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This article presents an analytical method to evaluate the equilibrium of plasmas in axisymmetric,

nested magnetic configurations relevant for tokamak experiments. The emphasis is in the use of

spectral representations of the magnetic flux surfaces and variational methods to solve the Grad-

Shafranov equation. Approximate solutions are obtained based on power series expansions of the

variational moment equations and sectionally continuous representations of the Fourier amplitudes.

The method is applied to an up-down asymmetric configuration of an ITER-like tokamak in a

fixed-boundary equilibrium. The free-boundary case is treated in the Paper II [G. O. Ludwig, Phys.

Plasma 24, 092503 (2017)]. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997793]

I. INTRODUCTION

The analytical description of nested magnetic flux surfa-

ces for axisymmetric configurations is an important tool in

the study of the equilibrium, stability, and control of present

and future tokamak experiments. The analytical models

should represent configurations with an arbitrary aspect ratio,

describing the noncircular geometry as well as the possible

vertical asymmetry of the flux surfaces. Moreover, the mod-

eled equilibria must constitute adequate solutions of the

Grad-Shafranov equation (properly named the Shafranov-

L€ust-Schl€uter-Grad-Rubin equation2–4) and be consistent

with externally applied magnetic fields. This problem has

been dealt with since the beginning of fusion efforts, but

remains open to improvements.

Usually, the fully analytical solutions of the Grad-

Shafranov equation assume a simple linear or quadratic depen-

dence of the source term on the poloidal flux function.5–14

Taking a different approach, in the present article no assumption

is made about the form of the toroidal current density in relation

to the poloidal flux, but the flux surfaces are described by appro-

priate spectral expansions in flux coordinates. Approximate

equilibrium solutions are attempted based on a variational

moment method and radial power series expansions around the

magnetic axis. These solutions are extended from the plasma

core to the border using sectionally continuous approximations

for the Fourier amplitudes. The optimum matching between

core and border asymptotic solutions is performed using a direct

variational approach based on a stationary state of the internal

energy. For given plasma shape and source profiles with a lim-

ited number of free parameters, the flux surface geometry is

determined from the radial power series expansions of the varia-

tional moment equations in a fast, straightforward manner.

The first task in this work is to develop a general spectral

representation of the nested flux surfaces. This is accom-

plished in Sec. II starting with a mapping between cylindrical

(R, Z) and flux ðq; hÞ coordinates. The Fourier coefficients

of this mapping must be determined in order to satisfy the

Grad-Shafranov equation. With this objective in mind, power

series expansions of the poloidal flux function around the

magnetic axis are carried out in Sec. III, both in cylindrical

and flux coordinates. In this way, various geometrical con-

straints and relationships are obtained, leading to the general

form of the Taylor series expansions in the radial coordinate q
for the Fourier coefficients of the inverse mapping.

The formulation of one-dimensional variational moment

solutions of the Grad-Shafranov equation is presented in Sec.

IV, taking advantage of the reduction in dimensionality

obtained through elimination of the poloidal angle depen-

dence. The definition of various geometric and magnetic

coefficients relevant to the tokamak equilibrium problem is

reviewed in this section in accordance with the present for-

mulation. The various energy terms that form both the inter-

nal energy integral and the action integral for the tokamak

equilibrium are detailed. The Lagrangian method applied to

the action integral leads to a system of coupled differential

Euler equations for the Fourier coefficients, while the sta-

tionary value of the internal energy provides an additional

constraint to the equilibrium configuration.

In Sec. V, it is shown how to construct sectionally con-

tinuous approximations to the Fourier coefficients based on

the Taylor series taken both around the magnetic axis and at

the plasma boundary. The relationships between the ampli-

tudes of the Fourier coefficients around the magnetic axis are

obtained from expansions of the Euler equations, which are

equivalent to the Grad-Shafranov equation. The matching

between core and border expansions is performed by search-

ing for an extremum value of the internal plasma energy

defined earlier in Sec. IV. The Taylor series on the axis of

the geometric and magnetic coefficients of the equilibrium

equations is presented in Appendix B, while Appendix C

presents the related power series expansions of the Euler

equations. The higher order terms in these expansions

become quite cumbersome, but have a simple algebraic

structure that allows fast solution of the equilibrium.

Finally, Sec. VI presents an application of the method to

an ITER-like tokamak equilibrium. A slightly up-down asym-

metric configuration is chosen in order to make full use of the

method. Some concluding remarks are given in Sec. VII.a)E-mail: gerson.ludwig@inpe.br
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II. SPECTRAL REPRESENTATION OF THE FLUX
SURFACES IN A TOKAMAK PLASMA EQUILIBRIUM

Consider a mapping between cylindrical coordinates (R,

Z) and flux coordinates (q, h) in an axisymmetric system.

Here, q denotes the radial variable and h is the poloidal angle

variable. The toroidal angle variable / in the cylindrical sys-

tem corresponds to the toroidal angle �f in the flux coordi-

nates, so that (R, /, Z) and (q, h, f) form right-handed

systems. The mapping of a simply connected flux surface in

the (R, Z) plane onto a unit circle z ¼ exp ði hÞ in the com-

plex z plane can be written as15,16

R q;hð Þ
a
þ i

Z q;hð Þ
e qð Þa

¼ S0 qð Þ þ iA0 qð Þ þ
S1 qð Þ þ iA1 qð Þ

z�

þ
X1
n¼2

q
a

� �n�1

Sn qð Þ þ iAn qð Þ
� �

z�n� 1ð Þ;

(1)

where z� denotes the complex conjugate, a is a normalizing

radius (minor radius), and eðqÞ; SðqÞ and AðqÞ are dimen-

sionless, real differentiable functions. This is a unique rep-

resentation according to the Riemann mapping theorem.

Strictly speaking, the conformal mapping requires all pow-

ers of n up to infinity. However, in what follows the expres-

sions of Rðq; hÞ and Zðq; hÞ are taken as a truncated Fourier

series which represent the flux surfaces with 26n6N an

integer. Using zn ¼ cos ðn hÞ þ i sin ðn hÞ, the real and imag-

inary parts of the above expression yield the radial

representation

R q;hð Þ
a
¼ S0 qð ÞþS1 qð Þcosh�A1 qð Þsinh�

XN

n¼2

q
a

� �n�1

� Sn qð Þ 1�cos nhð Þð Þ�An qð Þsin nhð Þ
h i

; (2)

and the axial representation

Z q; hð Þ
e qð Þa

¼ A0 qð Þ þ A1 qð Þcos hþ S1 qð Þsin h�
XN

n¼2

q
a

� �n�1

� An qð Þ 1� cos n hð Þð Þ þ Sn qð Þsin n hð Þ
h i

: (3)

A set of coupled differential equations, which allow us

to determine all the real Fourier coefficients consistent

with a tokamak equilibrium, up to a desired order, is

derived in Sec. IV using a variational formulation of

the Grad-Shafranov equation. The lowest order Fourier

coefficients have simple geometrical interpretations, as

shown in the following. The origin h ¼ 0 is defined by the

point

R q; 0ð Þ
a
¼ S0 qð Þ þ S1 qð Þ ¼

R0 qð Þ þ q

a
;

Z q; 0ð Þ
a
¼ e qð Þ A0 qð Þ þ A1 qð Þ

� � ¼ Z0 qð Þ
a

;

(4)

and the opposite point at h ¼ p by

R q; pð Þ
a
¼ S0 qð Þ � S1 qð Þ �

XN

n¼2

q
a

� �n�1

Sn qð Þ 1� �1ð Þn
� �

¼
R0 qð Þ � q

a
;

Z q; pð Þ
a
¼ e qð Þ

�
A0 qð Þ � A1 qð Þ

�
XN

n¼2

q
a

� �n�1

An qð Þ 1� �1ð Þn
� ��

¼
Z0 qð Þ

a
;

(5)

where the pair R0ðqÞ; Z0ðqÞ corresponds to the position of

the major axis. These equations can be solved for S0ðqÞ;
S1ðqÞ; A0ðqÞ and A1ðqÞ in terms of q, R0ðqÞ; Z0ðqÞ; eðqÞ
and the higher order coefficients SnðqÞ, AnðqÞ. Substitution

of the results in the expressions for Rðq; hÞ and Zðq; hÞ
gives

R q;hð Þ
a
¼

R0 qð Þ
a
þq

a
coshþ

XN�1ð Þ=2½ �

n¼1

q
a

� �2n

� S2nþ1 qð Þ 1�coshð ÞþA2nþ1 qð Þsinh
h i

�
XN

n¼2

q
a

� �n�1

Sn qð Þ 1�cos nhð Þð Þ�An qð Þsin nhð Þ
h i

;

Z q;hð Þ
e qð Þa

¼
Z0 qð Þ
e qð Þa

þ q
a

sinhþ
XN�1ð Þ=2½ �

n¼1

q
a

� �2n

0
@

� A2nþ1 qð Þ 1�coshð Þ�S2nþ1 qð Þsinh
h i
�
XN

n¼2

q
a

� �n�1

An qð Þ 1�cos nhð Þð ÞþSn qð Þsin nhð Þ
h i!

;

(6)

where ½ðN � 1Þ=2� is the greatest integer less than or equal to

ðN � 1Þ=2.

The set SnðqÞ corresponds to the symmetric and the set

AnðqÞ to the antisymmetric coefficients with respect to the

equatorial plane Z ¼ Z0ðqÞ; the elongation coefficient eðqÞ
stretches the flux surfaces along the Z coordinate; the value

q ¼ 0 corresponds to the position of the magnetic axis

Rð0; hÞ ¼ R0ð0Þ ¼ Rm;

Zð0; hÞ ¼ Z0ð0Þ ¼ Zm;
(7)

and q ¼ a corresponds to the outermost flux surface, i.e., the

plasma edge. These spectral representations for Rðq; hÞ and

Zðq; hÞ can also be written in terms of Chebyshev polyno-

mials according to

cos ðn hÞ ¼ TnðlÞ; sin ðn hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
Un�1ðlÞ; (8)

where l ¼ cos h. Note that the representation described in

this section corresponds to an O–type configuration of the

magnetic field.

The elongation jðqÞ and the triangularity dðqÞ at the

extreme points in the Z coordinate are defined by
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j1 qð Þ ¼
Z q; h1ð Þ � Z0 qð Þ

q
¼

Z1 qð Þ � Z0 qð Þ
q

;

d1 qð Þ ¼
R q; h1ð Þ � R0 qð Þ

q
¼

R1 qð Þ � R0 qð Þ
q

;

j2 qð Þ ¼
Z q; h2ð Þ � Z0 qð Þ

q
¼

Z2 qð Þ � Z0 qð Þ
q

;

d2 qð Þ ¼
R q; h2ð Þ � R0 qð Þ

q
¼

R2 qð Þ � R0 qð Þ
q

;

(9)

where h1 and h2 are roots of the equation @Zðq; hÞ=@h ¼ 0

which correspond to the extreme upper and lower values of

Zðq; hÞ, respectively. The set of seven parameters a, R0ðaÞ,

Z0ðaÞ; j1ðaÞ; d1ðaÞ; j2ðaÞ, and d2ðaÞ at the plasma edge

should be sufficient to describe the equilibrium configuration

of current tokamak experiments, since the plasma boundary

usually presents a simple convex shape. Assuming j2ðaÞ
¼ j1ðaÞ and d2ðaÞ ¼ d1ðaÞ, one has a symmetric configura-

tion with respect to the equatorial plane Z ¼ Z0ðaÞ, reducing

the modeling of the plasma shape to four parameters besides

the minor radius a. Even this reduced set of coefficients

should be sufficient for most practical purposes.17

The surface STðqÞ of the poloidal cross section of a

given flux surface and the volume VðqÞ contained by it can

be calculated by integration

ST qð Þ ¼
ð2p

0

R q; hð Þ @Z q; hð Þ
@h

dh ¼ pa2e qð Þ S2
1 qð Þ þ A2

1 qð Þ �
XN

n¼2

n
q
a

� �2n�2

S2
n qð Þ þ A2

n qð Þ
h i !

;

V qð Þ ¼ p
ð2p

0

R2 q; hð Þ @Z q; hð Þ
@h

dh ¼ 2pa S0 qð Þ �
XN

n¼2

q
a

� �n�1

Sn qð Þ

 !
ST qð Þ

� p2

2
a3e qð Þ

XN�1

n¼2

q
a

� �2n�3

Sn qð Þ 4n
q
a

� �2

S1 qð ÞSnþ1 qð Þ � A1 qð ÞAnþ1 qð Þ
� � 

þ
XN�n

m¼2

3nþ mð Þ q
a

� �2m

Sm qð ÞSnþm qð Þ þ Am qð ÞAnþm qð Þ
� �!� p2

2
a3e qð Þ

XN�1

n¼2

q
a

� �2n�3

An qð Þ

� 4n
q
a

� �2

S1 qð ÞAnþ1 qð Þ þ A1 qð ÞSnþ1 qð Þ
� �þXN�n

m¼2

3nþ mð Þ q
a

� �2m

Sm qð ÞAnþm qð Þ � Am qð ÞSnþm qð Þ
� � !

: (10)

The mapping presented in this section corresponds to a

simply connected domain. Any doubly connected domain,

which is the next simplest case, can be mapped in a confor-

mal way onto an annulus jz0j < jzj < 1 with 0 < z0 < 1 in

the complex z plane, but the details and application of this

mapping remain to be derived.

III. CONSISTENT POWER SERIES EXPANSIONS OF
THE POLOIDAL FLUX FUNCTION

In this section, the power series expansion of the nor-

malized poloidal flux function around the magnetic axis is

performed both in cylindrical and flux coordinates. The

objective here is to obtain adequate Taylor series expansions

for the Fourier coefficients which describe the flux surfaces.

This work extends the analysis carried out in Ref. 18. As

shown below, geometric and algebraic consistency leads to

constraints and relationships between the multivariate power

series coefficients in cylindrical coordinates and the Fourier

coefficients in the spectral representation of the closed flux

surfaces. The general form of the Taylor series will be used

in Sec. V to obtain approximate solutions of the Euler equa-

tions consistent with a Grad-Shafranov equilibrium. The

expansion method and the moment cancelation procedure

will be demonstrated next keeping up to fourth-order terms,

but the final results will be extended to the sixth-order in q.

The multivariate expansion of the normalized poloidal

flux function w ¼ UPðqÞ=UPðaÞ to the fourth-order near the

magnetic axis is

w R;Zð Þ ¼ wmþ w 1;0ð Þ
m|ffl{zffl}
¼0

R�Rmð Þ þ 1

2
w 2;0ð Þ

m R�Rmð Þ2

þ 1

6
w 3;0ð Þ

m R�Rmð Þ3þ 1

24
w 4;0ð Þ

m R�Rmð Þ4

þ
�

w 0;1ð Þ
m|ffl{zffl}
¼0

þw 1;1ð Þ
m R�Rmð Þ þ 1

2
w 2;1ð Þ

m R�Rmð Þ2

þ1

6
w 3;1ð Þ

m R�Rmð Þ3
�

Z� Zmð Þ

þ 1

2
w 0;2ð Þ

m þ 1

2
w 1;2ð Þ

m R�Rmð Þ þ 1

4
w 2;2ð Þ

m R�Rmð Þ2
� �

� Z� Zmð Þ2þ 1

6
w 0;3ð Þ

m þ 1

6
w 1;3ð Þ

m R�Rmð Þ
� �

� Z� Zmð Þ3þ 1

24
w 0;4ð Þ

m Z� Zmð Þ4þ � � � (11)

The coefficients wð1;0Þm and wð0;1Þm of the linear terms obvi-

ously vanish since the flux is proportional to the area, but

these conditions can also be determined by first-order terms

cancelation as shown in the following. The Fourier
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coefficients can be expanded as a Taylor series in the neigh-

borhood of the magnetic axis q ¼ 0:

R0 qð Þ ¼ Rm þ
X1
k¼1

R kð Þ
0 0ð Þ
k!

qk;

Z0 qð Þ ¼ Zm þ
X1
k¼1

Z kð Þ
0 0ð Þ
k!

qk;

e qð Þ ¼ jm þ
X1
k¼1

e kð Þ 0ð Þ
k!

qk;

(12)

for the main coefficients, with jm ¼ eð0Þ denoting the mag-

netic axis elongation; and

Sn qð Þ ¼
X1
k¼0

S kð Þ
n 0ð Þ
k!

qk;

An qð Þ ¼
X1
k¼0

A kð Þ
n 0ð Þ
k!

qk;

(13)

for the remaining symmetric and antisymmetric coefficients.

The values R0ð0Þ ¼ Rm and Z0ð0Þ ¼ Zm immediately give

w½R0ð0Þ; Z0ð0Þ� ¼ wm as the zero-order constraint. Now

substituting the above Taylor series in the spectral represen-

tations Rðq; hÞ, Zðq; hÞ of Sec. II, collecting terms of the

same power in q in the expansion of the flux function

wðR; ZÞ, and canceling moments in h, one obtains the condi-

tions and relationships listed below for increasing order in q.

First-order in q:

wð1;0Þm ¼ 0;

wð0;1Þm ¼ 0:
(14)

Second-order in q:

S2ð0Þ ¼ 0; A2ð0Þ ¼ 0;

R00ð0Þ ¼ 0; Z00ð0Þ ¼ 0;
(15)

and

w 1;1ð Þ
m ¼ 0; w 0;2ð Þ

m ¼ w 2;0ð Þ
m

j2
m

: (16)

Third-order in q:

S3ð0Þ ¼ 0; A3ð0Þ ¼ 0; e00ð0Þ ¼ 0; (17)

and

w 3;0ð Þ
m ¼ �3R000 0ð Þw 2;0ð Þ

m ;

w 2;1ð Þ
m ¼ � Z000 0ð Þ

jm
þ 4A02 0ð Þ

� �
w 2;0ð Þ

m

jm
;

w 1;2ð Þ
m ¼ � R000 0ð Þ � 8S02 0ð Þ

� �w 2;0ð Þ
m

j2
m

;

w 0;3ð Þ
m ¼ �3

Z000 0ð Þ
jm
� 4A02 0ð Þ

� �
w 2;0ð Þ

m

j3
m

:

(18)

Fourth-order in q:

S4ð0Þ ¼ 0; A4ð0Þ ¼ 0; S002ð0Þ ¼ 0;

A002ð0Þ ¼ 0; R
ð3Þ
0 ð0Þ ¼ 0; Z

ð3Þ
0 ð0Þ ¼ 0;

(19)

and

w 3;1ð Þ
m ¼ 6

�
R000 0ð Þ � 4S02 0ð Þ
� � Z000 0ð Þ

jm
þ 4 R000 0ð Þ � S02 0ð Þ
� �

A02 0ð Þ

� 4A03 0ð Þ
a

�
w 2;0ð Þ

m

jm
;

w 2;2ð Þ
m ¼ w 4;0ð Þ

m

3j2
m

� 2



R000 0ð Þ � 2S02 0ð Þ
� �

R000 0ð Þ þ 14S02 0ð Þ
� �

� Z000 0ð Þ
jm
� 2A02 0ð Þ

� �2

þ e00 0ð Þ
jm
� 16S03 0ð Þ

a

�
w 2;0ð Þ

m

j2
m

;

w 1;3ð Þ
m ¼ 6



R000 0ð Þ � 8S02 0ð Þ
� � Z000 0ð Þ

jm

þ 4 3S02 0ð ÞA02 0ð Þ þ A03 0ð Þ
a

� ��
w 2;0ð Þ

m

j3
m

;

w 0;4ð Þ
m ¼ w 4;0ð Þ

m

j4
m

� 12



R000 0ð Þ � 2S02 0ð Þ
� �

R000 0ð Þ þ 6S02 0ð Þ
� �

� Z000 0ð Þ
jm
� 10A02 0ð Þ

� �
Z000 0ð Þ
jm
� 2A02 0ð Þ

� �
þ e00 0ð Þ

jm

�

� w 2;0ð Þ
m

j4
m

: (20)

These relationships become increasingly cumbersome. But

one easily verifies that the Fourier coefficients have the gen-

eral Taylor series expansions:

R0 qð Þ ¼ Rm þ
X1
k¼1

R 2kð Þ
0 0ð Þ
2kð Þ!

q2k;

Z0 qð Þ ¼ Zm þ
X1
k¼1

Z 2kð Þ
0 0ð Þ
2kð Þ!

q2k;

e qð Þ ¼ jm þ
X1
k¼1

e 2kð Þ 0ð Þ
2kð Þ!

q2k;

(21)

of even powers in q for the main coefficients; and

Sn qð Þ ¼
X1
k¼1

S 2k�1ð Þ
n 0ð Þ
2k � 1ð Þ!

q2k�1;

An qð Þ ¼
X1
k¼1

A 2k�1ð Þ
n 0ð Þ
2k � 1ð Þ!

q2k�1;

(22)

of odd powers in q for the remaining coefficients.

The flux function can be written as a Taylor series in q

w qð Þ ¼ wm þ
q2

2!
w00 0ð Þ þ q4

4!
w 4ð Þ 0ð Þ þ q6

6!
w 6ð Þ 0ð Þ þ � � � ;

(23)

where the coefficients up to the sixth-order are given by:
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w00 0ð Þ ¼ w 2;0ð Þ
m ;

w 4ð Þ 0ð Þ ¼ w 4;0ð Þ
m � 3 5R000 0ð Þ2 þ Z000 0ð Þ

jm
þ 8A02 0ð Þ

� �
Z000 0ð Þ
jm


 �
w 2;0ð Þ

m ;

w 6ð Þ 0ð Þ ¼ w 6;0ð Þ
m � 15 7R000 0ð Þ2 þ Z000 0ð Þ

jm
þ 8A02 0ð Þ

� �
Z000 0ð Þ
jm


 �
w 4;0ð Þ

m

�15

�
7 R 4ð Þ

0 0ð Þ � 6R000 0ð Þ3
h i

R000 0ð Þ þ Z 4ð Þ
0 0ð Þ
jm

Z000 0ð Þ
jm
þ 4A02 0ð Þ

� �

þ 6 R000 0ð Þ R000 0ð Þ � 28S02 0ð Þ
� �

� e00 0ð Þ
jm
þ4 7S02 0ð Þ2 þ 4S03 0ð Þ

a

� �
� 4

Z000 0ð Þ
jm
þ 3A02 0ð Þ

� �
A02 0ð Þ

" #
Z000 0ð Þ
jm

� �2

þ8



3 2R000 0ð Þ R000 0ð Þ � 7S02 0ð Þ

� �
� e00 0ð Þ

jm
þ 8S02 0ð Þ2 þ 8S03 0ð Þ

a

� �
A02 0ð Þ�6 7R000 0ð Þ � 4S02 0ð Þ

� �
A03 0ð Þ

a
þ A 3ð Þ

2 0ð Þ þ 12A04 0ð Þ
a2

�
Z000 0ð Þ
jm


w 2;0ð Þ

m : (24)

This series for wðqÞ takes the form of a “multipolar” expan-

sion. Coupled with wðR; ZÞ it shows that the Fourier coeffi-

cients of the spectral representation map the multivariate

derivatives wð2;0Þm ; wð4;0Þm ; wð6;0Þm …, taken along the R axis,

onto any point of the (R, Z) plane. The Fourier coefficients

describe the geometry of the flux surfaces, while the multi-

variate derivatives along the R axis are directly related to the

toroidal current profile, which composes the internal source

term in the Grad-Shafranov equation. The flux function wðqÞ
is an even function of q, since it varies with the area of the

poloidal cross section, which can be expanded as:

ST qð Þ
pjmq2

¼ 1þq2

2

e00 0ð Þ
jm
�4 S02 0ð Þ2þA02 0ð Þ2þS03 0ð Þ

a

� �" #

þq4

24



e 4ð Þ 0ð Þ

jm
�24

e00 0ð Þ
jm

S02 0ð Þ2þA02 0ð Þ2þS03 0ð Þ
a

� �

�16 S02 0ð ÞS 3ð Þ
2 0ð ÞþA02 0ð ÞA 3ð Þ

2 0ð Þ
h i

�48
S03 0ð Þ2

a2
þA03 0ð Þ2

a2

 !
�8

S 3ð Þ
3 0ð Þ

a
�48

S05 0ð Þ
a3

�
þ�� � :

(25)

To be entirely consistent within the sixth-order in q one

must include pentagonal S4ðqÞ; A4ðqÞ and hexagonal

S5ðqÞ; A5ðqÞ corrections, as indicated by the above expan-

sions for wðqÞ and STðqÞ. However, as pointed out in Sec. II,

it is usually sufficient to describe the equilibrium, besides the

normalizing minor radius a, by a set of seven parameters

R0ðaÞ; Z0ðaÞ; eðaÞ; S2ðaÞ; A2ðaÞ; S3ðaÞ, and A3ðaÞ, which

can be determined from the vertical reference position Z0ðaÞ
and the fixed points R0ðaÞ þ a; R0ðaÞ � a; Z0ðaÞ þ j1ðaÞa;
Z0ðaÞ�j1ðaÞa;R0ðaÞ�d1ðaÞa, and R0ðaÞ�d2ðaÞa, defined

on the plasma boundary. Thus, the representation of the flux

surfaces in the remainder of this article will be mostly lim-

ited to Shafranov shift, elongation, triangularity, and quad-

rangularity effects, keeping the up-down asymmetry. Higher

order corrections in the plasma shape require very high

precision in the calculations and are practically impossible to

detect experimentally in a tokamak configuration.

IV. SIMPLIFIED VARIATIONAL MOMENT SOLUTION TO
THE TOKAMAK PLASMA EQUILIBRIUM PROBLEM

In this section, the definitions and formulas leading to a

variational moment solution of the Grad-Shafranov equation

are reviewed. The formulation follows previous works16,19

and reduces the problem to a set of ordinary differential

equations in the radial variable q, maintaining the original

concept of the variational moment method.18 The variational

method provides a set of coupled differential Euler equations

for the Fourier coefficients of the mapping between cylindri-

cal and flux coordinates, while the stationary value of the

internal energy gives an additional constraint to the equilib-

rium configuration.

The flux function U ¼ U0 � UP between the symmetry

axis and a given flux surface is related to the toroidal current

density jT by Ampère’s law in flux coordinates

D2U ¼ h2
fr � h�2

f rU
� �

¼
h2

fffiffiffi
g
p

@

@q
h2

hffiffiffi
g
p

dU
dq

 !
� dU

dq
@

@h
gqhffiffiffi

g
p
� �" #

¼ �2pl0hfjT :

(26)

In terms of the spectral representations in cylindrical coordi-

nates (transformation to flux coordinates (R, /, Z)!(q, h, f)),

the metric coefficients are given by

gqq ¼ h2
q ¼

@R

@q

� �2

þ @Z

@q

� �2

;

ghh ¼ h2
h ¼

@R

@h

� �2

þ @Z

@h

� �2

;

gnn ¼ h2
f ¼ R2;

gqh ¼
@R

@q
@R

@h
þ @Z

@q
@Z

@h
;

(27)
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and the Jacobian by

ffiffiffi
g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

f h2
qh2

h � g2
qh

� �r
¼ R

@R

@q
@Z

@h
� @R

@h
@Z

@q

� �
: (28)

The metric coefficients can be easily calculated from the

spectral representations given in Secs. II and III. The toroi-

dal current density jT represents both the internal and exter-

nal sources with respect to the flux surface. Note that the

total poloidal flux U ¼ U0 � UP is given by the difference

between the flux U0 linked by the magnetic axis and

the poloidal flux UP, between the magnetic axis and the

flux surface, which is produced by the toroidal plasma

current.

Using magnetic flux coordinates ðq; h; fÞ, the internal

toroidal current density in a single-nested axisymmetric

tokamak plasma equilibrium is given by

jT q; hð Þ ¼ l0dIT=dq
2phf q; hð ÞdL=dq

�
K qð Þ
IT qð Þ

� 2phf q; hð Þ � l0dV=dq
2phf q; hð ÞdL=dq

� �
dp

dq
; (29)

where ITðqÞ and pðqÞ denote the radial profiles of the toroi-

dal plasma current and plasma pressure, respectively. In this

form, Ampère’s law leads to the Grad-Shafranov equation.

The total toroidal current contained by a flux surface is

ITðqÞ ¼
ð ð

STðqÞ

jTðq; hÞd2rðfÞ; (30)

where d2rðfÞ ¼ ð ffiffiffigp =hfÞdq dh is the differential area ele-

ment in the coordinate surface f ¼ constant and STðqÞ
¼
Ð Ð

d2rðfÞ is the area of the poloidal cross section. The

volume enclosed by a flux surface is

VðqÞ ¼ 2p
ð ð

STðqÞ

hfðq; hÞd2rðfÞ: (31)

Furthermore, the inductance of the toroidal solenoid defined

by a flux surface is evaluated by the integral

L qð Þ ¼
l0

2p

ð ð
ST qð Þ

d2r fð Þ
hf q; hð Þ ; (32)

and the inverse kernel of the internal inductance of the

plasma loop by

K qð Þ ¼
1

2pl0

þ jrqj
hf q; hð Þ d‘ hð Þ: (33)

Here, d‘ðhÞ ¼ hh dh is the differential arc length along the

coordinate-curve h. The unit vector normal to the flux surfa-

ces is n̂ ¼ rq=jrqj, where

jrqj ¼ hh q; hð Þhf q; hð Þffiffiffi
g
p

q; hð Þ : (34)

The geometric and magnetic equilibrium coefficients

can be calculated taking the poloidal-angle average h…ih
¼ ð2pÞ�1 Ð 2p

0
ð…Þdh:

dST

dq
¼ 2p

� ffiffiffi
g
p

q; hð Þ
hf q; hð Þ

�
h

;

dV

dq
¼ 4p2h ffiffiffigp q; hð Þih;

dL

dq
¼ l0

� ffiffiffi
g
p

q; hð Þ
h2

f q; hð Þ

�
h

;

K qð Þ ¼
1

l0

�
h2

h q; hð Þffiffiffi
g
p

q; hð Þ

�
h

:

(35)

Hence, after integration by parts (the expressions for STðqÞ
and VðqÞ were already introduced in Sec. II):

ST qð Þ ¼
ð2p

0

R q; hð Þ @Z

@h

� �
dh;

V qð Þ ¼ p
ð2p

0

R2 q; hð Þ @Z

@h

� �
dh;

L qð Þ ¼ �
l0

2p

ð2p

0

Z q; hð Þ
R q; hð Þ

@R

@h

� �
dh;

K qð Þ ¼
1

2pl0

ð2p

0

h2
h q; hð Þffiffiffi
g
p

q; hð Þ

 !
dh:

(36)

Note that the axisymmetric flux-surface average is related to

the poloidal-angle average:

h…i ¼ 4p2

dV=dq
h ffiffiffigp q; hð Þ …ð Þih: (37)

Using a spectral representation for the flux surfaces as pre-

sented in Sec. II, the h-integrals can be calculated by direct

integration or by the method of residues,16 effectively reduc-

ing the problem to a one-dimensional dependence of the

Fourier coefficients on q. As an example, the geometric coef-

ficients STðqÞ and VðqÞ were calculated in Sec. II. But the

analytical results are convenient only in simple or limiting

cases.19 In general, the above poloidal-angle averages can be

numerically calculated by Gauss-Chebyshev quadrature with

adequate precision using few terms (nP2N, where N is the

Fourier series order):

1

2p

ð2p

0

f hð Þdh ffi 1

2n

Xn

k¼1

f hkð Þ þ f pþ hkð Þ½ �: (38)

Here, hk ¼ ð2k � 1Þp=ð2nÞ, which corresponds to an opti-

mum integration mesh in the poloidal direction. For symmet-

ric integrands, this reduces to

1

p

ðp

0

f sð Þ hð Þdh ffi 1

n

Xn

k¼1

f sð Þ hkð Þ: (39)

The flux-surface averaged Grad-Shafranov equation

(equilibrium equation) for the poloidal flux function UP is20
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dUP

dq
d

dq
K qð Þ

dUP

dq

� �
þ dV

dq
dp

dq
þ 1

2

dL

dq
dI2

dq
¼ 0: (40)

This equation for the tokamak equilibrium can be obtained

by variational principles from the various stored energy

terms, which are presented in the following paragraphs. The

poloidal, UP, and toroidal, UT , flux functions satisfy the first-

order differential relationships:

dUP

dq
¼

IT qð Þ
K qð Þ

;

dUT

dq
¼ I qð Þ

dL

dq
:

(41)

Here, IðqÞ is the total poloidal current due to the plasma and

toroidal field coils, and external to the magnetic surface. The

poloidal plasma current is IPðqÞ ¼ Ið0Þ � IðqÞ. The total

poloidal current can be calculated in terms of pðqÞ and ITðqÞ
using the equilibrium equation (40)

I2 qð Þ ¼ I2 0ð Þ �
ðq
0

2

dL=dq0
1

2K q0ð Þ
dI2

T

dq0
þ dV

dq0
dp

dq0

 !
dq0

¼ I2 að Þ þ
ða
q

2

dL=dq0
1

2K q0ð Þ
dI2

T

dq0
þ dV

dq0
dp

dq0

 !
dq0;

(42)

where q ¼ a designates the plasma edge, IðaÞ ¼
2pR0ðaÞB0=l0 is the total current in the toroidal field coils

(rod current), and Ið0Þ ¼ 2pRmBm=l0; B0 corresponds to the

external toroidal magnetic field at the geometric center

R0ðaÞ; and Bm corresponds to the total magnetic field on the

magnetic axis Rm. The poloidal current density is given in

terms of the total poloidal current by

jP q; hð Þ ¼ � hh q; hð Þ
2p

ffiffiffi
g
p

q; hð Þ
dI

dq
¼ hh q; hð Þ

2p
ffiffiffi
g
p

q; hð Þ
dIP

dq
; (43)

and the safety factor is given by the ratio

q qð Þ ¼
dUT

dUP
¼

I qð Þ
IT qð Þ

K qð Þ
dL

dq
: (44)

The magnetic field in a tokamak configuration can be

written as

~B ¼ 1

2p
dUP

dq
rf�rqð Þ þ l0

2p
I qð Þrf ¼ ~BP þ ~BT ; (45)

where the amplitudes of the poloidal and toroidal field com-

ponents are

BP q; hð Þ ¼ jrUPj
2phf q; hð Þ ¼

hh q; hð Þ
2p

ffiffiffi
g
p

q; hð Þ
dUP

dq
;

BT q; hð Þ ¼
l0I qð Þ

2phf q; hð Þ :
(46)

Note that jrf�rqj ¼ hhðq; hÞ=
ffiffiffi
g
p ðq; hÞ and jrfj ¼ 1=

hfðq; hÞ.

Next, the various energy contributions to the tokamak

equilibrium will be derived in detail. This allows us to cor-

rectly define both the internal energy UðaÞ, used in the direct

variational procedure, and the action functional JðaÞ, which

leads to the variational Euler equations for the Fourier coeffi-

cients describing the flux surfaces. Both variational

approaches will be used in Sec. V to obtain approximate sol-

utions to the Grad-Shafranov equation. These energy expres-

sions are also useful in some applications requiring detailed

comparison of energy terms.21 First, the internal magneto-

static energy stored in the plasma loop is evaluated by a vol-

ume integral with d3r ¼ ffiffiffi
g
p

dq dh df as

WP að Þ ¼
ð ð ð
V að Þ

B2
P

2l0

d3r ¼
ða
0

I2
T qð Þ

2K qð Þ
dq ¼ 1

2
LT að ÞI2

T að Þ; (47)

which defines the internal self-inductance LTðaÞ of the

plasma loop. Likewise, the total magnetic energy stored in

the plasma solenoid is

ð ð ð
V að Þ

B2
T

2l0

d3r ¼
ða
0

I2 qð Þ
2

dL

dq
dq; (48)

and the magnetic energy stored inside the empty toroidal

plasma solenoid, that is, the energy due to the external field
~BT;0, is

WT;0 að Þ ¼
ð ð ð
V að Þ

B2
T;0

2l0

d3r

¼ 2p
ða
0

ð2p

0

1

2l0

B0R0 að Þ
hf q; hð Þ

� �2 ffiffiffi
g
p

q; hð Þdq dh

¼ 1

2
L að ÞI2 að Þ; (49)

with Lð0Þ ¼ 0. Hence, the internal magnetostatic energy

stored in the plasma solenoid (total energy less the vacuum

field energy) is

WT að Þ ¼
ð ð ð
V að Þ

B2
T � B2

T;0

2l0

d3r ¼
ða
0

I2 qð Þ � I2 að Þ
2

dL

dq
dq

¼
ða
0

L qð ÞI qð Þ
dIP

dq
dq

¼
ða
0

L qð Þ I að Þ þ IP að Þ � IP qð Þ
� � dIP

dq
dq

¼ 1

2

ða
0

IP að Þ � IP qð Þ
� �2 dL

dq
dqþ I að Þ

ða
0

L qð Þ
dIP

dq
dq:

(50)

Defining the internal self-inductance of the toroidal plasma

solenoid

092502-7 G. O. Ludwig Phys. Plasmas 24, 092502 (2017)



LP að Þ ¼ 1

I2
P að Þ

ða
0

IP að Þ � IP qð Þ
� �2 dL

dq
dq; (51)

and the mutual inductance between the toroidal field coils

and the toroidal plasma solenoid

LM að Þ ¼ 1

IP að Þ

ða
0

L qð Þ
dIP

dq
dq; (52)

the energy integral WTðaÞ can be written as

WT að Þ ¼
ð ð ð
V að Þ

B2
T � B2

T;0

2l0

d3r

¼ 1

2
LP að ÞI2

P að Þ þ LM að ÞI að ÞIP að Þ: (53)

The tokamak plasma magnetization is defined by

~M ¼ �
IP qð Þ

2p
rf; (54)

so that

r� ~M ¼ � 1

2p
dIP

dq
rq�rf ¼~jP: (55)

The integral WMðaÞ ¼ LMðaÞIðaÞIPðaÞ gives the energy

required to establish the plasma magnetization in the external

magnetic field ~BT;0, not taking into account the work done in

creating ~M. Assuming IðaÞ > 0 the tokamak equilibrium

configuration is diamagnetic if LMðaÞIPðaÞ < 0 and para-

magnetic if LMðaÞIPðaÞ > 0. A detailed calculation of the

interaction energy WMðaÞ between the plasma and the exter-

nal toroidal magnetic field is presented in Appendix A.

Finally, the energy stored in the plasma due to quasi-

static work is

WQS að Þ ¼
ð ð ð
V að Þ

p d3r ¼
ða
0

p qð Þ
dV

dq
dq: (56)

Collecting the various energy terms, the internal energy

can be written as

U að Þ ¼
ð ð ð
V að Þ

B2
P

2l0

þ
B2

T � B2
T;0

2l0

þ p

 !
d3r

¼ WP að Þ þWT að Þ þWQS að Þ

¼ 1

2
LT að ÞI2

T að Þ þ 1

2
LP að ÞI2

P að Þ

þ LM að ÞI að ÞIP að Þ þWQS að Þ: (57)

The energy UðaÞ is the change in energy within the volume

VðaÞ in the external field when the plasma is introduced; it

excludes the energy WT;0ðaÞ ¼ LðaÞI2ðaÞ=2 of the volume

prior to the introduction of the plasma. In terms of the equi-

librium variables

U að Þ ¼
ða
0



IT qð Þ þ

2L qð Þ
dL=dq

dIT

dq

� �
IT qð Þ
2K qð Þ

þ p qð Þ þ
L qð Þ

dL=dq
dp

dq

� �
dV

dq

�
dq: (58)

The internal energy UðaÞ is stationary under virtual dis-

placements dq of the radius q for fixed-boundary conditions

dqðaÞ ¼ 0. This is an application of Castigliano’s principle that

allows direct variational solutions to the Grad-Shafranov equa-

tion.16 Characterization of the toroidal equilibrium of a magnet-

ically confined plasma as a stationary state of the internal

energy has been carried out originally by Kruskal and

Kulsrud.22 In the present formulation, one can identify the term

corresponding to the magnetic energy stored in the plasma

loop, WPðaÞ, and the terms corresponding to the total electro-

mechanical and quasistatic expansion work done by the toroidal

plasma solenoid on its surroundings, WTðaÞ þWQSðaÞ:

WP að Þ ¼ 1

2

ða
0

IT qð ÞdUP;

WT að Þ þWQS að Þ ¼
ða
0

I2 qð Þ � I2 að Þ
2

dLþ p qð ÞdV

� �
:

(59)

As it stands, WTðaÞ þWQSðaÞ denotes the positive output

work. The input work �WTðaÞ �WQSðaÞ is positive if it

increases the internal energy of the system. The sum

WPðaÞ þWTðaÞ þWQSðaÞ ¼ UðaÞ corresponds to the total

internal energy stored by magnetization and adiabatic com-

pression of the plasma ring.

As will be shown next, the equilibrium profiles are such

as to give an extremum of the action functional

J að Þ ¼ WP að Þ �WT að Þ �WQS að Þ

¼
ð ð ð
V að Þ

B2
P

2l0

�
B2

T � B2
T;0

2l0

� p

 !
d3r

¼
ða
0



IT qð Þ �

2L qð Þ
dL=dq

dIT

dq

� �
IT qð Þ
2K qð Þ

þ V qð Þ �
L qð Þ

dL=dq
dV

dq

� �
dp

dq

�
dq

¼
ða
0

K qð Þ
2

dUP

dq

� �2

þ
L qð Þ

2

dI2

dq
þ V qð Þ

dp

dq

" #
dq (60)

subject to the constraints at the fixed boundary q ¼ a, e.g.,

pressure pðaÞ ¼ 0 and total toroidal current ITðaÞ ¼ constant.

In other words, the equilibrium state (an excited state) corre-

sponds to a balance between minimum internally stored mag-

netic energy in the plasma loop and maximum delivery of

work of the plasma solenoid with dJðaÞ ¼ 0 for a fixed bound-

ary. Integration by parts of the last two terms in JðaÞ yields

J að Þ ¼
ða
0

K qð Þ
2

dUP

dq

� �2

�
I2 qð Þ � I2 að Þ

2

dL

dq
� p qð Þ

dV

dq

" #
dq:

(61)
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According to the Lagrangian method, the functional JðaÞ is

written in the form

JðaÞ ¼
ða
0

LðUP;U
0
P; qÞdq (62)

with the Lagrangian density

L UP;U
0
P; q

� �
¼

K qð Þ
2

dUP

dq

� �2

� I2 UPð Þ � I2 að Þ
2

dL

dq

� p UPð Þ dV

dq
; (63)

and U0P ¼ dUP=dq. The Euler equation for a fixed boundary

is

@L
@UP
� d

dq
@L
@U0P

� �
¼ 0; (64)

which is simply the flux-surface averaged Grad-Shafranov

equation:

d

dq
K qð Þ

dUP

dq

� �
þ dV

dq
dp

dUP
þ 1

2

dL

dq
dI2

dUP
¼ 0: (65)

Hence, the functional JðaÞ gives a variational principle for

fixed-boundary equilibrium solutions in the form d½JðaÞ�UP

¼ 0. The poloidal flux function UP is the generalized coordi-

nate and U0P is the generalized velocity, with @L=@U0P
¼ KðqÞdUP=dq ¼ ITðqÞ corresponding to the generalized

momentum. Consequently, the second-order Grad-Shafranov

equation can be written as a system of two first-order canoni-

cal Euler equations

dUP

dq
¼

IT qð Þ
K qð Þ

;

dIT

dq
¼ � dL

dq
I qð Þ

dI

dUP
� dV

dq
dp

dUP
:

(66)

Early formulations of magnetohydrodynamic equilibria in

Lagrangian form have been carried out by Grad and Rubin4

and later extended by Grad.23 The derivation of the two-

dimensional Grad-Shafranov equation from a variational

principle has been accomplished by Khait.24

Now consider the shape and the position of the plasma

cross section characterized by a set of admissible functions

uiðqÞ, that is, sufficiently smooth functions that satisfy the

boundary conditions. In the present article, each one of the

Fourier amplitudes corresponds to such a function uiðqÞ. Taking

R ¼ Rðq; h; uiÞ;
Z ¼ Zðq; h; uiÞ;

(67)

yields the scale factors and the Jacobian

hh ¼ hhðq; h; uiÞ;
hf ¼ hfðq; h; uiÞ;ffiffiffi
g
p ¼ ffiffiffi

g
p ðq; h; ui; u

0
iÞ;

(68)

and the equilibrium coefficient derivatives

dV

dq
¼ @V

@q
þ
X

i

dui

dq
@V

@ui
;

dL

dq
¼ @L

@q
þ
X

i

dui

dq
@L

@ui
;

dK

dq
¼ @K

@q
þ
X

i

dui

dq
@K

@ui
þ
X

i

du0i
dq

@K

@u0i
;

(69)

where u0i ¼ dui=dq. For given profiles IðqÞ and pðqÞ, one can

find an extremum of the functional JðaÞ defined on the space

of the admissible functions uiðqÞ. With the functional in the

form

J að Þ ¼
ða
0

K qð Þ
2

dUP

dq

� �2

þ
L qð Þ

2

dI2

dq
þ V qð Þ

dp

dq

" #
dq (70)

the related Euler equation for uiðqÞ is

d

dq
1

2

@K

@u0i

dUP

dq

� �2
" #

� 1

2

@K

@ui

dUP

dq

� �2

� @V

@ui

dp

dq
� 1

2

@L

@ui

dI2

dq

¼ 0;

(71)

subject to the fixed-boundary condition duiðaÞ ¼ 0. In terms

of ITðqÞ and pðqÞ, the system of ordinary differential equa-

tions for the set of functions uiðqÞ is

d

dq

I2
T qð Þ

2K2 qð Þ
@K

@u0i

 !
�

I2
T qð Þ

2K2 qð Þ
@K

@ui
� @V

@ui

dp

dq
� 1

2

@L

@ui

dI2

dq
¼ 0;

(72)

where

dI2

dq
¼ � 2

dL=dq

IT qð Þ
K qð Þ

dIT

dq
þ dV

dq
dp

dq

 !
: (73)

Considering the set uiðqÞ ¼ fR0ðqÞ; Z0ðqÞ; eðqÞ; S2ðqÞ;
A2ðqÞ; S3ðqÞ;A3ðqÞ…g of coefficients of the inverse mapping

presented in Sec. II, the Euler equations for the Fourier ampli-

tudes are equivalent to the variational moment equations.18

V. APPROXIMATE SOLUTION OF THE EQUILIBRIUM
EQUATIONS

As discussed in Sec. IV, the Fourier coefficients uiðqÞ in

the spectral representation of the flux surfaces satisfy the set

of Euler equations

d

dq

I2
T qð Þ

2K2 qð Þ
@K

@u0i

 !
�

I2
T qð Þ

2K2 qð Þ
@K

@ui
� @V

@ui

dp

dq
þ @L=@ui

dL=dq

�
IT qð Þ
K qð Þ

dIT

dq
þ dV

dq
dp

dq

 !
¼ 0: (74)

These equations can be solved numerically for given

profiles of the pressure, pðqÞ, and toroidal current, ITðqÞ.
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Since q ¼ 0 is a critical point, the integration starts at a suf-

ficiently small value 0 � dq � a with initial values guessed

from the boundary conditions at the plasma edge q ¼ a as

indicated by the Taylor series expansions:

R0 dqð Þ ffi Rm � Rm � R0 að Þð Þ dq2

a2
;

R00 dqð Þ ffi �2 Rm � R0 að Þð Þ dq
a2
;

Z0 dqð Þ ffi Zm þ Z0 að Þ � Zmð Þ dq2

a2
;

Z00 dqð Þ ffi 2 Z0 að Þ � Zmð Þ dq
a2
;

e dqð Þ ffi jm þ e að Þ � jmð Þ dq2

a2
;

e0 dqð Þ ffi 2 e að Þ � jmð Þ dq
a2
;

…

Sn dqð Þ ffi dSndq; S0n dqð Þ ffi dSn;

An dqð Þ ffi dAndq; A0n dqð Þ ffi dAn:

(75)

The parameters Rm, Zm, jm,… dSn, and dAn are adjusted by

iteration until the end-point conditions R0ðaÞ; Z0ðaÞ; eðaÞ,…
SnðaÞ and AnðaÞ are attained with sufficient precision (for

a sufficiently small value of dq the final adjusted parame-

ters are independent of it). In this way, the set of coeffi-

cients fR0ðqÞ; Z0ðqÞ; eðqÞ;…SnðqÞ;AnðqÞg can be precisely

obtained for given pðqÞ and ITðqÞ. But the numerical proce-

dure will not be pursued in this article.

An approximation to Rm, Zm, jm, R000ð0Þ; Z000ð0Þ, e00ð0Þ;
S02ð0Þ, A02ð0Þ; S03ð0Þ, and A03ð0Þ can be determined making

power series in q of both the flux function and the flux sur-

face geometry, as discussed in Sec. III. The power series

expansions of the Fourier coefficients, and of the geometric

and magnetic coefficients in the equilibrium equation, are

given in Appendix B. For simplicity, the presentation of

these expansions is limited to the fourth-order, although

sixth-order terms are needed in the final results. The expan-

sions displayed in Appendix B are used only to obtain the

terms in the expansion of each Euler equation as a power

series in q. These terms are listed in Appendix C for increas-

ing powers of q. The exponent of each term in the expan-

sions increases by a factor of two with respect to the

previous one. Cancelation of these terms relates the ampli-

tudes of the Fourier coefficients around the magnetic axis.

After the parameters Rm, Zm, jm, R000ð0Þ; Z00ð0Þ; e00ð0Þ;
S02ð0Þ; A02ð0Þ, S03ð0Þ, and A03ð0Þ have been calculated from the

expanded Euler equations, as explained in the remainder of

this section, and the (approximate) flux surface geometry has

been fully determined, the equilibrium quantities can be

evaluated using the expressions listed in Sec. IV.

The lowest-order terms in the expansions of the Euler

equations for R0ðqÞ and Z0ðqÞ are given by Eqs. (C1) and

(C2), respectively. Information about the radial and vertical

positions of the magnetic axis is contained in these equations

that can be written as

3j2
m þ 1

� �
RmR000 0ð Þ � 8RmS02 0ð Þ

þ j2
m 1� 8p2 j2

m þ 1
� �2

p00 0ð Þ
j2

ml0I00T 0ð Þ2

 !
¼ 0 (76)

and

j2
m þ 3

� �RmZ000 0ð Þ
jm

þ 4 j2
m � 3

� �
RmA02 0ð Þ ¼ 0; (77)

coupled to the equation for the magnetic axis elongation

(C3) obtained from the lowest-order term of the Euler equa-

tion for eðqÞ

3 1þ 1

j2
m

þ 4

j2
m þ 1

� �
� 3 3þ 3

j2
m

� 4

j2
m þ 1

� �
R2

mR000 0ð Þ2�3 5þ 21

j2
m

þ 4

j2
m þ 1

� �
R2

mZ000 0ð Þ2

j2
m

þ3 3þ 1

j2
m

þ 4

j2
m þ 1

þ 16 3þ 3

j2
m

þ 2

j2
m þ 1

� �
RmS02 0ð Þ


 �
RmR000 0ð Þ

þ48
9

j2
m

þ 4

j2
m þ 1

� �
RmA02 0ð ÞRmZ000 0ð Þ

jm
þ 3 1þ 5

j2
m

þ 12

j2
m þ 1

� �
R2

me00 0ð Þ
jm

þ12 3� 5

j2
m

þ 4

j2
m þ 1

� 19þ 23

j2
m

þ 20

j2
m þ 1

� �
RmS02 0ð Þ


 �
RmS02 0ð Þ

�12 5þ 41

j2
m

þ 28

j2
m þ 1

� �
R2

mA02 0ð Þ2 � 3 1� 1

j2
m

� �
40R2

mS03 0ð Þ
a

þ 1� 1

j2
m

� �
R2

mI 4ð Þ
T 0ð Þ

I00T 0ð Þ

 !
� 3 1� 4RmR000 0ð Þ þ 8RmS02 0ð Þ
� � 8p2 j2

m þ 1
� �2

p00 0ð Þ
j2

ml0I00T 0ð Þ2

 !
¼ 0: (78)

Note that these relationships involving derivatives on the

magnetic axis are exact, no matter what the order of the

power series approximation in q. Near the magnetic axis,

the Fourier amplitudes are given by (the antisymmetric
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quadrangular coefficient A3ðqÞ does not contribute near the

axis or to the equilibrium coefficients within the fourth-order

in q)

R0 qð Þ ¼ Rm þ
q2

2
R000 0ð Þ þ � � � ;

Z0 qð Þ ¼ Zm þ
q2

2
Z000 0ð Þ þ � � � ;

e qð Þ ¼ jm þ
q2

2
e000 0ð Þ þ � � � ;

S2 qð Þ ¼ qS02 0ð Þ þ � � � ;
A2 qð Þ ¼ qA02 0ð Þ þ � � � ;
S3 qð Þ ¼ qS03 0ð Þ þ � � � :

(79)

Now the simplest approximation is obtained truncating

the above power series. In this case, the parameters R000ð0Þ,
Z000ð0Þ; e00ð0Þ; S02ð0Þ; A02ð0Þ, and S03ð0Þ are determined by the

plasma shape as

R000 0ð Þ ffi �2 Rm�R0 að Þð Þ
a2

; Z000 0ð Þ ffi 2 Z0 að Þ� Zmð Þ
a2

;

e00 0ð Þ ffi 2 e að Þ� jmð Þ
a2

; S02 0ð Þ ffi S2 að Þ
a

;

A02 0ð Þ ffi A2 að Þ
a

; S03 0ð Þ ffi S3 að Þ
a

;

(80)

so that

R0 qð Þ ffi Rm � Rm � R0 að Þð Þq
2

a2
;

Z0 qð Þ ffi Zm þ Z0 að Þ � Zmð Þq
2

a2
;

e qð Þ ffi jm þ e að Þ � jmð Þq
2

a2
; S2 qð Þ ffi S2 að Þ q

a
;

A2 qð Þ ffi A2 að Þq
a
; S3 qð Þ ffi S3 að Þ q

a
:

(81)

Using these approximations, Eqs. (76) and (77) for the mag-

netic axis position give

Rm ffi
R0 að Þ

2
� 2aS2 að Þ

3j2
m þ 1

þ



R0 að Þ
2
� 2aS2 að Þ

3j2
m þ 1

� �2

þ j2
ma2

2 3j2
m þ 1

� � 1� j2
m þ 1

� �2

j2
m

8p2p00 0ð Þ
l0I00T 0ð Þ2

 !�1=2

;

Zm ffi Z0 að Þ �
2jm 3� j2

m

� �
3þ j2

m

aA2 að Þ: (82)

Note that only the difference Z0ðaÞ � Zm is relevant for the

internal equilibrium of the plasma, as expected. The elonga-

tion jm is calculated from Eq. (78), which is denoted by

f ðjmÞ ¼ 0; jm can be determined numerically using the

Newton-Raphson formula

jiþ1 ¼ ji �
f jið Þ
f 0 jið Þ

: (83)

The value of the elongation at the plasma boundary, eðaÞ, is

taken as a trial solution, giving a very good approximation to

the true root using the two or three step Newton-Raphson

method. This crude approximation for the Fourier amplitudes

and for the magnetic axis parameters is appropriate for large-

aspect-ratio configurations and was used to represent the mag-

netic islands in the core of a tokamak.21

The next order approximation for the tokamak equilib-

rium can be obtained taking again into account the boundary

conditions and writing the position of the major radius in the

form

R0 qð Þ ffi Rm þ
q2

2
R000 0ð Þ þ R0 að Þ � Rm �

1

2
a2R000 0ð Þ

� �
q4

a4
;

(84)

with similar expressions for Z0ðqÞ and eðqÞ. The symmetric

triangularity coefficient is approximated by

S2 qð Þ ffi qS02 0ð Þ þ S2 að Þ � aS02 0ð Þ
� � q3

a3
; (85)

with similar expressions for A2ðqÞ; S3ðqÞ and A3ðqÞ. The

coefficients Rm, Zm, jm, R000ð0Þ, Z000ð0Þ; e00ð0Þ; S02ð0Þ; A02ð0Þ,
S03ð0Þ, and A03ð0Þ are determined using Eqs. (76)–(78) cou-

pled with Eqs. (C8)–(C14). In this way, the series trunca-

tion is moved nearer to the plasma border, generating

simple, fast equilibrium solutions. However, improved sol-

utions can be obtained introducing sectionally continuous

approximations for the Fourier coefficients, as described in

the following.

The sectionally continuous approximations are con-

structed by matching the Taylor series in the plasma core

with the series in the plasma border, as illustrated for the

position of the major radius R0ðqÞ:

R0;core qð Þ ¼ Rm þ
q2

2
R000 0ð Þ þ q4

24
R 4ð Þ

0 0ð Þ þ � � � 06q6q�;

R0;edge qð Þ ¼ R0 að Þ � a� qð ÞR00 að Þ þ
a� qð Þ2

2
R000 að Þ þ � � �

q �6q6a: (86)

Defining a matching radius q� such that

R0;coreðq�Þ ¼ R0;edgeðq�Þ; R00;coreðq�Þ ¼ R00;edgeðq�Þ;
and R000;coreðq�Þ ¼ R000;edgeðq�Þ; (87)

one obtains

R000 0ð Þ

¼�4 3a�2q�ð Þ Rm�R0 að Þð Þ� 6a2�8aq� þ3q2
�

� �
R00 að Þ

a 4a�3q�ð Þq�
;

R 4ð Þ
0 0ð Þ ¼

12 2 Rm�R0 að Þð ÞþaR00 að Þ
� �

4a�3q�ð Þq3
�

;

R000 að Þ ¼ 8 Rm�R0 að Þð Þþ 8a�3q�ð ÞR00 að Þ
a 4a�3q�ð Þ

; (88)

with similar expressions for Z0ðqÞ and eðqÞ. Likewise, the

sectionally continuous approximation for the symmetric tri-

angularity coefficient is:
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S2;core qð Þ ¼ qS02 0ð Þ þ q3

6
S 3ð Þ

2 0ð Þ þ � � � 06q6q�;

S2;edge qð Þ ¼ S2 að Þ � a� qð ÞS02 að Þ

þ
a� qð Þ2

2
S002 að Þ þ � � � q�6q6a: (89)

Using the same matching radius q� such that

S2;coreðq�Þ ¼ S2;edgeðq�Þ; S02;coreðq�Þ ¼ S02;edgeðq�Þ; and

S002;coreðq�Þ ¼ S002;edgeðq�Þ; (90)

one obtains

S02 0ð Þ ¼ 3 2a� q�ð ÞS2 að Þ � 3a2 � 3aq� þ q2
�

� �
S02 að Þ

3a2 � q2
�

;

S 3ð Þ
2 0ð Þ ¼ �

6 S2 að Þ � aS02 að Þ
� �

3a2 � q2
�

� �
q�

;

S002 að Þ ¼ �
6 S2 að Þ � aS02 að Þ
� �

3a2 � q2
�

; (91)

with similar expressions for A2ðqÞ; S3ðqÞ and A3ðqÞ.
In this way, the flux surface geometry is defined in terms

of the magnetic axis parameters, Rm, Zm, and jm, the shape

of the plasma, a, R0ðaÞ; Z0ðaÞ; eðaÞ, S2ðaÞ; A2ðaÞ; S3ðaÞ;
A3ðaÞ (Dirichlet parameters), the radial derivatives at the

plasma boundary, R00ðaÞ; Z00ðaÞ; e0ðaÞ; S02ðaÞ; A02ðaÞ; S03ðaÞ;
A03ðaÞ (Neumann parameters), and the matching radius, q�.
Now the magnetic axis and the set of Neumann parameters

are determined for given Dirichlet conditions (plasma shape)

by solving Eqs. (76)–(78) coupled with Eqs. (C8)–(C14).

There are ten equations available for ten variables, with q�
as an additional variable. The optimum matching radius q� is

determined by a direct variational procedure searching for a

stationary value of the internal energy UðaÞ given in Sec. IV

by Eq. (58). Conversely, the magnetic axis parameters, Rm,

Zm, and jm, the Dirichlet parameters, a, eðaÞ; S2ðaÞ, and

A2ðaÞ; S3ðaÞ; A3ðaÞ, and the matching radius q� can be

determined for given Neumann conditions, R00ðaÞ; Z00ðaÞ;
e0ðaÞ; S02ðaÞ; A02ðaÞ; S03ðaÞ, and A03ðaÞ, by solving the same

Eqs. (76)–(78) coupled with Eqs. (C8)–(C14). Again, there

are ten equations for ten variables, including q�. Since the

Neumann conditions are gradients, it is necessary to specify

a fixed point in order to obtain a unique answer. A conve-

nient choice is to specify the position of the major axis

through the pair of coordinates R0ðaÞ and Z0ðaÞ. The same

solution is obtained using either Dirichlet or Neumann

boundary conditions, interchangeably.

Note that a simpler sectionally continuous approxima-

tion can be constructed by reducing the order of the Taylor

series in the plasma core and calculating the magnetic axis

parameters, Rm, Zm, and jm from the given Dirichlet param-

eters by means of Eqs. (76)–(78) only. The matching

radius is determined, as before, searching for a stationary

state of the internal energy UðaÞ. Such approximation

should be useful for fast simulations of the equilibrium evo-

lution. An extended sectionally continuous approximation

is used in solving the free-boundary problem presented in

the Paper II.1

VI. APPLICATION TO AN ITER-LIKE TOKAMAK

The approximate solution developed in Sec. V using the

sectionally continuous approximations (86) and (89) for the

Fourier amplitudes is applied to an ITER-like tokamak. The

main geometric parameters of the ITER tokamak are

R¼ 6.2 m, Z¼ 0.55 m, and a¼ 2.0 m.25 A slightly up-down

asymmetric configuration is assumed with the upper elonga-

tion and triangularity given by j1 ¼ 1:8 and d1 ¼ 0:40, and

the lower elongation and triangularity given by j2 ¼ 1:8 and

d2 ¼ 0:45, in respective order. Figure 1 shows a cross section

of the ITER-like tokamak indicating the central and extreme

points of the plasma boundary. As discussed in Sec. II, the

vertical position Z and the fixed points corresponding to the

values Rþ a, R – a, Z þ j1a; Z � j2a; R� d1a, and R� d2a
can be adjusted with the set of Fourier amplitudes R0ðaÞ;
Z0ðaÞ; eðaÞ, S2ðaÞ; A2ðaÞ; S3ðaÞ, and A3ðaÞ on the plasma

boundary q ¼ a (Dirichlet parameters) listed in Table I.

In order to solve the Euler equations, or the Grad-

Shafranov equation for that matter, it is necessary to specify

the profiles of the plasma pressure pðqÞ and of the toroidal

current ITðqÞ. The power series expansions for the Euler

equations presented in Appendix C depend on p00ð0Þ;
pð4Þð0Þ; I00Tð0Þ; I

ð4Þ
T ð0Þ, and I

ð6Þ
T ð0Þ as free parameters. In this

article, the pressure is represented by an eight-order polyno-

mial in q

FIG. 1. ITER-like cross section: the crosses indicate the central point

(R¼ 6.2 m, Z¼ 0.55 m) and the extreme points (R1, Z1), (R2, Z2), (R3, Z3),

and (R4, Z4) of the plasma boundary; the dotted circle corresponds to the

minor radius a¼ 2.0 m; the plasma is surrounded by the limiter and vacuum

vessel walls; the rectangles represent the poloidal cross sections of the cen-

tral solenoid (CS) and equilibrium field coils (PF).
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p qð Þ ¼ p0 þ
q2

2
p00 0ð Þ � q4

8a4
48p0 þ 12a2p00 0ð Þ � a2p00 að Þ
� �

þ q6

4a6
32p0 þ 6a2p00 0ð Þ � a2p00 að Þ
� �

� q8

8a8
24p0 þ 4a2p00 0ð Þ � a2p00 að Þ
� �

; (92)

which satisfies the constraints pðaÞ ¼ 0 and p0ðaÞ ¼ 0, along

with p0 > 0 and p0ð0Þ ¼ 0. With these constraints, the free

parameter pð4Þð0Þ is replaced by p00ðaÞ, besides the funda-

mental quantity pð0Þ ¼ p0 and the remaining free parameter

p00ð0Þ. Furthermore, p00ð0Þ is replaced by �2app0=a2 such

that near the magnetic axis the pressure profile approaches

the standard binomial form

p qð Þ 	 p0 1� q2

a2

� �ap

(93)

with a pressure peaking factor ap. The conditions for positive

pressure in the range 0 6 q 6 a are

p00 að ÞP0 and � a2p00 0ð Þ
2p0

¼ ap64þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p00 að Þ

2p0

s
: (94)

Peaked profiles correspond to 0 < ap�4 (a hollow profile is

obtained with ap < 0) giving a pressure distribution

described by three parameters p0, ap, and p00ðaÞ. The pressure

on the magnetic axis is given by

p0 ¼ 103eð Þne 0ð Þ Te 0ð Þ þ Ti 0ð Þ
Zeff

� �
; (95)

where neð0Þ is the electron plasma density; Teð0Þ and Tið0Þ
are the electron and ion temperatures in keV, respectively;

Zeff is the effective charge number; and e is the electron

charge. Throughout this article, the plasma pressure on the

axis is fixed with neð0Þ ¼ 1020 m–3, Teð0Þ ¼ Tið0Þ ¼ 10

keV, and Zeff ¼ 3=2.

The toroidal current profile can be represented by a

tenth-order polynomial in q which satisfies the constraint

I0TðaÞ ¼ 0 with ITð0Þ ¼ 0; I0Tð0Þ ¼ 0 and ITðaÞ > 0 (the

plasma current is assumed positive). The free parameters are

I00Tð0Þ > 0; I
ð4Þ
T ð0Þ and I

ð6Þ
T ð0Þ. The parameter I

ð6Þ
T ð0Þ can be

substituted by I00TðaÞ < 0, besides ITðaÞ > 0; I
ð4Þ
T ð0Þ and

I00Tð0Þ > 0. However, a set of four parameters results in nine

conditions for positive toroidal current in the range 06q6a.

Therefore, in this paper the toroidal current profile is repre-

sented, as well as the pressure profile, by an eight-order poly-

nomial in q

IT qð Þ ¼
q2

2
I00T 0ð Þ þ q4

8a4
48IT að Þ � 12a2I00T 0ð Þ þ a2I00T að Þ
� �

� q6

4a6
32IT að Þ � 6a2I00T 0ð Þ þ a2I00T að Þ
� �

þ q8

8a8
24IT að Þ � 4a2I00T 0ð Þ þ a2I00T að Þ
� �

; (96)

such that I0TðaÞ ¼ 0. Replacing I00Tð0Þ by 2ð1þ ajÞITðaÞ=a2

the toroidal current approaches, near the magnetic axis, the

standard binomial profile

IT qð Þ 	 IT að Þ 1� 1� q2

a2

� �1þaj

" #
(97)

with a current peaking factor aj. In this way, the toroidal cur-

rent distribution is described by a reduced set of three param-

eters ITðaÞ, aj, and I00TðaÞ. The flux-averaged toroidal current

density is approximately given by

hjTi qð Þ ffi
1

2pjmq
dIT

dq
: (98)

Note that this is a simple approximation, the correct distribu-

tion being obtained by taking the flux-surface average of

jTðq; hÞ defined by Eq. (29). Nevertheless, on the magnetic

axis one obtains exactly

hjTi qð Þ !
q!0

I00T 0ð Þ
2pjm

¼ 1þ ajð ÞIT að Þ
pjma2

¼ jT 0ð Þ: (99)

The conditions for positive toroidal current in the range

0 6 q 6 a are

� 48IT að Þ
a2

6 I00T að Þ6 0 and I00T 0ð ÞP 0

or

I00T að Þ < � 48IT að Þ
a2

and I00T 0ð ÞP I00T að Þ
3

þ 176

27
þ

ffiffiffi
2
p

216
� 3a2I00T að Þ

IT að Þ
� 16

 !3=2
2
4

3
5 IT að Þ

a2
:

8>>>>>>><
>>>>>>>:

(100)

TABLE I. Geometric parameters which describe the plasma boundary of the

ITER-like tokamak shown in Fig. 1.

Parameter set Values

Dirichlet R0ðaÞ ¼ 6:2 m Z0ðaÞ ¼ 0:55 m

a ¼ 2.0 m eðaÞ ¼ 1:75718

S2ðaÞ ¼ 0:109542 A2ðaÞ ¼ �0:00344217

S3ðaÞ ¼ �0:00734624 A3ðaÞ ¼ �0:00817006

Extreme points R1ðaÞ ¼ 5:400 m Z1ðaÞ ¼ 4:150 m

R2ðaÞ ¼ 5:300 m Z2ðaÞ ¼ �3:050 m

R3ðaÞ ¼ 8:201 m Z3ðaÞ ¼ 0:469 m

R4ðaÞ ¼ 4:199 m Z4ðaÞ ¼ 0:772 m
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For simplicity, only the first condition is considered in this

paper.

A Taylor expansion of the equilibrium equation (40)

around the magnetic axis gives

I qð Þ ¼ I 0ð Þ þ I00 0ð Þ
2

q2 þ � � � ; (101)

where Ið0Þ ¼ 2pRmBm=l0 and

I00 0ð Þ ¼ � 2pRm

Bm

l0j
2
mj2

T 0ð Þ
j2

m þ 1
þ p00 0ð Þ

 !
< 0 (102)

for a standard monotonic poloidal current profile (without

reversed shear and current holes). In terms of the pressure

profile peaking factor, this gives

ap <
l0j

2
ma2j2T 0ð Þ

2 j2
m þ 1

� �
p0

: (103)

Likewise, a Taylor expansion of the equilibrium equation

(40) at the plasma boundary gives

I qð Þ ¼ I að Þ þ I00 að Þ
2

a� qð Þ2 þ � � � (104)

where IðaÞ ¼ 2pR0ðaÞB0=l0 and

I00 að Þ ¼ � 1

I að ÞL0 að Þ
IT að ÞI00T að Þ

K að Þ þ V0 að Þp00 að Þ
 !

: (105)

Since V0ðaÞ > 0; L0ðaÞ > 0, KðaÞ > 0; IðaÞ > 0; ITðaÞ
> 0, I00TðaÞ6 0; p00ðaÞP 0, and I00ðaÞP 0 for a standard

monotonic poloidal current profile, it follows that

06 p00 að Þ6� IT að ÞI00T að Þ
K að ÞV0 að Þ

: (106)

Table II lists the results of equilibrium calculations per-

formed for the ITER-like tokamak with varying peaking fac-

tors for the density, an, and temperature, aT. The pressure

peaking factor is given by ap ¼ an þ aT , which defines the

parameter p00ð0Þ ¼ �2app0=a2. The current density peaking

factor is given in terms of the temperature peaking factor by

aj ¼ 3aT=2 for an ohmically relaxed state (j 	 T3=2), defining

the parameter I00Tð0Þ ¼ 2ð1þ ajÞITðaÞ=a2. For simplicity, the

remaining free parameters p00ðaÞ and I00TðaÞ are put equal to

zero. The plasma pressure on the axis is fixed at p0 ¼ 267 kPa

and the external toroidal magnetic field on the geometric cen-

ter is B0 ¼ 5:3 T. The geometry of the plasma boundary is

fixed as given in Table I and the plasma current listed in

Table II reaches a value consistent with a safety factor qð0Þ
equal or close to one on the magnetic axis, but limited to the

nominal value ITðaÞ ¼ 15 MA expected for ITER. The equi-

libria are arbitrarily divided into three classes, ranging from

peaked to flat profiles. As the current profile becomes flatter

as given by aj ¼ 3aT=2, the pressure profile also flattens to

avoid poloidal current density reversal according to the

general conditions (103) and (106). The flat profiles with

an ¼ aT=2 give ap ¼ 3aT=2 ¼ aj, which corresponds to sta-

tionary magnetic entropy states (j 	 p).26 In particular, the

equilibrium with aT ¼ 0:739 gives a central qð0Þ value

close to one with the nominal plasma current ITðaÞ ¼ 15

MA and an edge safety factor qðaÞ just above three. This

equilibrium gives nearly the maximum value of the internal

energy UðaÞ without increasing the plasma current above

its nominal value.

Now Table III lists the magnetic axis, matching radius,

and Neumann parameters for the peaked equilibrium corre-

sponding to the first line in Table II. Figure 2 shows the flux

surface geometry, the plasma pressure profile, pðqÞ, the

toroidal current profile, ITðqÞ, and the approximate toroidal

current density profile, hjTiðqÞ for this equilibrium.

Furthermore, Fig. 3 shows the variation with the radial vari-

able q of the poloidal flux, UPðqÞ, of the main Fourier ampli-

tudes, R0ðqÞ; Z0ðqÞ and eðqÞ, of the triangularity

coefficients, S2ðqÞ and A2ðqÞ, and of the quadrangularity

coefficients, S3ðqÞ and A3ðqÞ.
TABLE II. ITER-like tokamak equilibria obtained for various values of the

peaking factors an and aT of the density and temperature profiles, respec-

tively. The plasma current in MA corresponds to the maximum value consis-

tent with a central qð0Þ value close to one, but limited by the nominal value

ITðaÞ ¼ 15 MA. The table also gives the values of the matching radius q� in

m, the internal energy UðaÞ in MJ, the poloidal flux UPðaÞ in Wb, and the

edge safety factor qðaÞ.

Profiles an aT ITðaÞ q� UðaÞ UPðaÞ qð0Þ qðaÞ

Peaked 2aT 1.4 7.22 1.356 206.5 49.45 1.000 7.171

Peaked 2aT 1.3 7.78 1.596 234.8 51.86 1.000 6.727

Peaked 2aT 1.2 8.50 1.972 274.1 55.01 1.000 6.107

Intermediate 3aT=2 1.1 9.31 1.830 320.4 58.18 1.000 5.516

Intermediate aT 1.0 10.33 1.585 383.6 62.16 1.000 4.832

Intermediate aT 0.9 11.64 1.690 473.2 67.35 1.000 4.218

Intermediate aT 0.8 13.51 1.258 615.6 74.49 1.000 3.498

Flat aT=2 0.8 13.48 1.187 612.8 74.29 1.000 3.502

Flat aT=2 0.739 15.00 0.825 741.4 79.99 1.000 3.104

Flat aT=2 0.7 15.00 0.577 731.6 78.41 1.058 3.095

TABLE III. Magnetic axis, matching radius, and Neumann parameters for

the ITER-like tokamak equilibrium with peaked pressure and current density

profiles shown in Fig. 2, and discussed in the text.

Parameter set Values

Magnetic axis R m ¼ 6.47327 m Zm ¼ 0.549442 m

jm ¼ 1:34389

Matching radius q� ¼ 1:35609 m

Neumann R00ðaÞ ¼ �0:479432 Z00ðaÞ ¼ 0:0049004

e0ðaÞ ¼ 0:425214 m–1

S02ðaÞ ¼ �0:00677738 m–1 A02ðaÞ ¼ �0:000911109 m–1

S03ðaÞ ¼ 0:00821685 m–1 A03ðaÞ ¼ �0:0119952 m–1
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FIG. 3. Profiles of the poloidal flux,

UPðqÞ; of the main Fourier amplitudes,

R0ðqÞ; Z0ðqÞ and eðqÞ; of the symmet-

ric, S2ðqÞ, and antisymmetric, A2ðqÞ,
triangularity coefficients; and of the

symmetric, S3ðqÞ, and antisymmetric,

A3ðqÞ, quadrangularity coefficients for

the ITER equilibrium shown in Fig. 2.

The thin vertical line indicates the

position of the matching radius, q�.

FIG. 2. Left: flux surface geometry inside the ITER-like tokamak plasma. Right: profiles of the plasma pressure, pðqÞ, toroidal current, ITðqÞ (thick line), and

approximate toroidal current density, hjTiðqÞ (thin line), for the equilibrium detailed in Tables I and III.
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Upon substituting the values of the Dirichlet parameters,

Neumann parameters, and matching radius given in Tables I

and III in the sectionally continuous approximations pre-

sented in Sec. V, the spectral representation of the flux surfa-

ces is fully determined. Then, the equilibrium quantities can

be calculated by integration using the expressions given in

Sec. IV. As an example, Fig. 4 shows the profiles, along the

equatorial plane, of the toroidal and poloidal current densi-

ties defined by Eqs. (29) and (43), respectively.

The toroidal component of the equivalent surface cur-

rent density, KT ¼ hf~K � rf, is defined on each flux surface

of the tokamak plasma by

KT q; hð Þ ¼ jrqj
2pl0hf

dUP

dq
¼ 1

l0

hh q; hð Þ
2p

ffiffiffi
g
p

q; hð Þ

 !
IT qð Þ
K qð Þ

: (107)

Figure 5 shows the surface current density distribution on the

plasma boundary and on several flux surfaces inside the

plasma for the ITER-like equilibrium shown in Fig. 2. The

surface current on the plasma boundary is a necessary part in

the determination of the maintaining field. This topic is

examined in the Paper II.

TABLE IV. Magnetic axis, matching radius and Neumann parameters for

the ITER-like tokamak equilibrium with flat pressure and current density

profiles shown in Fig. 6, and discussed in the text.

Parameter set Values

Magnetic axis Rm ¼ 6.24007 m Zm ¼ 0.55123 m

jm ¼ 1:62433

Matching radius q� ¼ 0:576545 m

Neumann R00ðaÞ ¼ �0:0503291 Z00ðaÞ ¼ �0:00116705

e0ðaÞ ¼ 0:127612 m–1

S02ðaÞ ¼ 0:0408533 m–1 A02ðaÞ ¼ �0:00161027 m–1

S03ðaÞ ¼ 0:00494655 m–1 A03ðaÞ ¼ �0:00971862 m�1

FIG. 5. Equivalent surface current density distribution in the ITER-like

tokamak equilibrium shown in Fig. 2. The thick continuous line corresponds

to the surface current on the plasma boundary q ¼ a. The thin lines

correspond to the surface current on the flux surfaces q ¼ 3a=4 (continu-

ous), q ¼ a=2 (dashed), and q ¼ a=4 (dotted). The thick dashed line corre-

sponds to the matching radius position q� ¼ 0:678a.

FIG. 4. Profiles of the toroidal (continuous line) and poloidal (dotted line)

plasma current densities along the equatorial plane of the ITER equilib-

rium shown in Fig. 2. The toroidal and poloidal plasma currents are

ITðaÞ ¼ 7:22 MA and IPðaÞ ¼ 2:82 MA, respectively. The total poloidal

current is Ið0Þ ¼ 167:12 MA on the magnetic axis and IðaÞ ¼ 164:30 MA

at the plasma boundary.

FIG. 6. Left: flux surface geometry

inside the ITER-like tokamak plasma.

Right: profiles of the plasma pressure,

pðqÞ, toroidal current, ITðqÞ (thick

line), and approximate toroidal current

density, hjTiðqÞ (thin line), for the equi-

librium detailed in Tables I and IV.
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The last line in Table II corresponds to an ITER-like

tokamak equilibrium with relatively flat profiles. Table IV

lists the magnetic axis, matching radius, and Neumann

parameters for this equilibrium and Fig. 6 shows the flux sur-

face geometry, the plasma pressure profile, pðqÞ, the toroidal

current profile, ITðqÞ, and the approximate toroidal current

density profile, hjTiðqÞ. Also, Fig. 7 shows the profiles of the

poloidal flux and Fourier amplitudes for the equilibrium.

Finally, Fig. 8 shows the profiles of the toroidal and poloidal

current densities along the equatorial plane, for the ITER-

like tokamak equilibrium shown in Figs. 6 and 9 shows the

respective distribution of the equivalent surface current den-

sity in the internal flux surfaces.

VII. CONCLUSIONS

This article presented an analytical model for the

equilibrium of tokamak plasmas with an arbitrary aspect

ratio and vertical asymmetry. The model is based on spec-

tral representations of the flux surfaces and sectionally

continuous approximations of the Fourier amplitudes. The

coefficients in the sectionally continuous approximations

are determined making power series expansions of the

variational moment (Euler) equations. Matching between

the Taylor series for the core and border plasmas is per-

formed by a direct variational method that admits fast cal-

culation of the equilibrium parameters. In this manner, the

analytical form of the spectral representation leads to a

straightforward determination of all equilibrium variables

and profiles.

The analytical model was applied to an ITER-like toka-

mak. A wide range of plasma pressure and toroidal current

density profiles can be simulated, as listed in Table II and

illustrated by Figs. 2 and 6. Although the present applica-

tion was limited to standard pressure and current (ohmic)

profiles, the model can be extended to other profiles includ-

ing externally driven currents and possibly advanced fea-

tures such as reversed shear. Even equilibrium solutions

with discontinuous profiles (current sheets) can be simu-

lated by suitable modifications of the sectionally continuous

approximations.

Although the model may not have sufficient precision

for detailed stability studies, when a large number of Fourier

components are required, it should be adequate for the con-

ceptual design of tokamak reactors. Moreover, the one-

dimensional formulation obtained with the use of magnetic

FIG. 7. Profiles of the poloidal flux,

UPðqÞ; of the main Fourier amplitudes,

R0ðqÞ; Z0ðqÞ and eðqÞ; of the symmet-

ric, S2ðqÞ, and antisymmetric, A2ðqÞ,
triangularity coefficients; and of the

symmetric, S3ðqÞ, and antisymmetric,

A3ðqÞ, quadrangularity coefficients for

the ITER-like equilibrium shown in

Fig. 6. The thin vertical line indicates

the position of the matching radius, q�.
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flux coordinates and spectral representations provides an

appropriate framework for simple plasma transport studies

and particle orbit calculations, since the flux surfaces have

an analytical form. The model is also adequate to estimate

the external field necessary for equilibrium, a problem that

is addressed in the Paper II.1 Actually, one of the advan-

tages of the model is the analytical description of the

Cauchy conditions by means of the amplitudes and radial

derivatives of the Fourier coefficients at the plasma bound-

ary. The Fourier coefficients act as “virtual filaments” in

free-boundary calculations, a problem that is also analyzed

in Paper II.
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APPENDIX A: INTERACTION ENERGY BETWEEN
PLASMA AND EXTERNAL TOROIDAL MAGNETIC FIELD

The vector potential ~AP;0 corresponding to the external

toroidal magnetic field ~BT;0 is given by

~AP;0 ¼ Aq;0ðq; hÞrqþ Ah;0ðq; hÞrh; (A1)

where the covariant components are:

Aq;0 q; hð Þ ¼ B0R0 að ÞL qð Þ
@

@q
1

dL=dq

ðh
0

ffiffiffi
g
p

q; h0
� �

h2
f q; h0
� � dh0

2
64

3
75;

Ah;0 q; hð Þ ¼ B0R0 að Þ
L qð Þ

dL=dq

ffiffiffi
g
p

q; hð Þ
h2

f q; hð Þ : (A2)

Accordingly,

r� ~AP;0 ¼ rAq;0 q; hð Þ � rqþrAh;0 q; hð Þ � rh

¼ � @Aq;0

@h
þ @Ah;0

@q

� �
rq�rh

¼ � @Aq;0

@h
þ @Ah;0

@q

� �
h2

f q; hð Þffiffiffi
g
p

q; hð Þrf

¼ B0R0 að Þrf ¼ ~BT;0: (A3)

Now consider the interaction energy of the magnetization

currents ~jP ¼ r � ~M in the external field of potential
~AP;0:

WM að Þ ¼
ð ð ð
V að Þ

~jP � ~AP;0 d3r

¼
ða
0

ð2p

0

dIP

dq
Ah;0 q; hð Þrf�rq � rh

ffiffiffi
g
p

q; hð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

dq dh

¼ 2pB0R0 að Þ
ða
0

dIP

dq

L qð Þ
dL=dq

� ffiffiffi
g
p

q; hð Þ
h2

f q; hð Þ

�
h

¼ I að Þ
ða
0

L qð Þ
dIP

dq
dq ¼ LM að ÞI að ÞIP að Þ: (A4)

Of course, the same result is obtained replacing ~jP by

r� ~M:

WMðaÞ ¼
ð ð ð
VðaÞ

ðr � ~MÞ � ~AP;0 d3r

¼
ð ð ð
VðaÞ

~M � ~BT;0 d3r þ
ð ð

SPðaÞ

~M � ~AP;0 � d2~rðqÞ:

(A5)

Here, the first term on the right-hand side corresponds to

the potential energy of distributed magnetic moments in the

external toroidal magnetic field and the second term to the

FIG. 8. Profiles of the toroidal (continuous line) and poloidal (dotted line)

plasma current densities along the equatorial plane of the ITER-like equi-

librium shown in Fig. 6. The toroidal and poloidal plasma currents are

ITðaÞ ¼ 15:00 MA and IPðaÞ ¼ 9:78 MA, respectively. The total poloidal

current is Ið0Þ ¼ 174:08 MA on the magnetic axis and IðaÞ ¼ 164:30 MA

at the plasma boundary.

FIG. 9. Equivalent surface current density distribution in the ITER-like toka-

mak equilibrium shown in Fig. 6. The thick continuous line corresponds to the

surface current on the plasma boundary q ¼ a. The thin lines correspond to

the surface current on the flux surfaces q ¼ 3a=4 (continuous), q ¼ a=2

(dashed), and q ¼ a=4 (dotted). The thick dashed line corresponds to the

matching radius position q� ¼ 0:288a.
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interaction energy of surface magnetization. Performing the integrations with d3r ¼ ffiffiffi
g
p ðq; hÞdqdhdf and d2~rðqÞ ¼ffiffiffi

g
p ðq; hÞdhdfrq one obtains

WM að Þ ¼ �B0R0 að Þ
ða
0

ð2p

0

IP qð Þ
ffiffiffi
g
p

q; hð Þ
h2

f q; hð Þ dq dhþIP að Þ
ð2p

0

Aq;0 a; hð Þrqþ Ah;0 a; hð Þrh
� �

�rf � rq
ffiffiffi
g
p

a; hð Þdh

¼ � 2pB0R0 að Þ
l0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼I að Þ

ða
0

IP qð Þ
dL

dq
dqþ IP að Þ

ð2p

0

Ah;0 a; hð Þdh

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼L að ÞI að Þ

¼ I að Þ
ða
0

L qð Þ
dIP

dq
dq ¼ LM að ÞI að ÞIP að Þ: (A6)

APPENDIX B: POWER SERIES EXPANSIONS OF THE GEOMETRIC AND MAGNETIC EQUILIBRIUM COEFFICIENTS

The spectral representation of the flux surfaces expanded to the fourth-order in q results in the pair of parametric equations

for the radial component (in cylindrical coordinates)

R q; hð Þ ¼ Rm þ q cos hþ q2

2
R000 0ð Þ � 4 S02 0ð Þsin h� A02 0ð Þcos h

� �
sin h

� �
�2q3 S03 0ð Þ

a
sin h� A03 0ð Þ

a
cos h

� �
sin 2hþ q4

24
R 4ð Þ

0 0ð Þ � 8 S 3ð Þ
2 0ð Þsin h� A 3ð Þ

2 0ð Þcos h
� �

sin h
h i

þ � � � (B1)

and for the axial component

Z q; hð Þ
jm

¼ Zm

jm
þ q sin hþ q2

2

Z000 0ð Þ
jm
� 4 S02 0ð Þcos hþ A02 0ð Þsin h
� �

sin h


 �

þ q3

2

e00 0ð Þ
jm

sin h� 4
S03 0ð Þ

a
cos hþ A03 0ð Þ

a
sin h

� �
sin 2h

" #

þ q4

24

Z 4ð Þ
0 0ð Þ
jm

� 24
e00 0ð Þ
jm

S02 0ð Þcos hþ A02 0ð Þsin h
� �

sin h�8 S 3ð Þ
2 0ð Þcos hþ A 3ð Þ

2 0ð Þsin h
� �

sin h

" #
þ � � � : (B2)

Some of the higher-order terms in the above spectral representation do not contribute to the following expansions of the geo-

metric and magnetic coefficients of the equilibrium equation.

The volume enclosed by a flux surface is expanded as

V qð Þ
2p2jmRmq2

ffi 1þ q2

2R2
m

RmR000 0ð Þ þ R2
me00 0ð Þ
jm

�2 1þ 2RmS02 0ð Þ
� �

RmS02 0ð Þ � 4R2
mA02 0ð Þ2 � 4

R2
mS03 0ð Þ

a

� 
; (B3)

and the magnetic coefficients in the equilibrium equation become

2RmL qð Þ
l0jmq2

ffi 1þ q2

4R2
m

1� 2 RmR000 0ð Þ � R2
me00 0ð Þ
jm

� �
þ4 1� 2RmS02 0ð Þ
� �

RmS02 0ð Þ � 8 R2
mA02 0ð Þ2 þ R2

mS03 0ð Þ
a

� �( )
; (B4)

and

2l0jmRmK qð Þ
j2

m þ 1
� �

q
ffi 1þ q2

4R2
m

�
3� 2

j2
m þ 1

þ 1� 2

j2
m þ 1

þ 3� 2

j2
m þ 1

� �
RmR000 0ð Þ � 16

j2
m þ 1

RmS02 0ð Þ

 �

RmR000 0ð Þ

þ 1þ 2

j2
m þ 1

� �
RmZ000 0ð Þ

jm
þ 8 1� 4

j2
m þ 1

� �
RmA02 0ð Þ

" #
RmZ000 0ð Þ

jm

þ 1� 6

j2
m þ 1

� �
R2

me00 0ð Þ
jm

þ 4 1� 2

j2
m þ 1

þ 5 1þ 2

j2
m þ 1

� �
RmS02 0ð Þ


 �
RmS02 0ð Þ

þ4 3þ 14

j2
m þ 1

� �
R2

mA02 0ð Þ2 þ 8
R2

mS03 0ð Þ
a


:
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In a form suitable for a large aspect ratio, the poloidal flux function is given by

2 j2
m þ 1

� �
UP q½ �

jml0I00T 0ð ÞRmq2
ffi 1þ q2

24R2
m

(
R2

mI 4ð Þ
T 0ð Þ

I00T 0ð Þ
� 3 3� 2

j2
m þ 1

� �

�3 1� 2

j2
m þ 1

þ 3� 2

j2
m þ 1

� �
RmR000 0ð Þ � 16

j2
m þ 1

RmS02 0ð Þ

 �

RmR000 0ð Þ

�3 1þ 2

j2
m þ 1

� �
RmZ000 0ð Þ

jm
þ 8 1� 4

j2
m þ 1

� �
RmA02 0ð Þ

" #
RmZ000 0ð Þ

jm

�3 1� 6

j2
m þ 1

� �
R2

me00 0ð Þ
jm

� 12 1� 2

j2
m þ 1

þ 5 1þ 2

1þ j2
m

� �
RmS02 0ð Þ


 �
RmS02 0ð Þ

�12 3þ 14

j2
m þ 1

� �
R2

mA02 0ð Þ2 þ 2
R2

mS03 0ð Þ
a

" #)
: (B5)

Note that the multivariate derivatives wð2;0Þm and wð4;0Þm in the coefficients (24) of the Taylor series in q of the flux function are

related to the derivatives I00Tð0Þ and I
ð4Þ
T ð0Þ of the toroidal current profile, as anticipated in Sec. III.

APPENDIX C: POWER SERIES EXPANSIONS OF THE EULER EQUATIONS

The leading term (lowest-order) for each Euler equation is as follows.

Geometric center R0ðqÞ of the flux surfaces (major radius):

j2
m þ Rm 3j2

m þ 1
� �

R000 0ð Þ � 8S02 0ð Þ
� �� �

l0I00T 0ð Þ2 � 8p2 j2
m þ 1

� �2
p00 0ð Þ

2 j2
m þ 1

� �2

0
@

1
Ajmq3 þ � � � ¼ 0: (C1)

Vertical position Z0ðqÞ of the major radius:

Rm j2
m þ 3

� �
Z000 0ð Þ=jm � 4 3� j2

m

� �
A02 0ð Þ

� �
l0I00T 0ð Þ2

2 j2
m þ 1

� �2

0
@

1
Aq3 þ � � � ¼ 0: (C2)

Elongation eðqÞ:

"
3j4

m þ 8j2
m þ 1� 3j4

m þ 2j2
m þ 3

� �
RmR000 0ð Þ þ 16 3j4

m þ 8j2
m þ 3

� �
RmS02 0ð Þ

16 j2
m þ 1

� �3

 !
RmR000 0ð Þ

8<
:
� 21þ 5j2

m j2
m þ 6

� �� �
RmZ000 0ð Þ=jm � 16 13j2

m þ 9
� �

RmA02 0ð Þ
16 j2

m þ 1
� �3

 !
RmZ000 0ð Þ

jm

þ j4
m þ 18j2

m þ 5

16 j2
m þ 1

� �3

 !
R2

me00 0ð Þ
jm

þ
1� 4Rm 5S02 0ð Þ þ Rm 23S02 0ð Þ2 þ 41A02 0ð Þ2 � 10S03 0ð Þ=a

� �h i
16 j2

m þ 1
� �3

0
@

1
A

þj2
m

3þ 4Rm S02 0ð Þ � 31RmS02 0ð Þ2 � 37RmA02 0ð Þ2
h i

8 j2
m þ 1

� �3

0
@

1
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þj4
m

1þ 12RmS02 0ð Þ � 4R2
m 19S02 0ð Þ2 þ 5A02 0ð Þ2 þ 10S03 0ð Þ=a
h i
16 j2

m þ 1
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0
@

1
A#l0I00T 0ð Þ2

þ j2
m � 1

� �
R2

m

48 j2
m þ 1

� �2

 !
l0I00T 0ð ÞI 4ð Þ

T 0ð Þ � p2 1� 4Rm R000 0ð Þ � 2S02 0ð Þ
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2

� �
p00 0ð Þ

)
q5

Rm
þ � � � ¼ 0: (C3)
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Symmetric triangularity coefficient S2ðqÞ:
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Antisymmetric triangularity coefficient A2ðqÞ:
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Symmetric quadrangular coefficient S3ðqÞ:
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Antisymmetric quadrangular coefficient A3ðqÞ:
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Note that the two equations for the symmetric and antisymmetric triangularity coefficients give lowest-order conditions

that are identical to the ones given by the radial and vertical positions of the major radius. Therefore, in lowest-order there

are five independent equations available, which can be used to evaluate the three parameters Rm, Zm, and jm on

the magnetic axis, and to eliminate, say, S03ð0Þ and A03ð0Þ. The remaining coefficients, R000ð0Þ; Z000 ð0Þ, e00ð0Þ; S02ð0Þ, and

A02ð0Þ, must be evaluated from the next order terms in the expansions of the Euler equations. These terms become very

cumbersome. Nevertheless, they can be derived from the Euler equations in a straightforward manner using a computer

algebra system like Mathematica . Although lengthy, the final equations have a simple algebraic structure, allowing

fast calculation of the required coefficients. The seven equations suitable for evaluating the coefficients

R000ð0Þ; Z000 ð0Þ; e00ð0Þ; S02ð0Þ; A02ð0Þ; S03ð0Þ, and A03ð0Þ are listed in the following. They complement the three Eqs. (76)–(78)

used to evaluate Rm, Zm, and jm.

Next to the lowest order term for the major radius R0ðqÞ of the flux surfaces:
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Next to the lowest order term for the vertical position Z0ðqÞ of the major radius:
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Note that the last term in the above equation vanishes as determined by Eq. (77) for the vertical position of the magnetic

axis.

Next to the lowest order term for the elongation eðqÞ:
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Next to the lowest order term for the symmetric triangularity coefficient S2ðqÞ:
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Next to the lowest order term for the antisymmetric triangularity coefficient A2ðqÞ:
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The lowest order term for the symmetric quadrangularity coefficient S3ðqÞ:
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The lowest order term for the antisymmetric quadrangularity coefficient A3ðqÞ:

7 j2
m � 1

� �
1þ 3RmR000 0ð Þ
� �

þ 2 13j2
m þ 67

� �
RmS02 0ð Þ

h iRmZ000 0ð Þ
jm

þ 19j2
m þ 77þ 10 5j2

m þ 11
� �

RmR000 0ð Þ � 4 23j2
m þ 137

� �
RmS02 0ð Þ

� �
RmA02 0ð Þ

�140 j2
m þ 1

� �R2
mA03 0ð Þ

a
þ 16j2

mRmA02 0ð Þ 8p2 j2
m þ 1

� �2
p00 0ð Þ

j2
ml0I00T 0ð Þ2

 !
¼ 0: (C14)

1G. O. Ludwig, “Analytical solution of the tokamak equilibrium. II. The

free-boundary case,” Phys. Plasma 24, 092503 (2017).
2V. D. Shafranov, “On magnetohydrodynamical equilibrium configu-

rations,” Zh. Eksp. Teor. Fiz. 33, 710–722 (1957) [Sov. Phys. JETP 6,

545–554 (1958)].
3R. L€ust and A. Schl€uter, “Axialsymmetrische magnetohydrodynamische

gleichgewichtskonfigurationen,” Z. Naturforsch. 12A, 850–854 (1957).
4H. Grad and H. Rubin, 1958 “Hydromagnetic equilibria and force-free

fields,” in Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy (United Nations,

Geneva, 1958), Vol. 31, pp. 190–197.
5L. S. Solov’ev, “The theory of hydromagnetic stability of toroidal plasma

configurations,” Zh. Eksp. Teor. Fiz. 53, 626–643 (1967) [Sov. Phys.

JETP 26, 400–407 (1968)].
6E. K. Maschke, “Exact solutions of the MHD equilibrium equation for a

toroidal plasma,” Plasma Phys. 15, 535–541 (1973).
7J. P. Sudano, “Equilibrium of a toroidal plasma,” Phys. Fluids 17,

1915–1916 (1974).
8E. Mazzucato, “Exact equilibria of axisymmetric magnetic configu-

rations,” Phys. Fluids 18, 536–540 (1975).
9S. B. Zheng, A. J. Wootton, and E. R. Solano, “Analytical tokamak equi-

librium for shaped plasmas,” Phys. Plasmas 3, 1176–1178 (1996).
10P. J. McCarthy, “Analytic solutions to the Grad-Shafranov equation for

tokamak equilibrium with dissimilar source functions,” Phys. Plasmas 6,

3554–3560 (1999).
11C. V. Atanasiu, S. G€unter, K. Lackner, and I. G. Miron, “Analytical solu-

tions to the Grad-Shafranov equation,” Phys. Plasmas 11, 3510–3518

(2004).
12L. Guazzotto and J. P. Freidberg, “A family of analytic equilibrium solu-

tions for the Grad-Shafranov equation,” Phys. Plasmas 14, 112508 (2007).
13B. Shi, “Exact single-null diverted tokamak equilibria,” Plasma Phys.

Controlled Fusion 51, 105008–105012 (2009).

14R. Srinivasan, L. L. Lao, and M. S. Chu, “Analytical description of poloi-

dally diverted tokamak equilibrium with linear stream functions,” Plasma

Phys. Controlled Fusion 52, 035007–035012 (2010).
15H. Weitzner, 1981 Appendix in Ref. 18.
16G. O. Ludwig, “Direct variational solutions of the tokamak equilibrium

problem,” Plasma Phys. Controlled Fusion 39, 2021–2037 (1997).
17V. A. Yavorskij, K. Schoepf, Z. N. Andrushchenko, B. H. Cho, V. Y.

Goloborod’ko, and S. N. Reznyk, “Analytical models of axisymmetric

toroidal magnetic fields with non-circular flux surfaces,” Plasma Phys.

Controlled Fusion 43, 249–269 (2001).
18L. L. Lao, S. P. Hirshmann, and R. M. Wieland, “Variational moment sol-

utions to the Grad-Shafranov equation,” Phys. Fluids 24, 1431–1441

(1981).
19G. O. Ludwig, “Direct variational solutions to the Grad-Schl€uter-

Shafranov equation,” Plasma Phys. Controlled Fusion 37, 633–646 (1995).
20L. E. Zakharov and V. D. Shafranov, “Equilibrium of current-carrying

plasmas in toroidal configurations,” Rev. Plasma Phys. 11, 153–308

(1986).
21G. O. Ludwig, P. Rodrigues, and J. P. S. Bizarro, “Tokamak equilibria

with strong toroidal current density reversal,” Nucl. Fusion 53, 053001

(2013).
22M. D. Kruskal and R. M. Kulsrud, “Equilibrium of a magnetically con-

fined plasma in a toroid,” Phys. Fluids 1, 265–274 (1958).
23H. Grad, “Some new variational properties of hydromagnetic equilibria,”

Phys. Fluids 7, 1283–1292 (1964).
24V. D. Khait, “Variational method for approximately solving the problem

of the MHD equilibrium of a tokamak plasma,” Sov. J. Plasma Phys. 6,

476–478 (1980).
25M. Shimada et al., “Overview and summary,” Nucl. Fusion 47, S1–S17

(2007).
26E. Minardi, “The relation between current density and pressure in the

Ohmic tokamak,” Phys. Lett. A 240, 70–72 (1998).

092502-27 G. O. Ludwig Phys. Plasmas 24, 092502 (2017)

http://dx.doi.org/10.1063/1.4997794
http://dx.doi.org/10.1088/0032-1028/15/6/006
http://dx.doi.org/10.1063/1.1694640
http://dx.doi.org/10.1063/1.861186
http://dx.doi.org/10.1063/1.871772
http://dx.doi.org/10.1063/1.873630
http://dx.doi.org/10.1063/1.1756167
http://dx.doi.org/10.1063/1.2803759
http://dx.doi.org/10.1088/0741-3335/51/10/105008
http://dx.doi.org/10.1088/0741-3335/51/10/105008
http://dx.doi.org/10.1088/0741-3335/52/3/035007
http://dx.doi.org/10.1088/0741-3335/52/3/035007
http://dx.doi.org/10.1088/0741-3335/39/12/006
http://dx.doi.org/10.1088/0741-3335/43/3/302
http://dx.doi.org/10.1088/0741-3335/43/3/302
http://dx.doi.org/10.1063/1.863562
http://dx.doi.org/10.1088/0741-3335/37/6/003
http://dx.doi.org/10.1088/0029-5515/53/5/053001
http://dx.doi.org/10.1063/1.1705884
http://dx.doi.org/10.1063/1.1711373
http://dx.doi.org/10.1088/0029-5515/47/6/S01
http://dx.doi.org/10.1016/S0375-9601(98)00062-0

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	s3
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	s4
	d26
	d27
	d28
	d29
	d30
	d31
	d32
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	d40
	d41
	d42
	d43
	d44
	d45
	d46
	d47
	d48
	d49
	d50
	d51
	d52
	d53
	d54
	d55
	d56
	d57
	d58
	d59
	d60
	d61
	d62
	d63
	d64
	d65
	d66
	d67
	d68
	d69
	d70
	d71
	d72
	d73
	s5
	d74
	d75
	d76
	d77
	d78
	d79
	d80
	d81
	d82
	d83
	d84
	d85
	d86
	d87
	d88
	d89
	d90
	d91
	s6
	d92
	f1
	d93
	d94
	d95
	d96
	d97
	d98
	d99
	d100
	t1
	d101
	d102
	d103
	d104
	d105
	d106
	t2
	t3
	f3
	f2
	d107
	t4
	f5
	f4
	f6
	s7
	f7
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	f8
	f9
	dA6
	dB1
	dB2
	dB3
	dB4
	app2
	dB5
	app3
	dC1
	dC2
	dC3
	dC4
	dC5
	dC6
	dC7
	dC8
	dC9
	app3
	app3
	dC10
	app3
	dC11
	dC12
	dC13
	dC14
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26

