
sid.inpe.br/mtc-m21c/2020/01.24.13.23-TDI

A CRITICAL SOFTWARE PROCESS SELECTION FOR
VERY SMALL ENTITIES (VSE)

Gledson Hernandes Diniz

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs.
Ana Maria Ambrosio, and Carlos
Henrique Netto Lahoz, approved
in November 14, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3UQR2LE>

INPE
São José dos Campos

2019

http://urlib.net/8JMKD3MGP3W34R/3UQR2LE

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GBDIR)
Serviço de Informação e Documentação (SESID)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos
Climáticos (CGCPT)
Members:
Dra. Carina Barros Mello - Coordenação de Laboratórios Associados (COCTE)
Dr. Alisson Dal Lago - Coordenação-Geral de Ciências Espaciais e Atmosféricas
(CGCEA)
Dr. Evandro Albiach Branco - Centro de Ciência do Sistema Terrestre (COCST)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia e Tecnologia
Espacial (CGETE)
Dr. Hermann Johann Heinrich Kux - Coordenação-Geral de Observação da Terra
(CGOBT)
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação - (CPG)
Silvia Castro Marcelino - Serviço de Informação e Documentação (SESID)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Serviço de Informação e Documentação (SESID)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação
(SESID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SESID)
ELECTRONIC EDITING:
Ivone Martins - Serviço de Informação e Documentação (SESID)
Cauê Silva Fróes - Serviço de Informação e Documentação (SESID)

sid.inpe.br/mtc-m21c/2020/01.24.13.23-TDI

A CRITICAL SOFTWARE PROCESS SELECTION FOR
VERY SMALL ENTITIES (VSE)

Gledson Hernandes Diniz

Master’s Dissertation of the
Graduate Course in Engineering
and Space Technology/Space
Systems Engineering and
Management, guided by Drs.
Ana Maria Ambrosio, and Carlos
Henrique Netto Lahoz, approved
in November 14, 2019.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/3UQR2LE>

INPE
São José dos Campos

2019

http://urlib.net/8JMKD3MGP3W34R/3UQR2LE

Cataloging in Publication Data

Diniz, Gledson Hernandes.
D615c A critical software process selection for very small entities

(VSE) / Gledson Hernandes Diniz. – São José dos Campos : INPE,
2019.

xxiv + 94 p. ; (sid.inpe.br/mtc-m21c/2020/01.24.13.23-TDI)

Dissertation (Master in Engineering and Space
Technology/Space Systems Engineering and Management) –
Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2019.

Guiding : Drs. Ana Maria Ambrosio, and Carlos Henrique
Netto Lahoz.

1. Critical software. 2. Process selection. 3. Tailoring. 4. Profile.
5. Very Small Entities (VSE). I.Title.

CDU 334.012.63:004.42

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

iv

v

“Life is really simple, but we insist on making it complicated.”

Confucius

vi

vii

I dedicate this work to my family and friends.

viii

ix

AKNOWLEDGEMENTS

I would like to thank my research advisors, Prof. Ana Maria Ambrosio and Prof.

Carlos Henrique Netto Lahoz, for believing in me, guiding, inspiring and

supporting during my dissertation work. I also want to thank them for their great

enthusiasm and unwavering patience towards me; how they explained me the

way to develop this work and the dynamics of the academic world. Their

intuition, work ideas, detailed knowledge, and unending quest to arrive at the

correct contents consistent with the existing processes, provided me with an

invaluable experience and benefits. I would also like to gratefully acknowledge

and thank all my colleagues and coworkers from INPE to whom I am very

thankful for their valuable time during the progress of the work and their

valuable suggestions. I gratefully acknowledge all my teachers, my family

members, specially my wife and daughters, and my friends who have greatly

contributed towards my evolution and supported me continuously.

x

xi

ABSTRACT

Aligned with the worldwide trend of developing using small teams, most of the
critical software has been developed by Very Small Entities (VSE),
organizations with up to 25 people. Although there are many process models
and standards, the majority of them do not specifically aim the needs of
organizations, such as VSE, for whom ISO/IEC 29110 standard was created.
The available processes models from ISO/IEC 29110, called Generic Profile
Group, are applicable to VSEs that do not develop critical systems or software
products. For their use, process models are customized to obtain the project's
defined software process, considering individual characteristics. These models,
such as the framework from European Space Standardization Coordination
(ECSS), generally include provisions for customization based only on the
software criticality level, and each organization should eventually select other
criteria to indicate the risk that the project is prepared to assume by determining
the application of the processes. The set of all possible software is very large,
so a set of processes suitable for use by any potential organizations and
projects would be excessively general or complex, and difficult to apply. Using
standard terminology (documents, processes, activities, tasks, functions, and
artifacts) that each organization understands is not a trivial task. Since process
selection must be conducted in a thoughtful and disciplined manner, research
has been conducted on the effects of project characteristics and their use for
project evaluation. Selecting processes requires criteria to assess their
relevance to project needs directing to process subsets according to the
classification resultant from project evaluation. In this context, the objective of
this dissertation is to propose a process selection approach applicable to critical
software projects in VSE. Project evaluation is achieved by identifying specific
criteria that influence projects and using them in a framework to assess their
implications. The projects are classified based on the criticality rating of the
software, along with the result of the project evaluation, indicating the use of
different process profiles, selected from a common core of international
standard requirements. The results show that the selection of project
characteristics is a means to support the understanding of influence factors for
process selection, and that ECSS processes can be applied to VSE, comprising
appropriate process sets according to the evaluation of each project.

Keywords: Critical software. Process selection. Tailoring. Profile. Very Small

Entities (VSE).

xii

xiii

UMA SELEÇÃO DE PROCESSOS DE SOFTWARE CRÍTICO PARA

ENTIDADES MUITO PEQUENAS (VSE)

RESUMO

Alinhado à tendência mundial de desenvolvimento usando equipes pequenas, a
maioria dos softwares críticos têm sido desenvolvida por Entidades Muito
Pequenas (VSE), organizações com até 25 pessoas. Embora existam muitos
modelos e padrões de processo, a maioria deles não visa especificamente às
necessidades de organizações como as VSE, para quem o padrão ISO/IEC
29110 foi criado. Os modelos de processos disponíveis nesse padrão,
denominados Generic Profile Group, são aplicáveis às VSE que não
desenvolvem sistemas ou produtos de software críticos. Para sua utilização, os
modelos de processo são customizados para obter processo de software
definido do projeto, considerando características individuais. Esses modelos,
como o framework da Coordenação Europeia de Padronização do Espaço
(ECSS), geralmente incluem provisões para customização com base apenas
no nível de criticidade do software e cada organização deve eventualmente
selecionar outros critérios para indicar o risco que o projeto está preparado
para assumir determinando a aplicação dos processos. O conjunto de todos os
softwares possíveis é muito grande, assim um conjunto de processos
adequado para uso por quaisquer organizações e projetos em potencial seria
excessivamente geral ou complexo, além de difícil de aplicar. Interpretar a
terminologia padrão (documentos, processos, atividades, tarefas, funções e
artefatos) de forma que cada organização entenda não é uma tarefa trivial.
Como a seleção de processos deve ser realizada de maneira ponderada e
disciplinada, pesquisas têm sido feitas sobre os efeitos das características de
projeto e sua utilização para classificação de projetos. Selecionar os processos
requer critérios para avaliar a sua relevância quanto às necessidades do
projeto, gerando subconjuntos de processos selecionados de acordo com a
classificação dos projetos. Nesse contexto, o objetivo desta dissertação é
propor uma abordagem para a seleção de processos aplicável a projetos
críticos de software em VSE. A avaliação dos projetos é obtida por meio da
identificação de critérios específicos que os influenciam e sua utilização em
uma estrutura para avaliar suas implicações. Os projetos são classificados a
partir do nível de criticidade do software em conjunto com o resultado da
avaliação dos projetos, indicando a utilização de diferentes perfis de processos,
selecionados a partir de um “núcleo comum” de requisitos de padrões
internacionais. Os resultados mostram que a seleção de características dos
projetos é um meio de apoiar o entendimento dos fatores de influência para
seleção de processos e, ainda, que os processos da ECSS podem ser
aplicados para VSE, compreendendo conjuntos de processos adequados de
acordo com a avaliação de cada projeto.

xiv

Palavras-chave: Software crítico. Seleção de processos. Adaptação. Perfil.
Entidades Muito Pequenas (VSE).

xv

FIGURES LIST

Page

Figure 1.1: The three process critical dimensions. ... 2

Figure 1.2 : The research ‘onion’. ... 11

Figure 1.3: Dissertation organization. ... 13

Figure 2.1: IDEF0 A-0 diagram example. ... 16

Figure 2.2: Life cycle process groups. .. 19

Figure 2.3: Assessment dimensions. .. 20

Figure 2.4: Software related processes in ECSS Standards. 25

Figure 2.5: Structure of the Continuous and Staged Representations. 29

Figure 2.6: MPS.BR elements .. 30

Figure 2.7: MPS.BR model. .. 31

Figure 2.8: S4S contents. ... 32

Figure 2.9: Generic profile group’s contents. .. 34

Figure 2.10: ISO/IEC 29110 PM and SI relationship. 36

Figure 3.1: Literature review process. .. 37

Figure 4.1: GAPS development. ... 45

Figure 4.2: Tailoring criteria definition. ... 46

Figure 4.3: Project evaluation. .. 54

Figure 4.4: Processes selection. .. 58

Figure 4.5: VSE critical profile group processes. .. 65

xvi

xvii

TABLES LIST

Page

Table 1.1: MSME share distribution. .. 6

Table 2.1: Software criticality categories definition. .. 26

Table 2.2: Function criticality description. ... 27

Table 2.3: Comparison of Capability and Maturity Levels 29

Table 2.4: S4S processes. ... 33

Table 3.1: PICO framework. ... 38

Table 3.2: Search results – Reference date: 07/Oct/2019. 39

Table 4.1: Names and descriptions of project factors. 48

Table 4.2: Factor voting spreadsheet example... 53

Table 4.3: Evaluation framework example. .. 56

Table 4.4: Software criticality related project classification. 57

Table 4.5: VSE software project profile classification. 57

Table 4.6: Aspects related to the tailoring criteria. .. 60

Table 4.7: S4S Processes. ... 67

Table 4.8: ISO/IEC 29110 Basic Profile processes. ... 68

Table 5.1: Tailoring criteria selection. ... 72

Table 5.2: Evaluation framework. ... 74

Table 5.3: Case projects framework grading results. 75

Table 5.4: Project classification for the space context. 75

Table 5.5: Processes for GAPS Basic Critical Profile. 77

Table 5.6: Processes for Intermediate GAPS Critical Profile. 77

Table 5.7: Processes for GAPS Advanced Critical Profile. 78

Table 5.8: Additional processes. .. 78

xviii

xix

LIST OF ACRONYMS AND ABREVIATIONS

ACQ Acquisition

C C programming language

C++ Extension of C programming language

CBERS China-Brazil Earth Resources Satellite

CI Configuration Item

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMU Carnegie Mellon University

CSP Critical Space Profiles

CUS Customer-Supplier

DEV Development

DO DOcument

DoD Department of Defense

E Engineering

ECSS European Cooperation for Space Standardization

ENG Engineering

EO Earth Observation

ESA European Space Agency

FAA Federal Aviation Administration

GAPS Generic Approach for Process Selection

GGPSw Grupo de Garantia do Produto de Software (Software Product
Assurance Group)

HB Handbook

IDEF0 Integration Definition language 0

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IFC International Finance Corporation

INCOSE International Council on Systems Engineering

INPE Instituto Nacional de Pesquisas Espaciais (National Institute for
Space Research)

IPD Integrated Product Development

ISO International Organization for Standardization

xx

IT Information technology

LOC Lines Of Code

LOFI Level Of FAA Involvement

M Management

MA Modelo de Avaliação (Assessment Model)

MAN Management

MCTIC Ministério da Ciência Tecnologia, Inovações e Comunicações
(Ministry of Science, Technology, Innovations and Communications)

MN Modelo de Negócios (Business Model)

MPS.BR Brazilian Software Process Improvement

MSME Micro, small and medium-sized enterprises

MR Modelo de Referência (Reference Model)

N/A Not Applicable

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

OECD Organization for Economic Co-operation and Development

ORG Organization

PA Product Assurance

PAM Process Assessment Model

PICO Population/Problem, Intervention, Control/Comparison and Outcome

PM Project Management

PRM Process Reference Model

Q Quality

QA Quality Assurance

RAM Reliability, Availability and Maintainability

RAMS Reliability, Availability, Maintainability and Safety

RE Regulated Environment

RTCA Radio Technical Commission for Aeronautics

S4S SPICE for Space

SCS Safety Critical Software

SE Software Engineering

SECM System Engineering Capability Model

SEI Software Engineering Institute

SI Software Implementation

xxi

SME Small and medium-sized enterprises

SOFTEX Software Excellence Promotion Association

SP Standardized Profile

SPA Software Process Assessment

SPCMM Software Process Capability/Maturity Models

SPI Software Process Improvement

SPICE Software Process Improvement and Capability dEtermination

ST Standard

SUP Support

SVC Services

SW Software

SWE Software Engineering

SwPA Software Product Assurance

TM Technical Memorandum

TSR Total Score Result

TQM Total Quality Management

VSE Very Small Entity

WBS Work Breakdown Structure

WG Working Group

WP Work Package

WTO World Trade Organization

xxii

xxiii

SUMMARY

Page

1 INTRODUCTION ... 1

2 CONCEPTUAL FOUNDATIONS ... 15

2.1 Process representation .. 15

2.2 Software quality ... 16

2.3 Software process standards and models ... 18

2.3.1 ISO/IEC 12207 .. 18

2.3.2 ISO/IEC 15504 (SPICE) .. 20

2.3.2.1 Process dimension ... 21

2.3.2.2 Capability dimension .. 22

2.3.3 ECSS-E-ST-40 and ECSS-Q-ST-80 ... 23

2.3.4 Capability Maturity Model Integration (CMMI) 27

2.3.5 MPS.BR .. 29

2.3.6 SPICE for Space (S4S) ... 31

2.3.7 ISO/IEC 29110 .. 33

3 LITERATURE REVIEW ... 37

3.1 Critical software processes tailoring .. 39

3.2 Software processes in small entities .. 41

3.3 Literature review analysis .. 43

4 GENERIC APPROACH FOR PROCESS SELECTION (GAPS) 45

4.1 Step 1 - Tailoring criteria definition .. 45

4.1.1 Project factors ... 47

4.1.2 Voting framework for criteria selection .. 53

4.2 Step 2 - Project evaluation ... 54

4.2.1 Evaluation structure... 55

4.2.1.1 GAPS evaluation framework .. 56

4.3 Processes selection ... 58

4.3.1 Project aspects .. 59

4.3.2 Process profiles ... 65

4.3.2.1 Capability dimension .. 66

xxiv

4.3.2.2 Process dimension ... 66

5 CRITICAL SPACE PROFILES (CSP) .. 69

5.1 Projects .. 69

5.1.1 Project 1: On-board data handling application 69

5.1.2 Project 2: Ground control .. 70

5.1.3 Project 3: Application for remote sensing payload 71

5.2 Applying GAPS .. 71

5.2.1 Step 1 - Tailoring criteria definition – space context 71

5.2.2 Step 2 - Projects evaluation – space context 74

5.2.3 Step 3 - Process selection – space context ... 76

6 CONCLUSION ... 79

6.1 Limitations .. 80

6.2 Future work suggestion.. 81

6.3 Published works ... 81

REFERENCES ... 83

1

1 INTRODUCTION

The number of system solutions provided by software and the complexity of the

needs addressed to it are growing increasingly, turning software into an enabler

of progress, making it a “complexity sponge” (NASA, 2009).

In the late 1960s, during a conference sponsored by NATO's Science

Committee, the term Software Engineering (SE) emerged to establish the use of

sound engineering principles such as product cost-effectiveness to get software

running reliably and efficiently (NAUR; RANDELL, 1969 apud HIRAMA, 2011).

SE makes use of prescriptive models, which consist of distinct sets of activities,

actions, tasks, milestones, and consequent work products (programs,

documentation, and data) (IEEE, 1990).

SE can be understood as a layered technology, establishing techniques and

practices for software development for a wide range of applications and

different types of devices (PRESSMAN, 2007). In this context, a software

development process is a set of activities, methods, practices, and

transformations that people use to develop and maintain software and its

related products (SEI, 2010). According to Miyashiro and Ferreira (2014),

ongoing research and studies in order to achieve software quality are focused

on its development processes.

The United States Department of Defense (DoD) sponsored the development of

an assessment model called Capability Maturity Model for software (SW-CMM),

developed by Carnegie Mellon University’s Software Engineering Institute

(CMU-SEI). SEI is responsible for evolving the CMM family, now Capability

Maturity Model Integration (CMMI), and for conducting several other software

engineering researches. In its CMMI® for Development Version 1.3 (SEI, 2010),

SEI presents the three critical dimensions that are held together by the

organization’s software process, shown in Figure 1.1: people; procedures and

methods; tools and equipment.

2

Figure 1.1: The three process critical dimensions.

Source: SEI (2010).

The three critical dimensions from Figure 1.1 are:

 People with skills, training and motivation: to achieve the desired result

every process needs to be accepted, understood, and encouraged by the

people involved;

 Tools and equipment: the use of tools that assist in the execution of the

process needs to be inserted in a controlled and evolutionary way,

making people control and use them; and

 Procedures and methods defining the relationship of tasks: to be

instituted in a company, the process needs to be designed to naturally

lead to good practices. It should be minimally bureaucratized and must

allow some flexibility.

As the quality of development process is closely related to the quality of a

software product, Process Reference Models (PRMs) have been used in order

to assist companies organizing and disciplining at the development activities in

order to increase the quality of their products and productivity (CASS;

3

VÖLCKER et al., 2001; EITO-BRUN, 2013; FELDT; TORKAR et al., 2010;

WANGENHEIM; HAUCK et al., 2010).

Process standardization is a significant instrument for increasing quality and

communication among stakeholders during conception, planning, and

implementation of projects, while it also helps to reduce risks and costs

associated, making business more profitable as less time is spent on non-

productive work (YILMAZ; O’CONNOR; CLARKE, 2016). Standards published

by committees, international technical entities or regulatory agencies influence

software development through guidelines for processes and products

considering their associated risks (MUNCH; ARMBRUNT et al., 2012).

Software processes have the potential to be highly complex (CLARKE;

O’CONNOR; LEAVY, 2016) and may be subdivided into tasks and activities. A

process is a set of related activities performed for a particular purpose or

outcome (like develop and maintain software products); a task is an action with

inputs and outputs, which may be a requirement (must), recommendation

(should) or permission (may); and an activity is a set of tasks (ISO, 2015).

Since the set of all possible software is very large, a set of processes, suitable

for use by all potential organizations and projects, would be either excessively

general or complex and difficult to apply. Standard processes typically cannot

be used without customization (GINSBERG; QUINN, 1995), therefore, PRMs

are customized to obtain the project's defined software process (SEI, 2010).

Although the need to tailor software processes to specific project requirements

is widely accepted, the way of doing it is frequently unclear (KALUS;

KUHRMANN, 2013). Organizations such as the European Space

Standardization Coordination (ECSS) (ECSS, 2017a) and the National

Aeronautics and Space Administration (NASA) (NASA, 2017) recommend

tailoring their standard processes based on the software criticality level (ECSS,

2017b), and it is under responsibility of each organization to eventually select

other criteria to indicate the risk that project is likely to take and the extent to

which the processes are made applicable. Research has been conducted on

4

the effects of project factors for the resulting software process and how to use

this knowledge to choose those to be considered for processes tailoring

(KALUS; KUHRMANN, 2013).

1.1 Context

According to ECSS (2017b), if a software error has the potential to cause loss

of human lives or other major or catastrophic consequences, the software is

designated as Safety Critical Software (SCS). IEEE (2002) describes software

“whose failure could have an impact on safety, or could cause large financial or

social loss” as critical.

Software is found from top system functions down to firmware, including safety

and mission critical functions, presenting different types of risks according to the

variety of possible consequences of a failure in their different environments.

Marques (2016) points out that critical software developments in regulated

environments (RE) such as space, aeronautics, medical, railway, and nuclear

must considerer specific factors such as type of software product, role of

software in the system, size of the system and level of risk.

Standards published by committees, international technical entities, or

regulatory agencies influence software development through risk-based

software process and product guidelines (MUNCH; ARMBRUNT et al., 2012).

Typically, each domain of knowledge has its own software standard, such as

RTCA/DO-178C (RTCA, 2011) for aeronautics and ECSS-E-ST-40C (ECSS,

2009a) and ECSS-Q-ST-80C (ECSS, 2017a) for space systems.

Standardization for software development processes comprises the concept of

the Standardized Profile (SP), which is defined by the International Organization

for Standardization (ISO) as a “set of one or more base standards and/or SPs,

and, where applicable, the identification of chosen classes, conforming subsets,

options and parameters of those base standards, or SPs necessary to

accomplish a particular function”. A possible analogy is that a profile is like a

5

bill of materials composed of parts of standards such as ISO/IEC 12207

(ISO/IEC/IEEE, 2017) or ISO/IEC 15288 (ISO/IEC/IEEE, 2015).

The number of organizations that need to demonstrate compliance with

regulatory standards is increasing and many of these standards-based

regulations require the presence of explicit software processes (MUNCH;

ARMBRUNT et al., 2012), for which Software Process Improvement (SPI)

models have been employed (GORSCHEK; WOHLIN, 2006).

When used as a comparative basis for software process evaluation and/or

improvement, these best practice frameworks have been called Software

Process Capability/Maturity Models (SPCMM) (SALVIANO; FIGUEIREDO,

2008). A large variety of software process capability/maturity models have been

used over the years, with a trend to the specialization of those models for

specific domains and most of those models concentrated around the

CMM/CMMI framework and the standard ISO/IEC 15504 (ISO/IEC, 2008)

(WANGENHEIM; HAUCK et al., 2010).

Despite being comprehensive and rigorous evaluation models, prescriptive SPI

models, such as CMMI and ISO/IEC 15504, are considered heavy.

(KUILBOER; ASHRAFI, 2000) Literature reports that these heavy SPI models

and their evaluation methods are considered expensive by small and medium-

sized enterprises (SME) (CATER-STEEL, 2001; JOHNSON; BRODMAN, 1997;

KELLY; CULLETON, 1999; LARYD; ORCI, 2000; VILLALÓN et al., 2002;

SCHOEFFEL; BENITTI, 2015), which is related to the fact that process

improvement models are not being extensively deployed and their influence in

the software industry remains more at a theoretical level (LAPORTE;

O’CONNOR; PAUCAR, 2015). The acronym SME is used as a generic term

referring to organizations that are not large. Sometimes, the acronym gains the

term “micro”, becoming MSME, to emphasize the inclusion of smallest

companies (BRUHN; HOMMES et al., 2017).

Although there is no mutually agreed definition about the names related to

sizes, the Organization for Economic Co-operation and Development (OECD)

6

considers companies with up to 10 employees as micro; 10 to 50 employees as

small, and 50 to 250 as medium. (WTO, 2016). Criscuolo et al. (2014) shows

that MSMEs account for over 95% of all companies in 17 OECD countries, in

addition to Brazil, representing 63% of total employment. As presented in Table

1.1, the majority of MSMEs are micro, representing 82.9%; 8 of more than 12

million enterprises covered (KUSHNIR; MIRMULSTEIN; RAMALHO, 2010).

Table 1.1: MSME share distribution.
Countries % of micro

(< 10 employees)

% of small

(10 to 50 employees)

% of medium

(50 to 250 employees)

Developed 87.1 10.7 23.2

Developing 80.5 15.6 3.9

 G20 developing 82.1 13.2 4.7

 Other developing 80.5 14.9 4.5

 Least developed 78.6 20.7 0.6

Total 82.9 13.8 3.3

Source: Adapted from WTO (2016).

Financial, structural, organizational, and managerial difficulties in MSMEs have

led to investigations and developments in assessment methods that meet the

needs of these organizations, called lightweight methods, typically tailored and

in accordance to comprehensive and heavyweight methods. Developers of

lightweight evaluation methods normally claim that their methods are successful

based on some case studies and feedback from evaluated organizations

(ALEXANDRE; RENAULT; HABRA, 2006; ANACLETO et al., 2004; CIGNONI,

1999; KUVAJA; PALO; BICEGO, 1999; ROUT; TUFFLEY et al., 2000).

Literature has shown lightweight methods focused on the process, critical

success factors and barriers on known frameworks, as well as lessons learned

from case studies (KOMI-SIRVIÖ, 2004; NIAZI; WILSON; ZOWGHI, 2003,

2005, 2006).

7

Aligned with the world’s MSME context, most of the critical software has been

developed by Very Small Entities (VSE), organizations with up to 25 people.

Although there are many standard processes, most of them do not specifically

aim the needs of organizations such as VSE, for whom ISO/IEC 29110

standard (ISO/IEC, 2011a) was created. The SPs from ISO/IEC 29110,

gathered in the Generic Profile Group, are applicable to VSEs that do not

develop critical systems or software products.

1.2 Motivation

This dissertation was primarily motivated by the scarceness of standards with

explicit software processes selection approach that can be used by VSE

developing critical software.

VSEs have important significance in contributing with valuable products and

services as they represent a large majority of enterprises worldwide (MOLL,

2013). Because of their size, VSEs differ from larger organizations, with most of

the management processes performed more informally and less documented

(O'CONNOR; BASRI; COLEMAN, 2010).

The Rapid Software Assessment approach (LAHOZ; RICHTER; RICO, 2015),

presented at ESA Software Product Assurance Workshop, event promoted by

the European Space Agency (ESA) (ESA, 2015), comprises elements from

ISO/IEC 29110 and ECSS standards (LAHOZ, 2015), focusing on practices and

requirements for software development in small entities.

Process tailoring needs to be performed in a thoughtful and disciplined manner.

Using standard terminology (documents, processes, activities, tasks, functions,

and artifacts) that each organization understands is not a trivial task. Research

has been conducted on the effects of project characteristics and their use for

project classification. Selecting processes requires criteria to assess their

relevance to project needs, directing to process subsets according to the

classification obtained from project evaluation. The subset of applicable

8

processes selected through project classification can vary, depending mainly on

factors such as type, size, complexity, and phase of addressed project (KALUS;

KUHRMANN, 2013).

Although it is commonly assumed that organizational performance is increased

by using PRMs for process assessments and improvement (GOLDENSON;

GIBSON, 2003), this has not been a common practice, as PRMs have been

adopted by just a small number of organizations, mainly large and medium-

sized ones (KALINOWSKI et al., 2015).

ISO/IEC 29110 set of standards clearly states that its contents are not intended

for critical software developers. Nevertheless, one of ISO/IEC 29110 authors

suggested Basic Profile as foundation for critical applications (LAPORTE,

2017), identifying the gaps to critical project requirements; and also pointed out

that their management and engineering guides do not forbid addition of critical

domain specific tasks or roles, such as Quality Assurance (QA).

In Brazil, the National Institute for Space Research (INPE) is one of the

organizations responsible for space research efforts, including satellites

development (ALBUQUERQUE, 2011). The author of this dissertation is part of

INPE’s Software Product Assurance Group (GGPSw), whose activities include

the definition of requirements and processes for space software. Therefore,

another motivation for research on this subject is the work of the ESA VSEs

Focus Group (ESA, 2018), organized by specialists from space software

domain focused on defining how small organizations could participate in space

projects, developing a step-wise approach for lightweight software process

assessment and improvement mostly based on ISO/IEC 29110 and ECSS

standards. The author and advisors are closely involved in this group as it will

contribute to INPE’s Software Product Assurance Group.

9

1.3 Problem definition

Most of the software has been developed by small groups (LAPORTE;

O’CONNOR; PAUCAR, 2015); however most of the software development

standards do not specifically aim the needs of small enterprises (O'CONNOR;

BASRI; COLEMAN, 2010).

For many VSEs, it is a major challenge implementing controls and structures to

properly manage their software processes (LARRUCEA et al., 2016), and the

lack of formalism in their processes may have negative consequences, such as

missing important activities and tasks, or having limited ways to demonstrate

their quality and be recognized in their domain, consequently they may be put

aside from projects (RODRÍGUEZ-DAPENA; LOHIER, 2017). Currently, there is

no standard process selection approach for critical software development that

considers typical VSE’s characteristics.

In the context of the software industry, the two main process models, CMMI and

ISO/IEC 12207 (CRISÓSTOMO et al., 2016), besides regulated environments

(RE) software standards, have a common core of principles, enabling the

establishment of a common line of processes that be used in several RE

(HAWKINS; HABLI; KELLY, 2013). These models containing a common set of

processes can be used integrally or with some adaptation for two or more

different domains, so it can be called a multi-domain solution. (MARQUES,

2016).

When customizing these models for a specific domain, there is a need for

knowledge acquisition from domain experts. Despite the existence of several

techniques and methods of knowledge acquisition, mostly based on interviews

and analysis of texts in natural language (MOTODA; BOOSE; GAINES, 1991),

they do not take into account or aim to support the customization of process

models.

Therefore, there is the need of methods that provide systematic support for

customization of software process models. So, in this context, the problem to be

10

addressed in this research is: How to systematically perform software process

model customization for critical software in VSE?

1.4 Objective

The objective of this work is to propose an approach for process selection

applicable to critical software in VSE. To achieve that objective, this dissertation

considers identification of specific criteria that influence projects and their

implications on processes considering the typical resources limitations of VSE.

A secondary objective of this work is to present an approach ready to use in

VSE interested in developing space software, considering this context’s specific

features.

1.5 Scope

This dissertation focuses exclusively in the definition of processes, customizing

software process models for specific domains or projects. The implementation

of such processes is not considered as it may vary according to each project.

Although the processes presented in the ISO/IEC 29110 series are not the only

possible to use in VSE software development, these were considered as basis

in the scope of this work. Similarly, there are several standards that regulate the

development of critical software, but in the scope of this work, the processes

from ECSS standards are considered applicable.

1.6 Method

The research methodology employed in academic work needs to be appropriate

to the intended type of study, but the nature of the problem is what actually

determines the choice of method (RICHARDSON, 1997).

11

Myers (1997) suggests that the choice of a specific qualitative research method

is independent of the philosophical position adopted. Accordingly, Burton

(2008), analyzing the research philosophy possibilities, argues that interpretive

research is the most appropriate for the development and validation of software

process models for a specific domain.

Saunders et al. (2009) proposed a structure in which the scientific method is

represented in layers (research ‘onion’), presented in Figure 1.2, in which the

choices for the present work are highlighted.

Figure 1.2 : The research ‘onion’.

Source: Adapted from Saunders et al. (2009).

In the approach of Saunders et al. (2009), presented in Figure 1.2, the scientific

methodology first layer is the research philosophy choice, which guides all

scientific work. In this perspective, this research is predominantly interpretive,

12

since it assumes that its object (process customization) is socially and

contextually constructed and interpreted. Thus, it is difficult to establish a

researcher independence from the research object. The next layer is the

scientific approach, where the perspective of this work is aligned with the

inductive approach, since it does not start from a pre-established hypothesis,

but instead seeks to solve the problem based on the conclusions drawn from

the investigated object. The strategy of this research involves the use of:

archive research and survey without discarding other methods. The research

method is mostly qualitative; however it also involves the quantitative approach

in different research phases, so it can be qualified as mixed. Finally, the

research time horizon is predominantly cross-sectional since data collection

occurs for the survey and validation are unique events over time.

This work is mostly a mixed exploratory basic research, given its objective of

developing an approach for process customization. It proposes a method for

Software Engineering and not a new methodology, because it does not create a

new world view, but takes advantage of the views proposed in process models,

establishing a systematic structure of activities and tools to achieve a goal.

Both sets of standard processes, from ISO/IEC 29110 and ECSS, defined as

part of this dissertation, consider the different roles and activities present in

software development. In order to enable the selection of processes, these sets

will be gathered to generate a single set containing the processes structured

suitable for their selection in the VSE context, highlighting their sources. After

which, information from INPE’s space projects will be used to generate a

version of the set of processes adequate for VSE developing space software.

13

1.7 Dissertation organization

The dissertation is organized into six chapters, as presented in Figure 1.3. This

chapter describes the context, in which this paper is inserted, the factors

motivating its accomplishment, its objectives, and method.

Figure 1.3: Dissertation organization.

Source: Author.

14

In chapter 2 the main concepts on which this work is based are presented,

comprising an overview on process representation, software quality, software

process standards and models.

Chapter 3 presents the search and identification of related works and a

summary of the main works about processes, approaches, project impacting

factors and needs of VSE.

Chapter 4 reports about conception and description of the Generic Approach for

Process Selection (GAPS), a process selection approach considering relevant

factors to software projects, identifying its required methods, activities, inputs

and outputs.

Chapter 5 describes the use of GAPS with real projects information to generate

the Critical Space Profiles (CSP), a set of profiles developed for VSE

developing space software.

Chapter 6 summarizes the main findings and contributions of this research,

including recommendations and suggestions for future work and the related

publications.

15

2 CONCEPTUAL FOUNDATIONS

This chapter provides the foundation to stablish the concepts on which this work

is based, comprising an overview on:

• Process representation;

• Software quality;

• Software process standards and models; and

• Tailoring technique.

2.1 Process representation

A process is defined as a set of interrelated or interacting activities that use

inputs to deliver an output (ISO, 2015), which may be represented by a model,

a physical or abstract representation used for calculations, predictions or further

assessment (ECSS, 2012).

The Integration Definition language 0 (IDEF0) is a structured representation of

the functions, activities or processes within the modeled system or subject area.

IDEF0 is widely used in different enterprises and application domains to

organize the system into a functional view that helps in identifying the functions

to be performed and the data flows between them (FIPS, 1993).

Figure 2.1 presents the A-0 context diagram, which is a special case of IDEF0

that comprises a one-box diagram containing the function and arrows entering

or leaving the box representing:

• Function - an activity, process, or transformation identified.

• Input - the data or object that are transformed into Output;

• Control - the conditions required to produce correct Output (data or

objects modeled as Control may be transformed, creating Output);

• Mechanism - the means used to perform a Function; and

• Output - the data or objects produced by a Function.

16

Figure 2.1: IDEF0 A-0 diagram example.

Source: Adapted from FIPS (1993).

The function name shall be an active verb or verb phrase (i.e.: process parts,

plan resources, conduct review, monitor performance) and the arrows, which

identify data or objects needed or produced by the function, shall be labeled

with a noun or noun phrase (i.e.: specifications, test report, requirements, detail

design, directive, design engineer, board assembly).

2.2 Software quality

Quality is an intangible concept (HETZEL, 1984) with different definitions, such

as: satisfaction of consumer needs and suitability for use (JURAN, 1988); ability

of a set of characteristics inherent in a product, component or process to meet

customer requirements (CHRISSIS; KONRAD; SHRUM, 2011); specification

compliance and nonconformance prevention (CROSBY, 1979), and prevention

and correction of deviations (HOYLE, 2001).

Software quality can be understood in different ways, depending on the

stakeholder. For the developers, quality can be seen as meeting software

17

methods and standards. For managers, it may be the proximity of estimated

project parameters (effort, cost and timeframe). Users can understand it as how

easy the software is to use. And for customers, it may be achieved by meeting

business needs, deadlines and costs.

ISO (2015) defines quality as the degree to which a set of characteristics of an

object meets the requirements; the definition used in this work. Quality must be

achieved and is not simply obtained; there is necessarily an effort to be spent

on continuous process improvement.

Software Engineering (SE) has enabled the advent of software development

and maintenance approaches. From the beginning, processes, methods, and

techniques were created to develop increasingly complex software. In this

context, Quality Assurance (QA) provides assurance that software products and

processes meet the specified requirements. QA has its origin in Total Quality

Management (TQM), an organizational management approach (principles,

methods, and techniques) for continuous process improvement started in the

1980s. Before SE, software was usually developed and tested continuously until

its functionality had been achieved and accepted by the customer. After SE,

software needs to be standardized, documented and cost effective (HIRAMA,

2011).

The process improvement principles of statistical quality control from Shewhart

(1931), refined by Deming (1986), Crosby (1979), and Juran (1988), were

extended and applied to software at International Business Machines (IBM) and

SEI by Humphrey (1989), originating the concept of process maturity proposed

in the TQM-based CMM (currently CMMI).

Nowadays, it is common for companies to seek an effective quality

management system. In this scenario, there are software models and standards

that can be used to improve organizations’ processes. The most known are the

ISO/IEC 12207 standard and the SPICE, CMMI, and MPS.BR models.

18

2.3 Software process standards and models

In regulated environments, which have impacts on society, standards are

adopted to determine the rules to be followed, since the society expects to

receive safe and reliable products and services. As a direct consequence, there

are requirements to demonstrate that a software product is safe and reliable

(MARQUES, 2016).

These standards have objectives or activities that must be met so software

product can be approved for operation in its environment of use. Regulatory

agencies usually require adherence to established norms and standards, such

as ISO/IEC 12207, a standard that establishes a common framework for

software lifecycle processes, guiding an understanding of all components of

software procurement and delivery (ISO/IEC/IEEE, 2017); and ISO/IEC 15504,

which is used as a framework for process evaluation models and methods

(ISO/IEC, 2008).

Sections 2.3.1 to 2.3.7 describe the main process standards and models for

regulated environments within the scope of this dissertation.

2.3.1 ISO/IEC 12207

This standard’s main objective is to establish a framework for software

development and lifecycle processes based on which organizations can define

their processes with a common language among the large number of methods,

techniques, models, and standards that deal with quality. By applying this

standard, the entire software development lifecycle, from requirements to

maintenance, can be achieved in terms of product quality, budget, deadline,

and resources defined in the project. ISO/IEC 12207:2008 applies to the

acquisition of products and services, the supply, development, operation,

maintenance, and disposal of software products, and the software portion of a

system, whether performed internally or externally to an organization (ISO/IEC,

19

2008a). ISO/IEC/IEEE 12207:2017 is the standard’s newest version, published

in November 2017 (ISO/IEC/IEEE, 2017).

ISO/IEC 12207 describes each process in terms of its purpose and expected

outcomes, and lists activities and tasks that need to be performed to achieve

those outcomes. ISO/IEC 12207:2008, which is the version adopted in this

work, comprises 43 processes, gathered into seven process groups, presented

in Figure 2.2.

Figure 2.2: Life cycle process groups.

Source: ISO/IEC (2008a).

The purposes and outcomes of the processes constitute a Process Reference

Model (PRM), which does not represent a particular process implementation

20

approach nor prescribes a system/software life cycle model, methodology or

technique. Conversely, PRM is intended to be adopted based on business

needs and application domain.

The organizations’ defined processes are adopted by their projects in the

context of the customer requirements and the outcomes are used to

demonstrate accomplishment of the purpose of a process, helping to determine

the capability of the implemented process and to provide source material to plan

process improvement.

2.3.2 ISO/IEC 15504 (SPICE)

ISO/IEC 15504 Information technology – Process assessment, also known as

Software Process Improvement and Capability dEtermination (SPICE), is a set

of technical standards that establishes a framework for process evaluation and

improvement based on two dimensions, as presented in Figure 2.3.

Figure 2.3: Assessment dimensions.

Source: Adapted from ISO/IEC (2008).

21

The two dimensions from the process assessment model architecture are:

 Process dimension: defined by the statements of process purpose and

outcomes.

 Capability dimension: a series of process attributes representing the

measurable characteristics of a process.

2.3.2.1 Process dimension

The process dimension consists of a set of processes described in ISO/IEC

12207:2008, which presents a universal set of software processes divided into

five categories considered essential to software engineering:

• Customer-Supplier (CUS): processes that directly impact the customer,

support development and transition of the software to the customer, and

provide correct operation and use of the software product and/or service.

• Engineering (ENG): processes that directly specify, implement, or

maintain the software product, its relation to the system and its customer

documentation.

• Support (SUP): processes which may be employed by any of other

processes (including other supporting processes) at various points in

software life cycle.

• Management (MAN): processes which contain practices of a generic

nature which may be used by anyone who manages any type of project

or process within a software life cycle.

• Organization (ORG): processes that establish organization’s business

goals and develop process, product, and resource assets which, when

used in the projects, will help the organization achieve its goals.

22

Each process category comprises processes that are described in terms of a

purpose statement of their unique functional objectives. The purpose of a

particular process is addressed by activities named base practices, which

identify "what" should be done without specifying "how". Base practices

represent the unique, functional activities of the process, producing work

products with defined sets of characteristics that may be used to assess a

process.

2.3.2.2 Capability dimension

Process capability is expressed in terms of process attributes grouped into

capability levels identical to those defined in the reference model. Process

attributes are features that can be evaluated on a scale of achievement,

providing a measure that indicates a capability level, which constitute a rational

way of progressing through six levels, incorporating nine process attributes:

• Level 0 – Incomplete: General failure in achieving the purpose of the

process. There are little or no easily identifiable work products or outputs.

• Level 1 – Performed: Process’ purpose is generally achieved, sometimes

not rigorously planned and tracked. Individuals within the organization

recognize that an action is performed and when it is required. There are

identifiable work products for the process.

• Level 2 – Managed: There are work products planned and tracked

according to specified standards and requirements. The primary

distinction from the Performed Level is that the process delivers work

products that fulfil expressed quality requirements within defined

timescales and resource needs.

• Level 3 – Established: The process is performed and managed using a

defined process based upon software engineering principles and with the

resources necessary to establish the process definition also in place. The

23

primary distinction from the Managed Level is that the process uses

approved, tailored versions of standard documented processes to

achieve the defined outcomes.

• Level 4 – Predictable: The quality of work products is quantitatively

known because detailed measures of performance are collected and

analyzed, leading to a quantitative understanding of process capability

and ability to predict and manage performance. The primary distinction

from the Established Level is that the defined process is performed

consistently within defined control limits to achieve its defined goals.

• Level 5 – Optimizing: Performance of the process is optimized to meet

current and future business needs, and the process achieves

repeatability in meeting its defined business goals. Quantitative process

effectiveness and efficiency goals (targets) for performance are

established and continuously monitored against business goals to obtain

quantitative feedback that enables improvement based on analysis of the

results. The primary distinction from the Predictable Level is that the

defined and standard processes dynamically change and adapt to meet

current and future business goals.

The measure of capability is based upon the nine process attributes of the

reference model, which are evaluated on a four point ordinal scale of

achievement to measure the aspects used for determining whether a process

has reached a given capability level.

2.3.3 ECSS-E-ST-40 and ECSS-Q-ST-80

Software Engineering (SE) and Software Product Assurance (SwPA) disciplines

are elements of the Engineering (-E) and Product Assurance (-Q) branches,

respectively. ECSS-E-ST-40 addresses the life cycle processes for software

products (requirements definition, architectural design, development,

24

operations, and maintenance) for the different types of software: flight, ground,

qualification, testing and verification (ECSS, 2009a). ECSS-Q-ST-80 defines

requirements for Product Assurance (PA) of software development and

maintenance for space systems to ensure that they run properly and safely in

their operational environments. SE and PA standards also include requirements

for non-deliverable software, which affects the quality of the space system (e.g.

test and verification software). ECSS-Q-ST-80 complements ECSS-E-ST-40

with the PA aspects integrated into the space system SE processes. Together,

both standards specify software development processes, schematically

presented in Figure 2.4, which is applicable to all elements of a space system,

defining the scope of the space software processes and their interfaces with

management, which is addressed in Management (-M) branch of the ECSS

System (ECSS, 2017a).

25

Figure 2.4: Software related processes in ECSS Standards.

Source: ECSS (2017a).

ECSS-E-ST-40 and ECSS-Q-ST-80 are organized according to the processes,

including activities broken down into tasks in the form of process requirements,

producing expected results. Tailoring these standards may have several drivers,

such as dependability and safety aspects, software development constraints,

product quality objectives, and business objectives. Tailoring for software

development constraints needs to consider characteristics of the type

(database, real-time) and system (embedded processor, web, host system), as

well as the development environment, depending on which specific

requirements for verification, review and inspection may be imposed.

ECSS standards present the criticality definition based on the severity of

failures consequences (ECSS, 2009b), as described in Table 2.1, in which, for

26

each software type described in the right column, a correspondent criticality

category is assigned in the left column, based on the highest criticality of the

functions implemented and the existing system compensating provisions.

According to this classification, software of category A, B or C is defined as

critical; consequently category D denotes non-critical software (ECSS, 2017a).

Table 2.1: Software criticality categories definition.
Criticality
category

Definition

A Software involved in category I functions
AND: no compensating provisions exist

Software included in compensating provisions for category I functions

B Software involved in category I functions
AND: at least one of the following compensating provisions is available:
- A hardware implementation;
- A software implementation; this software shall be classified as criticality A; and
- An operational procedure.

Software involved in category II functions
AND: no compensating provisions exist.

Software included in compensating provisions for category II functions

C Software involved in category II functions
AND: at least one of the following compensating provisions is available:
- A hardware implementation;
- A software implementation; this software shall be classified as criticality B; and
- An operational procedure.

Software involved in category III functions
AND: no compensating provisions exist.

Software included in compensating provisions for category III functions.

D Software involved in category III functions
AND: at least one of the following compensating provisions is available:
- A hardware implementation;
- A software implementation; this software shall be classified as criticality C; and
- An operational procedure.

Software involved in category IV functions
AND: no compensating provisions exist.

Source: Adapted from ECSS (2017a).

The software criticality category (A, B, C, D) is assigned based on safety and

dependability aspects, considering the severity of potential failure of the most

critical function implemented (ECSS, 2017b) as shown in Table 2.2.

27

Table 2.2: Function criticality description.

Severity Function
criticality

Criteria to assign criticality categories to
functions

Catastrophic
(Level 1)

I A function that can lead to events resulting in
catastrophic consequences if not or incorrectly
performed, or if presents anomalous behavior.

Critical
(Level 2)

II A function that can lead to events resulting in critical
consequences if not or incorrectly performed, or if
presents anomalous behavior.

Major
(Level 3)

III A function that can lead to events resulting in major
consequences if not or incorrectly performed, or if
presents anomalous behavior.

Minor or
Negligible
(Level 4)

IV A function that can lead to events resulting in minor
or negligible consequences if not or incorrectly
performed, or if presents anomalous behavior.

Source: Adapted from ECSS (2017b).

2.3.4 Capability Maturity Model Integration (CMMI)

A model is a representation of a set of system components or subject area. As

such, the CMM was developed by the Software Engineering Institute (SEI) to

comprise the essential elements of effective processes using the SE concepts

of quality from TQM, embodying the process management premise “the quality

of a system or product is highly influenced by the quality of the process used to

develop and maintain it” (SEI, 2010).

The Capability Maturity Model Integration (CMMI) was designed to reduce costs

and inconsistencies by ensuring adherence to ISO/IEC 15504 through an

integration of three CMM: Software CMM (SW-CMM), System Engineering

Capability Model (SECM) and Integrated Product Development Capability

Maturity Model (IPD-CMM).

CMMI is a set of best practice models for software processes and systems

engineering intended for product and service development. It comprises best

practices associated with development and maintenance that cover the product

life cycle from conception to delivery and maintenance. CMMI is currently in

version 1.3 and, since version 1.2, comprises CMMI-DEV (for Development),

28

CMMI-SVC (for Services) and CMMI-ACQ (for Acquisition). All CMMI models

are produced from the framework, which contains 16 core process areas

(cluster of related practices) that cover basic concepts that are essential to

process improvement in any area of interest (i.e., acquisition, development,

services).

CMMI does not specify a particular process flow or specific performance

targets, but it specifies that organizations needs to have processes that address

development related practices. The processes can be mapped to the process

areas, enabling the organization to track its progress against CMMI, so the

processes do not necessarily map one to one.

CMMI-DEV 1.3 contains 22 process areas: 16 core process areas, 1 shared

process area, and 5 development specific process areas. All CMMI-DEV model

practices focus on the activities of the developer organization, covering basic

concepts to process improvement in any area of interest.

CMMs focus on organizations improvement using levels to describe an

evolutionary path recommended for improving processes used to develop

products or services. CMMI supports two improvement paths, using levels:

capability levels and maturity levels. These two types of correspond to two

approaches to process improvement called representations:

• Continuous: uses capability levels to characterize the state of the

processes relative to a process area; and

• Staged: uses maturity levels to characterize the overall state of the

processes relative to the model as a whole.

Figure 2.5 illustrates the structures of the continuous and staged

representations.

29

Figure 2.5: Structure of the Continuous and Staged Representations.

Source: Adapted from SEI (2010).

Table 2.3 compares the four capability levels to the five maturity levels; the

differences are that there is no maturity level 0; there are no capability levels 4

and 5; and at level 1, the names used for capability level 1 and maturity level 1

are different.

Table 2.3: Comparison of Capability and Maturity Levels

Level Continuous Representation
Capability Levels

Staged Representation
Maturity Levels

Level 0 Incomplete

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 Quantitatively Managed

Level 5 Optimizing

Source: Adapted from SEI (2010).

2.3.5 MPS.BR

The Brazilian Software Process Improvement program (MPS.BR), administered

by the Software Excellence Promotion Association (SOFTEX), an entity of the

30

Ministry of Science, Technology, Innovations and Communications (MCTIC), is

a movement for improvement and a process quality model focused on the

reality of the small and medium software development market in Brazil.

MPS.BR is based on CMMI, ISO/IEC 12207, and ISO/IEC 15504 standards, as

well as the Brazilian market situation (SOFTEX, 2011).

MPS.BR is divided in three parts: reference model for software process

improvement (MR-MPS), approach for software process improvement

assessment (MA-MPS), and software process improvement business model

(MN-MPS), as presented in Figure 2.6.

Figure 2.6: MPS.BR elements

Source: Adapted from SOFTEX (2011).

Differently from the other process standards, MPS.BR comprises seven

maturity levels, from highest to lowest level: optimizing, quantitatively managed,

defined, largely defined, partially defined, managed and partially managed.

MPS.BR comprises: fundamental processes (acquisition, requirements

management, requirements development, technical solution, product

integration, product installing and product release); organizational processes

(project management, process adaptation for project management, decision

analysis and resolution, risk management, organizational process assessment

and improvement, project quantitatively management, causes analysis and

31

resolution, innovation and organization implementation); and support processes

(quality assurance, configuration management, validation, measuring,

verification and training). Each maturity level has process with associated

capabilities, as presented in Figure 2.7.

Figure 2.7: MPS.BR model.

Source: Adapted from SOFTEX (2011).

In the Brazilian context, this model was developed to be an option with costs

lower than the international standards, proportionating improvement

opportunities for micro, small and medium companies.

Although CMMI is structured into 5 maturity levels and 22 process areas, while

MPS.BR is organized into 7 maturity levels and 19 processes, there is an

adherence between these models because of their common reference

standards, ISO/IEC 12207 and ISO/IEC 15504.

2.3.6 SPICE for Space (S4S)

The process assessment and improvement model defined in ECSS-Q-HB-80-

02, called SPICE for Space (S4S), is the software process assessment model

used by the European Space Agency (ESA) to assess the capability of ESA

32

contractors. S4S matches the aspects of space software from requirements

definition to retirement (ECSS, 2010a), including metrics used to manage the

development and to assess the quality of the development process. S4S is

based and in accordance with ISO/IEC 15504, also known as SPICE, from

which S4S inherits the assessment requirements, measurement framework,

and the exemplary process assessment.

The S4S process assessment model (PAM), defined in ISO/IEC 15504, is

composed by two main components: the process dimension and the capability

dimension. The assessment model is directly mapped to the process list defined

in the process reference model (PRM), based on ISO/IEC 12207, with the

addition of some specific aspects from the aerospace industry.

S4S extends SPICE by adding processes and indicators related to Reliability,

Availability, Maintainability and Safety (RAMS) requirements from ECSS

standards, to ensure that software is developed to perform properly and safely,

meeting the project’s quality objectives, as presented in Figure 2.8.

Figure 2.8: S4S contents.

Source: Author.

S4S is the main reference for the space software processes, comprising 3

process categories, divided into 9 groups of processes, containing a total of 52

processes, presented in Table 2.4, that are subdivided into activities and tasks.

33

Table 2.4: S4S processes.

Process category Process group Processes

Primary life cycle processes Acquisition 6

Supply 3

Operation 2

Engineering 12

Supporting life cycle Supporting 12

Organizational life cycle processes Management 7

Process improvement 3

Resource and infrastructure 4

Reuse 3

Total 52
Source: Adapted from ECSS (2010a).

2.3.7 ISO/IEC 29110

The term “very small entity” (VSE) has been defined by ISO/IEC JTC1/SC7

Working Group 24 and subsequently adopted in the ISO/IEC 29110 process

lifecycle standard as “an enterprise, organization, department or project having

up to 25 people” (ISO/IEC, 2011b).

ISO/IEC 29110 series of International Standards and Technical Reports aim to

assist and encourage very small software organizations in assessing and

improving their software processes (O'CONNOR; LAPORTE, 2011a). Their

approach (O'CONNOR; LAPORTE, 2011b) relies on the concept of ISO

standardized profiles (SP) making use of pre-existing international standards,

such as the software life cycle standard ISO/IEC 12207 and the documentation

standard ISO/IEC 15289. Relevant elements from those standards have been

selected to compose subsets of applicable processes, referred to as VSE

profiles, targeted to specific project types. The profiles are gathered in profile

groups according to the classification of software projects, proposing a

progressive approach that addresses most VSEs.

In addition to size, other factors may affect a profile preparation or selection,

such as: Business Models (commercial, contracting, in-house development,

etc.); Situational factors (such as criticality, uncertainty environment, etc.), and

34

Risk Levels (LAPORTE; ALEXANDRE; O’CONNOR, 2008). Producing one

profile for each combination of these factors would result in an unmanageable

set of profiles. Consequently, VSE’s profiles are grouped in a form which allows

its applicability to more than one category.

A profile group is composed by elements related by composition of processes

(i.e. activities, tasks), by capability level, or both (O’CONNOR; LAPORTE,

2010). In this context, the Generic profile group, chosen as reference in the

present work, comprises a collection of four profiles (Entry, Basic, Intermediate,

Advanced), as presented in Figure 2.9, proposing a progressive approach to

satisfying most of VSEs as it does not imply any specific domain (ISO/IEC,

2011a).

Figure 2.9: Generic profile group’s contents.

Source: Adapted from ISO/IEC (2011a).

The descriptions of the four profiles from the Generic profile group are:

 Entry Profile: targets VSEs working on small projects (e.g. at most six

person-months effort) and for start-up VSEs that do not have significant

experience with large software development projects, and so do not

attract contract jobs from larger software firms.

 Basic Profile: describes external or internal projects of a single

application by a single team with no special risk or situational factors. To

35

use this Profile, the VSE needs to fulfil basic entry conditions, e.g.

documented project statement, feasibility analysis performed, training

personnel, and infrastructure available.

 Intermediate Profile: describes the management of more than one project

in parallel with more than one work team, comprising processes to

identify opportunities, evaluate all agreements or requests from

customers to fit with organizational goals and resources, obtain and

provide necessary resources to perform, monitor and evaluate all

projects.

 Advanced Profile: targeted at VSEs wanting to sustain and grow as an

independent competitive system and/or software development business.

In order to do so, it contains processes to move software in an orderly,

planned manner into the operational status, so the system be functional

in the operational environment, appropriately handle replaced or retired

elements, and attends critical needs (e.g. per an agreement, per

organizational policy, or for environmental, safety, and security aspects).

The Generic Group does not imply any specific domain so it can be used to

provide software developers with a method to evaluate their processes with the

purpose of identify possible improvements and assess their capability.

Although the Basic Profile is not meant to critical software developers, it has

been chosen as reference for this work, because its two processes, Software

Implementation (SI) and Project Management (PM), are defined from a subset

of ISO/IEC 12207 process elements, and because it comprises a guide for

ISO/IEC 15504 (SPICE), both also considered in ECSS software related

standards. Figure 2.10 illustrates SI and PM processes relationship.

36

Figure 2.10: ISO/IEC 29110 PM and SI relationship.

Source: ISO/IEC (2011b).

37

3 LITERATURE REVIEW

The literature review presented in this chapter comprises identification and

synthesis of the papers with greater intersection with the present work.

According to Pai et al. (2004), the core five steps of a literature review process

are: (i) review question formulation; (ii) a comprehensive search; (iii) studies

evaluation; (iv) results synthesis; and (v) results analysis. The Figure 3.1

presents the literature review process.

Figure 3.1: Literature review process.

Source: Author.

Because literature reviews are time-consuming, when a decision to conduct a

review is made, the first step was to formulate a clear, focused question and

prepare a protocol. The PICO (Population/Problem, Intervention, Control/

Comparison and Outcome) framework is often used to identify the four critical

parts of a well-built research question. The protocol should specify the

population (or the topic of interest), the intervention (or exposure) being

evaluated, the comparison intervention (if applicable), and the outcome

(HIGGINS; GREEN, 2011).

Table 3.1 presents the PICO framework for this review.

38

Table 3.1: PICO framework.

 Description Keywords

Population/ Problem Software processes tailoring Process, tailoring

Intervention Critical software processes in VSE Critical, small entities

Control/
Comparison

ECSS system + ISO/IEC 29110 ECSS, 29110

Outcome Identification of initiatives on processes
tailoring for critical software in VSE

-

Source: Author.

Based on Table 3.1 contents, the research question was: “What initiatives have

been proposed for critical software processes tailoring in very small entities

(VSEs)?”

The search was performed on the selected databases: “Science Direct”, at

www.sciencedirect.com and “IEE Xplore”, at https://ieeexplore.ieee.org/Xplore,

conducting searches using multiple, alternative terms combined with the

Boolean operators “AND” and “OR” for the keywords from the PICO set. Using

“OR” for each keyword increases the search and make it highly sensitive (likely

to yield thousands of results), while using AND dramatically narrows the search.

The search strings, defined using combinations of the keywords and extended

by adding the term “software”, were used in the title, abstract and keywords

fields, focusing on exploring works in the field of software process published as

of January/2000, including journals and conference proceedings.

The number of publications identified by using the presented criteria is

presented in Table 3.2.

39

Table 3.2: Search results – Reference date: 07/Oct/2019.

Search string Science
Direct

IEEE Xplore

software AND process AND small entities 267 137

software AND ECSS OR 29110 13 68

software AND small entities AND tailoring AND process 54 10

software AND critical AND small entities 138 36

Total 472 251

Source: Author.

As Table 3.2 shows, the initial search run on Science Direct returned 472

papers and on IEEE Xplore returned 251 papers in total. After a review of titles,

duplicate and irrelevant papers were removed and the abstracts review resulted

in the selection of 30 publications for further analysis.

After reading completely the selected publications, the data extracted was

summarized in this section, divided into two main topics: Critical Software

Process Tailoring and Software Processes in Small Entities.

The first topic presents the critical software processes tailoring fundamentals

and current limitations analyzed through an historical perspective and according

to topics of interest for this research. The second topic presents methodologies

and best practices related to software processes in small entities.

3.1 Critical software processes tailoring

As software development organizations needs may vary according to multiple

factors, any process model to be implemented should be capable of dealing

with their differences. Although comprehensive top-down prescriptive models,

such as CMMI and ISO/IEC 15504 (SPICE), have been used (GORSCHEK;

WOHLIN, 2006), literature reports that these so-called heavy models and their

evaluation methods are considered expensive by small organizations (CATER-

STEEL, 2001; JOHNSON; BRODMAN, 1997; KELLY; CULLETON, 1999;

LARYD; ORCI, 2000; SCHOEFFEL; BENITTI, 2015; VILLALÓN et al., 2002),

40

which is related to these models not being extensively deployed and their

influence in software industry remains more at a theoretical level (LAPORTE;

O’CONNOR; PAUCAR, 2015).

SPICE initially had several limitations. Rout et al. (2000) reviewed its evolution

and the parallel achievements of the SPICE Project and the standardization

effort in advancing the state of the art in process assessment and improvement.

Their work presents the significant advances in understanding of the nature of

process capability and its evaluation that have been made possible through

SPICE, although it does not present the processes.

Software malfunctions due to poorly written requirements may cause financial

loss; Véras et al. (2015) proposed a benchmark, with 3 checklists to assess the

quality of space software specifications, providing a simple and effective way to

identify weaknesses and maturity degree of requirements documents. The

checklists were applied to telecommand and telemetry software in the

Requirements Definition phase.

Bujok et al. (2017) mapped standards from different domains revealing the

presence of common requirements and the potential for the identification of a

“Common Core” to be used as a unified framework, addressing the need to

comply with multiple international standards regulations in safety critical

domains.

Studies have proposed criteria, other than criticality, for processes tailoring,

mainly related to the variables used for software effort estimation (KALUS;

KUHRMANN, 2013), also demonstrating the correlation between software

quality metrics and aspects such as team skill (WANG; ZHAN; XU, 2006).

Kalus and Kuhrmann (2013) present a Systematic Literature Review about

criteria for software process tailoring, comprising the dependencies between

different criteria and their influence in the software process, concluding that the

consequences of the criteria usage remain abstract and are to be interpreted on

a project basis.

41

Pedreira et al. (2007) conducted a study about the current practice in software

process tailoring, concluding that existing approaches are defined in specific

environments, and that a general framework should be developed. The idea of

a generic systematic framework is supported by XU and RAMESH (2008), that

present an investigation about software projects challenges based on

interviews, concluding that tailoring affects the software development and

environment, and that excessive tailoring can undermine development

repeatability and consistency.

Estimation techniques may be applied for definition of processes. The main

methods for estimation are based either on algorithmic estimation models or on

expert estimation techniques, commonly used for appraising software

development effort (JØRGENSEN; SHEPPERD, 2007). Expert estimation is

considered a light process, involving a small number of documentation, as

expert estimation relies on expertise to subjectively assess the involved factors,

using experts “intuition” alone or combined with historical data and/or checklists,

when available, to make estimates (JØRGENSEN, 2004).

There are not enough studies of software estimation approaches, which support

them in detail, though the usual checklist consists of the typical activities (e.g.,

requirements management, design, prototype, testing, documentation etc.) in a

software project (USMAN et al., 2018).

Jørgensen and Molokken (2003) proposed a preliminary checklist, to be

customized to include only relevant issues, structured on a project management

framework, considering comprehensive scopes from typical estimation activity

until different project phases. In the VSE critical software context, it may not be

feasible to use long checklists covering aspects beyond the typical estimation.

3.2 Software processes in small entities

Given the limitations in terms of people and purchasing power that small

organizations have due to their size, they face many challenges in running

42

process assessments (BASRI, 2011). Taking this into account, the assessment

method proposed by Pino et al. (2010) sets out the elements needed to assist

with diagnosing the process step-by-step in small organizations developing non-

critical software while seeking to make the assessment application economically

feasible in terms of resources and time.

VSEs usually consider that SPI frameworks are either too expensive to deploy

or do not take organizations’ specific needs into consideration. Pettersson, et al.

(2008) present a light weight assessment and improvement planning (iFLAP)

that enables practitioners to ground improvement efforts on the issues that are

the most critical for the specific organization. Their packaged improvement

framework, containing both assessment and improvement planning capabilities,

was applied to non-critical software case studies, without presenting the

software processes involved.

Evidence has shown that the majority of very small organizations are not

adopting existing standards and best practice models because they perceive

them as developed by and orientated towards large organizations, therefore

pointing out the relevance of the number of people involved in a software

project (O'CONNOR; COLEMAN, 2009).

Zarour et al. (2015) analyzed the reasons behind small organizations failures in

Software Process Improvement (SPI). They investigated, through a literature

review, the pieces of knowledge and their frequencies that form the best

practices for the successful design and implementation of lightweight software

process models. They do not present the software processes, but classify a set

of 38 best practices into five main categories, covering all aspects of the

assessment, namely: assessment method, supportive tool, procedure,

documentation, and users.

Yousefal-Tarawneh et al. (2011) proposed the use of XP as software

development model and CMMI as SPI model, because SPI traditional models

were developed to help large and very large organizations. They present their

development process improvement framework, which does not consider Safety

43

Critical Software aspects, comprising the method’s stages for developing

suitable software by using CMMI-DEV V1.2.

Sanchez-Gordon et al. (2017) reviewed relevant standards, such as ISO/IEC

29110, ISO 10018, OMG Essence and ISO 33014, to develop a framework to

integrate human factors in software processes. Their proposed approach

integrates international standards in a comprehensive, yet practical, framework

addressing the human factors of small companies developing non-critical

software. Laporte and O’Connor (2017) presented an overview of eight

implementations process improvement standards and guides for non-critical

software in VSE, with a four-stage roadmap, to support process improvement

activities using ISO/IEC 29110.

Laporte et al. (2015) present seven case studies involving pilot usage of

ISO/IEC 29110, comprising a project classification into three categories (small,

medium, and large), based on characteristics such as duration, team size,

number of engineering specialties and engineering fees. This study

demonstrated that it is possible to plan and execute non-critical software

projects in small settings using proven practices to significantly reduce the

number of discrepancies.

Rodríguez-Dapena et al. (2017) proposed a step-wise approach to participate in

space projects in a feasible way, adding processes from ECSS-Q-HB-80 (S4S)

and capability from ISO/IEC 15504 to one of the profiles presented in ISO/IEC

29110. This approach considers different subsets of processes and levels of

process capability, but it is only applicable for software criticalities levels D (non-

critical) and C (low criticality).

3.3 Literature review analysis

The purpose of this review was to outlook the trends in critical software

development studies in VSE within the past twenty years, identifying which

practices have been applied to adapt standards and models to software

44

projects. Many studies have been proposed to describe process tailoring for

software development. The reviewed publications showed that the tailoring

criteria must consider the project specificities to define what processes need to

be performed. Furthermore, the methods to select criteria and processes are

varied and the development organization is in charge of defining how to

implement.

From the research reviewed, it is clear that standard processes are very

immersed and widely practiced throughout in development organizations. Along

with this, it is also clear that the field of processes tailoring is varied and

continues to be studied and analyzed in order to most benefit the product

quality. Critical software process tailoring in VSE is still an open issue, though,

as the results show scarce research for critical software processes considering

the VSE context. This topic is very important as at its center is a concern with

helping VSE become better and demonstrate the quality of their processes and

products, consequently suggesting the potential of VSE processes within critical

software projects scope.

Critical software and VSE standards comparison indicated that these processes

present similarities, representing opportunities to use them complementarily.

Accordingly, the projects’ criteria selection is a mean to support the

understanding of the influence factors for critical software projects in VSE

context and, furthermore, to develop a notion on adequate tailoring.

A systematic approach for process tailoring can be helpful in the VSE context,

in which team-based expert estimation is usual, there is lack of documentation

and new team members might not be aware of all activities and factors that

should be accounted for during estimation. Frequently process tailoring is

informally performed in VSE and the lack of a documented approach is also

likely to result in the loss of useful experience from previous projects.

Further studies are necessary on the applicability and usability of adequate

profiles for critical software in VSE, comprising simplified and flexible sets of

processes according to each software project evaluation.

45

4 GENERIC APPROACH FOR PROCESS SELECTION (GAPS)

This chapter presents the Generic Approach for Process Selection (GAPS), a

scheme for process selection proposed in this dissertation. GAPS development

considers projects’ characteristics and objectives, and is divided in 3 steps for

adequate processes selection. Figure 4.1 illustrates the steps, the necessary

input information and the output produced. The description of each step is given

in the following sections.

Figure 4.1: GAPS development.

Source: Author.

4.1 Step 1 - Tailoring criteria definition

Defining the tailoring criteria consists of identifying project elements that impact

process selection, based on the factors that may influence projects described in

Table 4.1. Figure 4.2 comprises the tailoring criteria definition process, which

encompasses the voting framework used in this step to determine project-

specific factors.

46

Figure 4.2: Tailoring criteria definition.

Source: Author.

The IDEF-0 A-0 context diagram (refer to Figure 2.1: IDEF0 A-0 diagram

example) elements presented in Figure 4.2 are:

 Input (the data or object that are transformed into output):

Set of project factors: Reference list of factors that organizations can use

to support the understanding of what influences their processes. In this

work, the factors from Table 4.1 in section 4.1.1 are used, although there

is no impeditive for using different sets of factors.

 Control (the conditions required to produce correct output):

Voting framework: Structure used to evaluate the influence that the

factors may have on processes.

 Mechanism (the means used to perform a function):

Practitioners: project’s product assurance representative (s) and/or

project manager supported by experts if necessary.

 Output (the data or objects produced):

Project-specific factors: List of factors considered relevant to the project

under evaluation. Input to the next steps.

47

4.1.1 Project factors

The project factors are characteristics and/or situations that may have influence

in the software process. Organizations can apply them in their own projects as

means to support their influence and, furthermore, use them as a starting point

to define appropriate tailoring criteria.

ECSS Standards present guidelines to tailor their processes based on the

software criticality (ECSS, 2017a). Studies have proposed other criteria for

processes tailoring, mainly related to software effort estimation (KALUS;

KUHRMANN, 2013), also demonstrating the correlation between software

quality metrics and aspects such as team skill (WANG; ZHAN; XU, 2006).

The pilot usages of ISO/IEC 29110 presented by Laporte et al. (2015) comprise

a project classification into three categories (small, medium and large), based

on characteristics such as project duration, team size, number of engineering

specialties and cost.

Kalus and Kuhrmann (2013) presented a set of 49 factors that influence

processes tailoring, whose names and descriptions are organized in Table 4.1,

categorized in: (a) team - characteristics of the people involved in the project;

(b) internal environment - organizational aspects of the project’s entity; (c)

external environment - context where the project takes place; and (d)

objectiveness - product related features. Descriptions based on other

references, mentioned opportunely in the table, support the analysis of each

factor.

48

Table 4.1: Names and descriptions of project factors.

 # Name Description

T
e
a
m

1 Size The team size is an indicator for the effort of team
coordination (WOLFE; CHACKO, 1983). While smaller
teams can directly communicate the need for
formalization increases if the team grows.

2 Distribution Team distribution influences the interaction pattern in a
project (HEEKS et al., 2001). Teams located in a single
room can directly communicate while distributed teams
need a more formalized communication.

3 Turnover If a team member leaves a team, knowledge will be
lost. Also, new team members affect the group
dynamics (SALAS et al., 1999).

4 Previous
Cooperation

If the team worked together in previous projects the
need for getting familiar with the other team members
may decease which, in turn, may cause a less formal
communication (XU; RAMESH, 2008).

5 Good
Cooperation

If the team works in a good and collaborative manner,
the need for formalized communication/documentation
may decrease (XU; RAMESH, 2008).

6 Domain
knowledge

Little or missing knowledge with respect to the domain
is a risk (XU; RAMESH, 2008).

Note: Domain denotes a specified sphere of activity or
knowledge, i.e. aerospace, aeronautics, nuclear.

7 Tool
Knowledge

Little or missing knowledge with respect to the tools is a
risk (WALLACE; KEIL, 2004).

Note: Tools denote software that assists in the creation
of new software, i.e. compilers, debuggers, visual
programming tools.

8 Technology
knowledge

Little or missing knowledge with respect to the
technology is a risk (WALLACE; KEIL, 2004).

Note: Technology denotes equipment developed from
scientific knowledge for practical purposes, i.e. satellite
subsystems and support equipment.

9 Process
knowledge

Little or missing knowledge with respect to the process
to be used is a risk (WALLACE; KEIL, 2004).

Note: Process denotes the kind of practices, or
methodology employed.

49

Table 4.1: Names and descriptions of project factors.

 # Name Description

In
te

rn
a
l

E
n

v
ir

o
n

m
e

n
t

10 Prototyping The creation of prototypes is a strategy for risk
mitigation, (BOEHM, 1991) and performance
improvements, (BLACKBURN; SCUDDER;
WASSENHOVE, 1996) applied to projects with a new
domain or technology, volatile requirements, or with
several solutions to be evaluated.

11 Clear project
proposal

A clear project proposal contains basic goals and
requirements (WALLACE; KEIL; RAI, 2004) crucial for
the project's success (ZOWGHI; NURMULIANI, 2002).

12 Management
availability

Top management is required to solve problems and to
make project progress decisions. In critical project
settings, missing top management availability is a risk.
(WALLACE; KEIL; RAI, 2004) crucial for the project's
success (ZOWGHI; NURMULIANI, 2002).

13 Management
support

The top management should actively support a project,
especially in critical situations (WALLACE; KEIL, 2004).

14 Project budget Project budget influences the degree of formalism in a
project. A little project budget usually implies a non-
formalized process (less documentation), but also
requires a strict controlling regarding to costs.

15 Project
duration

Project duration influences the software process. While
a "long" duration might cause risks (such as team
turnover), a "short" duration is similar to a little budget
(BLACKBURN; SCUDDER; WASSENHOVE, 1996).

16 Project type Depending on the project type, different aspects of a
process need to be stressed, e.g., type of requirements
elicitation, addressed life cycle phases, system
migration (COSTACHE; KALUS; KUHRMANN, 2011).

17 Project role Each project has a specific role that characterizes it in
relation to others. The project role influences the
corresponding software process (PAASIVAARA;
LASSENIUS, 2004).

18 Sub-
contractors

Certain tasks can be performed by sub-contractors, so,
a process should support synchronization defining what
to be exchanged, and interfaces (HEEKS et al., 2001;
PAASIVAARA; LASSENIUS, 2004). Also, the
contractor's role changes as they become customer for
sub-contractors.

19 Financial
controlling

The emphasis on a financial controlling is important if
the budget is critical. Intensive financial controlling
results in self-contained documentation as well as
increased participation in planning / decision making
(KUHRMANN; TERNITÉ, 2005).

50

Table 4.1: Names and descriptions of project factors.

 # Name Description

20 Measurement Measurement using KPIs is important, e.g., to provide
the management with status information, to measure
the performance and to conduct data for a company-
wide controlling (OFFEN; JEFFERY, 1997).
Measurement causes additional effort and also requires
a more detailed reporting.

21 Technical
support

An unknown technical environment with little support
may cause project risks (WALLACE; KEIL, 2004).

22 Programing
language

A new programming language can cause project risks
and a programming language can influence the
software architecture (COSTACHE; KALUS;
KUHRMANN, 2011; PEDREIRA et al., 2007).

23 COTS
products

Integration of COTS products or components can
shorten the development time, but requires attention for
example to legal implications, test and integration
procedures (TORCHIANO; MORISIO, 2004).

24 Operating
system

An operating system limits the available programming
languages, tools and available COTS. Also, system
requirements can limit the supported operating systems
for the intended solution (PEDREIRA et al., 2007).

25 Database
system

Support for databases is essential, especially in
business information systems (PEDREIRA et al., 2007).

26 Tool
infrastructure

Tools that shall be used in a specific phase, such as
requirements engineering or coding, have to be
defined. The definition of a tool infrastructure has
implications, such as: tools that are not available have
to be bought (KUHRMANN; KALUS, 2008; PEDREIRA
et al., 2007).

E
x

te
rn

a
l
E

n
v
ir

o
n

m
e

n
t

27 Legal aspects Projects may be critical in legal aspects, i.e. contract
(LICHTENSTEIN, 2004) for several reasons. When not
delivering software in time or with the functionality,
claims may occur. Also, critical software requires
documentation according to laws and regulations.

28 Number of
stakeholders

The higher the number of stakeholders the more time is
required to negotiate all needs and requirements.
Furthermore, the coordination effort increases (JIANG
et al., 2009). A process should pay attention to the
number of stakeholders by defining adequate
communication and report pattern.

29 Stakeholder
availability

Similar to the top management, availability of
stakeholders may be success factor. Its absence may
be a project risk as it may cause delays (JIANG et al.,
2009; WALLACE; KEIL, 2004).

51

Table 4.1: Names and descriptions of project factors.

 # Name Description

30 Stakeholder
background

If the stakeholders' background is not adequate (e.g.,
new domain, technology, or innovative product), the
process should provide different strategies, such as
requirements elicitation to support for learning curves
(JIANG et al., 2009).

31 Requirements
stability

The stability of requirements directly influences the
entire approach (JIANG et al., 2009; WALLACE; KEIL,
2004; ZOWGHI; NURMULIANI, 2002). For example,
the strategy for requirements elicitation, architecting the
solution, implementation and test.

32 Client process If a client has its process and wants to align contractors
with it, the processes have to support interfaces or
procedures to comply with the client's requirements,
e.g. ensuring CMMI levels (YONG; MIN; BAE, 2001).

33 Client
availability

The clients’ availability influences their satisfaction
since they can continuously monitor progress, i.e. agile
methods propose the on-site client (HEEKS et al.,
2001; HERBSLEB; MOCKUS, 2003). Regular deliveries
in short cycles can compensate a missing availability.

34 Type of
contract

The type of the contract (LICHTENSTEIN, 2004)
directly influences the process. For instance, fixed-price
model vs. time & material leads to different strategies in
handling change requests.

35 User
availability

End user availability is important during requirements
engineering, integration and testing phases (HEEKS et
al., 2001; HERBSLEB; MOCKUS, 2003) .

36 User
background

End user background/domain knowledge is important to
decide about training. Appropriate acceptance
strategies should consider the end users' knowledge
(FERNÁNDEZ et al., 2012; XU; RAMESH, 2008).

37 Trainings Training requirements, e.g. during acceptance or
deployment cause additional effort, like planning and
creating material (BLACKBURN; SCUDDER;
WASSENHOVE, 1996; WALLACE; KEIL; RAI, 2004).

O
b

je
c
ti

v
e

38 Complexity Higher complexity causes more formal communication,
configuration and change control (CAMCI; KOTNOUR,
2006; XIA; LEE, 2004).

39 Innovation
degree

The high degree of innovation may cause a more
explorative approach to mitigate project risks
(WALLACE; KEIL; RAI, 2004).

40 Legacy system Legacy system needs to be considered within
requirements engineering and limits the solution, e.g.,
by compatibility requirements and data migration
(KUHRMANN; TERNITÉ, 2005).

52

Table 4.1: Names and descriptions of project factors.

 # Name Description

41 Legacy system
documentation

If no documentation for a legacy system is available,
higher effort in analyzing is expected. So, appropriate
strategies should be provided, e.g. reverse engineering
(FERNÁNDEZ et al., 2012; XU; RAMESH, 2008).

42 Domain A domain implies standards, norms, regulations, and
laws that need to be considered in a project. Depending
on the domain, more potential criteria should be
regarded in tailoring (PEDREIRA et al., 2007).

43 Conceptual
solution

A process can contain domain-specific knowledge and
best practices (ZAROUR et al., 2015) to support the
development.

44 Technical
solution

The technical solution can be supported by specific
contents, e.g., applications, design patterns, coding
guidelines for programming languages (KUHRMANN;
TERNITÉ, 2005; PEDREIRA et al., 2007).

45 Safety &
Security

Safety & security is usually related to a comprehensive
documentation of a project. The software process
should, therefore, provide templates and indications
about the documentation.

46 Hardware
development

If hardware development is also part of a project, the
process has also to provide corresponding artifacts
(e.g., specifications and designs, test hardware,
logistics) integrated in the software process
(KUHRMANN; TERNITÉ, 2005).

47 Neighboring
systems

The interfaces between a software system and its
ecosystem need to be defined, since they directly
influence the integration and test strategies
(PEDREIRA et al., 2007).

48 User interface If software has special requirements regarding the user
interface, the design, implementation, and test should
be part of the process (KUHRMANN; TERNITÉ, 2005).

49 System
integration test

Requirements with regard to system integration should
be reflected by the process, for instance, by defining
integration strategies, providing a fundamental
integration of project management, development, and
quality assurance (KUHRMANN; TERNITÉ, 2005).

Source: Adapted from Kalus and Kuhrmann (2013).

53

4.1.2 Voting framework for criteria selection

The adequate tailoring criteria selection takes into account specialists’

knowledge. Because this approach is intended for very small entities, the voting

tool is described for two professionals only, but there is no impeditive for having

more specialists when available.

This approach considers the presence of the team roles presented in the Basic

profile from ISO/IEC 29110 (ISO/IEC, 2011b) plus the product assurance (PA)

responsible. The list of the roles comprises: PA responsible, analyst, customer,

designer, programmer, project manager, technical leader and work team;

In order to provide the voting with some structure, GAPS encompasses a

spreadsheet to register the voting to each factor presented in Table 4.2. In this

table, the first two columns contain the name and description of each factor; the

next column in used for voting, where the voter is required to fill each cell either

with “YES” (impacts process tailoring) or “NO” (does not impact process

tailoring). The last column must be filled either with a metric, for factors voted as

“YES”, or with a justification, for factors voted as “NO”. Two voters must vote

independently, with each voter filling one spreadsheet.

Table 4.2: Factor voting spreadsheet example

Factor Does the item have an
impact on VSE process

selection?
(Yes / No)

Name Description Vote (Yes) Metric /
(No) Justification

Size The team size is an indicator for the effort
of team coordination. The need for
formalization increases if the team grows.

Yes Number of people.

Programing
language

A new programming language can cause
project risks. Furthermore, a concrete
programming language can influence the
software architecture in a project.

No Project premise:
new language is
not to be used for
critical software.

Source: Author.

54

After both specialists have voted, their results are compared. If the vote is

different, the item is analyzed by both voters together, discussing about their

rationales to reach a third, and final, joint vote. If necessary, a third person may

be involved to reach a final decision.

The output of this step is the resulting set of project-specific factors, which is the

set of tailoring criteria to be used on the next steps.

4.2 Step 2 - Project evaluation

The project evaluation consists of obtaining a classification based on the result

of assessing a project in relation to its criticality level and the influence of its

project-specific factors (output from Step 1 – Tailoring criteria definition, in

section 4.1), to which a structure is used. The elements involved in this step are

presented in Figure 4.3.

Figure 4.3: Project evaluation.

Source: Author.

The IDEF-0 A-0 context diagram (refer to Figure 2.1: IDEF0 A-0 diagram

example) elements presented in Figure 4.3 are:

55

 Input (the data or object that are transformed into output):

Software criticality level: criticality level of the product being developed or

modified, which comes from system-level analyses based on the severity

of its possible failures consequences. The criticality assessment results

in a classification of the project in one of the four different criticality

categories presented in ECSS standards: A, B, C or D (refer to Table

2.1: Software criticality categories definition).

Project-specific factors: list of factors considered relevant to the project,

which is the output from Step 1 - Tailoring criteria definition (section 4.1).

 Control (the conditions required to produce correct output):

Evaluation framework: structure used to evaluate the project-specific

factors’ level of influence, its result is a score (refer to section 4.2.1

Evaluation structure).

 Mechanism (the means used to perform a function):

Practitioners: product assurance representative and/or project manager

supported by experts if necessary.

 Output (the data or objects produced):

Project classification: project categories related to the score from the

evaluation framework and the software criticality classification.

4.2.1 Evaluation structure

The format reference for the structure is the method described in FAA Order

8110.49 Chg. 1 (FAA, 2011) used by the Federal Aviation Administration (FAA)

for determining their level of involvement on projects. The level of FAA

involvement (LOFI) is classified as HIGH, MEDIUM, or LOW; considering two

major areas of criteria: software criticality level criteria and other relevant

criteria.

56

4.2.1.1 GAPS evaluation framework

The GAPS evaluation framework must be generated based on the set of

project-specific factors (output from Step 1 – Tailoring criteria definition) with

one question, along with a related metric and respective grade, for each

criterion. Table 4.3 presents an example of questions with related metrics.

Table 4.3: Evaluation framework example.

 Criterion Metric
Grade

0 5 10

Team Size

people
< 5 5 to 15 15 to 25

Project
Complexity (different
technologies and/or disciplines)

tech.
/ disc.

1 2 to 3 > 3

Score: ________

Source: Author, based on FAA (2011).

The structure presented in Table 4.3 accounts for the same possible grades (0,

5 or 10) for each item, so every criterion has the same weight in this evaluation,

in which the product assurance representative or the project manager performs:

(1) Assessment with the software team; and

(2) Research about past performance of the organization, based on previous

projects, audits, in-service problems, and other experiences.

Ideally, the determination of tailoring criteria and the criticality assessment have

to be carried out and documented at the start of the project to enable the

organization to plan and address the project details as early as possible.

Generating one classification for each combination of the project-specific factors

would result in a great number of types. For that reason, GAPS comprises the

project classification presented in Table 4.4 related to criticality categories.

57

Table 4.4: Software criticality related project classification.

Software criticality
category (ECSS)

Project classification

D ISO/IEC 29110 Basic

C GAPS Basic or GAPS Intermediate

B GAPS Intermediate or GAPS Advanced

A GAPS Advanced or S4S
Source: Author.

As the number of software quality requirements increases according to the

criticality of the software function, GAPS includes a VSE Critical Profile group.

Similarly to the concept adopted in ISO/IEC 29110, this group comprises a

collection of three profiles (Basic, Intermediate, and Advanced), subsets of

S4S and ISO/IEC 29110 processes with a progressive approach, in which

processes and conditions may be included according to the criticality and/or

other criteria escalation.

This evaluation’s score (s) and the software criticality level compose the two

necessary axes to determine the project classification on Table 4.5, in which the

scale range and the values for X and Y have to be defined by the practitioners.

Table 4.5: VSE software project profile classification.

Project profile classification

Score

Software Criticality Level

A B C D

Y < s S4S GAPS
Advanced

GAPS
Intermediate

ISO 29110
Basic

X < s ≤ Y GAPS
Advanced

GAPS
Intermediate

GAPS
Basic

ISO 29110
Basic

s ≤ X GAPS
Advanced

GAPS
Intermediate

GAPS
Basic

ISO 29110
Basic

Source: Author.

Based on this classification, the VSE software project processes are

determined, allowing the selection of adequate profiles (sets of processes) to

be adopted.

58

4.3 Processes selection

The three profiles from GAPS (Basic, Intermediate, and Advanced) extend

ISO’s VSE definition to critical software, using the processes from ECSS-Q-HB-

80-02 (S4S) and ISO/IEC 29110 Basic Profile to build sets of processes

adequate to the project. Figure 4.4 presents the elements involved in this step.

Figure 4.4: Processes selection.

Source: Author.

The IDEF-0 A-0 context diagram (refer to Figure 2.1: IDEF0 A-0 diagram

example) elements presented in Figure 4.4 are:

 Input (the data or object that are transformed into output):

Applicable standards: ISO/IEC 29110 and S4S are considered applicable

in this work. Other applicable standards, that contain the processes to be

selected, may be considered depending on the project.

 Control (the conditions required to produce correct output):

59

Project aspects: aspects to be regarded according to the factors

considered relevant to the project: stakeholder, project life cycle, project

organization and knowledge (refer to section 4.3.1 Project aspects).

 Mechanism (the means used to perform a function):

Practitioners: project’s product assurance representative and/or project

manager supported by experts if necessary.

 Output (the data or objects produced):

Process profiles: profiles comprising the processes considered essential

according to the projects’ factors (refer to section 4.3.2 Process profiles).

4.3.1 Project aspects

The contents of GAPS profiles - Basic, Intermediate and Advanced - have to be

defined based on their project/organization factors. Related literature (KALUS;

KUHRMANN, 2013) indicates that, depending on the factors considered

relevant to a project, certain aspects are to be considered when selecting the

processes. The 49 relevant aspects from Table 4.6 influence aspects of the

software process related to stakeholder, project life cycle, project organization

and knowledge.

60

Table 4.6: Aspects related to the tailoring criteria.

Name Stakeholder aspect Life cycle aspect Organization aspect Knowledge aspect

1 Size - - project documentation;
number of (micro-)
iterations;
communication pattern

 -

2 Distribution - - project documentation;
number of (micro-)
iterations;
communication pattern

 -

3 Turnover - - project documentation -

4 Previous
Cooperation

 - - project documentation;
communication pattern

 -

5 Good
Cooperation

 - - project documentation -

6 Domain
knowledge

 - - - meetings/workshops;
trainings;
knowledge management
infrastructure

7 Tool
Knowledge

 - - selection of appropriate
tools w.r.t. the process's
weight

trainings

8 Technology
knowledge

 - prototype development number of (micro-)
iterations

trainings

9 Process
knowledge

 - - project documentation -

10 Prototyping - requirements engineering;
prototype development;
fast feedback loops

 - meetings/workshops

61

Table 4.6: Aspects related to the tailoring criteria.

Name Stakeholder aspect Life cycle aspect Organization aspect Knowledge aspect

11 Clear project
proposal

management involvement requirements engineering;
prototype development;
fast feedback loops

 - meetings/workshops

12 Management
availability

management involvement - project documentation;
communication pattern

 -

13 Management
support

management involvement - project documentation;
communication pattern

 -

14 Project budget - financial project
management

project documentation;
communication pattern

 -

15 Project
duration

 - prototype development;
fast feedback loops;
planning pattern

 - -

16 Project type - requirements engineering;
system architecture;
integration and test

 - -

17 Project role - requirements engineering;
system architecture;
integration and test

 - -

18 Sub-
contractors

 - requirements engineering;
system architecture;
integration and test

 - -

19 Financial
controlling

management involvement financial project
management

project documentation;
communication pattern

 -

20 Measurement management involvement - project documentation;
communication pattern

 -

21 Technical
support

 - - selection of appropriate
tools w.r.t. the process's
weight

 -

62

Table 4.6: Aspects related to the tailoring criteria.

Name Stakeholder aspect Life cycle aspect Organization aspect Knowledge aspect

22 Programing
language

 - system architecture;
integration and test

 - trainings

23 COTS
products

 - integration and test;
prototype development;
fast feedback loops

 - -

24 Operating
system

 - system architecture;
integration and test

 - -

25 Database
system

 - requirements engineering;
system architecture;
integration and test;
prototype development;
fast feedback loops

 - -

26 Tool
infrastructure

 - - selection of appropriate
tools w.r.t. the process's
weight

 -

27 Legal aspects - requirements engineering project documentation -

28 Number of
stakeholders

customer involvement;
end user involvement

 - project documentation;
communication pattern

 -

29 Stakeholder
availability

customer involvement;
end user involvement

fast feedback loops project documentation;
communication pattern

 -

30 Stakeholder
background

customer involvement;
end user involvement

 - - trainings;
knowledge management
infrastructure;
meetings/workshops

63

Table 4.6: Aspects related to the tailoring criteria.

Name Stakeholder aspect Life cycle aspect Organization aspect Knowledge aspect

31 Requirements
stability

 - prototype development;
fast feedback loops;
requirements engineering

 - -

32 Client process - requirements engineering;
integration and test;
fast feedback loops

 - -

33 Client
availability

customer involvement;
end user involvement

fast feedback loops - -

34 Type of
contract

customer involvement;
end user involvement

 - project documentation;
communication pattern

 -

35 User
availability

end user involvement requirements engineering;
system architecture;
integration and test;
fast feedback loops;
prototype development

 - -

36 User
background

end user involvement fast feedback loops;
prototype development

 - meetings/workshops;
trainings

37 Trainings - - - trainings

38 Complexity - requirements engineering;
system architecture

project documentation;
communication pattern

meetings/workshops

39 Innovation
degree

 - prototype development;
fast feedback loops

 - -

40 Legacy
system

 - prototype development;
integration and test;
requirements engineering;
system architecture

 - -

64

Table 4.6: Aspects related to the tailoring criteria.

Name Stakeholder aspect Life cycle aspect Organization aspect Knowledge aspect

41 Legacy
system
documentation

 - prototype development;
integration and test;
requirements engineering;
system architecture

 - -

42 Domain - requirements engineering;
system architecture

 - -

43 Conceptual
solution

 - requirements engineering;
system architecture

 - meetings/workshops

44 Technical
solution

 - requirements engineering;
system architecture

 - -

45 Safety &
Security

 - requirements engineering project documentation;
communication pattern

 -

46 Hardware
requirements

 - requirements engineering;
system architecture;
integration and test

 - -

47 Neighboring
systems

 - requirements engineering;
system architecture;
integration and test

 - -

48 User interface - requirements engineering;
integration and test

 -

49 System
integration test

 - requirements engineering;
system architecture;
integration and test

selection of appropriate
tools w.r.t. the process's
weight

 -

Source: Author, based on Kalus et al. (2013).

65

4.3.2 Process profiles

The VSE Critical Profile group from GAPS is based on the processes from

ECSS-Q-HB-80-02 (S4S), which encompasses the processes from ISO/IEC

29110, ISO/IEC 12207 and ISO/IEC 15504, as illustrated in Figure 4.5.

Figure 4.5: VSE critical profile group processes.

Source: Author.

Performing a set of processes lighter than the set defined according to the

criticality level may affect the project management along with the product’s

dependability and safety. The risk taken by not performing a process must be

analyzed and its consequences assessed. Any further tailoring is therefore

associated to a risk analysis specific of each project. However, for the minimum

set of processes for the critical profile group, the premise considered is that the

following concepts, along with their related processes cannot be excluded:

a. Definition of a development approach;

b. Elicitation and reviewing of software requirements;

c. Production, validation and acceptance of software;

d. Quality assurance and

e. Configuration management.

66

As the S4S process assessment model (refer to section 2.3.6), defined in

ISO/IEC 15504 (refer to section 2.3.2), is composed by two main components:

the capability dimension, a series of process attributes representing the

measurable characteristics of a process; and the process dimension, defined by

the statements of process purpose and outcomes.

4.3.2.1 Capability dimension

The capability dimension defines a measurement scale for the capability of any

process (refer to section 2.3.2.2 Capability dimension). S4S considers ISO/IEC

15504 six-point scale for representing the capability level at which the process

is performed. However, as one of the purposes of this work is to simplify the

processes given the VSE context, the two points scale considered herein is

derived from the scale proposed by Lahoz et al. (2015):

- Level 0: Not performed (incomplete) process;

- Level 1: Performed process.

For the three profiles within this VSE Critical profile group, the number of

processes is increased from GAPS Basic to GAPS Advanced, while the

capability dimension is kept at the same level.

4.3.2.2 Process dimension

The key reference for the critical software processes, S4S, mainly considers the

requirements from ECSS-E-ST-40 (ECSS, 2009a) and ECSS-Q-ST-80 (ECSS,

2017a) to define 3 process categories, divided into 9 groups of processes,

containing a total of 52 processes, subdivided into activities and tasks. The

main difference between ECSS standards and ISO/IEC 29110 is that ECSS

targets organizations of all sizes developing software from non-critical to highly

critical software, while ISO/IEC 29110 is intended for VSE developing non-

critical software only (LARRUCEA et al., 2016).

67

When adopting an S4S-compatible nomenclature, ISO/IEC 29110 defines 2

categories, or groups of processes, that contain a total of 10 processes, also

subdivided into activities and tasks. Table 4.7 comprises S4S list of processes.

Table 4.7: S4S Processes.

Process
category

Process
group

Process #

Primary life
cycle
processes

Acquisition ACQ.1 Acquisition preparation

6

ACQ.2 Supplier selection

ACQ.3 Contract agreement

ACQ.4 Supplier monitoring

ACQ.5 Customer acceptance

ACQ.6 Contract maintenance

Supply SPL.1 Supplier tendering

3 SPL.2 Product release

SPL.3 Product acceptance support

Operation OPE.1 Operational use
2

OPE.2 Customer support

Engineering ENG.1 Requirements elicitation

12

ENG.2 System requirements analysis

ENG.3 System architecture design

ENG.4 Software requirements analysis

ENG.5 Software Design

ENG.6 Software construction

ENG.7 Software integration

ENG.8 Software testing

ENG.9 System integration

ENG.10 System testing

ENG.11 Software installation

ENG.12 SW and system maintenance

Supporting life
cycle

Supporting SUP.1 Quality assurance

12

SUP.2 Verification

SUP.3 Validation

SUP.4 Joint review

SUP.5 Audit

SUP.6 Product evaluation

SUP.7 Documentation

SUP.8 Configuration management

SUP.9 Problem resolution

SUP.10 Change request management

SUP.11 Safety and dependability
assurance (*)

SUP.12 Independent software verification
and validation (*)

68

Table 4.7: S4S Processes.

Process
category

Process
group

Process #

Organizational
life cycle
processes

Management MAN.1 Organizational alignment

7

MAN.2 Organizational management

MAN.3 Project management

MAN.4 Quality management

MAN.5 Risk management

MAN.6 Measurement

MAN.7 Information management

Process
improvement

PIM.1 Process establishment

3 PIM.2 Process assessment

PIM.3 Process improvement

Resource
and

infrastructure

RIN.1 Human resources management

4
RIN.2 Training

RIN.3 Knowledge management

RIN.4 Infrastructure

Reuse REU.1 Asset management

3 REU.2 Reuse program management

REU.3 Domain engineering

(*): added in S4S Total 52

Source: Adapted from ECSS (2010a).

Table 4.8 presents the list of processes from ISO/IEC 29110 Basic Profile. In

the context of this work, ISO/IEC 29110 processes were reclassified as process

groups and, consequently, activities were reclassified as processes.

Table 4.8: ISO/IEC 29110 Basic Profile processes.

Process (=
Process groups)

 Activities (= Processes) Number of
processes

Project
Management

PM.1 Project Planning

4
PM.2 Project Plan Execution

PM.3 Project Assessment and Control

PM.4 Project Closure

Software
Implementation

SI.1 Software Implementation Initiation

6

SI.2 Software Requirements Analysis

SI.3 Software Architectural and Detailed Design

SI.4 Software Construction

SI.5 Software Integration and Tests

SI.6 Product Delivery

Total 10

Source: Adapted from ISO/IEC (2011).

69

5 CRITICAL SPACE PROFILES (CSP)

This chapter describes the development of the Critical Space Profiles (CSP), a

set of profiles developed for VSE developing space software. CSP is generated

using GAPS with information from three already concluded space projects to

generate a version of GAPS’ VSE Critical Profile Group for the space context,

determining the contents of the related profiles (Basic, Intermediate, and

Advanced).

The projects from the space area were subject to the following data collection

methods:

1. Interview: to understand the organization and context;

2. Survey: to get information about the project’s characteristics; and

3. Research: to get documented information about the projects and

respective organizations.

5.1 Projects

The three software projects are: (1) On-board Data Handling Application, (2)

Ground Control, and (3) Ground station application for remote sensing payload.

These projects were selected for being representative of space software in

VSE, as they cover three facets from space projects (space, control, and

application segments) and were developed for different missions by different

organizations that fit the description of very small entity (up to 25 people).

5.1.1 Project 1: On-board data handling application

The development team of the On-Board Data Handling Application was

composed of 7 members in different roles: 2 architects/developers, 1 developer,

1 tester/ test architect, 1 tester, 1 project manager, and 1 part-time PA

representative. The product was developed for over 2 years, using C++

program language and consisted of approximately 20 thousand lines of code.

70

The functions performed by the On-Board Data Handling Application software

include navigation, health monitoring of on-board equipment, command

processing, service and payload subsystems management, and

communications. In general, embedded space systems require real-time control

and high reliability, and for this reason, on-board satellite systems must perform

services compatible with other elements of the space vehicle and the ground

systems.

5.1.2 Project 2: Ground control

The development team of Ground Control software was composed of 7

members in different roles: 2 architects/developers, 2 developers, 1 tester/ test

architect, 1 tester and 1 part-time PA representative. The product was

developed for over 4 years, using C++ program languages and consists of

approximately 280 thousand lines of code.

The Ground Control software targets, mainly, control of: subsystems (platform

and payload), attitude, and orbit. Generally, payloads and platform subsystems

do not require real-time control, except for switching operation modes or

handling anomalies. Satellites typically fly autonomously until there is a need to

command a change in operation mode or an anomaly forces them to

automatically enter degraded operation. Currently, Ground Control has

responsibility upon orbit control and maintenance of satellites. Computational

systems are widely used on ground to support satellite control functions,

distributed amongst Control Centers, Mission Centers and Earth Stations.

Control Centers have the computational systems for mission operation,

contemplating the main tasks necessary for operation and control of a satellite

mission, such as orbit prediction and propagation; flight plan preparation;

receiving and storing platform telemetry; implementation of the flight plan in real

time.

71

5.1.3 Project 3: Application for remote sensing payload

The development team of the application software for remote sensing payload

was composed of 8 members in different roles: 1 architect, 3 developers, 1

tester/ test architect, 1 tester, 1 project manager and 1 part-time PA

representative. The product was developed for over 3 years, using C++ and

Python program languages and consists of approximately 120 thousand lines of

code.

These software systems host the mission databases and the necessary means

to for recording, processing and dissemination of data, such as imagery from

Earth Observation (EO) satellites, to the users responsible for embedded

equipment in the space vehicles. The complete system for remote sensing

satellite comprises hardware and software architecture designed for generating

the intended product with efficiency and quality, encompassing data ingestion

and recording subsystems, with the possibility of remote access.

5.2 Applying GAPS

The GAPS approach was applied following the process described in chapter 4.

The practitioners involved were two Product Assurance specialists, each with

over ten years’ experience in the aerospace area and over five years’

experience specific in space product assurance.

5.2.1 Step 1 - Tailoring criteria definition – space context

The voting process previously described in Table 4.2 – vote (Yes or No); and

either a metric (Yes) or a reason (No) – was used to the list of 49 factors from

Table 4.1. This voting process resulted in the selection of 10 factors considered

impacting to process tailoring. Table 5.1 presents the list of factors highlighting

the chosen items (Yes).

72

Table 5.1: Tailoring criteria selection.

 Name Vote Yes: metric / No: why

T
e
a

m

Size Yes Number of people

Distribution Yes Number of "plants".

Turnover No Considered in “Previous cooperation”.

Previous Cooperation Yes Time working together, in years.

Good Cooperation No Absence of objective metrics.

Domain knowledge Yes Experience with the domain, in years.

Tool knowledge Yes Experience with the tool, in years.

Technology knowledge Yes Experience w/ technology, in years.

Process knowledge Yes Experience w/ process, in years.

In
te

rn
a
l

E
n

v
ir

o
n

m
e

n
t

Prototyping No Within project revisions scope /
newness evaluation.

Clear project proposal No Within project revisions scope.

Management availability No Assumed as premise.

Management support No Assumed as premise.

Project budget Yes Percentage of overall project (relative
importance).

Project duration No Process selection does not change.

Project type No Considered in the criticality
determination.

Project role No Considered in the criticality
determination.

Sub-contractors No The process must be performed
independently of the role in the
customer-supplier chain.

Financial controlling No Within project revisions scope /
budget.

Measurement No Within project revisions scope.

Technical support No Considered in the team technical
knowledge.

Programing language No Considered in innovation degree.

COTS products No Considered in the criticality
determination.

Operating system No Assumed as premise / technology
knowledge.

Database system No Assumed as premise / tool
knowledge.

Tool infrastructure No Assumed as premise / tool
knowledge.

E
x

te
rn

a
l

E
n

v
ir

o
n

m
e

n
t Legal aspects No Considered in the criticality

determination.

Number of stakeholders No Considered in team and complexity.

Stakeholder availability No Considered in team and complexity.

Stakeholder background No Considered in team knowledge.

Requirements stability No Assumed as premise: requirements
frozen.

73

Table 5.1: Tailoring criteria selection.

 Name Vote Yes: metric / No: why

Client process No Considered in team process
knowledge.

Client availability No Within project revisions scope.

Type of contract No Considered in the criticality
determination.

User availability No Considered as premise: development
follow up

User background No Assumed as premise.

Trainings No No additional processes.

O
b

je
c

ti
v
e

n
e
s
s

Complexity Yes Number of disciplines/ technologies
involved

Innovation degree Yes Percentage of new technology
according to experts’ evaluation.

Legacy system No Considered in the degree of
innovation.

Legacy system
documentation

No Considered in team knowledge.

Domain No Assumed as premise / criticality
determination.

Conceptual solution No Considered in team knowledge.

Technical solution No Considered in team knowledge.

Safety & Security No Considered in the criticality
determination.

Hardware development No No additional processes.

Neighboring systems No Considered in complexity evaluation.

User interface No No additional processes.

System integration test No Assumed as premise.
Source: Author.

Because software projects may vary within the space context, a balance

between generic and specific was considered to obtain an appropriate factors

set. After the selection of applicable criteria, the coherence and consistency of

the overall set of criteria were reviewed to mitigate the risk of conflict,

duplication, or lack of necessary characteristic.

The resulting list comprises approximately 20% of the total of the factors

evaluated from the research material. This set of criteria, applicable for profiles

selection in VSE software projects, is not exhaustive and can be completed

according to project needs. Some elements of this list are imposed to the

project, whereas the others are subject to choice.

74

5.2.2 Step 2 - Projects evaluation – space context

After establishing the selected criteria for evaluating a software project in this

context, they are assessed as shown in the framework presented in Table 5.2,

comprising project factors divided in the categories product and project,

comprising items, metrics and grades (0; 5 or 10).

Table 5.2: Evaluation framework.

 Criterion Metric
Grade

0 5 10

1
.

T
e
a
m

1.1 Size # people
< 5 5 to 15 16 to 25

1.2 Distribution # places
1 2 > 2

1.3 Previous cooperation
Time

(years)
> 4 2 to 4 < 2

1.4 Domain knowledge (Average
experience)

Time
(years)

> 4 2 to 4 < 2

1.5 Tool knowledge (Average
experience)

Time
(years)

> 4 2 to 4 < 2

1.6 Technology knowledge
(Average experience)

Time
(years)

> 4 2 to 4 < 2

1.7 Process knowledge (Average
experience: critical software or
assessments, i.e. CMM, ISO 9001)

projects
> 2 1 to 2 0

2
.

P
ro

je
c

t

2.1 Project budget (Percentage of
the whole system)

Project %
< 10 10 to 30 > 30

2.2 Complexity (different
technologies and/or disciplines)

tech. /
disc.

1 2 to 3 > 3

2.3 Innovation degree (design
novelty and new technology use)

Software
%

< 10 10 to 30 > 30

Score: ________
Source: Author.

The grading results from applying the evaluation framework to the three cases

are presented in Table 5.3.

75

Table 5.3: Case projects framework grading results.

 Criteria Metric
Grade Project

0 5 10 1 2 3

1
.

 T
e
a

m

1.1 Size

people
< 5 5 to 15 16 to 25

5 5 5

1.2 Distribution

places
1 2 > 2

0 0 5

1.3 Previous
cooperation

Time
(years)

> 4 2 to 4 < 2
5 0 0

1.4 Domain
knowledge

Time
(years)

> 4 2 to 4 < 2
0 0 0

1.5 Tool
knowledge

Time
(years)

> 4 2 to 4 < 2
5 0 0

1.6 Technology
knowledge

Time
(years)

> 4 2 to 4 < 2
5 0 0

1.7 Process
knowledge

projects

> 2 1 to 2 0
5 0 5

2
.

P
ro

je
c

t 2.1 Project budget
Project

%
< 10 10 to 30 > 30

5 10 0

2.2 Complexity
tech./

disc.
1 2 to 3 > 3

10 10 10

2.3 Innovation
degree

SW % < 10 10 to 30 > 30
10 10 5

Score: 50 35 30
Source: Author.

For the space software, the score range for project classification was defined

with the values presented in Table 5.4.

Table 5.4: Project classification for the space context.

Project profile classification

Score

Software Criticality Level

A B C D

70 < s S4S GAPS
Advanced

GAPS
Intermediate

ISO 29110
Basic

35 < s ≤ 70 GAPS
Advanced

GAPS
Intermediate

GAPS
Basic

ISO 29110
Basic

s ≤ 35 GAPS
Advanced

GAPS
Intermediate

GAPS
Basic

ISO 29110
Basic

Source: Author.

76

Therefore, applying the grading from Table 5.3 to the project classification from

Table 5.4, results in the following classification:

 Project 1: criticality level A and 35 < s ≤ 70: GAPS Advanced;

 Project 2: criticality level B, and s ≤ 35: GAPS Intermediate; and

 Project 3: criticality level C, and s ≤ 35: GAPS Basic.

5.2.3 Step 3 - Process selection – space context

By using the GAPS approach, each organization is able to select the processes

relevant to their projects. Nevertheless, as reference for direct application, this

section comprises the baselines for the three VSE Critical Profiles (Basic,

Intermediate and Advanced), generated based on the presented projects

analyses and the understanding of the influence of project factors on processes.

As determined in GAPS, the minimum set of processes for the critical profile

group must comprise the following concepts, along with their related processes:

a. Definition of a development approach;

b. Elicitation and reviewing of software requirements;

c. Production, validation and acceptance of software;

d. Product assurance and

e. Configuration management.

The processes listed for each profile are described with their original codes and

names, with a three letters code for the S4S processes and a two letters code

for the processes from ISO/IEC 29110. Moreover the processes related to the

concepts listed above (a. to e.) are highlighted in Table 5.5.

 GAPS Basic critical profile

GAPS Basic Critical Profile is the first of the Critical Profile Group to be

described in this work, with its processes divided in 3 process groups belonging

to S4S main process categories, as shown in Table 5.5, totalizing 15 processes.

77

Table 5.5: Processes for GAPS Basic Critical Profile.

Process
categories

Process
groups

Process Number of
processes

Primary life
cycle

processes

Engineering ENG.1 Requirements elicitation

8

SI.1 Software Implementation Initiation

SI.2 Software Requirements Analysis

SI.3 Software Architectural and Detailed Design

SI.4 Software Construction

SI.5 Software Integration and Tests

SI.6 Product Delivery

ENG.8 Software testing

Supporting life
cycle

Supporting SUP.1 Quality assurance

3 SUP.8 Configuration management

SUP.9 Problem resolution

Organizational
life cycle

processes

Management PM.1 Project Planning

4
PM.2 Project Plan Execution

PM.3 Project Assessment and Control

PM.4 Project Closure

 Total 15

Source: Author.

 GAPS Intermediate critical profile

GAPS Intermediate Critical Profile is the second of the Critical Profile Group to

be described in this work, comprising the 15 processes from the GAPS Basic

Critical Profile, plus the 6 others shown in Table 5.6, totalizing 21 processes.

Table 5.6: Processes for Intermediate GAPS Critical Profile.

Process
categories

Process
groups

Process Number of
processes

Processes from GAPS Basic Critical Profile 15

Primary life
cycle

processes

Engineering ENG.12 Software and system maintenance
1

Supporting life
cycle

Supporting SUP.2 Verification

4
SUP.4 Joint Review

SUP.7 Documentation

SUP.11 Safety and dependability assurance

Organizational
life cycle

processes

Resource and
Infrastructure

RIN.1 Human resources management
1

 Total 21

Source: Author.

78

 GAPS Advanced critical profile

GAPS Advanced Critical Profile is the third of the Critical Profile Group to be

described in this work, comprising the 21 processes from the GAPS

Intermediate Critical Profile, plus the 4 others shown in Table 5.7, totalizing 25

processes.

Table 5.7: Processes for GAPS Advanced Critical Profile.
Process

categories
Process
groups

Process Number of
processes

Process from GAPS Intermediate Critical Profile 21

Supporting life
cycle

Supporting SUP.10 Change Request management

2 SUP.12 Independent software verification and
validation

Organizational
life cycle

processes

Management MAN.7 Information management

2 Resource and
Infrastructure

RIN. 3 Knowledge management

 Total 25

Source: Author.

 Additional processes

Depending on what factors have been elected as impacting to the project, the 4

processes listed in Table 5.8 are recommended.

Table 5.8: Additional processes.
Process

categories
Process
groups

Process Number of
processes

Supporting life
cycle

Supporting SUP.5 Audit
1

Organizational
life cycle

processes

Management MAN.2 Organizational management

3 Resource and
Infrastructure

RIN.3 Knowledge management

Reuse REU.3 Domain engineering

 Total 4

Source: Author.

79

6 CONCLUSION

This work identified and summarized the processes adopted by ISO/IEC 29110

Basic Profile and ECSS S4S, whose processes present similarities,

representing opportunities to use them complementarily.

Software process in VSE critical projects can be selected based on the

evaluation described in GAPS, which contributes with the selection of tailoring

criteria, which we extracted from literature and we backed up with analysis on

their relevance. The criteria selection is a manner to support the understanding

of the influence factors for critical software projects in VSE context and,

furthermore, to develop a notion on selection of adequate tailoring criteria.

Although our results do not allow for deriving complete sets of processes based

on the implications of tailoring criteria on all possible software projects, GAPS

supports the definition of tailoring criteria as the necessary variability of software

processes is inherently given by the complexity of software. The contributed

means to determine tailoring criteria and the processes selection provided

herein, therefore, lay the foundation for further work.

The GAPS approach is meant to be applicable to any project, yet it is important

to recognize that the subset of criteria selected can vary depending on the

project phase. The early phases in a project lifecycle most often do not need a

high percentage of the requirements available in the standards to be made

applicable to achieve their objective. However, in order to establish an overall

view of the phasing in of requirements, it is good practice that the initial

selection of applicable processes covers all project phases including the

development phase, which is typically the most demanding. With this initial

selection established, appropriate and coherent subsets of the processes to be

made applicable during the course of project implementation can then be

selected to match the specific needs of the project phases.

Moreover, the applicability of GAPS to real cases has been analyzed. The

resultant customized approach (CSP) comprises selected VSE projects factors,

based on which a framework for software evaluation has been generated and

used as means to support the selection of appropriate processes, considering

80

their specific implication on space projects, then a related critical profile group

consisting of three profiles was defined. The results allow the project evaluation

for a selection of adequate sets of processes (profiles) that consider the VSE

project aspects. CSP is available to be used as baseline to direct application in

software projects in the space context.

Consequently, the proposed objectives have been fulfilled by delivering a 3-

steps process selection approach (GAPS) and a customized version of it with 3

profiles ready for use in VSE (CSP).

6.1 Limitations

This work does not aim to be exhaustive on defining the profiles to be used

according to the resultant evaluation, which is based on specific conditions and,

thus, has limitations.

Another possible limitation is having only one specialist in charge to use the

proposed approach (GAPS) to select the criteria and the processes to comprise

CSP. Although having more than one specialist participate in identifying and

selecting the criteria and processes may reduce the possibility of excluding

relevant ones, the strict application of a well-defined process help in identifying

the appropriate items. To further increase the validity of the findings, GAPS

includes a second practitioner performing these selections not affected by the

findings of the first, however more evaluations may be necessary to validate the

approach.

This evaluation approach is meant to be applicable to any project, yet it is

important to recognize that the subset of criteria selected can vary depending

on the project phase. The early phases in a project lifecycle most often do not

need a high percentage of the requirements available in the standards to be

made applicable to achieve their objective. However, in order to establish an

overall view of the phasing in of requirements, it is good practice that the initial

selection of applicable processes covers all project phases including the

development phase, which is typically the most demanding. With this initial

selection established, appropriate and coherent subsets of the processes to be

81

made applicable during the course of project implementation can then be

selected to match the specific needs of the project phases.

6.2 Future work suggestion

Further studies are necessary to continue this work on the use of adequate

profiles, comprising simplified and flexible sets of processes according to each

software project evaluation to provide evidence on their feasibility with

evaluation of their completeness, applicability and usability for critical software

in VSE, detailing the standard processes used in this work, establishing

prioritization of processes and criteria, implementing GAPS and in contexts

other than space and using CSP with more space projects, including the

contexts of the ESA’s Critical VSE Focus Group and INPE’s projects.

6.3 Published works

Within the scope of this dissertation, the following works have been published:

 Workshop em Engenharia e Tecnologia Espaciais (WETE).

Type: Conference / oral presentation.

Title: Criteria proposal for critical software development processes selection

for space projects in Very Small Entities.

Year: 2018.

Link: http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-

m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-

m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=

mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-

m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirr

or=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc

http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc
http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc
http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc
http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc
http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc
http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc-m16d/2018/10.11.17.58?metadatarepository=sid.inpe.br/mtc-m16d/2018/10.11.17.58.54&ibiurl.backgroundlanguage=pt&ibiurl.requiredsite=mtc-m16d.sid.inpe.br+806&requiredmirror=sid.inpe.br/mtc-m19@80/2009/08.21.17.02.53&searchsite=bibdigital.sid.inpe.br:80&searchmirror=sid.inpe.br/bibdigital@80/2006/11.11.23.17&choice=briefTitleAuthorMisc

82

 ESA Software Product Assurance and Engineering Workshop.

Type: Conference / oral presentation.

Title: An approach for classifying critical space software projects developed

in Very Small Entities.

Year: 2019.

Link: https://atpi.eventsair.com/QuickEventWebsitePortal/software-pa-

workshop-2019/home/ExtraContent/ContentSubPage?page=1&subPage=7

 A Aplicação do Conhecimento Científico nas Engenharias 3.

Type: Book / paper.

Year: 2019.

Title: APPROACH PROPOSAL FOR CRITICAL SOFTWARE PROCESSES

SELECTION FOR SPACE PROJECTS IN VERY SMALL ENTITIES (VSE).

ISBN 93243, DOI 10.22533.

 International Journal of Advanced Engineering Research and Science

(IJAERS).

Type: Journal / paper.

Year: 2019.

Title: Critical Software Processes Tailoring and Very Small Entities: A

Literature Review.

ISSN 2349-6495(P)| 2456-1908(O), DOI 10.22161/ijaers.

https://atpi.eventsair.com/QuickEventWebsitePortal/software-pa-workshop-2019/home/ExtraContent/ContentSubPage?page=1&subPage=7
https://atpi.eventsair.com/QuickEventWebsitePortal/software-pa-workshop-2019/home/ExtraContent/ContentSubPage?page=1&subPage=7

83

REFERENCES

ALBUQUERQUE, I. S. Modelo para o gerenciamento da configuração e

gerenciamento da informação e documentação do programa espacial

brasileiro. 2011. 152p. Dissertação (Mestrado em Engenharia e Tecnologia

Espaciais / Gerenciamento de Sistemas Espaciais) - Instituto Nacional de

Pesquisas Espaciais, São José dos Campos, 2012.

ALEXANDRE, S.; RENAULT, A.; HABRA, N. OWPL: a gradual approach for

software process improvement in SMEs. In: EUROMICRO CONFERENCE ON

SOFTWARE ENGINEERING AND ADVANCED APPLICATION, 32, 2006.

Proceedings… IEEE Computer Society. 2006. p. 328-335.

ANACLETO, A. et al. MARES: a method for process assessment in small

software companies. Itajaí: Universidade do Vale do Itajaí, 2004. (Technical

Report LPQS0012004).

ASSOCIAÇÃO PARA PROMOÇÃO DA EXCELÊNCIA DO SOFTWARE 0

SOFTEX. MPS.BR: melhoria de processo do software brasileiro: guia geral.

Campinas: SOFTEX, 2011.

BASRI, S. O. R. V. A study of software development team dynamics in SPI.

Communications in Computer and Information Science, v.172, p.143-154,

2011.

BLACKBURN, J. D.; SCUDDER, G. D.; WASSENHOVE, L. N. V. Improving

speed and productivity of software development: a global survey of software

developer. IEEE Transactions on Software Engineering, v. 22, n. 12, p. 875-

885, Dec. 1996. DOI: 10.1109/32.553636.

BOEHM, B. W. Software risk management: principles and practices. IEEE

Software, v. 8, n. 1, p. 32-41, Jan. 1991. DOI: 10.1109/52.62930.

BRUHN, M. et al. MSME finance gap: assessment of the shortfalls and

opportunities in financing micro, small, and medium enterprises in emerging

markets. Washington: World Bank Group, 2017.

BUJOK, A. B. et al. Approach to the development of a Unified Framework for

Safety Critical Software Development. Computer Standards & Interfaces, v.

54, pt. 3, p. 152-161, Nov. 2017. DOI: 10.1016/j.csi.2016.11.013.

BURTON, J. A. A software risk management capability model for medical

device software. Thesis (PhD) - University of Limerick, Limerick, Ireland, 2008.

84

CAMCI, A.; KOTNOUR, T. Technology complexity in projects: does classical

project management work? In: TECHNOLOGY MANAGAMENT FOR THE

GLOBAL FUTURE CONFERENCE, 2006, Istanbul, Turkey. Proceedings…

IEEE, 2006. p. 2181-2186.

CASS, A. et al. SPICE for SPACE: a process assessment and improvement

method for space software development. ESA Bulletin, v.107, p.112-119,

2001.

CATER-STEEL, A. P. Process improvement in four small software companies.

In: AUSTRALIAN SOFTWARE ENGINEERING CONFERENCE, 2001,

Queensland, Australy. Proceedings… IEEE, 2001. p. 262-272.

CHRISSIS, M. B.; KONRAD, M.; SHRUM, S. CMMI: guidelines for process

integration and product improvement. Boston, USA: Addison-Wesley, 2011.

CIGNONI, G. A. Rapid software process assessment to promote innovation in

SMEs. In: EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING

AND ADVANCED APPLICATIONS, 1999, Milan, Italy. Proceedings… 1999.

CLARKE, P.; O’CONNOR, R. V.; LEAVY, B. A complexity theory viewpoint on

the software development process and situational context. In: IEEE/ACM

INTERNATIONAL CONFERENCE ON SOFTWARE AND SYSTEM

PROCESSES, 2016. Proceedings… New York: ACM, 2016. p. 86-90.

COSTACHE, D.; KALUS, G.; KUHRMANN, M. Design and validation of feature-

based process model tailoring: a sample implementation of PDE. In: ACM

SIGSOFT SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE

ENGINEERINGS, 19., 2011. Proceedings… Szeged, Hungary: ACM Press,

2011. p. 464-467.

CRISCUOLO, C.; GAL, P. N.; MENON, C. The dynamics of employment

growth: new evidence from 18 countries. OECD Science, Technology and

Industry Policy Papers, v. 14, 2014. DOI: 10.1787/23074957.

CRISÓSTOMO, J. et al. Convergence analysis of ISO/IEC 12207 and CMMI-

DEV: a systematic literature review. In: LATIN AMERICAN COMPUTING

CONFERENCE, 42., 2016, Valparaiso, Chile. Proceedings… IEEE, 2016. p. 1-

8.

CROSBY, P. B. Quality is free: the art of making quality certain. New York:

McGraw-Hill, 1979.

DEMING, W. E. Out of the crisis. Cambridge, MA: MIT Center for Advanced

Engineering, 1986.

85

EITO-BRUN, R. Comparing SPiCE for Space (S4S) and CMMI-DEV: identifying

sources of risk from improvement models. In: INTERNATIONAL

CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT AND

CAPABILITY DETERMINATION, 2013. Bremen, Germany. Proceedings…

Springer, 2013. p. 84-94.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.

ECSS-Q-ST-30-02C: failure modes, effects (and criticality) analysis

(FMEA/FMECA). Noordwijk, The Netherlands: ECSS, 2009b.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.

ECSS-E-ST-40C: software. Noordwijk, The Netherlands: ECSS, 2009a.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.

ECSS-Q-HB-80-02-Part1A: software process assessment and improvement –

part 1: framework. Noordwijk, The Netherlands: ECSS, 2010a.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION ECSS.

ECSS-S-ST-00-01C: glossary of terms. Noordwij, The Netherlands: ECSS,

2012.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.

ECSS-Q-ST-80C-Rev.1: software product assurance. Noordwijk, The

Netherlands: ECSS, 2017a.

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.

ECSS-Q-ST-30C-Rev.1: dependability. Noordwijk, The Netherlands: ECSS,

2017b.

EUROPEAN SPACE AGENCY - ESA. ESA software product assurance and

engineering workshop 2015. ESA Conference Bureau, 2015. Available from:

<http://old.esaconferencebureau.com/2015-events/15m02/introduction>.

EUROPEAN SPACE AGENCY - ESA. VSEs focus group: critical profile. Paris:

ESA, 2018.

FEDERAL AVIATION ADMINISTRATION - FAA. Order 8110.49 Chg 1.

Washington: FAA, 2011.

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION -

FIPS. FIPS 183: Integration Definition for Function Modeling (IDEFO).

Gaithersburg: FIPS, 1993.

86

FELDT, R. et al. Challenges with software verification and validation activities in

the space industry. In: INTERNATIONAL CONFERENCE ON SOFTWARE

TESTING, VERIFICATION AND VALIDATION, 3., 2010, Paris, France.

Proceedings… IEEE Computer Society, 2010. p. 225–234.

FERNÁNDEZ, D. M. et al. Field study on requirements engineering:

investigation of artefacts, project parameters, and execution strategies.

Information and Software Technology, v. 54, n. 2, p. 162-178, Feb. 2012.

DOI: 10.1016/j.infsof.2011.09.001.

GINSBERG, M. P.; QUINN, L. Process tailoring and the software capability

maturity model. Pittsburgh: Carnegie Mellon University, 1995. (CMU/SEI-94-

TR-024).

GOLDENSON, D. R.; GIBSON, D. L. Demonstrating the impact and benefits

of CMMI: an update and preliminary results. Pittsburgh: Carnegie Mellon

Software Engineering Institute, 2003.

GORSCHEK, T.; WOHLIN, C. Requirements Abstraction Model. Requirements

Engineering Journal, v.11, p.79-101, 2006.

HAWKINS, R.; HABLI, I.; KELLY, T. The principles of software safety

assurance. Boston: International System Safety Conference (ISSC), 2013.

HEEKS, R. et al. Synching or sinking: global software outsourcing relationships.

IEEE Software, v. 18, n. 2, p. 54-60, Mar./Apr. 2001. DOI: 10.1109/52.914744.

HERBSLEB, J. D.; MOCKUS, A. An empirical study of speed and

communication in globally distributed software development. IEEE

Transactions on Software Engineering, v. 29, n. 6, p. 481-494, June 2003.

DOI: 10.1109/TSE.2003.1205177.

HETZEL, B. The complete guide to software testing. 2.ed. USA: QED

Information Sciences, 1984.

HIGGINS, J. P. T.; GREEN, S. Cochrane handbook for systematic reviews

of interventions version 5.1.0. The Cochrane Collaboration, 2011. Available

from: www.handbook.cochrane.org.

HIRAMA, K. Engenharia de software: qualidade e produtividade com

tecnologia. Rio de Janeiro: Elsevier, 2011.

HOYLE, D. ISO 9000: 2000: an A–Z guide. New York: Butterworth-Heinemann,

2001.

87

HUMPHREY, W. S. Managing the software process. Reading, MA: Addison-

Wesley, 1989.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS - IEEE. IEEE

Std 610.12-1990 (R2002): IEEE standard glossary of software engineering

terminology. New York, USA: IEEE, 2002.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ISO. ISO

9000:2015: quality management systems: fundamentals and vocabulary.

Geneva, Switzerland: ISO, 2015.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC. ISO/IEC

15504 information technology: Process assessment, Software Process

Improvement and Capability Determination (SPICE). Geneva, Switzerland: ISO,

2008.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC. ISO/IEC

12207:2008: systems and software engineering: software life cycle processes.

Geneva, Switzerland: ISO, 2008a.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC. ISO/IEC

29110-4-1 - software engineering: lifecycle profiles for Very Small Entities

(VSEs): part 4-1: profile specifications: generic profile group. Geneva,

Switzerland: ISO, 2011a.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC. ISO/IEC

TR 29110-5-1-2 - software engineering: lifecycle profiles for Very Small Entities

(VSEs): part 5-1-2: management and engineering guide: generic profile group:

basic profile. Geneva, Switzerland: ISO, 2011b.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC.

ISO/IEC/IEEE 15288:2015 systems and software engineering? system life cycle

processes. Geneva, Switzerland: ISO, 2015.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION;

INTERNATIONAL ELECTROTECHNICAL COMMISSION - ISO/IEC.

ISO/IEC/IEEE 12207:2017 - systems and software engineering: software life

cycle processes. Geneva, Switzerland: ISO, 2017.

88

JIANG, J. J. et al. The relation of requirements uncertainty and stakeholder

perception gaps to project management performance. Journal of Systems and

Software, v. 82, n. 5, p. 801-808, May 2009. ISSN 0164-1212.

JOHNSON, D. L.; BRODMAN, J. G. Tailoring the CMM for small businesses,

small organizations, and small projects. Software Process Newsletter - IEEE

Computer Society, v. 8, 1997.

JØRGENSEN, M. A review of studies on expert estimation of software

development effort. Journal of Systems and Software, v.70, n.1/2, p. 37-60,

Feb. 2004. DOI: 10.1016/S0164-1212(02)00156-5.

JØRGENSEN, M.; MOLOKKEN, K. A preliminary checklist for software cost

management quality software. In: INTERNATIONAL CONFERENCE ON

QUALITY SOFTWARE, 3., 2003, Dallas, USA. Proceedings… IEEE, 2003. p.

134–140.

JØRGENSEN, M.; SHEPPERD, M. A systematic review of software

development cost estimation studies. IEEE Transactions on Software

Engineering, v.33, n.1, p.33-53, 2007.

JURAN, J. M. Juran on planning for quality. New York: Macmillan, 1988.

KALINOWSKI, M. et al. Software process improvement results in Brazil based

on the MPS-SW model. Software Quality Professional, p.14-28, Sept. 2015.

KALUS, G.; KUHRMANN, M. Criteria for software process tailoring: a

systematic review. In: INTERNATIONAL CONFERENCE ON SOFTWARE AND

SYSTEM PROCESS, 2013. Proceedings… New York: ACM. 2013. p. 171-180.

KELLY, D. P.; CULLETON, B. Process improvement for small organizations.

Computer, v. 32, n. 10, p. 41-47, 1999. DOI: 10.1109/2.796108.

KOMI-SIRVIÖ, S. Development and evaluation of software process

improvement methods. Thesis (PhD) - University of Oulu, Rovaniemi, Finland.

2004.

KUHRMANN, M.; KALUS, G. Providing integrated development processes for

distributed development environments. In: WORSHOP ON SUPPORTING

DISTRIBUTED TEAM WORK AT COMPUTER SUPPORTED COOPERATIVE

WORK, 2008, San Diego, USA. Proceedings… 2008.

KUHRMANN, M.; TERNITÉ, T. Including the microsoft solution framework as an

agile method into the V-Modell XT. In: INTERNATIONAL WORKSHOP ON

EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING,

1., 2005, Erfurt, Germany. Proceedings… 2005.

89

KUILBOER, J. P.; ASHRAFI, N. Software process and product improvement: an

empirical assessment. Information and Software Technology, v.42, p.27-34,

2000.

KUSHNIR, K.; MIRMULSTEIN, M. L.; RAMALHO, R. Micro, small and

medium enterprises around the world: how many are there and what affects

the count? Washington: World Bank, 2010.

KUVAJA, P.; PALO, J.; BICEGO, A. TAPISTRY: a software process

improvement approach tailored for small enterprises. Software Quality

Journal, v.8, p.149-156, 1999.

LAHOZ, C. H. N. S4S For Very Small Entities (VSE). [S.l: s.n.], 2015.

LAHOZ, C. H. N.; RICHTER, S.; RICO, D. E. Rapid software process

assessment in the space domain for Very Small Entities. Frascati:

European Space Agency. 2015.

LAPORTE, C. Y. ISO/IEC 29110: profiles. [Personal communication]. Message

received by Gledson Hernandes Diniz on April 18, 2017.

LAPORTE, C. Y.; ALEXANDRE, S.; O’CONNOR, R. A software engineering

lifecycle standard for Very Small Enterprises. Communications in Computer

and Information Science, v.16, p.129-141, 2008.

LAPORTE, C. Y.; O’CONNOR, R. V. Software process improvement standards

and guides for very small organizations: an overview of eight implementations.

CrossTalk, The Journal of Defense Software Engineering, v. 30, n. 3, p. 23-

27, 2017.

LAPORTE, C. Y.; O’CONNOR, R. V.; PAUCAR, L. H. G. Software engineering

standards and guides for Very Small Entities: implementation in two start-ups.

In: INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL

APPROACHES TO SOFTWARE ENGINEERING (ENASE), 2015, Barcelona,

Spain. Proceedings… IEEE, 2015. p. 5-15.

LARRUCEA, X. et al. Software process improvement in very small

organizations. IEEE Software, v.33, n.2, p.85-89, 2016.

LARYD, A.; ORCI, T. Dynamic CMM for small organizations. In: ARGENTINE

SYMPOSIUM ON SOFTWARE ENGINEERING, 2000, Tandil, Argentina.

Proceedings… Academic Press, 2000. p. 133-149.

LICHTENSTEIN, Y. Puzzles in software development contracting.

Communications of the ACM, v. 47, n. 2, p. 61-65, Feb. 2004. DOI:

10.1145/966389.966391.

90

MARQUES, J. C. MACRE-SAR: an agile model for software requirements

specification in regulated environments. Thesis (PhD) - Instituto Tecnológico de

Aeronáutica, São José dos Campos, Brazil. 2016.

MIYASHIRO, M. A. S.; FERREIRA, M. G. V. One approach to the use of the

practices of CMMI-DEV V1.3 level 2 in a process of development of embedded

systems. In : INTERNATIONAL CONFERENCE ON INFORMATION, 5., 2014,

Greece. Proceedings… 2014.

MOLL, R. A bird’s eye view of SMEs and risk management. Geneva,

Switzerland: ISO, 2013.

MOTODA, H. . M. R.; BOOSE, J.; GAINES, B. Knowledge acquisition for

knowledge-based systems. IEEE Expert, v. 6, n. 4, p. 53-64, Aug. 1991. DOI:

10.1109/64.85921.

MUNCH, J. et al. Software process definition and management. Berlim:

Springer-Verlag, 2012.

MYERS, M. D. Qualitative Research in Information Systems. MISQ Discovery,

v.21, n.2, p.241-242, May 1997.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA. NASA

study on flight coftware complexity. Pasadena, CA, USA: NASA, 2009.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA. NASA

systems engineering handbook. Washington, USA: NASA, 2017.

NAUR, P.; RANDELL, B. Software engineering: a report on a conference

sponsored by the NATO Science Comitee. Brussels: [S.n.], 1969.

NIAZI, M.; WILSON, D.; ZOWGHI, D. A model for the implementation of a

software process improvement: a pilot study. In: INTERNATIONAL

CONFERENCE ON QUALITY SOFTWARE, 3., 2003, Dallas, USA.

Proceedings… IEEE, 2003.

NIAZI, M.; WILSON, D.; ZOWGHI, D. A maturity model for the implementation

of software process improvement: an empirical study. Journal of Systems and

Software, v.74, n.2, p.155-172, 2005.

NIAZI, M.; WILSON, D.; ZOWGHI, D. Critical success factors for software

process improvement implementation: an empirical study. Software Process:

Improvement and Practice, v.11, p.193-211, 2006.

91

O’CONNOR, R. V.; LAPORTE, C. Y. Towards the provision of assistance for

Very Small Entities in deploying software lifecycle standards. In:

INTERNATIONAL CONFERENCE ON PRODUCT FOCUSED SOFTWARE

DEVELOPMENT AND PROCESS IMPROVEMENT, 11., 2010. Proceedings…

2010.

O'CONNOR, R.; BASRI, S.; COLEMAN, G. Exploring managerial commitment

towards SPI in small and Very Small Enterprises. In: EUROPEAN

CONFERENCE, 17., Grenoble, France. Proceedings… Springer-Verlag. 2010.

p. 268-278.

O'CONNOR, R.; COLEMAN, G. Ignoring ‘best practice': why irish software

SMEs are rejecting CMMI and ISO 9000. Australasian Journal of Information

Systems, v. 16, n. 1, June 2009.

O'CONNOR, R.; LAPORTE, C. Y. Deploying lifecycle profiles for Very Small

Entities: an early stage industry view. Ireland: Springer-Verlag, 2011a. p. 227-

230.

O'CONNOR, R.; LAPORTE, C. Y. Using ISO/IEC 29110 to harness process

improvement in Very Small Entities. In: EUROPEAN SOFTWARE PROCESS

IMPROVEMENT CONFERENCE, 18., 2011, Roskilde, Denmark.

Proceedings… Springer-Verlag, 2011b. p. 225-235.

OFFEN, R. J.; JEFFERY, R. Establishing software measurement programs.

IEEE Software, v. 14, n. 2, p. 45-53, Mar.-Apr. 1997. DOI: 10.1109/52.582974.

PAASIVAARA, M.; LASSENIUS, C. Collaboration practices in global inter-

organizational software development projects. Software Process

Improvement and Practice, v. 8, n. 4, p. 183-199, 2004. DOI:

10.1002/spip.187.

PAI, M. et al. Systematic reviews and meta-analyses: an illustrated, step-by-

step guide. National Medical Journal of India, v.17, n.2, p.86-95, 2004.

PEDREIRA, O. et al. A systematic review of software process tailoring. ACM

SIGSOFT Software Engineering Notes, v. 32, n. 3, p. 1-6, May 2007. DOI:

10.1145/1241572.1241584.

PETTERSSON, F. et al. A practitioner's guide to light weight software process

assessment and improvement planning. Journal of Systems and Software,

v.8, n.6, p.972-995, 2008.

PINO, F. J. et al. Assessment methodology for software process improvement

in small organizations. Information and Software Technology, v. 52, n. 10, p.

1044-1061, Oct. 2010. DOI: 10.1016/j.infsof.2010.04.004.

92

PRESSMAN, R. S. Software engineering: a practitioner's approach. [S.l.]:

McGraw Hill, 2007.

RICHARDSON, I. Quality function deployment: a software process tool? In:

ANNUAL INTERNATIONAL QFD SYMPOSIUM, 3., 1997, Linkoping, Sweden.

Proceedings… Linkoping University, 1997. p. 39-49.

RODRÍGUEZ-DAPENA, P.; LOHIER, P. How small organizations could

participate in Space projects. In: IEEE INTERNATIONAL WORKSHOP ON

METROLOGY FOR AEROSPACE, 2017, Padua, Italy. Proceedings… IEEE,

2017. p. 11-15.

ROUT, T. P. et al. The rapid assessment of software process capability. In:

INTERNATIONAL SPICE CONFERENCE, 1., 2000 Limerick, Ireland.

Proceedings… 2000.

RTCA. RTCA/DO-178C - software considerations in airborne systems and

equipment certification. Washington: Federal Aviation Administration, 2011.

SALAS, E. et al. The effect of team building on performance: an integration.

Small Group Research, v. 30, n. 3, p. 309-329, June 1999. DOI:

10.1177/104649649903000303.

SALVIANO, C. F.; FIGUEIREDO, A. M. C. M. Unified basic concepts for

process capability models. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 20., 2008.

Proceedings… 2008. 173-178.

SANCHEZ-GORDON, M.-L. et al. A standard-based framework to integrate

software work in small settings. Computer Standards & Interfaces, v. 54, n. 3,

p. 162-175, 2017. ISSN 0920-5489.

SAUNDERS, M. N. K.; LEWIS, P.; THORNHILL, A. Research methods for

business students. 5.ed. [S.l.]: Pearson, 2009.

SCHOEFFEL, P.; BENITTI, F. B. Factors of influence in software process

improvement: a comparative survey between micro and small enterprises

(MSE) and medium and large enterprises (MLE). IEEE Latin America

Transactions, p.1634-1643, 2015.

SHEWHART, W. A. Economic control of quality of manufactured product.

[S.l.]: American Society for Quality Control, 1931.

SOFTWARE ENGINEERING INSTITUTE - SEI. CMMI-DEV, V1.3 - CMMI for

development, version 1.3. Pittsburgh, USA: SEI, 2010.

93

TORCHIANO, M.; MORISIO, M. Overlooked aspects of COTS-based

development. IEEE Software, v. 21, n. 2, p. 88-93, Mar. 2004. DOI:

10.1109/MS.2004.1270770.

USMAN, M. et al. Developing and using checklists to improve software effort

estimation: a multi-case study. Journal of Systems and Software, v. 146, p.

286-309, 2018.

VÉRAS, P. C. et al. A benchmarking process to assess software requirements

documentation for space applications. Journal of Systems and Software, v.

100, p. 103-116, Feb. 2015. DOI: 10.1016/j.jss.2014.10.054

VILLALÓN, J. A. et al. Experiences in the application of software process

improvement in SMES. Software Quality Journal, v. 10, n.3, Oct. 2002. 261-

273. DOI: 10.1023/A:1021638523413

WALLACE, L.; KEIL, M. Software project risks and their effects and outcomes.

Communications of the ACM, v. 47, n. 4, p. 68-73, Apr. 2004. DOI:

10.1145/975817.975819.

WALLACE, L.; KEIL, M.; RAI, A. How software project risk affects project

performance: an investigation of the dimensions of risk and an exploratory

model. Decision Sciences, v. 35, n. 2, p. 289-321, May 2004. DOI:

10.1111/j.00117315.2004.02059.x.

WANG, Z.-J.; ZHAN, D.-C.; XU, X.-F. STCIM: a dynamic granularity oriented

and stability based component identification method. ACM SIGSOFT Software

Engineering Notes, v. 31, n. 3, p. 1-14, May 2006. ISSN 0163-5948.

WANGENHEIM, C. G. V. et al. Systematic literature review of software process

capability/maturity models. In: INTERNATIONAL CONFERENCE ON

SOFTWARE PROCESS IMPROVEMENT AND CAPABILITY

DETERMINATION, 2010, Pisa, Italy. Proceedings… Springer. 2010.

WOLFE, J.; CHACKO, T. I. Team-size effects on business game performance

and decision-making behaviors. Decision Sciences, v. 14, n. 1, p. 121-133,

Jan. 1983. DOI: 10.1111/j.1540-5915.1983.tb00173.x.

WORLD TRADE ORGANIZATION - WTO. World trade report 2016: levelling

the trading field for SMEs. Geneva, Switzerland: WTO, 2016.

XIA, W.; LEE, G. Grasping the complexity of IS development projects.

Communications of the AC, v. 47, n. 5, p. 68-74, May 2004. DOI:

10.1145/986213.986215.

94

XU, P.; RAMESH, B. Using process tailoring to manage software development

challenges. IT Professional, v. 10, n. 4, p. 39-45, 2008. DOI:

10.1109/MITP.2008.81.

YILMAZ, M.; O’CONNOR, R. V.; CLARKE, P. Effective social productivity

measurements during software development: an empirical study. International

Journal of Software Engineering and Knowledge Engineering, v.26, n.3,

p.457-490, 2016.

YONG, I. C.; MIN, S. Y.; BAE, D. H. Tailoring and verifying software process. In:

ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, 8., 2001, Macao,

China. Proceedings… IEEE, 2001. p. 202- 209.

YOUSEFAL-TARAWNEH, M.; ABDULLAH, M. S.; ALI, A. B. M. A proposed

methodology for establishing software process development improvement for

small software development firms. Procedia Computer Science, v.3, p.893-

897, 2011.

ZAROUR, M. et al. An investigation into the best practices for the successful

design and implementation of lightweight software process assessment

methods: a systematic literature review. The Journal of Systems and

Software, v.101, p.180-192, Nov. 2015.

ZOWGHI, D.; NURMULIANI, N. A study of the impact of requirements volatility

on software project performance. In: ASIA-PACIFIC SOFTWARE

ENGINEERING CONFERENCE, 9., 2002, Gold Coast, Australia.

Proceedings… 2002. p. 3-11.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	AKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	FIGURES LIST
	TABLES LIST
	LIST OF ACRONYMS AND ABREVIATIONS
	SUMMARY
	1 INTRODUCTION
	1.1 Context
	1.2 Motivation
	1.3 Problem definition
	1.4 Objective
	1.5 Scope
	1.6 Method
	1.7 Dissertation organization

	2 CONCEPTUAL FOUNDATIONS
	2.1 Process representation
	2.2 Software quality
	2.3 Software process standards and models
	2.3.1 ISO/IEC 12207
	2.3.2 ISO/IEC 15504 (SPICE)
	2.3.2.1 Process dimension
	2.3.2.2 Capability dimension

	2.3.3 ECSS-E-ST-40 and ECSS-Q-ST-80
	2.3.4 Capability Maturity Model Integration (CMMI)
	2.3.5 MPS.BR
	2.3.6 SPICE for Space (S4S)
	2.3.7 ISO/IEC 29110

	3 LITERATURE REVIEW
	3.1 Critical software processes tailoring
	3.2 Software processes in small entities
	3.3 Literature review analysis

	4 GENERIC APPROACH FOR PROCESS SELECTION (GAPS)
	4.1 Step 1 - Tailoring criteria definition
	4.1.1 Project factors
	4.1.2 Voting framework for criteria selection

	4.2 Step 2 - Project evaluation
	4.2.1 Evaluation structure
	4.2.1.1 GAPS evaluation framework

	4.3 Processes selection
	4.3.1 Project aspects
	4.3.2 Process profiles
	4.3.2.1 Capability dimension
	4.3.2.2 Process dimension

	5 CRITICAL SPACE PROFILES (CSP)
	5.1 Projects
	5.1.1 Project 1: On-board data handling application
	5.1.2 Project 2: Ground control
	5.1.3 Project 3: Application for remote sensing payload

	5.2 Applying GAPS
	5.2.1 Step 1 - Tailoring criteria definition – space context
	5.2.2 Step 2 - Projects evaluation – space context
	5.2.3 Step 3 - Process selection – space context

	6 CONCLUSION
	6.1 Limitations
	6.2 Future work suggestion
	6.3 Published works

	REFERENCES

