5 Student 6 months None 4.0 h
P6 Student 4 years None 2.5 h
P7 Help Desk 3 years 1.5 year 8.0 h
P8 Software Engineer 10 years 6 years 6.0 h
P9 Help Desk 3 years 1.5 year 6.0 h

P10 Help Desk 4 years 1.5 years 5.5 h
P11 Software Engineer 7 years 7 year 2.0 h
P12 Software Engineer 12 years 8 year 3.5 h
P13 Software Engineer 9 years 9 year 2.0 h

Average 6.7 years 4.9 years 3.9 h
Standard Deviation 5.0 years 5.0 years 1.9 h

with our framework configured in the Eclipse IDE. We also
provide a basic Java project, which has one single entity
already implemented, for guidance purposes. On average,
the participants took four hours to complete the tasks (min:
2h, max: 8h). All participants completed the tasks, and all
tasks were completed correctly. After the tasks, we asked the
participants to share their code. We also interview them to
better understand their perceptions regarding our framework.
Two interviews were conducted in person, and the remaining
ones by online tools (e.g., WhatsApp and Skype). The audio
was recorded and later transcribed.

Replication Package. We provide the materials used in this
study (e.g., the virtual machine, the transcripts, etc), as well
as the source code of our framework: https://tiny.cc/qtfeaz.

A. DX Findings

Benefits. In terms of benefits, the participants perceived that
the framework eases the ORM modeling. For instance, P3
mentioned that “Every day I do object-relational mapping, and
this framework could help me to remember what is missing”.
Moreover, the enhanced error messages were perceived as
precise. P5 mentioned that “After I did an initial study to
understand what the framework was about, the error messages
were useful to indicate how to implement the ORM tasks.”.
Still, all participants agree that the enhanced error messages
helped them to conclude the experiments. One particularly
interesting finding is that two participants (P5 and P6) finished
the tasks without any ORM experience. When we interviewed
them, we perceived that they were able to accomplish the task
by following the suggestions of the enhanced error messages.
Similarly, although P8 has many years of experience, he is not
working with JPA anymore. This participant took six hours to
finish the tasks. He mentioned that “I had to remember how to
do the mapping in JPA since I do not work with it anymore”.
This participant also highlighted the enhanced error messages,
saying that “some messages helped more than others, but in the
end, everything went worked smoothly, even not remembering
well the correct mapping”. Still, P11 mentioned that our
framework can be useful for training purposes since the team
becomes used to the standards enforced by the framework.
Finally, P4 highlighted that the framework follows the ORM
best practices.

Challenges. There are also some challenges in using
our framework. According to P4, some custom anno-
tations were not intuitive. For instance, P4 mentioned
that “It took me a little longer to understand that the
@VerifyRelationship annotation must be declared in-
side the @VerifyRelationships annotation.”. When
declaring the @VerifyRelationship annotation outside
the @VerifyRelationships annotation, this participant
received a non-intuitive error message, suggesting that a
@VerifyRelationship annotation has to be added in
the entity class, which made no sense since the annotation
was already there. This happened because we assumed that
our custom annotations were straightforward to use. Impor-
tant to note that, for all the more than 60 assertions, the
participants only faced problems with the one related to
the @VerifyRelationships annotation. Moreover, eight
participants mentioned that the documentation is scarce.
P7 stressed that this was particularly the case of the doc-
umentation of the annotations. Nevertheless, it is important
to note that, although the documentation was not sufficient
in some points, all participants were able to complete all
the tasks. Interestingly, we did not experience these two
problems in our company (the non-intuitive annotation and
the scarce documentation). This could be explained due to the
fact that the architect of the framework as always available
to answer eventual questions. Nevertheless, when considering
the perspectives of making the framework useful to the general
public, these problems become more relevant. Moreover, P4
also mentioned that the framework poses many constraints,
such as the use of a prefix in the column’s name (e.g., “TX ”
for strings) or restricting the use of lazy for fetching strategies
(i.e., a collection is fetched only when the application invokes
an operation upon that collection).

Manual inspection. We manually inspected the source code
that our participants made during the experiments. We per-
ceived that their code is sightly uniform when it comes to the
implementation of the entity classes. This finding highlights
another benefit of our framework: even when not explicitly
asked, our participants (with very different skill levels) were
able to achieve the expected solution.

VII. LIMITATIONS

On the technical side, our framework is limited to Java
projects that use version 1.5 or higher. Our framework is also
limited to ORM problems with the JPA framework. Still, our
framework requires access to the source code, therefore it
could not help much if only the binaries are available.

In terms of the experiment, our study is limited by the
number of participants (only 13 developers participated in
our study). However, the participants have different levels
of experience (which foster diversity) and all of them were
well experienced with ORM frameworks (which makes their
response more trustworthy). Moreover, during our experiment,
we perceived that our framework is not only helpful for those
that have already experience in ORM since two students with
no previous ORM experience were able to finish the tasks.

Finally, one may argue that our framework might not be
relevant today since some of the ORM problems reported were
due to our experience working with the JPA, some years ago.

However, when browsing Q&A websites today, we still see
these problems occurring. For instance, the question stack-
overflow.com/q/55466284 asked in April 2019 (two months
ago as of this writing), could be fixed by our framework (see
C1). Therefore, we believe that developers are still demanding
tools that aid them to deal with ORM problems.

VIII. RELATED WORK

There are many works that propose tools to aid developers to
find and fix errors. jPET [1] is a white box test-case generator
that performs reverse engineering of the test-cases generated
at the bytecode level. Randoop [9] generates unit tests for
Java code using feedback-directed random test generation.
EvoSuite [5] is an engine that automatically creates test cases
with assertions for Java classes. SpongeBugs is a Java tool
that automatically fixes warnings raised by SonarQube [7].
Other works focused on problems related in ORM code [2].
To the best of our knowledge, there is no research work that
introduces and assesses tools that aid developers to find and
fix ORM problems.

IX. CONCLUSION

ORM problems are commonplace in the developer land-
scape. Unfortunately, many of the tools available to find
and fix errors do not help much, since ORM problems are
often domain specific. In this work, we share our experience
by (1) categorizing 12 ORM problems, (2) introducing a
framework that aid developers to identify these problems,
and (3) conducting a developer experience study with 13
participants. We observed that our framework helped them to
finish the coding tasks. The participants also perceived some
benefits while using the framework, such as the precise error
messages or the adherence to the ORM best practices.
Acknowledgments. We thank the participants for collaborating
in this research and the reviewers for their helpful comments.
This was is partially supported by CNPq (#406308/2016-0),
FAPESP (#2014/16236-6) and PROPESP/UFPA.

REFERENCES

[1] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gomez-Zamalloa, and
S. Gutierrez. jpet: An automatic test-case generator for java. In 18th
WCRE, pages 441–442, Oct. 2011.

[2] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser, and
P. Flora. Finding and evaluating the performance impact of redundant
data access for applications that are developed using object-relational
mapping frameworks. IEEE TSE., 42(12):1148–1161, 2016.

[3] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions of
AST nodes to study actual and potential usage of java language features.
In 36th ICSE, pages 779–790, 2014.

[4] F. Fagerholm and J. Münch. Developer experience: Concept and defini-
tion. In 18th ICSSP, pages 73–77, June 2012.

[5] G. Fraser and A. Arcuri. Evosuite: On the challenges of test case
generation in the real world. In 6th ICST, pages 362–369, Mar. 2013.

[6] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Notices,
39(12):92–106, 2004.

[7] D. Marcilio, C. A. Furia, R. Bonifcio, and G. Pinto. Automatically
generating fix suggestions in response to static code analysis warnings.
In 19th SCAM, 2019.

[8] E. J. O’Neil. Object/relational mapping 2008: Hibernate and the entity
data model (edm). In SIGMOD, pages 1351–1356, 2008.

[9] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing
for java. In 22nd OOPSLA, pages 815–816. ACM, 2007.

