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ABSTRACT

Many dynamic processes in space physics can be investigated from the study of
nonlinear fluctuations observed from instruments with high temporal and spectral
resolution. In this thesis, it is presented, for the first time, the characterization of
inhomogeneous turbulence as a possible cause of the spectral deviations found for
the variables associated with the instability of the ionospheric and solar plasma.
Algorithms based on formalisms for the analysis of monofractal and multifractal
detrended fluctuation (DFA-MFDFA) were implemented. To validate the results
obtained from the multifractal analysis, the theoretical framework for the energy
cascade, based on two–scale Cantor set, a formalism known as the p model, was
also implemented, tested and used. The multiplicity of intermittent behavior of
plasma irregularities in the Type I solar emissions, the ionospheric F region and
the E-F valley region were characterized by the MFDFA, including the respective
validations through the p model spectra. The multifractal spectra are presented for
the three case studies in space physics. In all three cases, the hypothesis of a non–
homogeneous multiplicative cascade process for the distribution of turbulent energy
is confirmed by the spectra. Also, the same analytical computational procedure
has been discussed for applications in complex systems in general, considering, for
example, the modelling of armed conflict time series.

Keywords: DFA. MFDFA. p model. Space plasma irregularities. Solar type I noise
storm.
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ANÁLISE DO MULTIFRACTAL E CASCADE P MODEL PARA
CARACTERIZAR NÃO HOMOGÊNIO TURBULÊNCIA NA FÍSICA

ESPACIAL

RESUMO

Muitos processos dinâmicos em física espacial podem ser investigados a partir do
estudo de flutuações não-lineares observadas a partir de instrumentos com alta res-
olução temporal e espectral. Nesta tese, é apresentada, pela primeira vez, a carac-
terização de turbulência não homogênea como possível causa dos desvios espectrais
encontrados para as variáveis associadas à instabilidade do plasma ionosférico e so-
lar. Algoritmos baseados nos formalismos para a análise de flutuação destendenciada
monofractal e multifractal (DFA-MFDFA) foram implementados. Para validar os re-
sultados obtidos da análise multifractal, o framework teórico baseado no conjunto
de Cantor de duas escalas, formalismo conhecido como cascata p model, também foi
implementado, testado e utilizado para validar dos resultados espectrais. A multipli-
cidade de comportamentos intermitentes das irregularidades no plasma das emissões
solares do Tipo I, da região F ionosférica e da região do vale E-F foram caracteri-
zadas por análise de flutuação destendenciada multifractal, incluindo as respectivas
validações através do espectros do p model. Os espectros multifractais são apresen-
tados para os três casos de estudo em física espacial. Nos três casos, a hipótese de
existência de processo de cascata multiplicativa não homogênea para a distribuição
de energia turbulenta é confirmada pelos espectros. Também discutimos o mesmo
procedimento computacional analítico para aplicações em sistemas complexos em
geral, considerando, por exemplo, a modelagem de séries temporais de conflitos ar-
mados.

Palavras-chave: DFA. MFDFA. p model. irregularidades plasma espacial. emissão
solar de tempestade de ruído do tipo I.
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1 INTRODUCTION

Nonlinear methods based on fractal formalism and multiplicative cascade processes
have emerged as an unprecedented tool in the understanding of scaling structure of a
complex system. Unfolding the nonlinear characteristics present in an empirical data,
these tools have advanced our understanding of many facets of a complex system
that usually had defied the conventional wisdom. The robustness of these methods
has found their wide applications in numerous fields, thus undergoing continuous
improvements and increased usability. In this thesis, the usability of the numerical
approaches of the fractal formalism, complemented with the canonical approaches of
multiplicative cascade in describing the scaling properties of the turbulent systems
in space plasma are explored.

In the emerging ionosphere-space-weather paradigm, investigating the dynamical
properties of ionospheric plasma irregularities using advanced computational non-
linear algorithms is providing new insights into their turbulent–like nature, for in-
stance, the evidence of energy distribution via a multiplicative cascade. Over the
past few decades, observations of space plasma irregularities have provided informa-
tion on their dynamics. Power spectra of plasma irregularities have shown presence
of more than one spectral exponents which is attributed to interplay of different
mechanisms. The theoretical model for understanding the power spectra of these
regions draws a parallel with the homogeneous fluid turbulence model proposed by
Kolmogorov, wherein the proper description and modeling of the statistical and scal-
ing properties of the field of turbulent energy dissipation are vital in understanding
the nature of the turbulence in these sites. However, there is a marked deviation in
spectral index from the predictions of homogeneous turbulence. One of the plausible
reason may the non–homogeneous turbulence. The main objective of this work is to
explore this plausibility in the case of space plasma irregularities.

Objective

The central theme of this work is to address the cause behind the spectral deviation
from homogeneous turbulence model and to investigate their structural properties
using fractal–multifractal methods and multiplicative cascade model. The data uti-
lized for realizing the proposed objective include: (1) in situ data of ionospheric
plasma fluctuations obtained from two different rocket experiments carried over
Brazil; and (2) spectrometer data of type I solar noise storm. Since fractal nature
is ubiquitous and the tools are robust, a case study from socio–sphere, an armed
conflict data is explored.
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Contribution of the thesis

In this thesis, nonlinear computational algorithms viz, multifractal analysis
(MFDFA) and multiplicative cascade model (p model), to analyze Space Physics
data, have been implemented and following are the main contributions:

• this thesis presents the first evidence of characterizing the non–
homogeneity in ionospheric and solar plasma irregularities using the fractal
framework supplemented with the multiplicative cascade model.

• the work demonstrates the usability of the MFDFA in deciphering the
morphology of the ionospheric F region irregularities.

• maps the multifractal measures to the density variation, showing the tran-
sition in the influence of smaller to larger fluctuations from the lower E-F
valley region towards the base of F region.

• demonstrates that solar noise storm data is multifractal, intermittent in
nature, and follows a non–homogeneous energy cascade process.

Organization of the thesis

The thesis is organized as follows: Chapter 2 gives an overview of the ionosphere and
turbulence in the context of Kolmogorov homogeneous turbulence spectrum. Chap-
ter 3 describes the methods used, viz., (1) detrended fluctuation analysis (DFA)
and its implementation and the concept of crossover is explained; and its multifrac-
tal variant (2) multifractal detrended fluctuation analysis (MFDFA), along with its
implementation, followed by a description on how to understand the results is pre-
sented. Chapter 4 describes some of the methods of multiplicative cascade model and
their implementation. Among them, the p model is used in this analysis. Chapter 5
presents application of the DFA on in situ ionospheric data; and of the MFDFA on
in situ ionospheric data and type I solar noise storm data. Also non-physical appli-
cation of pmodel is presented. Chapter 6 summarizes important results and provide
insight into the future work.

Appendix A presents time complexity and flowcharts for the DFA, MFDFA and p
model. Also includes the error calculation. Appendix B includes the DFA result on
ionospheric time series. Annexes presents two articles published in peer reviewed
journals — Advances in Space Research describing the results of the DFA of iono-
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spheric data, and Annales Geophysicae describing the multifractal characterization
of ionospheric plasma irregularities.
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2 REVIEW: SPACE PLASMA IRREGULARITIES

This chapter provides a brief review on the equatorial ionospheric irregularities stud-
ies and type I solar noise storm. Kolmogorov energy spectrum is introduced in the
section 2.3. Chapter concludes with presenting problem addressed in this thesis.

2.1 Ionosphere studies

Ionosphere is a region in the Earth’s atmosphere where photoionization due to solar
radiation and high energy particles result in formation of a plasma. Free electrons
and ions in the plasma undergo recombination, diffusion and transport processes
due to electric and magnetic fields, and neutral winds. Layers in the ionosphere are
characterized by the number density of plasma (KELLEY, 2009). Maximum plasma
density region is referred to as a F layer and attains peak value near noon as pho-
toionization is dominant during the day time. At night time, depending on the
ionospheric region and altitude, plasma density drops up to two orders of magni-
tude. Ionospheric plasma densities show diurnal, seasonal variations and also vary
with solar and geomagnetic activity.

An interesting feature of the equatorial low latitude ionosphere is the generation
and spatio–temporal evolution of plasma irregularities that refer to an enhancement
or depletion in the densities. Various rocket experiments and numerical simulations
have been performed and contributed to our understanding of the generation and de-
velopment of ionospheric irregularities. Post–sunset ionospheric irregularities in the
equatorial F region were first observed by Booker and Wells (1938) using ionoson-
des. This phenomenon is known as equatorial spread F (ESF). During ESF, the
equatorial ionosphere becomes unstable and it is attributed to the Rayleigh–Taylor
instability where large scale (upto tens of km) plasma ‘bubbles’ can develop and rise
to high altitudes (1000 km or greater at times) (KELLEY, 2009; HYSELL et al., 1999;
HYSELL, 2002).

Costa and Kelley (1978) showed that the Rayleigh–Taylor instability that initiates
in the bottomside equatorial F region can nonlinearly develop very sharp gradients
leading to the formation of steepened structures responsible for the power–law spec-
tra observed by a rocket experiment in Natal, Brazil. Shock waves were observed in
the numerical simulation performed by Zargham and Seyler (1987) of the general-
ized Rayleigh–Taylor instability at the bottomside and topside F region equatorial
ionosphere, which was confirmed by rocket and satellite in situ data reported by
Kelley et al. (1987). Hysell et al. (1994a), Hysell et al. (1994b) proposed a model
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of plasma steepening, evolving from plasma advection that occurs on the vertical
leading edges of plasma depletion wedges, to interpret shock waves detected in the
equatorial ionosphere by rockets launched from Kwajalein Atoll, Republic of the
Marshall Islands. Jahn and LaBelle (1998) measured shock–like structures charac-
terized by the density waveforms at the bottomside and topside F region of the
equatorial ionosphere in a rocket experiment in Alcântara, Brazil.

Figure 2.1 presents a schematic of a rocket experiment carried out in the ionosphere.

Figure 2.1 - Schematic of a rocket experiment carried out in the ionosphere. The rocket is
shown to pass through the irregularities of various scales. Please note, bubbles
are not to scale.

Source: produced by author.

The E-F valley (hereafter, valley) region is located between the top of the E region
and the base of F region. The valley region, specifically the equatorial ones, hosts
a variety of plasma irregularities both during the day, the so–called 150 km echoes
(KUDEKI; FAWCETT, 1993; RODRIGUES et al., 2011), and at dusk-nighttime (CHAU;

HYSELL, 2004). This region is still a less explored area of research compared to the
F region given the technical limitations in observing it. It can be studied by using
powerful incoherent and coherent scatter radar and in situ experiments. The first
observation of valley region dates to 1950s when using rocket experiment, Jackson
(1954), Jackson and Seddon (1958) recorded the electron density depletion in be-
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tween the ionospheric E and F regions. Since then numerous radar and rocket based
experiments were performed and it was established that the valley region electron
density profile is regulated by solar and geomagnetic activities and show diurnal
variations (WAKAI; SAWADA, 1964; WAKAI, 1967; MAEDA, 1969). Various studies
have been reported on the correlation between the valley region irregularities and
the equatorial plasma instabilities in the F region:

• Radar observations revealed that (i) the valley region irregularities are
often found when the ESF occurred after the sunset and that their spatial
structures and temporal variations have resemblance with the ESF, and
(ii) the valley region irregularities are a result of the coupling between the
unstable equatorial F region and the underlying low latitude valley and
the E region (VICKREY; KELLEY, 1982; VICKREY et al., 1984; PATRA, 2008;
YOKOYAMA et al., 2005; LI et al., 2011; KHERANI et al., 2012).

• Studies based on in situ data found that electric field and gravity waves
may play a key role in the generation of these structures (in the valley
regions) and that the structures are produced by the generalized Rayleigh–
Taylor instability mechanism at the base of the F region (VICKREY et al.,
1984; PRAKASH, 1999; SINHA et al., 1999; MURALIKRISHNA et al., 2003;
ODRIOZOLA et al., 2017). Odriozola et al. (2017) reported the presence of
wave–like structures in valley region based on a rocket experiment carried
over Brazil.

• Xie et al. (2018) presented correlation between valley irregularities and
the ESF by carrying statistical study based on very high frequency radar
observations.

A conventional method in analyzing plasma irregularities has been the power spec-
tral density (PSD) analysis (DYSON et al., 1974; KELLEY et al., 1982; KELLEY; HYSELL,
1991; KELLEY et al., 2009; PÉCSELI, 2015). A common feature observed in the PSD
analysis of irregularities in the valley and F region is the presence of more than
one slope which is attributed to interplay of different mechanisms. The reported
PSD indices of electron density fluctuations from rocket experiments from different
sites found to vary between −1.1 to −5, and some of them are listed in Table 2 in
Neelakshi et al. (2019) and indices for electric field fluctuations are listed in Table
1 in Fornari et al. (2016). Owing to their irregular nature, the behavior of these
structures can be described in analogy to fluid turbulence model and information
regarding generation mechanism may be obtained (KINTNER; SEYLER, 1985).
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2.2 Type I solar noise storm

Solar plasma from the photosphere to the outer heliosphere is in the fully developed
turbulence state. It is an exquisite example of nonlinear dynamical dissipative sys-
tem where the energy dissipation field is highly non–homogeneous, intermittent and
follows a power law (ABRAMENKO; YURCHYSHYN, 2010).

The radio emission provide information on shocks, energetic electrons and their
acceleration and these emissions show distinct spectrum and temporal behavior,
based on which Wild and McCready (1950) categorized these emissions in different
types (BENZ et al., 2005; BENZ et al., 2009).

These different types of solar emissions have been studied and found to be highly
non–homogeneous, intermittent and following a power law. For example, Rosa et
al. (2008) characterized decimetric solar radio burst variability pattern as intermit-
tent and by applying gradient pattern analysis suggested that these bursts may be
characterized as strong MHD turbulences. Veronese et al. (2011) characterized solar
radio burst evolution, associated with X–class flares, using DFA. Cintra (2018) has
applied gradient pattern analysis (GPA) on the type I noise storm registered on July
30, 2011 and concluded that plasma dynamics might be the underlying mechanism
for this noise storm.

Among different types of solar emissions, type I bursts compose of a continuum and
burst components of short duration, 0.1 − 3 s and generally, range between 100 −
−400 MHz. Type I noise storm or radio noise storm (RNS) is the first astronomical
event recorded at metric wavelengths comprising of thousands of type I bursts that
associates with non–thermal solar radio emissions and can last for several hours to
days.

Various studies have proposed the dynamic process and corresponding emission
mechanism but it still remain elusive. RNS are strongly correlated with sunspots
and has a good correlation with the magnetic activities and can last for several
hours to days (KAI et al., 1985; SPICER et al., 1982). This long duration is the main
characteristic that distinguish noise storm from other types of solar radio emission
(KAI et al., 1985).

Spicer et al. (1982) suggested that RNS are driven by newly emerging magnetic
flux. Sodré et al. (2015) studied morphological characteristics of 255 chains of RNS
recorded by e-Callisto during 30 July to 9 August 2011 and figured out the physical
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parameters for the event. Sodré et al. (2019) analyzed RNS recorded on August 12,
2012 using magnetic power spectra. Authors found that type I emission is probably
the plasma emission and also shown that the source is the reorganization of the
magnetic field of the active region. RNS are observed during quite times hence,
these are associated to a non–flare event but are also observed in active regions
hence, these are associated with coronal mass ejections (CMEs), flares and eruptive
prominence, groups of sunspots and intense magnetic field (LI et al., 2017).

Li et al. (2017) have done a combined analysis of extreme ultraviolet (EUV), radio
and photospheric magnetic field data of type I noise storm occurred on July 30, 2011.
Authors identify a good correlation between the radio bursts and the co–spatial EUV
and magnetic activities and agree to the proposal of Bentley et al. (2000) that the
observed type I noise storm and the EUV brightening activities are the consequence
of small–scale magnetic reconnection driven by multiple moving magnetic features
(MMFs). Type I storm are often initiated (or driven) by the emergence of new
magnetic structures in regions with pre–existing coronal magnetic fields and each
burst may be accounted to an acceleration of suprathermal electrons. (SODRÉ et al.,
2015).

2.3 Kolmogorov energy spectrum

Space plasma irregularities embed interactions of diverse scale lengths. This nonlin-
ear environment has been a natural testing ground for validating theories of fluid
turbulence. However, the natural environment is too complex for a direct applica-
tion of the Kolmogorov (cascade) theory (K41). Kintner and Seyler (1985) argue
that when a system exhibits scale invariance, i.e., follows a power law over few order
of wavenumbers then such a system can be modeled by applying K41 theory to
explore its scaling properties. Basic assumptions underlying K41 theory are (i) a ho-
mogeneous and isotropic turbulence, (ii) nonlinear interactions in the inertial range
being independent of the energy entering and leaving the system, and (iii) constant
rate of energy cascade through localized nonlinear interactions. These assumptions
are prerequisites for scale invariance and observed for very large Reynolds numbers
R ≡ uL/µ where u is characteristic velocity of the flow, L is the characteristic length
and µ is the kinematic viscosity. In the Fourier space, R ≡ u/µk, where k is the
wavenumber. In the inertial range, where viscosity is negligible, energy (|u(k)|2) is
conserved. When (|u(k)|2) is conserved locally, the rate of cascade of energy, ε, is
constant. Therefore, the energy power spectrum in the inertial range is determined
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on dimensional basis using

E(k) = 4πk2 < |u(k)|2 > (2.1)

up to a universal dimensionless constant, C, called Kolmogorov constant, yielding
the final form (FRISCH, 1995; POPE, 2000)

E(k) = Cε2/3k−5/3. (2.2)

The Kolmogorov −5/3 spectrum result though applicable only in the inertial range,
it is so intuitive and universal that various studies reported an agreement with
it (FRISCH, 1995; BURLAGA, 1991; MENEVEAU; SREENIVASAN, 1991). Figure 2.2
presents schematic diagram of Richardson’s energy cascade model for turbulence. A
model starts with large eddies of energy ε. Larger eddies break down into smaller
eddies carrying a fraction of energy recursively but conserving the total energy until
it reaches the length where dissipation starts. Richardson’s energy cascade process
is the basis for the celebrated Kolmogorov’s turbulent energy spectrum. The energy
cascade begins with the kinetic energy entering the turbulent medium at the largest
scales of motion, which is then transferred, conserving the energy, to smaller and
smaller scales until viscous forces come into play dissipating the energy. Kolmogorov
quantified the smallest scales at which dissipation occurs.

Figure 2.2 - Richardson’s energy cascade model for turbulence.

Source: Frisch (1995).
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2.4 Spectral exponents and K41 spectrum

Energy dissipation is found to be an underlying process for the occurrence of elec-
tron density or electric field fluctuations in ionospheric plasma irregularities (JAHN;

LABELLE, 1998; KELLEY; HYSELL, 1991). Various different approaches had been
explored to understand nonlinear characteristics, self–affine nature and intermit-
tency in ionospheric irregularities, like structure function analysis (DYRUD et al.,
2008; SPICHER et al., 2015), fractal and multifractal analysis (WERNIK et al., 2003;
ALIMOV et al., 2008; BOLZAN et al., 2013; TANNA; PATHAK, 2014; MIRIYALA et al.,
2015; CHANDRASEKHAR et al., 2016; FORNARI et al., 2016; SIVAVARAPRASAD et al.,
2018; NEELAKSHI et al., 2019), and multispectral optical imaging (CHIAN et al., 2018).
Structure function analysis performed on ionospheric high latitude in situ data have
revealed the intermittent nature of ionospheric irregularities owing to the large devi-
ations from the K41 universal power law index proposed for neutral fluid turbulence
(SPICHER et al., 2015).

Earlier solar studies quantified scaling index as a potential parameter for forecasting
solar flares. Their PSD indices are found to be different than the PSD index for Kol-
mogorov’s homogeneous turbulence, −5/3, and indicated the energy transfer possi-
bility from small to large structures, as possible responsible mechanism for maintain-
ing the long-term emissions of the storm (ABRAMENKO; YURCHYSHYN, 2010; SEN,
2007; MCATEER et al., 2010; VERONESE et al., 2011; SODRÉ et al., 2015). Also, the en-
ergy cascading process is evident in the solar and interplanetary environment as well
as in the laboratory using Kolmogorov’s formalism as the basis (BURLAGA, 1991;
GRAUER et al., 1994; CARBONE et al., 1995; ABRAMENKO et al., 2002; BURLAGA et

al., 2003; MACEK, 2007; ABRAMENKO; YURCHYSHYN, 2010; WAWRZASZEK; MACEK,
2010; CHIAN; MUÑOZ, 2011; MIRANDA et al., 2013; WAWRZASZEK et al., 2019).

In all the above mentioned studies, the main feature which gets highlighted is that
the power spectra point to large deviations from the homogeneous turbulence de-
scribed by the Kolmogorov spectrum (−5/3). Also, higher order statistics like struc-
ture function analysis confirmed the deviation from the Kolmogorov spectrum, thus
affirming the non–homogeneity and intermittency in space plasma irregularities.
Fornari et al. (2016) has shown that a wide variation in spectral indices is nei-
ther due to a limitation of any statistical method nor a limitation imposed by the
quality of the data when analyzed by statistical techniques that depend on sam-
ples with many measurement points to guarantee robust spectra in the logarithmic
domain. Once ruled out that the large spectral variation observed could be due to
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the low statistical data quality, what other reasons could be raised? Some of them
are the following: (i) presence of more than one slope value due to the role of the
magnetic field for magnetohydrodynamic turbulence; (ii) dimensional nature of the
ionospheric turbulence (2D or 3D), since rocket experiments are 2D tracers in a 3D
environment and, each experiment, in general, presents measurements of a particu-
lar plane depending on where it was launched; (iii) the turbulent process does not
follow a homogeneous cascade of the energy distribution between the scales involved
in the dissipative process.

In this thesis, the third possibility is explored namely, “is non–homogeneity, which
can be characterized by multifractal spectra, the cause for the large deviations from
the universality class?" To answer this question, the monofractal and multifractal
detrended fluctuation analysis (DFA & MFDFA) along with multiplicative cascade
model (p model) are implemented on the space plasma irregularity data.
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3 METHODS: DFA AND MFDFA

The word fractal is based on the Latin adjective fractus, which means irregular and
fragmented. The term fractal was coined by Mandelbrot for the geometric shape
(like rocky coastline, clouds) that can not be well described by Euclidean geometry
and is a replica of itself at smaller scales. In other words, fractal is self–similar
and is characterized by a single fractal dimension. Mandelbrot’s central idea behind
fractal is that the size of an object can be defined by its scales using a power law
relation, rather than by its shape (MANDELBROT, 1998; MALAMUD; TURCOTTE,
1999; KANTELHARDT, 2009). Mandelbrot demonstrated the ubiquitous nature of
fractals and quantified its roughness with fractal geometry.

Self–similar fractal is isotropic; i.e., its scaling is identical in all directions. Fractal
can be less strict self similar, that is, statistically self–similar known as self–affine
fractal with anisotropic scaling (e.g., fern leaf). When the behavior of a quantity F (s)
like, fluctuations, spectral power etc., varies as the power H of some parameter s
like, time, frequency, it is said to be scale–invariant and follows a power law relation
expressed as F (s) ≈ sH (MANDELBROT, 1998; MALAMUD; TURCOTTE, 1999; EKE

et al., 2002; KANTELHARDT, 2009). In self–affine fractal, the parameter s is rescaled
by a factor a and the relation is expressed as F (s) ≈ aHF (as). The power exponent
H is known as the Hurst exponent and it infers the correlation within the quantity.
On a log–log scale, self–similar fractal lie along the regression slope while self–affine
fractal is scattered around it (EKE et al., 2002).

Fractal analysis of a time series gives the scaling of fluctuations with time and is
described by the power exponent H. Knowing H, one can classify time series and
gain some insight into its dynamics.

3.1 Detrended fluctuation analysis

Various methods exist to perform fractal analysis. Some of them include box count-
ing method, moving average method, autocorrelation analysis, rescaled range analy-
sis, standard fluctuation analysis, detrending moving average, backward detrending
moving average, detrended fluctuation analysis. Among these methods, detrended
fluctuation analysis (DFA) (PENG et al., 1994) can handle nonstationary and highly
heterogeneous data to find long–range correlation. Various authors have compared
several fractal methods and their variants in time domain (e.g., DFA, scaled win-
dowed variance method (SWV)) and frequency domain (e.g., spectral and autocor-
relation analysis), and also, proposed new methods or variants (EKE et al., 2002;
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DELIGNIÉRES et al., 2005; SHAO et al., 2012; HÖLL et al., 2019; SIKORA et al., 2020;
HARTMANN et al., 2013; PILGRIM; TAYLOR, 2018).

• Deligniéres et al. (2006) analyzed short time series of fractional Gaussian
noise and fractional Brownian motion with various fractal methods and
the DFA is found to be robust to analyze fractional Gaussian noise.

• Hartmann et al. (2013) chose the DFA over its variant based on efficient
optimization of the resources. Authors developed a real–time DFA method
to meet fast processing demand. The real–time DFA can process signal at
real-time and does not need entire series in the starting of the analysis.

• Recently Höll et al. (2019) studied two different fractal methods and ob-
served that the DFA handle statistical properties of large time lags data
efficiently and authors suggested to consider weighting kernel with mean-
squared displacement calculation while obtaining the fluctuation function.

• Sikora et al. (2020) studied probabilistic properties of the DFA for Gaussian
process.

• Shao et al. (2012) compared various fractal variant analyses to determine
the Hurst exponent from time series and found the DFA as one of the
preferable method.

• Pilgrim and Taylor (2018) discuss the inherent challenges in quantifying
fractality from the data set.

• Souza and Assireu (2016) implemented 2-d DFA to characterize 1/f noise
and shown the corresponding equivalence relation with the power spectral
index.

3.1.1 Features of DFA

Among several algorithms of fractal analysis, detrended fluctuation analysis (DFA)
proposed by Peng et al. (1994) has been a proven method in finding power law
correlation and monofractal scaling in noisy, nonstationary data. Peng et al. (1994)
used the DFA to remove nonstationary trends and to detect long–range correlations
in DNA sequences.

The robustness of DFA can be attributed to some of its interesting features. For
instance,
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• Coronado and Carpena (CORONADO; CARPENA, 2005) investigated the in-
fluence of the length of a time series in quantifying the correlation behavior
using techniques like autocorrelation analysis, Hurst exponent, and DFA.
The comparison study revealed that the DFA is practically unaffected by
the length of time series, contrary to that observed from the results of
Hurst analysis or autocorrelation analysis.

• Another interesting feature has been reported by Chen et al. (CHEN et al.,
2002) who altered time series by excluding parts of it, stitching the rest and
subjecting it to the DFA. The study revealed that even with the removal of
50% of the time series, the scaling behavior of positively correlated signals
is unaltered, implying that time series need not be continuous.

• Heneghan and McDarby (HENEGHAN; MCDARBY, 2000) established an
equivalence relation between the PSD exponent, β, and the DFA expo-
nent, α, given by

β ≡ 2α− 1 (3.1)

• Kiyono (KIYONO, 2015) showed that this relationship is valid for the higher
order DFA subject to the constraint 0 < α < m+ 1, where m is the order
of detrending polynomial in the DFA.

3.1.2 Applications of DFA

The DFA is widely used in many branches of science, like medicine, physics, finance
and social sciences, to understand the complexity of systems through its scaling
exponent that characterizes fractal dynamics of the system (KANTELHARDT, 2009).
Few applications are listed below.

• The DFA is found to be useful to reveal variations in genetic, neuronal
systems and physiological signals. Different scaling behavior allow to dis-
tinguish normal and abnormal development. (EKE et al., 2000; EKE et al.,
2002; YAMAMOTO et al., 2010; EKE et al., 2012; HARDSTONE et al., 2012).

• Veronese et al. (2011) presented the first study of solar radio burst using
the DFA. Santhanam et al. (2006) explored self–affine nature of quantum
spectrum using the DFA.

• Saouma et al. (1990) demonstrated that fracture surfaces of concrete are
fractals. Parga et al. (2016) explored the problem of computing a minimal
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separating automaton for regular languages using the DFA.

• Grech and Mazur (2004) applied the DFA to study volatility of the stock
market. Liu et al. (1997) analyzed the S&P500 financial index over 13 years
period using the DFA and found crossover with two different correlations.
Ding et al. (1993) studied long memory property of stock market returns
with the DFA.

• In linguistics Berners-Lee and Kagal (2008) explored langauge structures
with the DFA. In arts, fractality and scaling properties of luminance pat-
tern is analyzed using the DFA (ALVAREZ-RAMIREZ et al., 2008).

In this thesis the DFA method is used for the analysis.

3.1.3 Implementation of DFA

Let x be a finite one–dimensional series with a length N and mean x̄. Compute the
profile Y (i) by taking the cumulative sum of the mean subtracted time series.

Y (i) ≡
i∑

k=1
(xk − x̄), i = 1, 2, ...., N. (3.2)

The profile Y (i) is divided into Ns non–overlapping and equidistant segments v, of
s elements, referred to as scales. The length of the series may not necessarily be
an integral multiple of the scales. In such a case, to account for the left out part,
the same procedure is repeated in the reverse direction. As a result, a total of 2Ns

segments are obtained.

The segments are detrended using linear least squares. A polynomial fit yv(i) is
obtained on a segment v. The variance is calculated over all segments.

F 2(s, v) = 1
s

s∑
i=1

[Y [(v − 1)s+ i]− yv(i)]2 (3.3)

for each segment v, v = 1, 2, ..., Ns and

F 2(s, v) = 1
s

s∑
i=1

[Y [N − (v −Ns)s+ i]− yv(i)]2 (3.4)

for each segment v, v = Ns + 1, ..., 2Ns.

Detrending the segments with different order (m) of polynomial removes trends

16



of the corresponding orders. For example, second order polynomial fit removes
quadratic trend, third order polynomial fit removes the cubic trend, etc., present
in the segments. Depending on the polynomial order used in detrending procedure,
corresponding DFA method is known as DFA1, DFA2, DFA3 and so on.

Finally, compute the fluctuation profile by taking the average over all segments.

F (s) =

√√√√ 1
2Ns

2Ns∑
v=1

[F 2(s, v)]. (3.5)

Plot the fluctuation function profile on a log–log scale, and a linear fit to it yields
the DFA exponent, α.

F (s) ∝ sα. (3.6)

a) α = 0.5
α close to 0.5 indicate that there is no correlation between the current
observation and future observation. Prediction of future value, higher or
lower than the current observation value is equally likely.

b) 0 < α < 0.5
α less than 0.5 indicates long–range anti–persistent behavior of time se-
ries where an increase in observation value will most likely followed by a
decrease or vice–versa.(i.e., values will tend to revert to the mean).

c) 0.5 < α

α greater than 0.5 indicates long–range strong persistent behavior where an
increase in values will most likely be followed by an increase in the short
term, and a decrease in values will most likely be followed by another
decrease in the short term. Larger α indicates more stronger correlation in
the data.

For optimal results, scales should be varied from m + 2 < s < N/4 where m is the
order of detrending polynomial, to avoid statistical error and over–estimation of the
exponent α (KANTELHARDT et al., 2001; KANTELHARDT, 2009).

A flowchart depicting the implementation of the DFA is presented in the appendix
A (Figure A.1).

A single exponent value of α characterizes the long–term statistical self–similar
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correlation over all temporal scales. In a time series, when correlation properties
vary between two different temporal scales, the fluctuation profile is characterized by
two different scaling exponents. The change of correlation properties over different
scales is known as a crossover. The DFA can capture the crossover in the time
series. It is to note that, if time series is not detrended properly, it may also exhibit
a crossover. In order to be sure that the obtained crossover is intrinsic to the time
series and not an artifact, the higher order DFAm must be applied. If the crossover
is not intrinsic, crossover exhibits similar characteristic length with identical scaling
(KANTELHARDT et al., 2001).

3.2 Multifractal DFA

When correlation properties change over various scales, it is described by a multitude
of scaling exponents, in other words, by superposition of monofractals, and such data
has multifractal nature. In such a case, a generalized version of the DFA, i.e., multi–
fractal DFA (MFDFA) proposed by Kantelhardt et al. (2002) is a useful tool to
characterize multiple scaling behavior in data.

Since its inception, the MFDFA finds numerous application across diverse fields, viz.
from physical sciences to social sciences, arts and music to socio–economic behav-
iors, to understand the complexity and dynamics of a system through its scaling
exponents and measures (KANTELHARDT, 2009; KIMIAGAR et al., 2009; MANDAL et

al., 2017; TELESCA; LOVALLO, 2011; DUTTA et al., 2013; LU et al., 2016; GRECH, 2016;
SALAT et al., 2018; LÓPEZ et al., 2014; TANNA; PATHAK, 2014; MIRIYALA et al., 2015;
MUKLI et al., 2015; CHANDRASEKHAR et al., 2016; FRANÇA et al., 2018; KNOWLES et

al., 2018; ORAL; UNAL, 2019; JOSHI et al., 2020).

Salat et al. (2017) reviewed four multifractal methods, among which the MFDFA
is found to be appropriate to study binomial cascade and its random realization,
giving its local complexity and non–homogeneity. And, authors have advised paying
close attention to multifractal measures to understand how dynamics evolve than
obtaining numerical proof.

3.2.1 Implementation and comprehension of MFDFA

The preliminary step described by Kantelhardt et al. (2002) is to transform the
time series to obtain profile Y (i), by computing the cumulative sum of the mean
subtracted time series. Based on the DFA exponent, Ihlen (2012) enlist criteria
to compute profile for biomedical time series with an objective to convert the time
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series into a random–walk like series. This criterion holds true for ionospheric plasma
density fluctuation data also. For the chosen time series, the DFA exponents are in
the range of 1.2 − 1.8 and thus the profile, Y (i) is computed by differencing the
time series, x, of length N , i.e, Y (i) = x(i + 1) − x(i) for i = 1, 2, ...., N . Please
note that to reduce the effect of nonstationarity, differencing method is suggested
before analyzing the series (EKE et al., 2000; EKE et al., 2002). The second step is to
compute the qth order local root mean square (RMS) fluctuation function using Y (i).
The next two steps, i.e., obtaining the segments and detrending them followed by
computing the variance are the same as described in the DFA procedure (equations
3.3 & 3.4). Averaging over all segments, the qth order fluctuation function, Fq(s) is
computed.

Fq(s) =
[

1
2Ns

2Ns∑
v=1

[F 2(s, v)]q/2
]1/q

for q 6= 0 (3.7)

when q = 0, logarithmic averaging should be used to calculate the fluctuation func-
tion.

F0(s) = exp

[
1

2Ns

2Ns∑
v=1

[ln(F 2(s, v))]
]
. (3.8)

A linear fit to the fluctuation function profile on a log-log scale yields the generalized
Hurst exponent, h(q), for each moment q as

Fq(s) ∝ sh(q). (3.9)

The presence of multifractality in a time series is inferred from the convergence
of fluctuation profile for different q’s, which for monofractal series exhibit parallel
behavior, being insensitive to scale sizes. For q = 2, the generalized Hurst exponent
is the DFA exponent.

The generalized Hurst exponent determines scaling behavior with respect to q, i.e.,
for a given q how smaller to larger fluctuations in segments are scaled in the fluctua-
tion function. For monofractal time series, h(q) is independent of q and for multifrac-
tal time series h(q) shows a linear dependence on q as smaller to larger fluctuations
scale differently. In a segment, negative q characterize fluctuations smaller than av-
erage, while positive q characterize fluctuations larger than average. For q = 0, the
behavior is neutral. h(q) for positive q illustrate the scaling behavior of segments
(scales) influenced by large fluctuations and is described by smaller scaling expo-
nent value. Similarly, h(q) for negative q illustrate the scaling behavior of segments
(scales) influenced by small fluctuations and is described by larger scaling exponent
value.
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It is to note that rapid variations in fluctuations are identified with smaller scales,
while slow variations with large scales. Therefore, to characterize all types of fluc-
tuations, scales should be varied across all size range i.e., from small to large sizes.
In the present analysis, scales are varied up to 1/10th of the total length of the time
series and an optimal linear fit to the Fq(s) is then obtained. The moments, q, are
varied in the range of −5 to +5, given the short length of the analyzed series.

The variations in h(q) with respect to q is then examined to determine the influence
of fluctuations in a given time series. When time series is influenced by smaller
fluctuations, h(q) will vary faster with q, resulting in a steeper slope for negative q’s
and vice–versa (KANTELHARDT et al., 2002; IHLEN, 2012). To summarize, h(q) vs q
profile quantifies the scaling properties of segments influenced by fluctuations larger
(smaller) than average and are described by smaller (larger) scaling exponent values
of h(q) for positive (negative) q.

Scaling exponent, τ(q), can be obtained through the partition function based mul-
tifractal analysis and can be related to the scaling exponent h(q) obtained through
the MFDFA by,

τ(q) = qh(q)− 1 (3.10)

The nonlinear dependence of τ(q) upon q indicates multifractality in the data.

Another way to depict the multifractality in the series is to examine multifractal
spectrum (α, f(α)) which is calculated using h(q) as

α = h(q) + qh′(q) (3.11)

f(α) = q(α− h(q)) + 1 (3.12)

where α1 represents multifractal strength (local exponent) and f(α) represents set
of multifractal dimensions.

Also multifractal spectrum can be computed using scaling exponent τ(q) as:

α = τ ′(q) (3.13)

f(α) = qα− τ(q) (3.14)

The spectrum reveals the local fractal dimension for q, with α illustrating the range

1Please note, this MFDFA–α is different than the DFA–α described in the DFA section.
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of scaling exponents present in the time series, and f(α) discloses its dimension
informing, how scaling indices are distributed. The multifractal spectrum reflects
the characteristics of the h(q) profile. In the spectrum, contrary to the h(q) profile,
the left side is characterized by positive values of q, and the right side is characterized
by negative values of q. When the h(q) profile show steeper variations on the left side
corresponding to negative q’s, it reflects on the right side of the spectrum showing
faster variations comparing to its left side.

A flowchart depicting the implementation of the MFDFA is presented in the ap-
pendix A (Figure A.2).

Shape and width of the multifractal spectrum are also important measures to quan-
tify the nature of multifractality present in the time series. Figure 3.1 presents a
model diagram of multifractal spectrum inferring multifractal measures.

Figure 3.1 - Multifractal spectrum model.
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Two extreme values of α have indicated as αmin which is minimum value of α and
αmax which is maximum value of α. Difference between these two values infer a
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multifractal measure, namely, multifractal spectrum width or degree of multifrac-
tality. The multifractal spectrum width or degree of multifractality (∆α) indicates
the range of fractal exponents between maximum and minimum dimension, illus-
trating how segments with small and large fluctuations deviate from the average
fractal structure.

∆α = αmax − αmin. (3.15)

Larger (smaller) value of ∆α infers stronger (weaker) multifractality via a broader
(narrower) set of monofractals in the time series (ABRAMENKO, 2005). Multifrac-
tal width quantifies the richness of scaling and directly relates to the parameters
corresponding to the multiplicative cascade process (explained in chapter 4). For
multifractals, self–similarity is scale dependent and intermittency can be defined as
a deviation from the strict self–similarity (MACEK, 2007; CHENG, 2014). The in-
termittency in a turbulent system is analogous to the multifractality in the fractal
theory (FRISCH, 1995; ABRAMENKO et al., 2002). Hence, ∆α quantifies the intermit-
tency in the time series.

To obtain second multifractal measure, one must first find the value of α0 corre-
sponds to the maximum value of f(α) for q = 0. In Figure 3.1, it is marked by green
circle. Considering α0 as a reference, divide the spectrum in two parts and calculate
the width. Left part width can be obtained as α0 − αmin and right part width can
be obtained as αmax − α0. Now, second multifractal measure, namely, the measure
of asymmetry, A, is quantified by calculating the ratio of left width and right width
of the spectrum. The measure of asymmetry is given by

A = α0 − αmin
αmax − α0

. (3.16)

When ratio is equal, i.e., when A = 1, spectrum is symmetric, and thus a series is
influenced equally by larger as well as smaller fluctuations than the average. When
numerator is larger than denominator, i.e., when A > 1, the left width of the spec-
trum is larger and the spectrum is called left–skewed. The left part of spectrum
characterized by positive values of q, hence the left–skewed spectrum indicates in-
fluence of the larger fluctuations than the average. When denominator is larger than
numerator, i.e., when A < 1, the right width of the spectrum is larger and the
spectrum is called right–skewed. The right part of spectrum characterized by nega-
tive values of q, hence the right–skewed spectrum indicates influence of the smaller
fluctuations than the average. This is summarized in a Table 3.1.
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Table 3.1 - Measure of asymmetry.

range skewness implies
A < 1 right–skewed influence of smaller fluctuations
A = 1 symmetric equal influence of smaller and larger fluctuations
A > 1 left–skewed influence of larger fluctuations

A lower value of α0 indicates more correlated and regular structures, whereas larger
value indicates the presence of irregular structures in time series. In Figure 3.1, red
line fitted to the multifractal spectrum (circle marker) is the singularity spectrum
obtained using the p model, which is explained in the next chapter in section 4.2.

Kantelhardt et al. (2002) suggested a method to identify two possible sources be-
hind the multifractality present in the series, viz. due to long–range correlations and
a broad probability density function. Suggested method is to apply the MFDFA
method on shuffled time series and then compare results with original time series.
Shuffling of time series destroys all possible correlations. If shuffled series exhibit
monofractality then multifractality is attributed to long–range correlations. If shuf-
fled series retains its multifractality then it is attributed to the broad probability
density function. However, if the shuffled time series exhibits weaker multifractality
compared to the original time series, then both types of multifractality are present.
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4 METHODS: MULTIPLICATIVE CASCADE MODELS

The underlying theoretical formalism for the multiplicative cascade processes (MCP)
is the Richardson’s energy cascade model (Figure 2.2) for the dissipation of eddies
in a turbulent field. The process envisages the top–down approach of the energy
cascade model where large eddies break down into small ones recursively, carrying
a fraction of kinetic energy at each step until Kolmogorov scale is attained where
dissipation occurs effectively.

The early simple model to mimic MCP was given by Kolmogorov in 1941 which only
considered the isotropic distribution of the mean flux of energy ε from large to small
scales. The 1941 theory of Kolmogorov did not account for intermittency. Later,
Kolmogorov proposed the log–normal model for ε by invoking some statistical inde-
pendence in the cascading process. The log–normal model suffered a setback with
not representing for the higher order (>3) moments (MANDELBROT, 1972; MEN-

EVEAU; SREENIVASAN, 1987; MENEVEAU; SREENIVASAN, 1991). Mandelbrot intro-
duced fractal model, known as β model, where the flux of energy is transferred to
only a fixed fraction β of the eddies of subsequent generation. For the log–normal
and β model, ε was not scale invariant, i.e., the mean and variance of ε were changing
in each cascade step.

Meneveau and Sreenivasan (1987) proposed the p model which is an intermediate
to the Kolmogorov’s 1941 model and β model and is based on binomial or two–
scale Cantor model to account for non–homogeneities during the cascade process
(MENEVEAU; SREENIVASAN, 1991).

4.1 Binomial multifractal model

A binomial measure µ, also called the Bernoulli or Besicovich measure demonstrate
exact self–similar measures. A recursively iterating measure, µ, allows to construct
the MCP which yields binomial multifractal series (KANTELHARDT et al., 2002; PEIT-
GEN et al., 1992; FEDER, 1988).

One starts (first generation, n = 0) with a uniformly distributed unit of energy on
the unit interval I = I0 = [0, 1]. In the next iteration (n = 1), divide the unit interval
uniformly into two halves - IL = [0, 1

2 ] with a measure µ(IL) = a and IR = [1
2 , 1]

with a measure µ(IR) = 1− a. At this stage, note that the measure µ is conserved
as µ(I) = µ(IL) + µ(IR) = a+ (1− a) = 1, and is a probability measure.

In the second iteration (n = 2), the subintervals ILL and ILR follows the same cascade
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procedure. It will result in 4 subintervals: ILL = [0, 1
4 ]; ILR = [1

4 ,
1
2 ]; IRL = [1

2 ,
3
4 ];

IRR = [3
4 , 1] of size 2−n. The measure will be µ(I) = µ(ILL) + µ(ILR) + µ(IRL) +

µ(IRR) = a.a + a.(1 − a) + (1 − a).a + (1 − a).(1 − a) = 1. Hence the measure is
continued to be conserved. At the nth generation i.e., n = nmax, one obtains the
multifractal time series xk of length N = 2nmax with k = 1, 2, ..., N as

xk = an(k−1)(1− a)nmax−n(k−1) (4.1)

where a takes value between (0.5,1) and n(k) is a number of 1′s appearing in the
binary representation of index k. Using binomial model, the scaling exponent τ(q)
and multifractal width ∆α can be computed as:

τ(q) = [−ln(aq + (1− a)q)]/ln(2) (4.2)

∆α = [ln(a)− ln(1− a)]/ln(2). (4.3)

Figure 4.1 - Scaling exponent generated by the binomial model compared with the scaling
exponent computed by the MFDFA for the time series of the mean height
of 263.47 km from the valley region. (a) time series generated with binomial
cascade for ∆α = 0.47; (b) corresponding scaling exponent obtained from
binomial cascade (x) and scaling exponent computed from the MFDFA (◦).

Source: produced by author.

Taking bottom–up approach, one can compute a using the Equation 4.3 where ∆α
is obtained from the empirical time series subjected to the MFDFA. Once a is
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computed, multifractal time series xk can be modeled using Equation 4.1 and τ(q)
can be computed using Equation 4.2. The computed τ(q) can be compared with the
τ(q) obtained from the MFDFA. When generated time series xk is subjected to the
MFDFA, it gives approximately similar results as the empirical time series.

Figure 4.1 shows an example of the modeled time series using the binomial multi-
fractal model described above. The measure a is computed from ∆α = 0.47 in one of
the case study presented in this thesis (please refer chapter 5). The case study refers
to the ionospheric electron density fluctuation time series corresponding to the mean
height of 263.47 km from the valley region 5.3, analyzed using the MFDFA method.
Equation 4.3 gives a = 0.5807 which is substituted in Equation 4.1 to obtain the
time series shown in the left panel (Figure 4.1a). τ(q) is computed using Equation
4.2 which is shown in the right panel (Figure 4.1b) and for the comparison, τ(q) for
the case study obtained from the MFDFA is also shown. It can be seen that the
τ(q) for the modeled time series lies close to the one obtained in the case study thus
demonstrating the practicality of using the analytical formulation and validating it
with the numerical results from the MFDFA.

Figure 4.2 - Time series generated by binomial model shown in Figure 4.1 is subjected to
the MFDFA. (a) scaling exponent computed by the binomial model (+) along
with scaling exponent obtained from the MFDFA (◦); (b) singularity spec-
trum computed by the binomial model (+) along with multifractal spectrum
obtained from the MFDFA (◦).

Source: produced by author.

The time series obtained from the binomial model using ∆α = 0.47 (shown in Figure
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4.1) is subjected to the MFDFA. Figure 4.2 shows the comparison of the scaling
exponent τ(q) (Figure 4.2a) and singularity spectrum (Figure 4.2b) obtained from
the binomial model and from the MFDFA. Singularity spectrum is calculated from
scaling exponent obtained from binomial model using Equations 3.13 and 3.14.

4.2 The p model

Meneveau and Sreenivasan (1987) proposed the p model which is based on the gen-
eralized two–scale Cantor set to mimic the possible energy transfer in the turbulent
cascade process. In this work, this p model is opted to compute the best possible fit
parameters to the multifractal spectrum. The p model depicts the energy cascading
process in the inertial range of a fully developed turbulence for the dissipation field,
which is based on the generalized two–scale Cantor set. The model comprises of
unit structure with energy EL. Energy distribution occurs at each subsequent level
(referred to as a generation) through binary fragmentation with probabilities p1 and
p2 among the fragments of length l1 and l2. In the cascading process, n denotes
the number of generations. In each generation, the segment size is given by lm1 ln−m2

where m denotes the number of left side fragments and n−m represents right side
fragments in a segment (HALSEY et al., 1986). Figure 4.3 present a schematic for the
p model.

Figure 4.3 - Schematic representation of the p model.

Source: Meneveau and Sreenivasan (1987).
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An analytical formulation to determine the generalized multifractal dimensions,
strength (α) and its distribution (f(α)), which represent the singularity spectrum,
based on the generalized two–scale Cantor set is given by (HALSEY et al., 1986)

α = lnp1 + (n/m− 1)lnp2

lnl1 + (n/m− 1)lnl2
(4.4)

f(α) = (n/m− 1)ln(n/m− 1)− (n/m)ln(n/m)
lnl1 + (n/m− 1)lnl2

, (4.5)

where ratio n/m can be calculated as p2/p1 ((HALSEY et al., 1986; HILBORN, 2000).

The p model is based on the above formulation given by Halsey et al. (1986). The
p model considers equal lengths, l1 = l2 and with unequal weights (p1 6= p2 and
p1 + p2 ≤ 1). When p1 + p2 ≤ 1, loss in p parameter is given by dp = 1− p1− p2, ac-
counts for the direct energy dissipation in the energy cascading process in the inertial
range. With p1+p2 = 1 parameters, the p model always gives symmetric multifractal
spectrum unless the dissipation parameter, dp is introduced. Multifractality ceases
to exist for p = 0.5, recovering the homogeneous energy multiplicative cascade pat-
tern, which is monofractal. The p model always describes cascading processes in the
multifractal time series (MENEVEAU; SREENIVASAN, 1987). Using Equations 4.4 and
4.5, the fit parameters are estimated to obtain optimal fit to the multifractal spec-
trum from the MFDFA, thus, confirming the multifractality of the time series and as
well unveil the scaling of the time series with possible probabilities. The usefulness
of this fit is that with the attained fit parameters, one can approximate the energy
cascading process to model the multifractal time series (MENEVEAU; SREENIVASAN,
1987; KANTELHARDT, 2009).

Following the procedure described above for generating binomial multifractal time
series, one can model the time series using p model parameters. To construct the
time series, consider an initial length L with height εL. Divide it into two equal
segments (L/2) with probabilities p1 and p2 (with p1 + p2 = 1) assigning randomly
to the left or right part. Assign height as 2p1εL and 2p2εL. Iterate this step for desired
nth generation to obtain time series. As probability p1 is assigned randomly to the
segments in each generation, different realization of the time series can be obtained
in each run.

Figure 4.4 presents time series generated by p model cascade at 1st, 5th and 12th

iteration in panel a, b, and c respectively with p1 = 0.7. Panel d shows the time series
generated with p1 = 0.418 which is obtained from the p model fit to the ionospheric
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electron density fluctuation time series corresponding to the mean height of 263.47
km from the valley region.

Figure 4.4 - The p model time series: (a) first stage (b) fifth stage (c) twelfth stage (d)
twelfth stage construction of time series with p1 = 0.418.
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4.3 Direct model for singularity spectrum

Chhabra and Jensen (1989) provided a direct method to determine singularity spec-
trum α–f(α) accurately without a need of Legendre transform or without neglecting
logarithmic corrections and without any poor statistical sampling. Also, this method
allow to compute singularity spectrum with multiplicative cascade using different
base, since correct base of the multiplicative process for empirical data is mostly
unknown.

Method starts with considering the base, say a = 2. Consider a unit interval and two
unequal probabilities, p1 and p2, where p1 +p2 = 1. Divide the unit interval into two
equal segments with respective probabilities. Repeat this process for n generations
such that there will be N = an segments at nth level with equal length L = a−n
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with probabilities Pi(L) = pn−k1 pk2 where k = 0, ..., n. Next step is to construct a
one–parameter family of normalised measures for the segments as

µi(q, L) = [Pi(L)]q∑
j[Pj(L)]q , (4.6)

where q are moments varying from negative to positive values.

α(q) = − lim
L→0

∑
i µi(q, L)log[Pi(L)]

logL
(4.7)

f(q) = − lim
L→0

∑
i µi(q, L)log[i(q, L)]

logL
. (4.8)

For each q, calculate numerators of Equations 4.7 and 4.8. On log–log scale, plot the
numerators calculated above against log(L). The slope derived from the respective
plots gives the singularity spectrum (α and f(α)).

Figure 4.5 shows the singularity spectrum obtained from the direct determination
method for the base 2 and it is compared with the singularity spectrum obtained
using the p model with probability p1 = 0.7.

Figure 4.5 - Singularity spectrum generated using direct determination method with p1 =
0.7 and with base 2 (+). It is compared with singularity spectrum obtained
using the p model with p1 = 0.7 (◦).
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Applications

MCP plays an important role in quantifying the intermittency in nonlinear processes.
Also, helps to reconstruct he time series from the singularity spectrum. Rosa et
al. (2008), Rosa et al. (2010) analyzed decimetric solar bursts using multifractal
and p model methods. Authors characterized solar emissions as intermittent, non–
homogeneous plasma turbulence. Rosa et al. (2019) modeled armed conflict data
using p model and is presented in section 5.4.

The two–scale Cantor set and p model has been applied to quantify multifractality
(LEE et al., 2006; MACEK, 2007; BOLZAN et al., 2009; PASCHALIS et al., 2012; BOLZAN

et al., 2013). Applications of MCP can be found in Barabási and Vicsek (1991),
Carbone (1993), Burlaga et al. (2003), Kantelhardt et al. (2002), Kantelhardt (2009),
Koscielny-Bunde et al. (2016). Different methods and review can be found in Redner
(1989), Greiner et al. (1998), Xiong et al. (2014), Xiong et al. (2016), Dubrulle
(2019).
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5 APPLICATIONS AND RESULTS

This chapter presents the fractal and multifractal analysis of equatorial ionospheric
irregularities in the first section. Second section presents multifractal analysis of the
type I noise storm series and in the third section, how endogenous and exogenous
time series can be modeled is described.

5.1 Analysis of the valley region irregularities

5.1.1 Data

A two–stage VS-30 Orion sounding rocket was launched from the equatorial rocket
launching station Alcântara (2.31◦S; 44.4◦W ) at 19:00 LT, on December 8, 2012,
under favorable conditions for strong spread F. During the ∼ 11 min flight, the
rocket traversed through the E-F valley region with an apogee ∼ 428 km and ranging
∼ 384 km horizontally. In the downleg trajectory, a wide base for the F region has
been identified above 300 km with some small scale fluctuations and the valley region
as 130− 300 km. Various small and medium plasma irregularities were observed in
the valley region. The ground equipment, a digisonde, was operated from equatorial
station and reported fast uplift of the base of F region, thus indicating the possibility
of the pre–reversal enhancement of the F region vertical drift (SAVIO et al., 2016;
ODRIOZOLA et al., 2017; ODRIOZOLA, 2017).

The vertical profile of electron density was obtained from the conical Langmuir probe
(CLP) on board the rocket, which worked in swept and constant bias modes. CLP
sensor potential was swept from -1V to +2.5V linearly in about 1.5 s, during which
electron kinetic temperature was inferred using the collected probe current (SAVIO

et al., 2016). Then the potential was maintained at +2.5V (constant bias mode) for
1 s, during which collected probe current was used to estimate electron density and
its fluctuations, in each experiment cycle. During constant bias mode, data were
sampled with low as well as high sampling frequency. Low frequency sampled data
is used to show electron density profile plot whereas high frequency sampled data
of electron density fluctuations is used for the analyses.

This work utilizes the electron density fluctuation data obtained from the CLP.
Figure 5.1 shows variations of the vertically distributed electron densities in the
downleg (descent of the rocket) trajectory of the flight. In downleg trajectory, a
wide base for the F region has been identified above 300 km and the valley region
around 130−300 km. Various small and medium plasma irregularities were reported
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in the valley region (ODRIOZOLA et al., 2017).

Figure 5.1 - (a) Rocket flight trajectory (b) Upleg profile with one sample time series (c)
Downleg profile with one sample time series.
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Figure 5.1a show the rocket trajectory for the duration of 651.52 s. Lower panel
shows variations of the vertically distributed electron densities in the upleg (Figure
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5.1b) as well as in the downleg (Figure 5.1c) trajectory of the flight. These upleg
and downleg profiles are sampled with low frequency. A time series is shown in the
inset which is obtained through high frequency sampling.

For detailed explanation of in situ experiment please refer Odriozola (2017).

5.1.2 DFA of the valley region data

This is the first analysis reported on the application of DFA to in situ the valley
region irregularities. Implementation procedure is described in chapter 3, section
3.1.2. Appendix presents detailed analysis using four time series from the downleg
profile in the form of a published article (NEELAKSHI et al., 2019). The DFA analysis
for four time series corresponding to the mean height of 152.56, 169.13, 263.69 and
316.9 km from upleg profile is presented in the appendix B (Figure B.1).

Long–range correlation with crossover
In this section, the DFA analysis is demonstrated for a time series corresponding to
mean height of 169.13 km from the upleg profile, and a time series corresponding to
143.03 km from downleg profile.

These time series are subjected to DFA analysis. Scales are varied from 4 to n/4
in steps of 2 1

8 , where n is the length of time series (GOLDBERGER et al., 2000).
DFA exponents are obtained from the fit to the fluctuation function profile. The
exponents for the smaller scales are denoted by α1 and that for larger scales by α2.
The chosen time series exhibit long–range correlation and also shows a crossover.

To find whether obtained crossover is inherent to the data or an artifact, time
series have been detrended using different polynomial orders 1st − 5th and plotted
on a log–log scale. All the chosen time series exhibit crossover behavior. Crossover
scale and corresponding scaling exponents have been noted for all orders. Crossover
scale differs with respect to detrending order and also value of scaling exponents
vary with different detrending order. This analysis for upleg time series for mean
height of 169.13 km is presented for DFA 1st order to 5th order in Figure 5.2a and
corresponding values are listed in Table 5.1. Figure 5.2b presents the analysis for
downleg time series corresponding to the mean height of 143.03 km with DFA of
1st to 5th order. The crossover exponents are listed in Table 5.1. It can be observed
that as the order of detrending increases, crossover point moves towards larger scales
and have different scaling exponents. This investigation confirms that the obtained
crossover is an intrinsic property of electron density fluctuation data in the valley
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region.

Figure 5.2 - (a) DFA1 to DFA5 for upleg time series of the mean height of 169.13 km and
(b) DFA1 to DFA5 for downleg time series of the mean height of 263.47 km.
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Table 5.1 - Crossover scaling exponents for detrending order 1 to 5 (DFA1 to DFA5) for
upleg time series at mean height of 169.13 km and downleg time series at mean
height of 143.03 km.

time series (km) exponent DFA1 DFA2 DFA3 DFA4 DFA5
upleg <169.13> α1 1.21 0.83 0.82 0.80 0.82

α2 1.73 2.36 2.74 2.13 2.04
crossover at scale 12 36 70 84 111

downleg <143.03> α1 0.39 0.15 0.12 0.10 0.13
α2 1.50 1.93 2.08 2.26 2.53

crossover at scale 16 33 53 70 101

In the analysis, for upleg series, α1 varies in the range 0.80 to 1.21 and α2 in 1.73 to
2.74. For downleg series, the analysis reveals α1 to be in the range 0.10 to 0.39 and
α2 in the range 1.50 to 2.53. For mean heights corresponding to 169.13 and 143.03
km, α1 is smaller than α2. The scales at which crossover occurs are listed in Table
5.1.
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Deviations from K41 spectral index

Numerous studies using PSD have been reported earlier. PSD indices reported earlier
using in situ electron density fluctuations for altitudes near the range of valley
region (130 − 300 km) are examined for the deviation from K41 universality class
(−5/3). For the current data, the DFA exponent α is converted to PSD index β

using the equivalence relation (equation 3.1), and the standard deviation σm (in %)
is determined. The computed DFA exponents in this analysis show a wide range of
β from −0.98 to −2.14 with σm = 58%. Table 5.2 summarizes the variations in the
β exponent obtained from the previous equivalent studies (RINO et al., 1981; KELLEY

et al., 1982; MURALIKRISHNA; VIEIRA, 2007; SINHA et al., 2010; SINHA et al., 2011)
and compares with the present work. It is observed that the computed standard
deviation σm � 50%. Figure 5.3 shows DFA exponents for four time series from
upleg and downleg profile each and these exponents vary from −5/3.

Figure 5.3 - DFA exponent α vs. mean height for four time series each from upleg (red
diamonds) and downleg (blue circles). Solid line in the shaded area indicates
the exponent value for homogeneous turbulence (β = −1.66, i.e., α = 1.33);
shaded area shows the range of alpha value deviation ±2%.
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These deviation endorse the previous finding (FORNARI et al., 2016) that the mech-
anism responsible for ionospheric irregularities is different than the K41 theory for
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Table 5.2 - Comparison of PSD spectral indices (β) found in previous equivalent studies
and β obtained here from DFA. All results measured using rockets are related
to electronic density measurements during the experiment.

Date and Time Spacecraft Altitude (km) β range 〈β〉 σm References
17/07/1979, 12:31:30 UT Rocket 250 to 370 -1.20 to -3.4 -2.3 110% Rino et al. (1981)
17/07/1979, 12:31:30 UT Rocket 250 to 285 -2.00 to -3.4 -2.7 70% Kelley et al. (1982)
11/12/1985, 00:30 UT Rocket 210 to 306 -1.34 to -3.3 -2.32 98% Muralikrishna and Vieira (2007)
31/10/1986, 03:00 UT Rocket 100 to 220 -1.54 to -3.30 -2.42 88% Muralikrishna and Vieira (2007)
15/01/2007, 16:43 UT Rocket - to 127 -1.60 to -2.70 -2.15 55% Sinha et al. (2010)
29/01/2008, 15:49 UT Rocket - to 117 -2.00 to -3.50 -2.75 75% Sinha et al. (2011)
08/12/2012, 22:00 UT Rocket - to 317 -0.98 to -2.14 -1.56 58% This work

homogeneous turbulence cascade as its permitted deviation is σm ≤ 2% (FRISCH,
1995). Hence, this wide variation affirms that ionospheric irregularities from the
valley region are non–homogeneous.

Figure 5.3 shows the DFA scaling exponents plotted as a function of height for
time series from both upleg and downleg profile. For this plot a single linear fit for
the valley region data have used. The shaded horizontal bar in the plot represents
the exponent value, α = 1.33 ± 2%, for the homogeneous turbulence described by
the K41 theory. Wide variation in the scaling exponents from the K41 theory is
apparent.

5.1.3 MFDFA of the valley region data

From the DFA, it is inferred that the valley region data exhibit long–range corre-
lation with crossover. It is interesting to explore, does this data exhibit correlation
across various scales. Hence, the multifractal analysis is performed to detect multi-
fractal signature. This is the first analysis reported on the application of MFDFA to
in situ valley region irregularities. Implementation procedure is described in chapter
3, section 3.2. For the analyses, eight time series of electron density fluctuations are
chosen at mean heights of 194.58, 214.64, 219.19, 237.61, 259.34, 263.47, 275.67 and
283.95 km.

Figure 5.4 presents detailed multifractal analysis performed on a time series of the
mean height of 263.47 km.
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Figure 5.4 - MFDFA for mean height of 263.47 km: (a) normalized time series (upper
panel) along with differenced time series (lower panel), (b) fluctuation profile
for different q with their respective linear fit, (c) h(q) vs q profile (d) τ(q) vs q
profile where dashed line represent linear relationship between τ(q) and q, (e)
multifractal spectrum (circles with error bars) fitted with p model (continuous
line), and multiplicative cascade (dashed line); and (f) multifractal spectra
obtained by shuffling the time series (square marker) along with original time
series (circle marker).
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Figure 5.4a shows the normalized time series (upper panel) along with differ-
enced time series (lower panel). The differenced time series is the profile Y (i). The
differenced time series exhibits intermittent behavior as it shows sudden bursts,
i.e., high intensity fluctuations surrounded by large number of small intensity
fluctuations (MONIN; YAGLOM, 1975). The fluctuation profile for different q with
their respective linear fit is presented in Figure 5.4b. The fit is shown only for
q = −5,−3,−1,+1,+3,+5, where the slope of the fit yields h(q) for corresponding
q’s. It can be seen that the fluctuation profile for different q’s converges at higher
scales, which asserts the presence of multifractality in the time series. Please note
that crossover is not observed with the MFDFA method, though it is observed with
the DFA method.

Figure 5.4c shows h(q) vs q profile. h(q) decreases with q, reaffirming the presence
of multifractality. For positive q, the slope is much steeper compared to negative q,
which indicates h(q) characterizes larger fluctuations than average. This is evident
in the multifractal spectrum too which is described shortly. Figure 5.4d shows τ(q)
vs q profile where dashed line represents a linear relationship between τ(q) and q.
Variation of τ(q) with respect to q shows marked deviation from linearity, again
confirming the multifractal nature.

Figure 5.4e shows the multifractal spectrum (circles with error bars) fitted with p

model (continuous line), and with variant of p model (dashed line) where lengths are
also unequal. Visual inspection shows asymmetric nature. To fit p model (continuous
line), equal scales l1 = l2 = 0.5, and unequal probabilities, p1 + p2 + dp = 1 have
considered. The p model fit parameters are p1 = 0.418, dp = 0.0. These parameters
give cascading probabilities and quantifies scaling of the multifractal spectrum. Value
of p1 and p2 different than 0.5 substantiate the presence of the multifractality. In
addition to the p model fit, its variant (dashed line) is obtained using the same
formulations (equations 4.4 and 4.5) but with unequal scales, i.e, l1 6= l2 and l1 +l2 =
1. The entire spectrum is fitted well with parameters p1 = 0.0785, l1 = 0.12, dp =
0.005. It is to note that with p model, the asymmetric spectrum is fitted only for
the right part of the spectrum, i.e., for negative q, as the spectrum is so much left–
skewed to not account for the dissipation factor. While its variant fits well with
dp > 0 pointing to the intermittency in the series.

In addition to the visual inspection reported above, multifractal measures, ∆α and
A, computed using equations 3.15 and 3.16 are found to be 0.47 and 3.25 respectively.
A high value of A (A > 1) indicates the spectrum to be left–skewed and reaffirms
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the influence of larger fluctuations, agreeing with the h(q) profile. The computed
measures along with fit parameters are listed in Table 5.3. Considering the difference
between the fit and fluctuation values, errors are calculated and shown for h(q) and
τ(q) profile, and for the multifractal spectrum.

Figure 5.4f shows multifractal spectra obtained by shuffling the time series (square
marker) along with the original time series (circle marker). For shuffled time series,
h(q) = 1± (0.03) infers long–range correlation and spectrum shows weak multifrac-
tality. The spectral width, ∆α, is found to be in the range [0.05, 0.15] with average
h(q) ∼ 1± (0.052).

It is evident from the above discussion that the multifractal spectrum alone is suf-
ficient to assess the multifractal nature, henceforth only multifractal spectrum is
presented for the remaining seven heights in Figure 5.5.

• The multifractal spectrum corresponding to the mean height of 194.58 km
(Figure 5.5a) is right–skewed with A = 0.54. It indicates the influence
of negative moments, q, which characterize smaller fluctuations than the
average. The width, ∆α = 0.61 is the highest among the analyzed series.
The optimal p model fit is obtained by considering the dissipation factor
which suggests intermittent behavior.

• The spectrum corresponding to the mean height of 214.64 km (Figure
5.5b) is slightly right–skewed with A = 0.91, which indicates the influence
of negative moments, q, that infer the influence of smaller fluctuations than
the average. An optimal p model fit is obtained accounting for dissipation
factor which suggests intermittent behavior.

• The spectrum corresponding to the mean height of 219.19 km (Figure
5.5c) is slightly left–skewed with A = 1.05, which indicates the influence of
positive moments, q, characterizing larger fluctuations than the average.
An optimal p model fit is obtained considering the dissipation factor which
suggests intermittent behavior.

• The spectrum corresponding to the mean height of 237.61 km (Figure 5.5d)
is slightly right–skewed with A = 0.94. It indicates the influence of negative
q, that infer the influence of fluctuations smaller than average. An optimal
p model fit is obtained accounting for dissipation factor which suggests
intermittent behavior.
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• The spectrum corresponding to the mean height of 259.34 km (Figure 5.5e)
is the most skewed on left among all the analyzed series, with A = 5.51. It
indicates the influence of positive q, which characterizes larger fluctuations
than the average. Spectrum is well fitted for negative q. The spectrum is
so much left–skewed to not account for the dissipation factor.

• The spectrum corresponding to the mean height of 275.67 km (Figure 5.5f)
is left–skewed with A = 2.98. It indicates the influence of positive q, which
characterizes larger fluctuations than the average. An optimal p model fit
is obtained accounting for dissipation factor which suggests intermittent
behavior.

• Finally, the lower panel shows the multifractal spectrum corresponding
to the mean height of 283.95 km (Figure 5.5g) is left–skewed with A =
4.46. It indicates the influence of positive q, infers the influence of larger
fluctuations than the average. Spectrum is well fitted for negative q. The
spectrum is so much left–skewed to not account for the dissipation factor.

All selected time series are shuffled randomly without repetition and subjected to
the MFDFA. All shuffled series exhibit weaker multifractality. Thus, possible type
of multifractality may be due to long–range correlations as well as to the broad
probability density function. As an example, shuffled series and its corresponding
multifractal spectrum for mean height 259.34 km is presented in appendix B (Figure
B.2.

For all the chosen heights, range of h(q) is found to be 0.83 < h(q) < 1.28, which indi-
cate a long–range correlation with persistent temporal fluctuations. Also, h(q) profile
decreases with respect to q, and τ(q) shows deviation from linearity confirming the
multifractality in all the series. Deviation of τ(q) from linearity can be attributed to
the nonlinear interactions among the scales (BISKAMP, 1993) and non–homogenous
nature (MONIN; YAGLOM, 1975; FRISCH, 1995). Width of the multifractal spectra
varies from 0.27 to 0.61, showing weaker to stronger multifractality. Higher values of
α0 (> 1) indicate the underlying process to be irregular (GHOSH et al., 2012; TANNA;

PATHAK, 2014; MANDAL et al., 2017). The p model fit is obtained with parameter
p other than 0.5. The p model fit parameter 0.36 < p < 0.44 represents the energy
transfer probability of the multiplicative cascade process with nonzero dissipation
factor. Thus, these results confirm the presence of multifractality and intermittency
in all the analyzed time series.
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Figure 5.5 - MFDFA spectra: multifractal spectrum (circle marker with error bars) with
p model fit (continuous line) for the mean heights of 194.58 (a), 214.64 (b),
219.19 (c), 237.61 (d), 259.34 (e), 275.67 (f), and 283.95 (e) km.
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Table 5.3 - Multifractal analysis measures: For eight time series, mean heights are listed
in first column, second column shows degree of multifractality (∆α), third
column gives the measure of asymmetry (A). Columns 4 to 6 lists the p model
fit parameters, p1, l1, dp respectively. Seventh row is representing the p model
fit parameters for time series of mean height of 263.47 km, considering the case
when l1 6= l2, l1 + l2 = 1 and p1 + p2 + dp = 1. The fit for this case is shown
in Figure 5.4e.

< height > degree of measure of p model fit
(km) multifractality asymmetry parameters

∆α A p1 l1 dp
194.58 0.61 0.54 0.3650 0.5 0.0500
214.64 0.46 0.91 0.4010 0.5 0.0150
219.19 0.59 1.05 0.3780 0.5 0.0180
237.61 0.38 0.94 0.4190 0.5 0.0080
259.34 0.47 5.51 0.4300 0.5 0.0000
263.47 0.47 3.25 0.4180 0.5 0.0000

0.0785 0.12 0.005
275.67 0.27 2.98 0.4050 0.5 0.0100
283.95 0.46 4.46 0.4250 0.5 0.0000

An interesting pattern in the asymmetry measure (Table 5.3) is observed in the
present analysis. For the lowest height analyzed, 194.58 km, the spectrum is right–
skewed with A = 0.54. For the next three analyzed heights 214.64, 219.19, and
237.61 km, those lying around the middle part of the valley region, the spectrum
is very close to being symmetrical with A = [0.91, 1.05]. In the upper part of the
region i.e., for the heights 259.34, 263.47, 275.67, and 283.95 km, the spectrum is
highly left–skewed with A = [2.98, 5.51] which quantify the intense fluctuations to
be larger than average, and is evident of more non–homogeneous nature of electron
density fluctuations. This transition of the spectrum from being symmetric to highly
left–skewed, i.e., transition of the influence from smaller scales to larger scales, is
intriguing given that the upper heights considered lie close to the base of the F
region.
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Figure 5.6 - Variation of the mean density and the degree of multifractality for the selected
eight time series. The density is shown in dark grey color bars on the left and
∆α in light grey colored bars on the right. The mean heights corresponding
to the selected eight time series are shown next to the bars.
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Finally, a relation is reported between the density and a multifractal measure for
the analyzed time series. Figure 5.6 shows the relation between the variation of
mean density (left) and multifractal width, ∆α, (right). It can be observed that for
variation in density, the corresponding ∆α show an inverse relation except for the
time series at a mean height of 259.34 km. Low density resembles with more complex
behavior in terms of larger multifractal width. This inverse relation between mean
density and multifractal width is consequential and evident that a more complex
structure shows more richness of scaling. Multifractal analysis of medium–to–large
irregularities in the low latitude equatorial F region (mean height of 264 to 430
km) obtained from another rocket experiment from the same station (presented
in the next section) has shown similar inverse relation between mean density and
multifractal width (JOSHI et al., 2020). This reported reciprocity in the insitu data
is obtained from an equatorial low latitude station. More data has to be analyzed
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from different latitudes and altitudes to consolidate this relation and to comment
on any physical approach.

Figure 5.7 - The model predicting the variations in the mean density with respect to ∆α
for this rocket experiment. Variation of mean density is shown in the left part
and of ∆α in the right part as a curve line. Bands along the central curve
represent the standard deviation for all points in the model.

Source: produced by author.

After presenting a variation between the mean density and the multifractal width
in the Figure 5.6, this study is extended to derive a model by interpolating these
data (mean density and ∆α) with piecewise cubic Hermite interpolating polynomial
(PCHIP) to get smooth appearance and it is presented in the Figure 5.7. Variation
of mean density is shown in the left part and of ∆α in the right part as a curve line.
Bands along the central curve represent the standard deviation for all points in the
model. The derived model predicts the variations in the mean density with respect
to ∆α for this rocket experiment performed. It is valid in a scenario if continuous
values of mean density and its fluctuations would have been obtained.
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5.2 Analysis of the F region irregularities

5.2.1 Data

A Brazilian made SONDA III rocket was launched from the equatorial rocket launch-
ing station Alcântara (2.31◦S; 44.4◦W ) on December 18th, 1995 at 2117 h (LT) as
a part of the IONEX II operation. The objective of this rocket launch was to study
the behavior of night time F region under conditions favorable for the development
of the plasma bubbles and to explore the characteristic features of plasma density
fluctuations associated with them (MURALIKRISHNA et al., 2003; MURALIKRISHNA;

ABDU, 2006). The rocket reached an apogee at altitude ∼ 557 km covering a horizon-
tal range of 589 km during ∼ 11 min flight. In the upleg profile (ascent of the rocket),
the F region base is clearly observed around 300 km, but without any large scale
depletion or bubble. On the other hand, several plasma bubbles of medium–large
scale were observed in the downleg profile (descent of the rocket), around the base of
F region and also topside of it, but without any sharp indication of the F region base
from altitude above 240 km. Rocket traversed through regions of different altitudes,
separated by a few hundred of kilometers during upleg and downleg, so this might
elucidate the large differences observed in ascent and descent of the rocket (MU-

RALIKRISHNA et al., 2003; MURALIKRISHNA; ABDU, 2006; MURALIKRISHNA; VIEIRA,
2007).

The rocket carried on board electric field double probe and Langmuir Probe (LP)
which provided simultaneous measurements of the height variations of electric field
and electron density (MURALIKRISHNA et al., 2003). Low frequency sampled data
from LP is used to show electron density profile plot. A detailed explanation of in
situ experiment is found in Muralikrishna et al. (2003), Muralikrishna and Abdu
(2006), Muralikrishna and Vieira (2007), Fornari (2016).

5.2.2 MFDFA of the F region data

Muralikrishna et al. (2003) have analyzed this in situ data using PSD method. Some
of the key results are: (1) the initiation of a cascade process, owing to Rayleigh–
Taylor instability mechanism, near the base of F region resulted in the development
of the plasma bubbles or large scale irregularities, and (2) subsequently, when energy
was advected to higher altitudes, smaller scale irregularities were observed, owing to
cross–field instability mechanism (MURALIKRISHNA et al., 2003; MURALIKRISHNA;

ABDU, 2006; MURALIKRISHNA; VIEIRA, 2007). In this scenario, it will be interesting
to investigate the scaling properties of the F region irregularities with the MFDFA
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and validating with the p model. Hence, six time series of electric field fluctuations
from the F region are selected corresponding to the mean heights of 264.58, 270.22,
292.37, 324.00, 358.56, and 429.65 km from the downleg trajectory of the rocket.

Figure 5.8 - Comprehensive MFDFA result: (a) the time series at mean height 324.00 km
(b) h(q) vs q profile. (c) τ(q) vs q profile along with dashed line which repre-
sents a linear relationship between τ(q) and q (d) the multifractal spectrum
(circle marker with error bars) fitted with the p model (continuous line).

Source: produced by author.

Figure 5.8 shows a detailed multifractal analysis of a time series corresponding to
the mean height of 324.00 km (5.8a). Figure 5.8b presents the h(q) profile and
Figure 5.8c presents τ(q) profile. The corresponding multifractal spectrum is shown
in the Figure 5.8d. The spectrum is right–skewed, indicating the influence of the
negative values of q on the time series. It is evident as well from the h(q) profile as
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the variation of h(q) for negative q is observed to be comparatively steep. The plot
for τ(q) versus q shows marked deviation from linearity, asserting presence of the
multifractality in time series for the chosen height.

In addition to the derived inferences from the visual analysis of the multifractal spec-
trum reported above, multifractal measures, ∆α and A can be quantified (equations
3.15 and 3.16). Measure A = 0.32 quantifies the skewness while ∆α = 0.72 infers
the strength of multifractality. These two measures are listed in Table 5.4. Lastly,
the multifractal spectrum is fitted with the p model (shown with a continuous line),
where the fragment lengths are equal i.e., l1 = l2 = 0.5 and the weights, p1 and
p2, are varied such that p1 + p2 ≤ 1. Nevertheless, loss in p parameter had to be
accounted to obtain an optimal fit. The loss factor, dp, signifies nonconservative
energy distribution i.e., a dissipative energy cascading process in the inertial range.
The p model fit parameters are p1 = 0.315 and dp = 0.090 and are listed in Table
5.4.

It is seen from the above discussion that the multifractal spectrum is sufficient
to assess the multifractal nature, henceforth the time series and the corresponding
multifractal spectrum have shown for the remaining chosen heights. Figure 5.9 shows
the time series selected from the F region in the left panel and the corresponding
multifractal spectrum in the right panel.

• For the time series corresponding to the mean height of 264.58 km, the
multifractal spectrum is slightly right–skewed, which can be inferred from
measure A = 0.82. It indicates the influence of negative moments, q, which
characterizes the influence of smaller fluctuations than the average. Degree
of multifractality, ∆α = 0.53. The optimal p model fit is obtained with
parameters p1 = 0.364 and dp = 0.059.

• For the time series corresponding to the mean height of 270.22 km, the
multifractal spectrum is slightly left–skewed, which can be inferred from
measure A = 1.11. It indicates the influence of positive moments, q, which
characterize intense larger fluctuations than the average. Degree of multi-
fractality, ∆α = 0.82. The optimal p model fit is obtained with parameters
p1 = 0.34 and dp = 0.065.

• For the time series corresponding to the mean height of 292.37 km, the
multifractal spectrum is left–skewed, reflected from the measure A = 2.99.
It indicates the influence of positive moments, q, which characterize intense
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larger fluctuations than the average. Degree of multifractality, ∆α = 0.93.
The optimal p model fit obtained with parameters p1 = 0.339 and dp =
0.02. The spectrum is fitted for the positive values of q.

• For the time series corresponding to the mean height of 358.56 km, the mul-
tifractal spectrum is right–skewed, reflected from the measure A = 0.37. It
indicates the influence of negative moments, q, which characterize the in-
fluence of smaller fluctuations than the average. Degree of multifractality,
∆α = 0.52. The optimal p model fit obtained with parameters p1 = 0.36
and dp = 0.07.

• For the time series corresponding to the mean height of 429.65 km, the
multifractal spectrum is right–skewed, also reflected from the measure
A = 0.51. It indicates the influence of negative moments, q, which char-
acterize the influence of smaller fluctuations than the average. Degree of
multifractality is ∆α = 0.28. The optimal p model fit obtained with pa-
rameters p1 = 0.399 and dp = 0.0355.

All selected time series are shuffled randomly without repetition and subjected to
the MFDFA. All shuffled series exhibit weaker multifractality. Thus, possible type
of multifractality may be due to long–range correlations as well as to the broad
probability density function. As an example, shuffled series and its corresponding
multifractal spectrum for mean height 292.37 km is presented in appendix B (Figure
B.3.

Table 5.4 - Multifractal analysis measures: For the time series at mean heights listed in
the first column, the second column shows the degree of multifractality (∆α),
the third column gives measure of asymmetry (A). Columns 4 to 6 lists the p
model fit parameters, l1, p1, dp respectively.

< height > degree of measure of p model fit
(km) multifractality asymmetry parameters

∆α A l1 p1 dp
264.58 0.53 0.82 0.5 0.364 0.059
270.22 0.82 1.11 0.5 0.340 0.065
292.37 0.93 2.99 0.5 0.339 0.02
324.00 0.72 0.32 0.5 0.315 0.090
358.56 0.52 0.37 0.5 0.360 0.070
429.65 0.28 0.51 0.5 0.399 0.0355
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Figure 5.9 - MFDFA for the first experiment: top to bottom panel shows the time series
and its corresponding multifractal spectrum with the p model fit (continu-
ous line) for the mean heights of 264.58, 270.22, 292.37, 358.56 and 429.65 km
respectively.
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Figure 5.10 - Variation of the mean density and the degree of multifractality with the
mean height for the six selected time series from the first experiment in a
3-D plane. In the inset, these variations are shown in a 2-D plane of the
mean density (left) and the degree of multifractality (right).
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Figure 5.10 shows a variation of mean density and multifractal width, ∆α with
mean heights for the selected six time series on a 3-dimensional plane. The pres-
ence of a plasma bubble characterized by large scale irregularities, which in turn is
reflected in the low density, is observed around a mean height of 292.37 km. Con-
trarily, stronger multifractality is observed at this height. This inverse variation is
in agreement with the turbulent like multiplicative cascade process. On the other
hand, as the rocket traversed higher altitudes, the mean density increased while the
multifractality became weaker. This suggests that the cascading process resulted
in smaller scale irregularities by dissipating energy. Two dimensional plots showing
the variation of mean density and ∆α with mean heights are shown in the inset of
Figure 5.10.
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5.3 Type I solar noise storm analysis

This section presents multifractal analysis of solar type I noise storm data obtained
from the e-Callisto radio spectrometer, using the MFDFA and multicascade p model
to characterize their intermittent multitude behavior.

5.3.1 E-Callisto radio spectrometer

E-Callisto is the network of the compact astronomical low–cost low–frequency in-
strument for spectroscopy and transportable observatory (CALLISTO) type radio
spectrometers to monitor the solar activity in metric wavelength band, which is
distributed at various locations around the globe. The Callisto provides high res-
olution spectrum as it can work in 45 to 870 MHz frequency range with step
of 62.5 kHz. The Callisto instrument can be operated and controlled remotely.
Collected and calibrated data pertaining to solar radio event are stored into a
structured archive in a central data base which can be accessed freely at http:
//www.e-callisto.org/Data/data.html. Data for 15 min observation is available
in Flexible Image Transport System (FITS) file format. Corresponding spectrogram
is available in Portable Network Graphics (PNG) file format. Intense emissions to no
emissions are represented by bright to black color (BENZ et al., 2009). The e-Callisto
system is acknowledged by world–wide researchers as its high resolution data unveil
substantial new information to study solar activity and space weather, for example:
(BENZ et al., 2009; SODRÉ et al., 2015; ZAVVARI et al., 2016; LI et al., 2017; HAMIDI;

SHARIFF, 2018; SODRÉ et al., 2019).

5.3.2 Data

BLEN7M spectrograph is located in Switzerland, integrated with the e-Callisto net-
work and operates in the range 110–870 MHz. Out of 200 channels, data is selected
based on maximum intensity, canonical pattern for type I burst and noise, and space
weather report generated by NOAA, confirming the occurrence of radio noise storm
events. This selection analysis is done by Cintra (2018). Eight time series of fre-
quency 263.3 MHz, of solar emissions associated with type I noise storm, recorded
on July 30, 2011, by the BLEN7M spectrograph of the e-Callisto network. All time
series are of 15 minutes duration.

An event occurred between 04:58 UT and 07:32 UT, corresponding 5 data files are
recorded between 05:45 to 7:00 UT. For another event occurred between 09:51 and
12:24 UT, corresponding 3 data files are recorded at 10:00, 11:00 and 11:45 UT
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respectively. Time series is shown as intensity in dB on ordinate and time in UT on
abscissa in Figure 5.12.

5.3.3 Results

Analysis using the MFDFA are presented in the Figures 5.11, 5.12, & 5.13 and
summarized in the Table 5.5.

Figure 5.11 - Comprehensive MFDFA result for the time series recorded between
6:30 and 6:45 UT: (a) fluctuation profile with linear fit for q =
[−5,−3,−1,+1,+3,+5] (b) h(q) vs q profile. (c) τ(q) vs q profile along with
dashed line which represents a linear relationship between τ(q) and q (d) the
multifractal spectrum (circle marker with error bars) fitted with the p model
(continuous line).

Source: produced by author.

Figure 5.11 shows a detailed multifractal analysis of a time series recorded between
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6:30 and 6:45 UT (shown in Figure 5.12). Panel a shows the fluctuation profile with
linear fit for q = [−5,−3,−1,+1,+3,+5]. The fluctuation profile shows spread at
lower scales and converges at higher scales, thus affirming the multifractality in the
series. Panel b presents the h(q) profile which decreases with q, thus affirming the
multifractality in the series. Panel c presents τ(q) profile along with dashed line
which represents a linear relationship between τ(q) and q. This plot shows marked
deviation from linearity, asserting presence of the multifractality in time series. The
corresponding multifractal spectrum is shown in the panel d. The spectrum is left–
skewed, indicating the influence of the positive values of q on the time series. It is
evident as well from the h(q) profile as the variation of h(q) for positive q is observed
to be comparatively steep.

In addition to the derived inferences from the visual analysis of the multifractal
spectrum reported above, multifractal measures, ∆α and A are quantified (equations
3.15 and 3.16) and support the inferences from visual analysis. Measure ∆α = 0.28
infers the strength of multifractality while A = 1.70 quantifies the skewness. These
two measures are listed in Table 5.5. Lastly, the multifractal spectrum is fitted with
the p model (shown with a continuous line), where the fragment lengths are equal
i.e., l1 = l2 = 0.5 and the weights, p1 and p2, are varied such that p1 + p2 ≤ 1.
Nevertheless, loss in p parameter had to be accounted to obtain an optimal fit. The
loss factor, dp, signifies nonconservative energy distribution i.e., a dissipative energy
cascading process in the inertial range. The p model fit parameters are p1 = 0.412
and dp = 0.001. The p model fit parameters are listed in Table 5.5.

To find the source of multifractality, all the series are shuffled and subjected to the
MFDFA. Shuffled series exhibit multifractality. Thus, possible type of multifractality
may be due to a broad probability density function. As an example, shuffled series
and its corresponding multifractal spectrum for series recorded between 06:45 and
07:00 UT is presented in appendix B (Figure B.4.

It is seen from the above discussion that the multifractal spectrum is sufficient to
assess the multifractal nature, henceforth the time series and the corresponding
multifractal spectrum have shown for the remaining chosen series. In Figure 5.12,
the left side (1st and 3rd columns) show time series and corresponding multifractal
spectrum on the right side (2nd and 4th columns). The p model fit is shown by
continuous line.

For time series recorded at 5:45 UT, multifractal spectrum is symmetrical as A = 1,
which indicates equal influence of high and low fractal exponents. Its degree of
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multifractality is ∆α = 0.18. Left–skewed spectrum is observed for the time series
recorded at 6:00, 6:15, 6:30, 6:45, and 10:00 UT with A = 1.31, A = 1.33, A =
1.70, A = 2.00 and A = 1.75 respectively, indicating the influence of high fractal
exponents. Degree of multifractality obtained as ∆α = 0.38, ∆α = 0.21, ∆α = 0.28,
∆α = 0.30, and ∆α = 0.33 respectively. For the last two series recorded at 11:00
and 11:45 UT spectrum is right–skewed with A = 0.50 and A = 0.41 which indicates
influence of low fractal exponents. Degree of multifractality is obtained as ∆α = 0.25
and ∆α = 0.53 respectively.

E-Callisto network records data for every 15 minutes. First five time series, cor-
responding to the first event are continuous in time, thus merging these first five
times series recorded between 05:45 and 7:00 UT is analysed and result is presented
in Figure 5.13. Multifractal spectrum is left–skewed with A = 1.73, indicating the
influence of larger fluctuations. Degree of multifractality obtained as ∆α = 0.33.
The spectrum is so left skewed that optimal p model fit is obtained only for negative
q with parameters p1 = 0.434 and l1 = 0.5. These values along with multifractal
measures are listed in a Table 5.5.

Figure 5.13 - Left side shows a time series recorded between 05:45 and 07:00 UT (data 1
to data 5). Right side shows corresponding multifractal spectrum (◦) and p
model fit (continuous line).
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All time series show multifractality and is confirmed, as the p model fit probability
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Figure 5.12 - MFDFA and p model fit for eight time series of type I noise storm. Left
side (1st and 3rd columns) show time series and corresponding multifractal
spectrum on the right side (2nd and 4th columns) with circle marker with
error bars. The p model fit is shown by continuous line.
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Table 5.5 - Multifractal analysis measures: For the eight time series listed in the first
column, start and end time of the corresponding series are listed in the second
and third columns. Forth and fifth column list the p model fit parameters, p1
and dp respectively. Sixth column lists degree of multifractality (∆α) and last
column lists asymmetry measure A.

Data start time end time p1 dp ∆α A
(UT)

data 1 05:45 06:00 0.445 0.000 0.18 1.00
data 2 06:00 06:15 0.405 0.009 0.38 1.31
data 3 06:15 06:30 0.437 0.000 0.21 1.33
data 4 06:30 06:45 0.412 0.001 0.28 1.70
data 5 06:45 07:00 0.413 0.004 0.30 2.00
data 1-5 05:45 07:00 0.442 0.000 0.32 1.73
data 6 10:00 10:15 0.434 0.000 0.33 1.75
data 7 11:00 11:15 0.422 0.018 0.25 0.50
data 8 11:45 12:00 0.375 0.038 0.53 0.41

parameter differ from 0.5. Also, necessity of dp parameter in the p model fit affirms
intermittency in the data. Type I noise storm data obtained between 11:45 and 12:00
UT has maximum spectrum width, ∆α = 0.53 whereas data recorded between 05:45
and 06:00 UT has the least multifractal width, ∆α = 0.18. Probability parameter
varies in a range of 0.375 < p < 0.445 to fit the p model.

Comparing the spectra for time series recorded between 05:45 and 07:00 in Figure
5.12 with Figure 5.13 where these five time series are merged, confirm that the first
event is characterized by larger fluctuations (A > 1).

The current finding is in agreement with the previous work done by Cintra (2018),
Sodré et al. (2019) where authors found these type I noise series to be turbulent in
nature and also with Veronig et al. (2000) where authors confirmed the nonlinearity
in the type I noise storm data. Optimal p model fit affirms the turbulent and mul-
tifractal nature of type I noise storm series and p model parameters quantify the
energy cascade process.
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5.4 Modeling endogenous and exogenous noise

The techniques explored in this thesis have versatile applications. Multiplicative cas-
cade process do allow to construct time series with the desired properties. In this
analysis, the p model is explored to model the endogenous and exogenous noise to
study extreme event like international armed conflict. Armed conflicts (AC) con-
tinues to be a rising concern as they catastrophically affect the world in various
spheres like economical, social, geographical etc. Analysis of the AC dataset and
the underlying patterns can provide a benchmark to understand the international
geopolitical affairs, evolving complex equations among different states and changing
policies.

In a time series, internal perturbations give rise to endogenous shocks characterized
by smoother continuous fluctuations on both sides of the peak that increases slowly
and after reaching its highest peak, gradually reduces by itself. On the other hand,
exogenous shock results from an external perturbation and can be characterized by
a sudden peak followed by unexpected rapid drop in the fluctuations. Around the
peak very less continuous fluctuations can be observed.

Sornette et al. (2004) demonstrated a way to characterize endogenous and exoge-
nous fluctuations in a non–physical system (book sale ranking on Amazon website).
Authors considered sale of two books – one driven by a propaganda (exogenous) and
the other by reviews (endogenous). Irrespective of the nature of sales, it is similar
to the cascade process where first generation of buyers do influence on subsequent
generations of buyers. Endogenous fluctuations were found to follow PSD exponent
of 0.4 while exogenous fluctuations were found to follow PSD exponent of 0.7.

5.4.1 Armed conflict data

Centre for the study of civil wars, international peace research institute at Oslo
(PRIO) and uppsala conflict data program (UCDP) at the department of peace
and conflict research, uppsala university prepared, in collaboration, a dataset of
armed conflicts. Uppsala database provides one of the most accurate and extensive
information on ACs including attributes like conflict intensity based on total number
of battle–related deaths; conflict type whether internal or external to the state;
details of warring party including geographical information; conflict period with
specific start and end date etc. The database is updated annually and considered
a well–used data–sources on global armed conflicts. Its definition of armed conflict
is becoming a standard in how conflicts are systematically defined and studied.
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According to UCDP, armed conflict is defined as: a contested incompatibility that
concerns government and/or territory where the use of armed force between two
parties, of which at least one is the government of a state, results in at least 25
battle-related deaths. Uppsala categorizes AC in different intensity levels based on
the total battle–related causalities:

• Not active: less than 25 battle–related deaths per year.

• Minor : at least 25 battle–related deaths per year but fewer than in the
conflict period.

• Intermediate: at least 25 battle–related deaths per year and total accumu-
lated of at least 1000 deaths, but fewer than 1000 in any given year.

• War : at least 1000 battle–related deaths per year.

5.4.2 Categorization of the AC database

Looking through current international affairs and conflicts in the AC dataset, a new
scheme has designed to understand conflict intensity based on causalities. Interna-
tional AC data when plotted on semilog-y scale (Figure 5.14), shows four distinct
levels which can be categorized as:

• stability: battle related deaths are approximately 102 on log scale. It has
almost no fluctuation, continuous smooth unit vector.

• conflicts: battle related deaths are more than 102 but maximum 103 on
log scale. This is interpreted as one of the party having conflicts with the
other involved in the battle. But there was no use of any missiles or nuclear
weapons nor threats.

• cold war : battle related deaths are more than 103 but maximum 104 on
log scale. One of the party threatens the other party followed by attacks.
High production and large number of nuclear weapons test but none of the
party uses missiles and/or nuclear weapons.

• warm war : battle related deaths are more than 104 on log scale. One of
the party uses the missiles and/or nuclear weapons. Threats of the use of
nuclear weapons is high.
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Figure 5.14 - Armed conflict data with distinct levels: stability, conflicts, cold war, warm
war, hot war.
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• war or hot war : battle related deaths are more than 105 on log scale. Both
parties use the missiles and/or nuclear weapons.

Inspecting a cause of a conflict, the focus is on determining whether internal or
external factors play a role, in other words, is it endogenous or requires some thrust
and be categorized as exogenous? To analyze endogeneity and exogeneity in AC, a
model has been built by inducing endogenous and exogenous p model time series as
a noise.
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5.4.3 Building a model for AC

Figure 5.15 shows how different values of p describe the nature of the time series.
Each panel shows the value of p and PSD exponent β used to generate time series.
p values are varied from 0.1 to 0.9 except 0.5 and β value used are 0.4 and 0.7
for all eight values of p. Endogenous nature can be observed prominently in time
series generated with p values 0.4 and 0.6 whereas exogenous nature can be seen
prominently in time series generated with p values 0.1 and 0.9. These time series
are generated using the algorithm given by Venema (UNIVERSITY OF BONN, ; DAVIS

et al., 1997) where PSD exponent is also one of the input parameter along with p

value.
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Figure 5.15 - different p value describe different nature of time series. Each panel shows
the value of p and β used to generate time series.
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Figure 5.16 - Panels: (a) endogenous p model time series with p1 = 0.6 and β = −0.4 (b)
exogenous p model time series with p1 = 0.75 and β = −0.7.
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The AC is an annually aggregated global database that records the total deaths that
occurred in conflicts. The data is resampled from the original 109 points to 2592
points with a bimonthly resampling. Resampled time series also exhibits the distinct
levels similar to the original data. Utilizing the PSD exponent values 0.4 and 0.7
along with proper p values 0.6 and 0.75, endogenous and exogenous time series are
generated respectively (Figure 5.16).

Knowing the length of the signal at different levels, endogenous and exogenous time
series resampled at those lengths are then multiplied by different multipliers and
added to the resampled AC signal as a noise. Multipliers for different levels are: 101

for stability; 102 for conflict; 103 for cold war; and 104 for warm war.
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Figure 5.17 - Panels: (a) resampled AC time series (b) resampled AC time series with
endogenous noise (c) resampled AC time series with exogenous noise. Years
shown for all three panels are correspond to the first world war at 1918, the
second world war at 1945, 9/11 attack in 2001 and USA missile launch on
Syria in 2017.
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Figure 5.17 shows the AC model. Panel a shows resampled AC series. Panel b shows
AC series with endogenous noise and panel c shows AC series with exogenous noise.
Exogenous noise added series has sudden peaks but before and after shows contin-
uous fluctuations, thus, suggesting endogenous nature.

Roberts and Turcotte (1998) explored fractal behavior of war intensity in terms
of battle–related deaths and found it exhibits long–range correlation. The current
work explores conflict intensity in terms of battle–related deaths. Endogenous and
exogenous noise added armed conflict resampled time series are subjected to the DFA
(Figure 5.18). Results show long–range correlation and in agreement with previous
results. Also, results confirm the robustness of the DFA method against noise as
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fluctuation functions for both noise induced time series are overlapped.

Figure 5.18 - Armed conflict resampled time series with induced endogenous and exoge-
nous noise are subjected to the DFA. Results show long–range correlation
and also confirms the robustness of the DFA method against noise as fluc-
tuation functions for both noise induced time series are overlapped.
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6 CONCLUDING REMARKS

Detrended fluctuation analysis performed on the E-F valley irregularities have shown
long–range correlation with a crossover which is an inherent property of the valley
region irregularities. The presence of a crossover confirmed that the electron den-
sity fluctuation data changes its scaling exponent over different scales depending
on the detrending order. Using equivalence relation between PSD and DFA, PSD
exponent, β, has been calculated from the obtained DFA exponents, α and the vari-
ation found in scaling exponents are compared with the former equivalent sounding
rocket experiment data analyzed using PSD method. Deviation in the β exponent is
found to be σm � 54%. These finding indicate that equatorial ionospheric plasma
irregularities from the valley region are non–homogeneous.

The multifractal detrended fluctuation analysis provides various measures which
need to be understood collectively to interpret the results. From this analysis, h(q)
infers long–range correlation with persistent temporal fluctuations in the time series,
τ(q) infers the interaction between the scales to be nonlinear with non–homogeneous
cascade, α tells how many fractal exponents or scales are required to reconstruct
the time series and also high values of α0 interpret underlying irregular process.
Asymmetry (A) infers transition of fluctuations from small to large scales in the time
series while moving to higher altitudes, probabilistic weights other than 0.5 confirms
the multifractality in the series and quantifying them allows reconstructing the time
series. The parameters ∆α and dp, both do infer the intermittency in the series.
All these collective information allow to conclude that the equatorial low latitude
valley and F region plasma irregularities are nonlinear, intermittent, multifractal and
exhibit non–homogeneous energy cascade. Therefore, this nature can be attributed
to the wide variation observed in the spectral indices.

The potential of the MFDFA algorithm is tested in deciphering the morphology of
the cascading phenomena by analyzing the F region irregularities where the rocket
intercepted a plasma bubble. Muralikrishna et al. (2003) reported the presence of
predominant sharp peaks in the power spectra over a wide range of heights, and they
attribute these to a developing plasma bubble that subsequently dissipated energy,
reaching an equilibrium which is evidenced by the absence of peaks. Multifractal
analysis has captured this sequence of events. The presence of a plasma bubble
characterized by large scale irregularities, which in turn is reflected in the low density,
is observed around a mean height of 292.37 km. Contrarily, stronger multifractality is
observed at this height. This inverse variation is in agreement with the turbulent–like
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multiplicative cascade process. On the other hand, as the rocket traversed through
higher altitudes, the mean density increased while the multifractality became weaker.
This suggests that the cascading process resulted in smaller scale irregularities by
dissipating energy.

The MFDFA algorithm quantifies the influence of larger fluctuations in the upper
valley region time series. This characteristic is intriguing as valley region irregu-
larities are found to be triggering the F region irregularities. The inverse variation
between ∆α and mean density is observed for the valley region irregularities also
and evident that a more complex structure shows more richness of scaling.

Type I noise storm data are characterized as a nonlinear dynamical dissipative sys-
tem. The intermittent multitude behavior of type I solar emission using multifractal
analysis has been characterized. Two RNS events found to be nonlinear, multifractal,
intermittent and exhibit non–homogeneous energy cascade. The pattern of asym-
metry is intriguing. The first event recorded between 05:45 and 07:00 UT is charac-
terized by larger fluctuations. For the second event transition of larger fluctuations
(at 10:00 UT) to smaller fluctuations (at 11:00 and 11:45 UT) is evident.

An intriguing observation is noted regarding the valley region (Table 5.3) and type
I solar noise burst (Table 5.5) multifractal analysis. A maximum ∆α is observed for
the most right–skewed spectrum which infers the dominance of smaller fluctuations.
In the case of the valley region, ∆α = 0.61 and A = 0.54 and for type I noise
storm, ∆α = 0.53 and A = 0.41. However, for the F region data, a maximum
∆α = 0.93 is observed for the most left–skewed spectrum with A = 2.99 (Table 5.4),
where large scale irregularities (plasma bubble) were reported. A relation between
maximum multifractal width, ∆α and maximum left or right skewness, A requires
to be investigated in detail.

A turbulent system evolves through nonlinear processes which are multiplicative in
nature with nonlinear energy distribution among the scales, and is intermittent too
(FRISCH, 1995; ABRAMENKO et al., 2002; ABRAMENKO; YURCHYSHYN, 2010). The
energy dissipation can not be homogeneous in an intermittent system, in fact, it is
intermittent (MONIN; YAGLOM, 1975; FRISCH, 1995). Hence, investigating intermit-
tency in the space plasma fluctuations provide important information on the energy
dissipation process. From these analyses, it is observed that ionospheric electron
density fluctuations as well as type I solar emissions are intermittent, showing non–
homogeneous energy cascade. To sum up, this work has provided sufficient analyses
in favor of the third possibility for the wide variation reported in the spectral indices,
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i.e., "The turbulent process does not follow a homogeneous cascade of the energy
distribution between the scales involved in the dissipative process."

6.1 Future work

Multiplicative cascade process is a versatile tool to quantify scaling structures and to
model different types of time series. The simple pmodel (MENEVEAU; SREENIVASAN,
1987) provide inputs for the underlying scaling structures (of plasma irregularities)
but to characterize asymmetry in the multifractality, further advanced models can
be used, where scale parameter is varied along with the probability parameter. Ad-
vanced fitting models and different methods have been suggested and implemented
to analyze the asymmetric multifractal distribution (MACEK, 2007; SZCZEPANIAK;

MACEK, 2008; CHENG, 2014). In future, this study will be extended to characterize
and discuss the asymmetric multifractal nature of space plasma irregularities.
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APPENDIX A: TIME COMPLEXITY AND FLOWCHARTS

A.1 Error calculation

Absolute errors shown in the MFDFA plots (Figures 5.4, 5.5, 5.8, 5.9, 5.11, 5.12, &
5.13) are calculated as following:

While computing h(q), obtaining linear fit to the fluctuation function for each q

introduces error. Error in h(q) (E[h(q)]) is calculated by subtracting detrended fit
points from the corresponding Fq(s) profile. Knowing the error in h(q) and using the
equations for computing τ(q) (equation 3.10), α (equation 3.11), and f(α) (equation
3.12) from h(q), errors are calculated as

E[τ(q)] = qE[h(q)] (A.1)

E[α] = E[h(q)] + qE
[dh(q)
dq

]
(A.2)

E[f(α)] = q2E
[dh(q)
dq

]
(A.3)

A.2 Computational time complexity

Computational time complexity infers the abstract execution time of an algorithm.
It is denoted in an asymptotic notation, as big O, which represents upper bound on
the algorithm’s run time. It is independent of the hardware.

a) DFA:
First for loop run on the scales. Scales are increased with a base two
(2n). Here, the complexity is O(log n). Within the scales’ loop, another
for loop runs on segments and each segment is detrended with a linear
fit. Here, the complexity is O(n). Other computational steps follow linear
complexity. Hence, total run time complexity for DFA is O(n log n).

b) MFDFA:
Since MFDFA is the generalized version of the DFA, its complexity should
minimal be that of DFA. Additional computational step is to compute qth

order fluctuation function. It can be done in two ways.
(i) After computing the fluctuation function as described in the DFA, run
a for loop on values of q. A for loop will increase the complexity by O(n),
giving total complexity for the MFDFA as O(n + n log n), retaining the
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complexity equivalent to the DFA.
(ii) Embed the DFA for loops within the q for loop. However, this increases
the complexity by O(n ∗ n log n) which is O(n2 log n).

c) p model singularity spectrum:
Among the computational steps, complexity is solely determined by a for
loop. Here, the complexity is given by O(n).

d) p model time series:
This algorithm involves first for loop where an array gets divided into
two equal parts in each run giving the complexity O(n). Inside this for
loop, value is assign to each segment, giving the complexity as O(n). Total
complexity of this algorithm is O(n2).

A.3 Flowcharts

This section presents flowcharts for the DFA and MFDFA, the p model for fitting
the multifractal spectrum and for generating time series. The codes are written
in Octave and in Python, and are available in the following repository: https:
//github.com/neelakshij/codes
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Figure A.1 - Flowchart: DFA

Source: produced by author.
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Figure A.2 - Flowchart: MFDFA

Source: produced by author.
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Figure A.3 - Flowchart: p model singularity spectra

Source: produced by author.
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Figure A.4 - Flowchart: p model time series

Source: produced by author.
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APPENDIX B: ANALYSIS

B.1 DFA of time series from the upleg profile

Figure B.1 - Left column shows electron density fluctuations time series for mean heights
of 152.56, 169.13, 263.69 and 316.9 km from the upleg profile. Right column
shows corresponding fluctuation function profile.
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Source: produced by author.
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B.2 Source of the multifractality

B.2.1 Source of multifractality in the valley region time series

Figure B.2 shows the original and shuffled time series and their respective multifrac-
tal spectra for the mean height 259.34 km from the downleg profile. Shuffled series
shows weaker multifractality compared to the original series, hence multifractality is
attributed to the long–range correlations as well as to the broad probability density
function.

Figure B.2 - Left panel shows original (below) and randomly shuffled (top) downleg time
series for the mean height 259.34 km from the valley region. Right panel
shows corresponding multifractal spectra.

Source: produced by author.
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B.2.2 Source of multifractality in the F region time series

Figure B.3 shows the original and shuffled time series and their respective multifrac-
tal spectra for the mean height 292.37 km from the downleg profile. Shuffled series
shows weaker multifractality compared to the original series, hence multifractality is
attributed to the long–range correlations as well as to the broad probability density
function.

Figure B.3 - Left panel shows original (below) and randomly shuffled (top) downleg time
series for the mean height 292.37 km from the F region. Right panel shows
corresponding multifractal spectra.

Source: produced by author.
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B.2.3 Source of multifractality in type I noise storm series

Figure B.4 shows the original and shuffled time series and their respective multifrac-
tal spectra for type I noise storm recorded between 06:45 and 07:00 UT. Shuffled
series retained its multifractality, hence multifractality is attributed to the broad
probability density function.

Figure B.4 - Left panel shows original (below) and randomly shuffled (top) type I noise
storm series recorded between 06:45 and 07:00 UT. Right panel shows corre-
sponding multifractal spectra.

Source: produced by author.

Spectrogram of type I noise storm series obtained from e-Callisto, recorded between
06:45 and 07:00 UT is shown in the Figure B.5.
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Figure B.5 - Spectrogram of type I noise storm series recorded between 06:45 and 07:00
UT.

Source: Institute for Data Science FHNW Brugg/Windisch, Switzerland (2011).
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ANNEX - ARTICLE 1

This annex presents a paper published in the journal Advances in Space Research.

Spectral fluctuation analysis of ionospheric inhomogeneities over
Brazilian territory Part II: E-F valley region plasma instabilities

Neelakshi Joshi, Reinaldo R. Rosa, Siomel Savio Odriozola, Francisco Carlos de
Meneses, Stephan Stephany, Gabriel Fornari and Polinaya Muralikrishna

National Institute for Space Research

Abstract

This article presents the DFA of the E-F valley region electron density fluctuations
for the first time. Analysis shows that these irregularities exhibit long–range cor-
relation with crossovers that are intrinsic to the data for all the chosen altitudes.
The PSD exponent β is computed for the analyzed data and compared with earlier
similar experiments. The results show σm >> 50%. These observations along with
the profile of α with respect to the height indicate that scaling exponents show wide
variation from the K41 theory, for both the E-F valley and F regions. This implies
that the turbulent like ionospheric fluctuations as a whole cannot be described by
the K41 homogeneous energy cascade theory.
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cChina-Brazil Joint Laboratory for Space Weather, NSSC/INPE, Av. dos Astronautas, 1758, São José dos Campos, São Paulo 12227-690, Brazil
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Abstract

The turbulent-like process associated with ionospheric instabilities, has been identified as the main nonlinear process that drives the
irregularities observed in the different ionospheric regions. In this complementary study, as proposed in the first article of this two-paper
series (Fornari et al., 2016), we performed the detrended fluctuation analysis of the equatorial E-F valley region electron density fluctu-
ations measured from an in situ experiment performed over the Brazilian territory. The spectral consistency with the K41 turbulent uni-
versality class is analyzed for E-F valley region from the DFA spectra for four electron density time series. A complementary detrended
fluctuation analysis for four time series of the F-layer electric field is also presented. Consistent with the results obtained for the F region,
the analysis for the E-F valley region also shows a very high spectral variation (� 50%). Thus, the spectral analysis performed in both
parts of the series suggest that a process such as the homogeneous turbulence K41 (b ¼ �5=3� 2%) is inappropriate to describe both the
fluctuations of electron density and the electric field associated with the main ionospheric instabilities.
� 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Equatorial ionospheric plasma irregularities; E-F valley region irregularities; Detrending

1. Introduction

The characteristic features of in situ ionospheric plasma
density fluctuation data may provide important informa-
tion on the structural processes associated with ionospheric

irregularities (Muralikrishna et al., 2003). In Part I of this
work, Fornari et al. (2016) analyzed in situ F region electric
field fluctuation data using the detrended fluctuation anal-
ysis (DFA) (Peng et al., 1994) technique to verify the wide
variation in the spectral indices reported in earlier rocket
experiments based on power spectral density (PSD)
method. The results show that the high variability of the
spectral indices is not due to the statistical limitation of
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the data, and does not constitute a K41 type of universality
class.1

As shown, in the first part of this study, PSD although
widely used, falls short to characterize turbulence spectra
from in situ ionospheric plasma density fluctuation mea-
surements. Many studies have shown that the power spec-
tra of these fluctuations exhibit two or three different
spectral exponents indicating the scaling complexity of
the process involved (Kelley and Hysell, 1991; Spicher
et al., 2014). In general, the spectral indices that have been
reported show deviation from the K41 theory but do not
elucidate the statistical properties of the energy cascading
that is supposed to drive the ionospheric turbulence
(Kelley and Hysell, 1991). In this context, the DFA pro-
posed by Peng et al. (1994) is a potential method that could
render insights into the statistical properties of the turbu-
lence phenomena.

As envisioned in Part I, here (Part II) the DFA is
applied to in situ E-F valley region (hereafter, valley
region) data. The valley region is located between the top
of the E region and the base of the F region. The valley
region, specifically the equatorial ones, hosts a variety of
plasma irregularities both during the day, the so-called
150 km echoes (Kudeki and Fawcett, 1993; Rodrigues
et al., 2011), and at dusk-nighttime (Chau and Hysell,
2004). This region is still a less explored area of research
compared to the F region given the technical limitations
in observing it. It can be studied by using powerful incoher-
ent and coherent scatter radar and in situ experiments. Var-
ious studies have been reported on the correlation between
the valley region irregularities and the equatorial plasma
instabilities in the F region:

� Radar observations revealed that (i) the valley region
irregularities are often found when the equatorial spread
F (ESF) occurred after the sunset and that their spatial
structures and temporal variations have resemblance
with the ESF, and (ii) the valley region irregularities
are a result of the coupling between the unstable equato-
rial F region and the underlying low-latitude valley and
the E region (Vickrey and Kelley, 1982; Vickrey et al.,
1984; Patra, 2008; Yokoyama et al., 2005; Li et al.,
2011; Kherani et al., 2012).

� Studies based on in situ data found that electric field and
gravity waves may play a key role in the generation of
these structures (in the valley regions) and that the struc-
tures are produced by the generalized Rayleigh-Taylor
instability mechanism at the base of the F region
(Vickrey et al., 1984; Prakash, 1999; Sinha et al., 1999;

Muralikrishna et al., 2003; Savio Odriozola et al.,
2017). Savio Odriozola et al. (2017) reported the pres-
ence of wave-like structures in valley region data
obtained from an experiment over Brazil, and the same
data is used for the present analysis.

In literature, the DFA is applied to study ionospheric
irregularities, but we could not find its application to
in situ valley region data. This work presents the first
instance of application of the DFA to in situ E-F valley
region electron density fluctuation data. The paper is orga-
nized as follows. Section 2 describes the data along with the
electron density vertical profile. The DFA is presented in
Section 3 followed by the concluding remarks in Section 4.

2. In situ valley region data

The vertical profile of electron density was obtained
from a conical Langmuir probe on-board a two-stage
VS-30 Orion sounding rocket experiment launched from
an equatorial rocket launching station, Alcântara (2:24�

S, 44:4� W, dip latitude 5:5� S), on December 8, 2012, at
19:00 LT, under quiet geomagnetic conditions. During
the �11 min flight, rocket trajectory was in the north-
northeast direction towards the magnetic equator, ranging
�384 km horizontally with an apogee covering typical F
region altitudes of �428 km. The conical Langmuir probe
worked both in swept and constant bias modes. The probe
sensor potential was swept from �1 V to +2.5 V linearly in
about 1.5 s, during which the electron kinetic temperature
was determined from the collected probe current. Then,
the potential was maintained at +2.5 V (constant bias
mode) for 1 s, during which the collected probe current
was used to estimate electron density and its fluctuations,
in each experiment cycle. This work utilizes the electron
density fluctuation data obtained from the conical Lang-
muir probe. Fig. 1 shows variations in the vertically dis-
tributed electron density in the downleg (descent of the
rocket) trajectory of the flight.

At the time of launch, the ground-based equipment
detected conditions favorable for the generation of plasma
bubbles in the F region. Savio Odriozola et al. (2017)
reported the presence of several small- and medium-scale
plasma irregularities in the valley region (120–300 km) dur-
ing both ascent and descent, which were more prominent
during the descent of the rocket. In the downleg profile,
the average electron density observed was around

9� 109 m�3, equivalent to 1=10th of the E region maxi-
mum, and then, it gradually increased after 300 km, where
the broad base of F region was detected. These observa-
tions are consistent with the work reported by Wakai
(1967), which stated that under quiet conditions, the elec-
tron concentration in the valley around midnight is about
1=10th of the E region maximum, and width of the valley
is very wide compared to the disturbed nights. Prakash
et al. (1970) reported observing a deep valley region above

1 The K41 is a theoretical framework for turbulence proposed by
Kolmogorov in 1941, which forms a basis to understand the behavior of
homogeneous multiplicative energy cascade from turbulent-like processes.
Here the turbulent energy spectrum follows a precise power law behavior
with index �5=3� 2% in the inertial range (Frisch, 1995). Therefore, the
K41 spectrum represents a universality class for homogeneous turbulent
processes.
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120 km, i.e., 120–140 km, where the electron density fell by
two orders of magnitude in their experiment (to a few hun-
dreds per cubic centimeters). Fig. 2 (left panel) shows the
selected time series from the downleg electron density pro-
file around average heights of 143, 205, and 263.9 km from
the valley region and around 316.9 km, just above the wide
base of the F region.

3. Fluctuation analysis, results and interpretation

The DFA proposed by Peng et al. (1994) could render
insights into the statistical properties of turbulence phe-
nomena. Originally proposed to detect long-range correla-
tions in DNA sequences and in data influenced by trends,
the DFA is widely used in many branches of sciences -
medicine, physics, finance and social sciences - to under-
stand the complexity of systems through its scaling expo-
nent that characterizes fractal dynamics of the system
(Kantelhardt, 2009; Veronese et al., 2011).

The robustness of DFA can be attributed to some of its
interesting features. For instance, Coronado and Carpena
(2005) investigated the influence of the length of a time ser-
ies in quantifying the correlation behavior using techniques
like autocorrelation analysis, Hurst exponent, and DFA.
The comparison study revealed that the DFA is practically
unaffected by the length of time series, contrary to that

observed from the results of Hurst analysis or autocorrela-
tion analysis. Another interesting feature has been reported
by Chen et al. (2002) who altered time series by excluding
parts of it, stitching the rest and subjecting it to the
DFA. The study revealed that even with the removal of
50% of the time series, the scaling behavior of positively
correlated signals is unaltered, implying that time series
need not be continuous. Heneghan and McDarby (2000)
established an equivalence relation between the PSD expo-
nent, b, and the DFA exponent, a, given by b 	 2a� 1.
Kiyono (2015) showed that this relationship is valid for
the higher order DFA subject to the constraint
0 < a < mþ 1, where m is the order of detrending polyno-
mial in the DFA.

The DFA involves obtaining cumulative sum of the
mean subtracted time series followed by dividing it into
non-overlapping segments ðsÞ, referred to as scales. Fur-
ther, these segments are detrended using the linear least
squares or higher order polynomial (m) method and the
variance is calculated. Depending on the detrending order,
m, the analysis is referred to as DFAm. Averaging the root
mean square over the segments ðsÞ gives the fluctuation
function, F ðsÞ. Linear fit to the fluctuation function profile
yields the scaling exponent a. Implementation procedure
can be found in Part I of this paper (Fornari et al.,
2016). In this work, four time series of electron density fluc-

Fig. 1. Vertical profile of electron densities for downleg trajectory. Open boxes represent the chosen heights. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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tuations from the downleg profiles corresponding to the
valley region are selected. The selected time series corre-
spond to the mean heights of 143, 205, 263.9, and
316:9 km (please see left panel in Fig. 2).

The selected time series are subjected to DFA. Scales are

varied from 10 to N=4 with a factor of 2
1
8, where N is the

length of time series (Goldberger et al., 2000). The fluctua-
tion function computed from DFA is plotted as a function
of scales for all the selected time series (right panel in
Fig. 2) on a log-log scale. The profiles of fluctuation func-
tion for all the chosen cases exhibit long-range correlation
with a crossover. Crossover refers to a change in the scaling

exponent for different scale ranges, and it usually arises due
to a change in the correlation properties over different spa-
tial or temporal scales, or from trends in the data. The
exponents a1 and a2 are obtained from the linear fit of
F ðsÞ, where a1 refers to smaller scales and a2 refers to lar-
ger scales. Our analysis reveals a1 to be in the range of 0:28
to 1:76 and a2 in the range of 0:67 to 1:5. For mean heights
corresponding to 143 and 205 km, we observe a1 is smaller
than a2, contrary to the observation for mean heights cor-
responding to 263:9 and 316:9 km.

In order to be sure that the obtained crossover is intrin-
sic to the data and not an artifact, we investigated the time

Fig. 2. Left column – E-F valley region time series (dN ) of electron density fluctuations obtained from Langmuir probe during the downleg flight for the
chosen heights. Right column – Corresponding fluctuation function profile F ðsÞ (open circle) as a function of scales s along with the fit (solid line), i.e., the
a exponent.
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series with higher order DFAs, of the order 1–5. For this
investigation, we used the methodology prescribed by
Kantelhardt et al. (2001) to identify false crossovers. Arti-
ficial crossover exhibits similar characteristic length with
identical scaling. Fig. 3 presents the analysis for downleg
time series corresponding to the mean height of 143 km
with DFA of 1st to 5th order. The crossover exponents
are listed in Table 1. It can be observed that as the order
of detrending increases, crossover point moves towards lar-
ger scales and have different scaling exponents. This inves-
tigation confirms that the obtained crossover is an intrinsic
property of electron density fluctuation data in the valley
region.

The PSD exponent, b, is calculated using the equiva-
lence relationship given above, and the standard deviation
rm (in %) is determined. The computed DFA exponents in
our analysis show a wide range of b from �0:98 to �2:14
with rm ¼ 58%. Table 2 summarizes the variations in the
b exponent obtained from the previous equivalent studies
(Rino et al., 1981; Kelley et al., 1982; Muralikrishna and
Vieira, 2007; Sinha et al., 2010, 2011) and compares with
the present work. All studies reported in Table 2 are based
on electron density fluctuation data obtained through
rocket experiments. It is observed that the computed

standard deviation rm � 50%, which affirms that the
underlying mechanism for instabilities differs from the
K41 homogeneous turbulence, given the accepted deviation
is rm 
 2% (Frisch, 1995).

We also performed the DFA on in situ electric field fluc-
tuation data from the F region obtained from an earlier
experiment conducted on December 18, 1995, at 21:17
LT, under quiet geomagnetic conditions from the same
equatorial launching station Alcântara (2.24� S, 44.4� W,
dip latitude 5.5� S) (Fornari et al., 2016). The rocket flight
traversed through similar altitudes of 200–300 km. This
data indicated the presence of a large plasma bubble at
an altitude of �280 km. Fig. 4 presents the time series
and the corresponding DFA.

Fig. 3. Fluctuation function profiles for the downleg time series at a mean height of 143 km for polynomials of orders 1–5. Open circles represent the
crossover points for the respective detrending order. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
DFA1 to DFA5 for downleg time series at �143.03 km.

DFA order a1 a2

DFA1 0.39 1.50
DFA2 0.15 1.93
DFA3 0.12 2.08
DFA4 0.10 2.26
DFA5 0.13 2.53
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The data from aforementioned experiments is selected for
the altitudes of 200–300 km. In the valley region data, small-
to-medium scale plasma irregularities (Savio Odriozola
et al., 2017) are found, while the F region data shows
medium-to-large scale plasma irregularities (Fig. 2 in
Muralikrishna et al., 2003). Hence, it will be interesting to
compare the scaling exponents of plasma densities around
similar altitudes for these two different regions. Fig. 5 shows
the scaling exponent plotted as a function of height for the

valley region (left panel) and the F region (right panel).
For this plot, we have used a single linear fit for valley region
data. The shaded horizontal bar in the plot represents the
exponent value, a ¼ 1:33� 2%, for the homogeneous turbu-
lence described by the K41 theory. The range of a exponents
for the F region is higher than that of the valley region,
which may be due to different scaling present in these
regions. Wide variations of the scaling exponent from the
K41 theory are observed for both regions.

Table 2
Comparison of PSD spectral indices (b) found in previous equivalent studies and b obtained here from DFA. All results measured using rockets are related
to electronic density measurements during the experiment.

Date and Time Spacecraft Altitude (km) b range bh i rm References

17/07/1979, 12:31:30 UT Rocket 250 to 370 �1.20 to �3.4 �2.3 110% Rino et al. (1981)
17/07/1979, 12:31:30 UT Rocket 250 to 285 �2.00 to �3.4 �2.7 70% Kelley et al. (1982)
11/12/1985, 00:30 UT Rocket 210 to 306 �1.34 to �3.3 �2.32 98% Muralikrishna and Vieira (2007)
31/10/1986, 03:00 UT Rocket 100 to 220 �1.54 to �3.30 �2.42 88% Muralikrishna and Vieira (2007)
14/10/1994, 22:55 UT Rocket 117 to 518 �1.20 to �5.3 �3.25 205% Muralikrishna and Vieira (2007)
18/12/1995, 00:17 UT Rocket 240 to 500 �1.11 to �4.90 �3.01 189% Muralikrishna and Vieira (2007)
15/01/2007, 16:43 UT Rocket – to 127 �1.60 to �2.70 �2.15 55% Sinha et al. (2010)
29/01/2008, 15:49 UT Rocket – to 117 �2.00 to �3.50 �2.75 75% Sinha et al. (2011)
08/12/2012, 22:00 UT Rocket – to 317 �0.98 to �2.14 �1.56 58% This paper

Fig. 4. Left column – F region time series (dE) of electric field fluctuations obtained from electric field probe during the downleg flight. Right column –
Corresponding fluctuation function profile F ðsÞ (open circle) as a function of scales s along with the fit (solid line), i.e., the a exponent.
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4. Concluding remarks

In this paper, the complementary in situ E-F valley
region irregularities are studied using the DFA. This study
is important as studies of the equatorial E-F valley region
at nighttime are scarce. Our analysis shows that the E-F
valley region electron density fluctuations exhibit long-
range correlation with crossovers that are intrinsic to the
data for all the chosen altitudes. The F region irregularities
obtained from an earlier experiment are also analyzed
using the DFA and similar results in terms of long-range
correlations are obtained for all the chosen altitudes. The
PSD exponent b is computed for the current data and com-
pared with earlier similar experiments. The results show
rm � 50%. These observations along with the profile of a
with respect to the height indicate that scaling exponents
show wide variation from the K41 theory, for both the
E-F valley and F regions. This implies that the turbulent-
like ionospheric fluctuations as a whole cannot be
described by the K41 homogeneous energy cascade theory.

Given this scenario and considering the different mech-
anisms responsible for the plasma instability along different
ionospheric regions, it is necessary to investigate the model
for non-homogeneous turbulence that will help to under-
stand the observed high spectral variability. A future study
that emerges naturally in this scenario is to look for multi-
fractal signature from the data analyzed here. This investi-
gation is in progress and will be published in an upcoming
paper.
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Abstract

This article presents the MFDFA of the F region irregularities. This analysis charac-
terizes intermittent multifractal nature of the irregularities, and is quantified with p
model. The results confirm the non–homogeneous nature of the F region irregulari-
ties. The usability of the MFDFA in deciphering the morphology of the ionospheric
F region irregularities is demonstrated.
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Abstract. In the emerging ionosphere–space–weather
paradigm, investigating the dynamical properties of iono-
spheric plasma irregularities using advanced computational
nonlinear algorithms provide new insights into their
turbulent-seeming nature, for instance, the evidence of
energy distribution via a multiplicative cascade. In this
study, we present a multifractal analysis of the equatorial F
region in situ data obtained from two different experiments
performed at Alcântara (2.4◦ S, 44.4◦W), Brazil, to explore
their scaling structures. The first experiment observed
several medium- to large-scale plasma bubbles whereas the
second experiment observed vertical uplift of the base of
the F region. The multifractal detrended fluctuation analysis
and the p-model fit are used to analyze the plasma density
fluctuation time series. The result shows the presence of
multifractality with degree of multifractality 0.53–0.93 and
0.3≤ p ≤ 0.4 cascading probability for the first experiment.
Other experimental data also exhibit multifractality with
degree of multifractality 0.19–0.27 and 0.42≤ p ≤ 0.44
cascading probability in ionospheric plasma irregularities.
Our results confirm the nonhomogeneous nature of plasma
irregularities and characterize the underlying nonhomoge-
neous multiplicative cascade hypothesis in the ionospheric
medium. Differences in terms of scaling and complexity in

the data belonging to different types of phenomena are also
addressed.

1 Introduction

Present ionospheric research is transiting towards iono-
spheric space weather that goes beyond the ground-
and space-based communication interruptions to influence
decision-making communities on social, economical, and
physical infrastructural policies. The enhancements in iono-
spheric plasma irregularities driven by space weather con-
ditions demand an accurate characterization of the dynami-
cal properties of the electron density and its complex non-
linear variation (Cander, 2019). With instruments operating
over a substantial frequency domain, a study of plasma den-
sity irregularities provide insight into the underlying physical
mechanism and its structural properties (Wernik et al., 2003;
Muralikrishna et al., 2003). Energy dissipation is found to be
an underlying process for the occurrence of electron density
or electric field fluctuations in ionospheric plasma irregulari-
ties (Jahn and LaBelle, 1998; Kelley and Hysell, 1991).

Various rocket experiments and numerical simulations
have been performed and contributed to our understanding
of the generation and development of ionospheric irregular-
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ities. Costa and Kelley (1978) showed that the Rayleigh–
Taylor instability that initiates in the bottomside equatorial
F-region can nonlinearly develop very sharp gradients lead-
ing to the formation of steepened structures responsible for
the power-law spectra observed by a rocket experiment in
Natal, Brazil. Shock waves were observed by numerical sim-
ulation performed by Zargham and Seyler (1987) of the gen-
eralized Rayleigh–Taylor instability at the bottomside and
topside F-region equatorial ionosphere, which was confirmed
by rocket and satellite in situ data reported by Kelley et al.
(1987). Hysell et al. (1994a, b) proposed a model of plasma
steepening, evolving from plasma advection that occurs on
the vertical leading edges of plasma depletion wedges, to
interpret shock waves detected in the equatorial ionosphere
by rockets launched from Kwajalein Atoll. Jahn and LaBelle
(1998) measured shock-like structures characterized by the
density waveforms at the bottomside and topside F-region of
the equatorial ionosphere in a rocket experiment in Alcân-
tara, Brazil.

The spectral analysis, though widely used, falls short in
characterizing nonstationary data as stationarity is assumed
in the data, which is equivalent to presuming homogeneous
turbulence; hence, a more robust method is necessary to ana-
lyze nonstationary data (Wernik et al., 2003). In addition, to
develop a robust specification and a forecasting model, along
with classical morphological, statistical, and spectral studies,
a thorough understanding of nonlinearity in ionospheric ir-
regularities is essential (Tanna and Pathak, 2014).

Recent advances in the computational algorithms based on
fractal formalism, supplemented with mathematical model-
ing derived from probabilistic measures, have conclusively
substantiated the occurrence of the energy cascading pro-
cess in turbulent sites in the solar and interplanetary envi-
ronment as well as in the laboratory using Kolmogorov’s
formalism as the basis (Grauer et al., 1994; Carbone et al.,
1995; Abramenko et al., 2002; Macek, 2007; Wawrzaszek
and Macek, 2010; Chian and Muñoz, 2011; Miranda et al.,
2013; Wawrzaszek et al., 2019).

Various different approaches had been explored to un-
derstand nonlinear characteristics and intermittency in iono-
spheric irregularities, like structure function analysis (Dyrud
et al., 2008; Spicher et al., 2015), fractal and multifractal
analysis (Wernik et al., 2003; Alimov et al., 2008; Bolzan
et al., 2013; Tanna and Pathak, 2014; Miriyala et al., 2015;
Chandrasekhar et al., 2016; Fornari et al., 2016; Sivavara-
prasad et al., 2018; Neelakshi et al., 2019), and multispectral
optical imaging (Chian et al., 2018).

Structure function analysis performed on ionospheric
high-latitude in situ data have revealed the intermittent na-
ture of ionospheric irregularities owing to the large devia-
tions from the Kolmogorov’s K41 universal power-law index
proposed for neutral fluid turbulence (Spicher et al., 2015).

In all the abovementioned studies, the main feature which
gets highlighted is that the power spectra point to large de-
viations from the homogeneous turbulence described by the

Kolmogorov spectrum (−5/3). Also, higher-order statistics
like structure function analysis confirmed the deviation from
the Kolmogorov scales, thus affirming the nonhomogeneity
and intermittency in ionospheric irregularities. In the com-
plex scenario of ionospheric turbulence, an important ques-
tion that arises in the context of this paper is “is nonhomo-
geneity, which can be characterized by multifractal spectra,
the cause for the large deviations from the −5/3?” To an-
swer this question, we propose using the multifractal de-
trended fluctuation analysis (MFDFA) on the equatorial F
region plasma irregularities.

A detrended fluctuation analysis (DFA; Peng et al., 1994)
has been a proven successful method to find a power law
correlation and monofractal scaling in noisy, nonstationary
data. The DFA is a robust method as it can handle discon-
tinuous and length-wise short data. In case data are more
complex and have intricate scaling, various scaling expo-
nents characterize different parts of the data. To character-
ize such multiple scaling behavior in the data, Kantelhardt et
al. (2002) generalized DFA to MFDFA, and have shown the
equivalence to standard partition-function-based multifractal
method for stationary data with compact support.

The MFDFA has wide applications in many branches
of science, such as medicine (Makowiec, 2011), physics
(de Freitas et al., 2016), engineering (Lu et al., 2016), fi-
nance (Grech, 2016), and social sciences (Kantelhardt, 2009;
Telesca and Lovallo, 2011), to understand the complexity
of a system through its scaling exponents that character-
ize multifractal dynamics of the system. The MFDFA has
been applied to study ionospheric scintillation index time
series (Tanna and Pathak, 2014; Miriyala et al., 2015) and
ionospheric total electron content data (Chandrasekhar et al.,
2016; Sivavaraprasad et al., 2018). For example, a wavelet
transform was applied to study ionospheric irregularities
(Wernik et al., 2003; Bolzan et al., 2013). These analyses
identified multifractality and intermittency in nonlinear iono-
spheric irregularities.

In this work, we explore the low-latitude equatorial F re-
gion in situ data obtained from two different experiments and
performed from the same rocket launching station. In the first
experiment, done on 18 December 1995, the rocket traversed
through various medium- to large-scale plasma irregularities
during its descent, which were associated with the general-
ized Rayleigh–Taylor instability (Muralikrishna et al., 2003),
whereas in the second experiment, done on 8 December
2012, the base of the F region was moving upward; i.e., pre-
reversal enhancement (PRE) of vertical plasma drift was ob-
served (Savio et al., 2016; Savio Odriozola et al., 2017).

In the equatorial ionosphere, the evening PRE is consid-
ered as an important seeding mechanism for the post-sunset
F region irregularities, as quick and acute uplift of the electric
field escalates the rate of growth of the generalized Rayleigh–
Taylor instability (Li et al., 2007; Kelley et al., 2009; Abdu
et al., 2018). Knowing the relation between these two phe-
nomena, it will be interesting to know the differences in their
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scaling behavior and complexity. Investigating these plasma
fluctuations may enable the study of the scaling properties of
these plasma irregularities, and also knowing various char-
acteristics along with the complexity of the data may pro-
vide important inputs to model empirical data. Hence, we
apply the MFDFA method to the plasma density fluctuation
data obtained from these two different in situ experiments.
To corroborate our results, a multifractal spectrum obtained
from the MFDFA is fitted with the p-model (Meneveau and
Sreenivasan, 1987) based on the generalized two-scale Can-
tor set. Details on the experiments are given briefly in Sect. 2.
Methods are described in Sect. 3. The results of the analyses
are discussed in Sect. 4 followed by concluding remarks in
Sect. 5.

2 In situ experiments

The equatorial launching station of Brazil is located at Al-
cântara (2.24◦ S, 44.4◦W, dip latitude 5.5◦ S). The SONDA
III rocket was launched at 21:17 LT on 18 December 1995
under favorable conditions for formation of a plasma bub-
ble. During the ∼ 11 min flight, the plane of rocket trajec-
tory was almost orthogonal to the geomagnetic field lines
and spanned ∼ 589 km distance horizontally with an apogee
at altitude ∼ 557 km. A rocket-born electric field double
probe (EFP) measured electric field fluctuations related to
ionospheric plasma irregularities. In the upleg profile (as-
cent of the rocket), the F region base is clearly observed
around 300 km, but without any large-scale depletion or bub-
ble. On the other hand, several plasma bubbles of medium–
large scale were observed in the downleg profile (descent of
the rocket), around the base of F region and also topside of
it, but without any sharp indication of the F region base from
an altitude above 240 km. The rocket traversed through re-
gions of different altitudes separated by a few hundred kilo-
meters during upleg and downleg, so this might elucidate the
large differences observed in ascent and descent of the rocket
(Muralikrishna et al., 2003; Muralikrishna and Abdu, 2006;
Muralikrishna and Vieira, 2007). A detailed explanation of
in situ experiment and the analysis is found in Muralikrishna
et al. (2003), Muralikrishna and Abdu (2006), and Muralikr-
ishna and Vieira (2007).

Some of the key results from the aforementioned (Mura-
likrishna et al., 2003; Muralikrishna and Abdu, 2006; Mu-
ralikrishna and Vieira, 2007) analyses indicate (1) the initia-
tion of a cascade process, owing to the generalized Rayleigh–
Taylor instability mechanism near the base of F region that
resulted in the development of plasma bubbles or large-scale
irregularities, and (2) subsequently, when energy was ad-
vected to higher altitudes, smaller-scale irregularities were
observed, owing to the cross-field instability mechanism.

From the same rocket launching station, Alcântara, a
two-stage VS-30 Orion sounding rocket was launched at
19:00 LT, on 8 December 2012, under favorable conditions

for strong spread F. During the ∼ 11 min flight, the rocket
trajectory was in the north-northeast direction towards the
magnetic equator, ranging ∼ 384 km horizontally with an
apogee at ∼ 428 km. A conical Langmuir probe on board
the rocket measured the electron density fluctuations asso-
ciated with ionospheric plasma irregularities. In this experi-
ment, the F region base was clearly observed in the downleg
profile around 300 km, with some small-scale fluctuations in
the F region. At the rocket launch time, the ground equip-
ment, a digisonde, was operated from the equatorial station
and reported fast uplift of the base of F layer, thus indicating
the pre-reversal enhancement of the F region vertical drift
(Savio et al., 2016; Savio Odriozola et al., 2017). Further ex-
planation of the in situ experiment and data analysis is found
in Savio et al. (2016); Savio Odriozola et al. (2017).

3 Methods

3.1 Multifractal detrended fluctuation analysis

Multifractal detrended fluctuation analysis (Kantelhardt et
al., 2002) has been applied to investigate the multifractal
properties of ionospheric irregularities in the following way.

To implement the MFDFA, a plasma density time series xk
of length N is considered. A first step is to compute the pro-
file, Y (i), by calculating the cumulative sum by subtracting
its mean.

Y (i)=

i∑
k=1
[xk −〈x〉], i = 1, . . .,N (1)

divide the integrated profile into non-overlapping and
equidistant Ns segments of s elements, referred to as scales.
The length of the series may not be a multiple of all scales
and a small part of the profile may be left out. To avoid it,
repeat the same procedure over the profile but starting from
the endpoint, in the reverse direction.

Now we have a total of 2Ns segments. These segments
are then detrended using linear least squares. The variance is
calculated over all segments:

F 2(s,v)=

(
1
s

s∑
i=1
[Y [(v− 1)s+ i] − yv(i)]2

)
for each segment v,v = 1,2, . . .,Ns (2)

and

F 2(s,v)=

(
1
s

s∑
i=1
[Y [N − (v−Ns)s+ i] − yv(i)]

2

)
for each segment v,v =Ns + 1, . . .,2Ns . (3)

yv(i) is a polynomial fit obtained on a segment v. Now, aver-
aging over all segments, the qth-order fluctuation function is
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computed.

Fq(s)=

(
1

2Ns

2Ns∑
v=1
[F 2(s,v)]q/2

)1/q

for q 6= 0 (4)

When q = 0, logarithmic averaging should be used to calcu-
late fluctuation function.

F0(s)= exp

(
1

2Ns

2Ns∑
v=1
[ln(F 2(s,v))]

)
(5)

Applying a linear fit to the fluctuation function profile on
the log-log plot yields the generalized Hurst exponent, h(q),
for each moment q as Fq(s)∝ sh(q). The computed gener-
alized Hurst exponent h(q) can be related to the classical
multifractal scaling (or mass) exponent as τ(q) by τ(q)=
qh(q)−1. The multifractal spectrum is calculated using h(q)
as follows:

α = h(q)+ qh′(q) where h′(q)=
dh
dq
, (6)

f (α)= q(α−h(q))+ 1, (7)

where α represents the multifractal strength and f (α) repre-
sents a set of multifractal dimensions.

3.2 The p-model

The p-model is proposed by Meneveau and Sreenivasan
(1987) to model the energy cascading process in the iner-
tial range of fully developed turbulence for the dissipation
field. The p-model starts with a coherent structure with an
assumed specific energy flux per unit length which then un-
dergoes a binary fragmentation at each cascading step, dis-
tributing the energy flux with probabilities p1 and p2 among
the fragments l1 and l2. In this cascading process, n denotes
the number of generations. In each generation, the segment
size is given by lm1 l

n−m
2 , wherem denotes the number of left-

side fragments and n−m represents right-side fragments in a
segment (Halsey et al., 1986). An analytical formulation for
the generalized two-scale Cantor set is given by

α =
ln(p1)+ (n/m− 1) ln(p2)

ln(l1)+ (n/m− 1) ln(l2)
, (8)

f (α)=
(n/m− 1) ln(n/m− 1)− (n/m) ln(n/m)

ln(l1)+ (n/m− 1) ln(l2)
. (9)

This is useful to determine the generalized multifractal di-
mensions which represent the multifractal spectrum (Halsey
et al., 1986).

Based on the generalized two-scale Cantor set, the p-
model consider equal fragment length (l1 = l2) and unequal

Table 1. Multifractal analysis measures for the first experiment: the
time series at mean heights are listed in the first column, the second
column shows the degree of multifractality (1α), and the third col-
umn gives the measure of asymmetry (A). Columns 4 to 6 list the
p-model fit parameters, l1, p1, and dp respectively.

Degree of Measure
Mean height multifractality of asymmetry p-model fit parameters

(km) 1α A l1 p1 dp

264.58 0.53 0.82 0.5 0.364 0.059
270.22 0.82 1.11 0.5 0.340 0.065
292.37 0.93 2.99 0.5 0.339 0.02
324.00 0.72 0.32 0.5 0.315 0.090
358.56 0.52 0.37 0.5 0.360 0.070
429.65 0.28 0.51 0.5 0.399 0.0355

weights (p1 6= p2 and p1+p2 ≤ 1). When p1+p2 ≤ 1, loss
in p parameter given by dp = 1−p1−p2, accounts for the
direct energy dissipation in the energy cascading process in
the inertial range. The proposed p-model claims to display
all multifractal properties of one-dimensional section of the
dissipation field for fully developed turbulence. The multi-
fractality ceases to exist for p = 0.5.

4 Results and interpretation

Six time series of in situ observations of electric field fluc-
tuations from the F region are selected from the first experi-
ment performed on 18 December 1995, corresponding to the
mean heights of 264.58, 270.22, 292.37, 324.00, 358.56, and
429.65 km in the downleg. Similarly, from the second exper-
iment performed on 12 December 2012, we selected three
time series of electron density fluctuations from the F region,
corresponding to the mean heights of 339.94, 348.99, and
400.24 km in the downleg. These time series are subjected to
the multifractal analysis. Primarily, the profile is obtained by
differencing the time series, i.e., y = x(i+1)−x(i), using the
criterion based on the power exponent obtained in the DFA
method, prescribed by Ihlen (2012) in Table 2, for biomed-
ical time series, to yield the best results from the MFDFA
method. We found the criterion to hold for ionospheric in
situ data under study. Scales up to 1/10 of the length of
the time series are considered. From the MFDFA, the gen-
eralized Hurst exponent h(q), classical multifractal scaling
exponent τ(q) and multifractal spectrum α, and f (α) are
obtained. We show a comprehensive analysis for only one
time series from each of the two experiments (Figs. 1 and 2).
For the remaining time series, we show only the multifractal
spectrum along with its respective time series (Figs. 3 and
4), but we report the analysis of both experiments in Tables 1
and 2, respectively.

In the MFDFA, fluctuation function Fq(s) is obtained by
computing the qth-order local root mean square (RMS) for
multiple segment size, i.e., for scales s. A segment may
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Figure 1. Comprehensive MFDFA for the first experiment: panel (a) shows the time series at mean height 324.00 km and panel (b) shows
the h(q) vs. q profile. Panel (c) shows τ(q) vs. q profile along with a dashed line which represents a linear relationship between τ(q) and q,
and panel (d) shows the multifractal spectrum fitted with the p-model (continuous line).

Table 2. Multifractal analysis measures for the second experiment:
For the time series at mean heights listed in the first column, the sec-
ond column shows degree of multifractality (1α), the third column
gives measure of asymmetry (A). Columns 4 to 6 lists the p-model
fit parameters, l1, p1, dp respectively.

degree of measure
< height> multifractality of asymmetry p-model fit parameters

(km) 1α A l1 p1 dp

339.94 0.27 1.34 0.5 0.4230 0.012
348.99 0.22 1.72 0.5 0.4300 0.006
400.24 0.19 0.94 0.5 0.4335 0.01

contain smaller to larger fluctuations. Rapid variation in
fluctuations influence overall RMS for smaller-scale sizes,
whereas slow variation in fluctuations influence overall RMS
for larger-scale sizes. Negative q values characterize smaller
fluctuations and positive q values characterize larger fluctu-
ations in a segment. When q = 0, it behaves neutrally. h(q)
has dependence on q. To outline, for a multifractal time series
h(q) monotonically decreases with q, and τ(q) shows non-
linear dependence on q. With q = 0 as a center point, let us
inspect how h(q) varies with respect to negative and positive

values of q. If the time series is influenced by smaller fluc-
tuations, then variation of h(q) for negative q will be faster,
i.e., a steeper slope can be observed with respect to negative
q and vice versa (Kantelhardt et al., 2002; Ihlen, 2012).

The multifractal spectrum illustrates how segments with
small and large fluctuations deviate from the average frac-
tal structure. The shape and width of the multifractal spec-
trum are also important measures to quantify the nature of
multifractality present in the data. For f (α)= 1, the corre-
sponding value of α, known as α0, divides the spectrum into
left and right sides. A shape of the spectrum (the difference
between the left and right sides of the spectrum) can be quan-
tified by measure of asymmetry, A, given by

A=
α0−αmin

αmax−α0
. (10)

When A= 1, the multifractal spectrum is symmetric in the
sense that the time series is influenced by both larger as well
as smaller fluctuations. When A> 1, the spectrum is left-
skewed, which implies that the time series is more influenced
by the larger fluctuations. WhenA< 1, the spectrum is right-
skewed, which implies that the time series is more influenced
by smaller fluctuations.
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Figure 2. Comprehensive MFDFA for the second experiment: panel (a) shows the time series at mean height 339.94 km and panel (b) shows
the h(q) vs. q profile. Panel (c) shows the τ(q) vs. q profile along with a dashed line which represents a linear relationship between τ(q)
and q, and panel (d) shows the multifractal spectrum fitted with the p-model (continuous line).

A width of the spectrum can be quantified by1α, which is
the difference between maximum and minimum dimension.

1α = αmax−αmin (11)

The width of the spectrum infers the degree of multifractality
and complexity of the data. It represents the deviation from
the average fractal structure and directly relates to the param-
eters corresponding to the multiplicative cascade process. A
larger (smaller) value of 1α infers stronger (weaker) multi-
fractality in the data.

The multifractal spectrum reflects the characteristics of the
h(q) profile. In the spectrum, contrary to the h(q) profile,
the left side is characterized by positive values of q, and the
right side is characterized by negative values of q. When the
h(q) profile shows the steeper variations on the left side, i.e.,
for negative q’s, the right side of the spectrum shows faster
variation compared to its left side.

Figure 1 shows a detailed multifractal analysis of a time
series from the first experiment, corresponding to the mean
height of 324.00 km (a). The profile of h(q) as a function of
q is shown in Fig. 1b, and of τ(q) in 1c. The corresponding
multifractal spectrum is shown in Fig. 1d. The spectrum is
right-skewed, indicating the influence of the negative values
of q on the data. It is evident as well from the h(q) pro-

file that the variation of h(q) for negative q is observed to
be comparatively steep. The plot for τ(q) versus q shows
marked deviation from the linearity, asserting the presence of
the multifractality in the time series for the chosen height. In
addition to the derived inferences from the visual analysis of
the multifractal spectrum reported above, multifractal mea-
sures,1α, andA can be quantified (Eqs. 11 and 10). Measure
A= 0.32 quantifies the skewness while1α = 0.72 infers the
strength of multifractality. These two measures are listed in
Table 1. Lastly, the multifractal spectrum is fitted with the
p-model (shown with a continuous line), where the fragment
lengths are equal; i.e., l1 = l2 = 0.5 and the weights, p1 and
p2, are varied such that p1+p2 ≤ 1. Nevertheless, the loss
in p parameter had to be accounted for to obtain an optimal
fit. The loss factor, dp, signifies nonconservative energy dis-
tribution, i.e., a dissipative energy cascading process in the
inertial range. We have obtained a dissipative factor of 0.090,
with p1 = 0.315. The p-model fit parameters are listed in Ta-
ble 1.

Similar to Fig. 1, Fig. 2 shows a detailed multifractal anal-
ysis of a time series from the second experiment, correspond-
ing to the mean height of 339.94 km (a). The profile of h(q)
as a function of q is shown in Fig. 2b, and of τ(q) in Fig. 2c.
The corresponding multifractal spectrum is shown in Fig. 2d.
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Figure 3. MFDFA for the first experiment: the time series and its corresponding multifractal spectrum with the p-model fit (continuous line)
for the mean heights of 264.58, 270.22, 292.37, 358.56, and 429.65 km, from top to bottom, respectively.
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Figure 4. MFDFA for the second experiment: panels (a, b) show the multifractal analysis of the time series at mean height 348.99 km and
panels (c, d) show the multifractal analysis of the time series at mean height 400.24 km. Panels (a, c) show the time series for given mean
height and panels (b, d) show the multifractal spectrum fitted with the p-model (continuous line).

The spectrum is left-skewed, indicating the influence of the
positive values of q on the data. The variation of h(q) for
positive q is observed to be comparatively steep. The plot
for τ(q) versus q show a marked deviation from the linear-
ity, asserting the presence of the multifractality in the time
series for the chosen height. The multifractal measures com-
puted,A= 1.34 and1α = 0.27, and listed in Table 2. Lastly,
the multifractal spectrum is fitted with the p-model (shown
with a continuous line). We have obtained a dissipative fac-
tor of 0.012, with p1 = 0.423. The p-model fit parameters
are listed in Table 2.

It is seen from the above description that the multifractal
spectrum is sufficient to assess the multifractal nature; hence-
forth we show the time series and the corresponding multi-
fractal spectrum for the remaining chosen heights.

Figure 3 shows the time series selected from the first ex-
periment in the left panels and the corresponding multifractal
spectrum in the right panels:

– For the time series corresponding to the mean height of
264.58 km, the multifractal spectrum is slightly right-
skewed, which can be inferred from measure A= 0.82.
It indicates the influence of negative moments, q, which
characterizes the influence of smaller fluctuations than

the average. The degree of multifractality is1α = 0.53.
The optimal p-model fit is obtained with parameters
p1 = 0.364 and dp = 0.059.

– For the time series corresponding to the mean height
of 270.22 km, the multifractal spectrum is slightly left-
skewed, which can be inferred from measure A= 1.11.
It indicates the influence of positive moments, q, which
characterize intense larger fluctuations than the average.
The degree of multifractality is1α = 0.82. The optimal
p-model fit is obtained with parameters p1 = 0.34 and
dp = 0.065.

– For the time series corresponding to the mean height of
292.37 km, the multifractal spectrum is left-skewed, re-
flected in measureA= 2.99. It indicates the influence of
positive moments, q, which characterize intense larger
fluctuations than the average. The degree of multifrac-
tality is1α = 0.93. The optimal p-model fit is obtained
with parameters p1 = 0.339 and dp = 0.02. We could
fit the spectrum corresponding to positive values of q.

– For the time series corresponding to the mean height
of 358.56 km, the multifractal spectrum is right-skewed,
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Figure 5. Variation of the mean density and the degree of multifractality with the mean height for the six selected time series from the first
experiment in a 3-D plane. These variations are shown in a 2-D plane of the mean density (main image) and the degree of multifractality
(inset).

reflected in measure A= 0.37. It indicates the influence
of negative moments, q, which characterize the influ-
ence of smaller fluctuations than the average. The de-
gree of multifractality is 1α = 0.52. The optimal p-
model fit is obtained with parameters p1 = 0.36 and
dp = 0.07.

– For the time series corresponding to the mean height
of 429.65 km, the multifractal spectrum is right-skewed,
also reflected in measure A= 0.51. It indicates the in-
fluence of negative moments, q, which characterize the
influence of smaller fluctuations than the average. De-
gree of multifractality is 1α = 0.28. The optimal p-
model fit is obtained with parameters p1 = 0.399 and
dp = 0.0355.

Figure 4 shows the time series selected from the second
experiment in Fig 4a and c and the corresponding multifrac-
tal spectrum in Fig 4b and d:

– For the time series corresponding to the mean height of
348.99 km, the multifractal spectrum is left-skewed, re-
flected in measureA= 1.72. It indicates the influence of
positive moments, q, which characterize intense larger
fluctuations than the average. The degree of multifrac-
tality is1α = 0.22. The optimal p-model fit is obtained
with parameters p1 = 0.43 and dp = 0.006.

– For the time series corresponding to the mean height
of 400.24 km, the multifractal spectrum is almost sym-
metrical. This is reflected in measure A= 0.94, which
is very close to 1. It indicates that both negative and
positive moments of q characterize the influence of
larger and smaller fluctuations than the average almost
equally. The degree of multifractality is 1α = 0.19.

The optimal p-model fit is obtained with parameters
p1 = 0.4335 and dp = 0.01.

Figure 5 shows a variation of mean density and multifrac-
tal width,1α, with mean heights for the selected six time se-
ries on a three-dimensional plane. The presence of a plasma
bubble characterized by large-scale irregularities, which in
turn is reflected in the low density, is observed around a mean
height of 292.37 km. Contrarily, stronger multifractality is
observed at this height. This inverse variation is in agreement
with the turbulent-seeming multiplicative cascade process.
On the other hand, as the rocket traversed higher altitudes,
the mean density increased while the multifractality became
weaker. This suggests that the cascading process resulted in
smaller-scale irregularities due to dissipating energy. Two-
dimensional plots showing the variation of mean density and
1α with mean heights are shown in Fig. 5.

5 Concluding remarks

In this work, we investigate the in situ F region electric field
and electron density measurements obtained from the two ex-
periments carried out near the equatorial sites in Brazil using
the MFDFA to understand the complexity in the data and to
identify the signature of multiplicative energy cascades in ir-
regularities.

In all the time series, we obtained 0.9< h(q) < 1.5, which
indicates a long-range correlation with persistent temporal
fluctuations. In addition, we note that the h(q) profile mono-
tonically decreases with respect to q and that τ(q) shows de-
viation from the linearity, indicating the presence of the mul-
tifractality in all time series. Measures of multifractal spec-
tra, A, have shown the presence of structures (both smaller
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or larger) in the fluctuations, and 1α has shown weaker to
stronger multifractality. The multifractal spectra were fitted
with the p-model and we found weight parameter p1 to be
different from 0.5, which confirms the multifractality present
in the data. The accounting nonzero dissipation factor sug-
gests that energy distribution across the eddies is nonuni-
form. Our results show the nonhomogenous and intermittent
nature of ionospheric irregularities are consistent with previ-
ous findings.

In the second experiment, we considered a total of six time
series, out of which three time series exhibited a monofractal
nature, and the remaining three showed weaker multifractal-
ity and are presented here. 1α and skewness are found to
be smaller compared to the first experiment. The result for a
mean height of 348.99 km is different than for the other two
heights and shows evidence of some different kind of phys-
ical mechanism, which can be described by the multiplica-
tive cascade process. Though time series are characterized
by weaker multifractality, these data have fractal behavior
with long-range correlation. However, we argue that more
detailed study is required to reach any definite conclusion on
the turbulent-seeming mechanism driving the ionospheric ir-
regular structures.

Finally, we intend to test the potential of this algorithm
in deciphering the morphology of the cascading phenomena.
For this, we choose the first experiment where the rocket in-
tercepted a plasma bubble. Muralikrishna et al. (2003) re-
ported the presence of predominant sharp peaks in the power
spectra over a wide range of heights, and they attribute these
to a developing plasma bubble that subsequently dissipated
energy, reaching an equilibrium which is evidenced by the
absence of peaks. Our multifractal analysis has captured this
sequence of events.

The presence of a plasma bubble characterized by large-
scale irregularities, which in turn is reflected in the low den-
sity, is observed around a mean height of 292.37 km. Con-
trarily, stronger multifractality is observed at this height. This
inverse variation is in agreement with the turbulent-seeming
multiplicative cascade process. On the other hand, as the
rocket traversed higher altitudes, the mean density increased
while the multifractality became weaker. This suggests that
the cascading process resulted in smaller-scale irregularities
by dissipating energy.

We conclude at this point where we have presented the
schematic hypothesis based on the multifractal analysis of
plasma irregularities in the ionospheric F region.
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