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1 - INTRODUCTION  

The problem of edge detection has been of considerable 

interest in visual pattern recognition. However, the proposed methods 

are often heuristic. Techniques involving differentiation, like the 

gradient or the laplacian are highly susceptible to noise. A few 

statistical methods for detecting edges have been proposed. Nahi and 

Habibi D] used a replacement process to decide if a picture element 

belongs to the object or to the background. Modestino and Fries [2] 

used two dimensional recursive digital filtering structures. 

The method that is proposed in this article is based on 

statistical decision theory and it takes explicitly into consideration 

the randomness of signal and noise in a formal way. Moreover, the 

algorithm can be implemented with computational effort that is at least 

comparable to those techniques involving derivatives. 

2 - STATEMENT OF THE PROBLEM  

The statistical algorithm adopts the following two 

dimensional autoregressive model fur the signal 

S (k + 1, R, + 1 ) = Pi s (k +1,2.) 	Pa  s (k, i + 1) -Pi  p a  s (k, 2,) 

/(1 	p)) (1 - p 22 ) 	U (k, 2,) 
	

(1) 

In this model the random variables have null means; 

p i  (p 2 ) is the correlation coefficient between non-noisy pixels on the 

horizontal (vertical) directions; {U(k,Z)} is a set of non-correlated 

random variables, with the same variance as {s(k+ 1, 9.+ 1)}. 

We adopt the hypothesis of Gaussian signal. Although this 

is not completely true, such adoption allows us to establish 	a 
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mathematically tractabie model which has the additional feature of being 

easy to be deteimined experimentally, since it only requires estimation 

of means and covariances between pixels. 

The noise in the image comes from several sources, as 

stated earlier. In order to keep the model tractable, it is convenient 

to assume that this noise is Gaussian, additive, independent of the 

signal and also described by Eq. (1). 

Once the models for signal and noise are set, the next 

step is to adequately define the edge detection problem. This definition 

should be simple and yet it should take into consideration what an edge 

means in psychophysical terms. 

Under this perspective, the edge detection problem is 

proposed in the following terms: having observed four noisy pixels 

v (1, j), v (i, j + 1), v (i + 1, j) and v (i + 1, j + 1), like in Fig. 1, 

where v (k, )2) = s (k, 2,) + n (k, 2,), that is, noisy signal = signal + 

noise, we want to take a decision with respect to the signal without 

noise. 

This formulation of the problem in terms of statistical 

decision theory leads to a set of seven possible hypotheses: 

1)1s (i, j) 	s (i, j +1) + s (i +1, j) + s (i +1, j +1)  

3 

2) Is (i,j+1) 

	

	s(i,j)+s(i+1,j)+ s (i+ 1, j +1)  

3 

3) Is (i+ 1,j) 

	

	s(i,j)+s(i,j+1)+ s(i+1,j +1)  

3 

4) Is (i +1,j+1) 	s(i,j)+ 1)+s (i+1, j) 

3 
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5)
s(i,j)+s(i,j+1) 	s(i+1,j)+ s(i+1,j+1)  

2 	 2 

s(i,j)+ sji+1,j) 	s(i,j+1)+ s(i+1,i+1)  

2 	 2 

7 ) 	s(i ,j) 	
s(i,j+1)+ s(i+i,j)+ s(i+1,j+1i  

3 

	

Í' ) s(i,j+1) 	s(im+s(i+1,j).+s(i+i, j+1)1<  à 1  
3 

s(i+1,j) 	s(i,j)+ s(i,j+1) 	s(i+1,j+1) 	< 6  

3 

n1 s(i+1,j+1) 	s(i.j)+s(i,J+1) + su+1,i) 3    

s(i,i)+s(j,i+1) 	s(i+1,;)+s(i+1,;+1)  l< á  

	

2 	 2 

„ 

n1 s(i,j)+s(i+1,j) 	s(i,j+1)4-s(i+i,j+i) 	< 6 	( 2 )  

	

2 	 2 

The non-negative parameter á allows one to adjust the 

result of the decision to a visual judgement, with some interaction with 

the machine, through a computer display. 

Hypotheses 1 to 6 correspond, respectively, to existence 

of edges according to diagonal (Figs. 2 to 5), horizontal (Fig. 6) and 

vertical (Fig. 7) directions and hypothesis 7 corresponds to non-

-existence of edge. 

Proposed as such, the edge detection problem is reduced 

to the solution of a multiple hypotheses problem. Moreover, these 

hypotheses are composite (since each of them involves a region in the 

space of the signal) and they overlap since, for example, the set of 

6) 

< 
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non-noisy pixels (Fig. 8) satisfies hypotheses 1, 2 and 5, for 6 = 0.5. 

In the next two sections, solution methods for this hypothesis testing 

problem will be developed. 

3 - OPTIMn SOLUTION 

The statistical decision problem presented in the 

previous section wi11 be solved by adoptino the Bayesian point of view. 

Fig. 9 il1ustrates the diagram of the model. We want to partition the 

observation space V, that is, to choose the optimal decision rule. 

a (s) defines the probability density function of the 

non-noisy signal; f(v/s) gives the probability density function of the 

noisy signal, conditioned upon the value of the non-noisy signa]; with 

respect to d (y/v), it is well known that nothing is gained by admitting 

a randomized decision rule. Therefore, the space V will be partitioned 

in seven regions, corresponding to the seven possible decisions. It is 

easy to show that, by selecting appropriate cost functions C (s,y i ),i=1, 

2, --- 	7, the overall risk is minimized by selecting the decision y i  

that correspondes to the minimal value of 

Ai. (v) =C (5, Y i ) f (v/s) a (s) ds 
	

(3 ) 

Although the problem is close to the theoretical solution, 

there is a significant point to be considered: the fact that the 

hypotheses overlap. One can imagine the space S as being partitioned 

into two regions: a) hypothesis 7 (non-edge), which is disjoint of the 

other six hypotheses by definition; b) hypotheses 1 to 6 which overlap 

each other. 

Ogg 1-.X] and Middleton 	proposed the following cost 

function to solve the overlapping hypotheses testing problem: 
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(4) 
7 

Pi  Wi  (s) 

j= 1 

wherle IP. = 	a (s) ds is the a priori probability associated with 

region j 

hypothesisj,W.(s) is the conditional probability density function of 

s, given hypothesis j and c (y i , j) is the cost to decide for hypothesis 

when we consider class j. 

Using these cost functions, one obtains: 

7 
A. 	(v) = X 	c (r., 	j) 

j = 1 

(s) f (vis) ds 

region j 

(5) 

If the following costs c (ï i , j) are selected: 

1, 	if i O j 
c(Y)  ., j) = (6) 

it follows that: 

O, if i = j 

7 
A. 	(v) = 	X 	1 -a (s) f (V/s) ds (7) 

= 1 
region j 

j O i 

We must take the minimum value for A. 	(v), i = 1, 2,---, 

It is easy to see that A i  (v) will be minimum if 

1 à (s) f (vis) ds is maximum. The final decision, for the costs 

region i 

7 

C (s, y i ) - j  =  1  

7. 
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given by (6), would consist in performing seven integrais of the last 

type and to consider the largest of them. 

Although the edge detection problem is now formally 

solved, there are still computational obstacles that have to be removed. 

First, integrationsin a four dimensional space must be made. The 

integration over the region that defines the seventh hypothesis (non-

-existence of edge) is difficult to be numerically computed, since this 

region is not regular, being defined by the intersection of regular 

regions. The next section will show the development of a suboptimal 

solution to the problem, that will circumvent this difficulty. 

4 - SUBOPTIMAL SOLUTION 

The computational problems involved in the optimal 

solution led us to develop the following scheme: one would first take 

binary decisions involving non-overlapping hypotheses of the type edge 

versus non-edge of the same type. Then the results of the preliminary 

tests would be compared and the final decision would be taken. This 

scheme can be illustrated by Fig. 10. 

This type of formulation tends to favor the acceptance of 

non-edge hypothesis, for two reasons: 

a) the integration 

	

	(s) f (vis)  ds in each binary decision is 

region non-edge 

made over a region that is larger than the one that is used in 

the optimal' solution because in the latter scheme the region 

that defines the hypothesis non-edge is an intersection of 

areas. Observe that the regions that define the non-edge 

hypothesis are different in each of the preliminary tests; 

b) the non-edge hypothesis appears in ali six preliminary tests, 

while any other hypothesis shows up in only one of them. 
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This preferential treatment of the non-edge hypothesis 

can be somehow compensated by increasing the cost of choosing it when the 

edge hypothesis is true in the partial tests. 

The derivation of the decision procedure for each binary 

detection problem can start with Eq. (3) which is general, not depending 

upon the fact that the hypotheses overlap or not. In this situation, 

there are two hypotheses, edge of a certain type versus non-edge of the 

same type and we have two functions A l  (v) and A2 (V). 

Since the hypotheses do not overlap, one can take as 

costfunctionsC(s,.)constant values c
ij' 

where the first and second yl  

indexes denote the true and the chosen hypotheses, respectively. Index 

O (zero) represent hypothesis non-edge of a certain type and index 1 (one) 

denotes edge of the same type. Therefore, the final decision is given by: 

a (s) f (vis) ds 

11.6 
1 col - C oo (8) 

à (s) f (v/s) ds 
	O 

< 

where 1 denotes decision for an edge of a certain type and O denotes 

decision for non-edge. 

Therefore, the classical Bayesian test, that decides 

between two composite hypotheses involving a likelihood ratio, is 

obtained 

Once the binary decisions are taken, involving edge 

versus non-edge of a certain type, the final decision about which type 

of edge (or non-edge) is chosen (Fig. 10) has to be made. For this, we 

will associate with the accepted hypotheses in the preliminary test the 

value: 
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CIO - C11 

 

.O (s) f (f/s) ds 
> A 

41 	"" 

( 9 ) 
Cai - COO 

 

f 
1 a (s) f (vis) ds 

!! 

 

>A 

or its inversé, whether this value would be greater or equal (there is 

an edge) or less (there is non-edge) than one. We will accept the 

hypothesis associated with the hig!lest value. Observe that the non-edge 

hypothesis can furnish up to six candidates for the final decision. 

The modeling of signa] and noise as Gaussian processes 

allows the specification of the densities a (s) and f (v/s) through 

their mean vectors (assumed zero by subtracting the sample mean of the 

image before processing) and covariance matrix. 

The computational implementation of the likelihood ratio 

test may demand the construction and the follow-up of tables which avoid 

the necessity of repeating the numerical calculation of the integrais. 

From the symmetry of the problem. it is only necessary 

to compute two tabies, corresponding to hypotheses 1 and 5 (edges at 

45°  and horizontal). However, these tests depend on tables with four 

entry variables and this computational effort may turn the algorithm 

unfeasible. In the next section, a development of a computationally 

attractive approximation to the suboptimal solution of the problem is 

introduced. 

5 - APPROXIMATION TO THE SHOPTIMAL SOLUTION  

In order to make feasible the solution of the edge 

detection problem, it is necessary to make a second approximation. This 

will be done by renouncing to the examination of the four noisy pixels 

in order to take the decision. Only two random variables will be 

observed. 



Therefore, to decide edge of type 1 against non-edge of 

type 1 (edge at 450 ) the algorithm, instead of observing v (i,j), 

V (i, j + 1), v (i + 1, j) and v (i + 1, j + 1), will observe only 

V (i, j + 1) + v (1+ 1, j) + v (i + 1, j + 1)  . 
v (i, j) and 	 Likewise, 

3 
in the test edge type 5 (horizontal edge) versus non-edge of the same 

type, the likelihood functions will depend on v (i, j) + v (i, j + 1) 
2 

and v (i + 1, j) + v (i + 1 j + 1)  As a result, the necessary tables 

2 

will depend only on two variables, which clearly reduces considerably the 

computational task. Therefore, in the case of edge of type 1, the 

denominator of expression (8) assumes the form: 

1  a (s(i,j), s(i.j+1), s(i+1,j), s(i+1, j+ 1 )) f ( (v(i,j), 

11 < à 

v(i,j+1) + v(i+1,j) + v(i+1, 3+ 1 ))  I (i,j), s(i,j+1), s(i+1,j), 
3 

	

5(i+1, j+1)) ds(i,j) ds(i,j+1) ds(i+1 3j) ds(i+1, j+1) 	(10) 

6 - SIMPLIFICATION OF THE INTEGRAL COMPUTATION  

Let us use the following notation: s 1  = s(i,j), s 2  = 

	

s(i,j+1), 5 3  = s(i+1,j), s = s(i+1, j+1), s = (s2+s3+ 	3, v1= 

v(i,j), v' = (v(i,j+1) + v(i+1,j) + v(i+1, j+1)) :3. Under these 

tonditions, expression (10) assumes the form: 

f(v i ,v' is i  s 2  $ 3  54) fS 1  C 	JC 4 (s1, s2, s3, S4) •  

*yds), ds 2  ds 3  ds 4  

S2 + Sa + S4 
1 si 	

3 
	I < 6  
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It can be shown [7: that in the Gaussian case, 

expression (11) can be obtained by performing only a double integration, 

•instead of a quadruple integration, that is, Eq. (11) can be given by: 

(si + 

ds, 	ds' f(v i , v') I sl s l ) fsis . (s 1 , s') 	 (12) 

isl - A 

This result reduces considerably the computational effort 

of numerical integration. 

7 - NUMERICAL COMPUTATION OF THE INTEGRALS  

Eq. (8) specifies the likelihood ratio test, which 

demands the computation of integrais in the numerator and the denominator. 

The denominator given by: 

f a (s) f (vis)  ds 	can be calculated by 

i! < 6  . 

K. rx + à 

ds
a 	

ds á (s
a' 

s)f (v, v Is ,s,) 

	

0 	 a 	13 a Pis 

where 

va 	v (i, 

s4 = s (i, 

v = 	(v(i,j+1) + v(i+1,j) + v(i+1, j+1)):3, 

s o  = (s(i,j+1) + s(i+1,j) + s(i+1,j+1)):3 

in the case of the test of type 1 (diagonal edge), for example. An 

analogous expression is used with tests type 2, 3 and 4. For test type 5 

(horizontal edge), we have: 

(13) 



v 	= (v(i,j) + v(i ,j+1)): 2, 
a 

S 	(s(i,j) + s(i,j+1)): 2, 
a 

v= (v(i+1,j) + v(i+1, j+1)) :2, 

s = (s(i+1,j) + s(i+1, j+1)) : 2. 
8 

An analogous convention can be used with test type 6 (vertical edge). 

The numerator of Eq. (8), given by 	a (s) f (vis), can 

be calculated by: 

fsa  - A 

ds 	ds a (s , s ) f (v , v )Is , s ) + a 0 	a 0 	a0a0 
• CO 

CO 

dsa 
	dso  a sa , s o ) f (v a , v 	sa, s o ) 
	

(14) 

-m 	•s +A a 

Unckr de hypothesis 3f.  signal and noise being Gaussian, 

those integrais 

K. 

have the general 
co 

dx exp (-3: 2 ) 	1  

form 

exp (-y 2/2) dy 

a 

(13), 'a 	and 	b are finite; 	in the 

(15) 
/Zn 

In the case of Eq. 

first term of Eq. (14), a = - co  and b is finite, while in the second 

term, a is finite and b = + ... The integration 

 

1 

  

dy exp (-y 2/2) 

a 

    

J2Tr 

  

     

is performed by storing a Gaussian distribution table. The integration 

from - .... to + 	then can be put in the form: 
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f m  

K. 	dx exp (-x 2 ) f (x) 
	

(16) 

This integral can be numerically calculated through the 

application of the Gauss-Hermite formula [9]. 

i 	
M oa 

dx exp (-x 2 ) f (x) = Z H K  f (xK ) 	 (17) 

K=1 

where x K is the K-th zero of the Hermitepolynomial H m 
(x), of the m-V1  

degree, and the weights H K  are given by: 

H v 
	212  (M - ) 	 (18) 

H' (xK) Hm _ 1  (xK ) 

Values of xK  and H K  are given by table [103 

8 - EYPERIMENTAL RESULTS 

To test the proposed algorithm, a simulation work was 

performed on a cartoon image of size 128 x 128 with 9 gray leveis 

(Fig. 11). White Gaussian noise was added to the image, under different 

signal to noise ratios; 20 roots were used when performing the Gauss-

-Hermite integration and a normal distribution with precision up to 6.8 

standard deviations was stored. 

Initially, the scanning was performed by examining non-

-overlapping blocks of four pixels. As a result, some edges were not 

detected since they were located exactly in between the blocks. In order 

to eliminate this problem, a modification was nade on the type of 

scanning, superimposing adjacent groups of observed pixels and reducing 

the number of hypotheses from 7 to 5, in order to avoid an excessive 
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amount of computation, according to Figs. 12, 13, 14 and 15. Hypothesis 

5 corresponds to non-existence, of edge. 

With this new scheme, the problem of missing intermediate 

edges is avoided at the price of an increased computational effort, since, 

with the original type of scanning, the number of tests to be performed 
m2 

is proportional to — • 6 (where M 2  is the number of pixels of the 
4 

image) while in the second type of scanning this number is proportional 

to M 2 •4. Furthermore, the tests of diagonal edges involving individual 

pixels (instead of averages) tend to have a greater probability of 

error. Nevertheless, the results under SNR (that is, the ratio of signal 

variance to noise variance) 100 (Figs. 16 and 17), 30 (Figs. 18 and 19), 

10 (Figs. 20 and 21) and using the correlation coefficient of the signal 

equal to 0.96 (estimated from the original image), show that the 

algorithm is able to cope with noise quite effectively. 

Decreasing the SNR further (SNR = 5) (Figs. 22 and 23) 

there is a tendency for the edges to disappear. This can be interpreted 

in tens of the fact that, for those values of the parameters,P(D o !H i ) 

is much higher than P (D I IH0 ) in th ,  binary tests, besides the 

preference given to the non-edge hypothesis, by being present in ali 

these partial tests. This problem was solved by increasing the value of 

the cost C 10  from 1.0 to 1.5 (see Fig. 24). 

The superiority of the results of the proposed algorithm 

over the classical gradient procedure under noisy conditions can be 

observed through Fig. 25 (SNR = 10) and Fig. 26 (SNR = 5). 

The CPU time for the 128 x 128 image using the 

overlapping scanning method with 5 hypotheses, on a B-6700 machine 

and Algol language, was 380 seconds when performing the likelihood 

ratios repeatedly by calculation, but this time was reduced to 24 

seconds by the use of look-up tables. 
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The corresponding gradient procedure took 19 seconds. 

However, in the proposed method the edges are indicated by a gray levei 

that depends on the ratio of the two greatest likelihood ratios of the 

partial tests. If we simply associate a dark tone to the existence of 

an edge and a light tone to the non-existence, it is possible to store 

in the look-up table only the information on which edge is decided and 

that requires only one entry (instead of four) in a table that uses a 

maximum of three bits of storage per pair of values, with considerable 

reduction in the computational task. 

The proposed algorithm, under five hypotheses with 

overlap, was applied to detect edges on a 512 x 512 NOAA.V metereological 

satellite picture (Fig. 27), with 32 (Fig. 28) and 8 (Fig. 29) leveis of 

quantization using as parameters ps  = 0.90, p N  = 0, SNR = 60 (the 

difference due to a greater quantization noise with 8 leveis was not 

considered), C 10  = 10, á .= 0.90 (32 leveis) and à = 0.35 (8 leveis). 

These results show that, by attempting to preserve the number of 

quantization leveis, some continuity of the edges seems to be lost. The 

construction of the table took approximately 2 minutes for 32 leveis and 

a few seconds for 8 leveis, while the execution time on a NOP 11/45 in 

Fortrn demanded 20 minutes. The limited precision of the Gaussian table 

and of the floating point representation of the minicomputer forced 

some approximations. 

This work will continue in the future, in the direction 

of incorporating contextuai considerations, which may include the 

multispectral character of the images. 

9 - CONCLUSIONS  

A new algorithm to detect edges in images was developed, 

under the framework of statistical decision theory. This scheme takes 

explicitly into consideration the randomness of signal and noise. 

Suboptimal solutions were developed, with computational effort at least 

comparable to the classical procedures, like the.gradient, and better 

performance under noisy conditions. 
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Fig. 1 - Set of Fixeis for Edge Detection 
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Fig. 3 - Edge of the 22a Type (diagonal) 
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Fig. 4 - Edge of the 121 Type (diagonal) 

Fig. 5 - Edge of the 4.91 Type (dilgonal) 
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Fig. 6 - Edge of the 02 Type (horizontal) 
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Fig. 7 - Edge of the 621 Type (vertical) 
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Fig. 8 - Example of Overlapping of Hypotheses 
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Fig. 10- Diagram of the ModelforStiboptimal Scheme 
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