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ABSTRACT

The Amazon rainforest plays an important role in the global carbon and water cycles,
having direct influence on Earth’s atmosphere and it suffers the consequences of the
current climate crisis. Deforestation monitoring systems are a source of information
on the forest condition for the scientific community, policy makers, and the general
public. In this thesis, we identified three areas on which such systems could be
improved: data processing, information extraction, and information distribution.
Processing data of Earth observation satellites is subject to atmospheric noise. In
particular, clouds obstruct the surveying of the Amazon rainforest. They introduce
discontinuities on the the spatial and temporal patterns, which reduce the ability
of analyst to extract information about features on the surface and reducing the
reliability of the information obtained. Any information on Earth’s surface — in
our particular case, information on Land Use and Land Cover change — increases
its value through sharing, validation, and reuse in broader communities. Regarding
data processing, we tested several cloud detection algorithms on Sentinel-2 imagery
and we found that Fmask4 provides the best performance under frequent cloud
coverage. With this knowledge, we proceed to extract deforestation information using
time series of the Landsat 8 and Sentinel-2 satellites, applying machine learning
techniques of Deep Learning and Random Forest, respectively. We obtained the
best results by using time series of Sentinel-2 images processed with Random Forest.
Finally, we demonstrated the best way to provide scientists with access to massive
amounts or Earth observation data and processing tools is through collaborative
analysis environments offered through Internet, such as Jupyter notebooks.

Keywords: Amazon forest. Deforestation. Machine learning. Remote Sensing.
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DETECÇÃO DE DESMATAMENTO USANDO SERIES DE TEMPO
DE SENSORIAMENTO REMOTO NA AMAZÔNIA BRASILEIRA

RESUMO

A floresta Amazônica desempenha um papel importante nos ciclos globais de car-
bono e água, tendo influência direta na atmosfera terrestre e sofrendo as consequên-
cias da atual crise climática. Daí a importância dos sistemas de monitoramento de
desmatamento como fonte de informação sobre a condição da floresta para comuni-
dade científica, formadores de políticas e o público em geral. Nós identificamos três
áreas nas quais esses sistemas poderiam ser aprimorados: processamento de dados,
extração e distribuição de informações. O processamento de dados dos satélites de
observação da Terra está sujeito ao ruído atmosférico; as nuvens, em particular,
dificultam o mapeamento da floresta Amazônica. As nuvens introduzem desconti-
nuidades nos padrões espaciais e temporais, o que reduz a capacidade dos analistas
de extrair informações sobre os elementos da superfície, e também reduz a confiabi-
lidade das informações obtidas. Qualquer informação sobre superfície da Terra, em
nosso caso particular, informações sobre mudança no uso e cobertura, incrementa
seu valor por meio do compartilhamento, validação e reutilização em comunidades
mais amplas. Em relação ao processamento dos dados, testamos vários algoritmos
de detecção de nuvens e descobrimos que o Fmask4 oferece o melhor desempenho
em imagens de satélite com frequente cobertura de nuvens. Com esse conhecimento,
procedemos à extração de informações sobre desmatamento usando séries temporais
dos satélites Landsat 8 e Sentinel-2, aplicando as técnicas de aprendizado de má-
quina Deep Learning e Random Forest. Obtivemos os melhores resultados usando
séries temporais de imagens Sentinel-2 processadas com Random Forest. Finalmente,
demonstramos que a melhor maneira de fornecer aos cientistas acesso a grandes
quantidades de dados de observação da Terra é com ferramentas de processamento
e através de ambientes de análise colaborativa oferecidos pela Internet, como os
notebooks Jupyter.

Palavras-chave: Floresta Amazônica. Desmatamento. Aprendizagem de máquina.
Sensoriamento remoto.

xi





LIST OF FIGURES

Page

2.1 Area of interest. Path Row 226 064 in Landsat World Reference 2. . . . . 7
2.2 Number of clouded pixels by PRODES year from 2013 (leftmost image)

to 2016 (rightmost image). . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Sample distribution across the area of interest. . . . . . . . . . . . . . . . 8
2.4 Classification results and PRODES map (right most column) from 2014

to 2017. A PRODES year runs from August to July. . . . . . . . . . . . . 10
2.5 Classification validation using samples classified by experts. The given

years correspond to the PRODES year (August-July). . . . . . . . . . . . 11
2.6 Comparison of the classification to PRODES. . . . . . . . . . . . . . . . 11
2.7 Comparison of MAPBIOMAS 4.1 to PRODES. . . . . . . . . . . . . . . 12

3.1 Study area location. Left: Brazil in South America. Right: Location of the
Amazon biome along the Sentinel–2 tiles T19LFK, T20NPH, T21LXH,
T22MCA, and T22NCG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Number of pixels classified on each Sentinel–2A image. . . . . . . . . . . 29
3.3 Clouds detected on the Sentinel–2A image T19LFK of May 7, 2018. The

color picture (a) uses bands 12, 8 and 3. . . . . . . . . . . . . . . . . . . 30
3.4 Clouds detected on the Sentinel–2A image T21LXH of March 28, 2017.

The image is composed of bands 12, 8 and 3. . . . . . . . . . . . . . . . . 31
3.5 Detail of clouds over Amazonia in Sentinel–2A image T22MCA of June

23, 2017. The image is composed of bands 4, 3 and 2. . . . . . . . . . . . 32

4.1 Left: location of the study area. Right: Sentinel-2 image from 28 Septem-
ber, 2019 (bands 432, Tile 20LKP), indigenous lands, and conservation
units of the study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Bands and Indices classified maps using MSI/Sentinel-2A data cube from
August 12th of 2018 to July 28th 2019. . . . . . . . . . . . . . . . . . . . 44

4.3 Deforestation patches comparisons between Bands and Indices models.
The two columns from left show Sentinel-2A images of start date and end
date (true color). The central coordinates of the patches are (in WGS84):
(a) (−64.97182 − 10.28505); (b) -65.30635 -10.05332; (c) −64.8961 −
10.28891; (d) (-64.96943 -10.33271). . . . . . . . . . . . . . . . . . . . . . 48

4.4 Distribution of deforestation patches in the Bands and Indices classifica-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



5.1 An on-line analysis environment for time series of Earth observation data.
This environment displays a description of the Whitaker smoother, its
Python implementation, and its results when applied to a time series of
vegetation indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Fourier decomposition of time series of vegetation indexes. . . . . . . . . 62
5.3 Patterns (top) and samples (bottom) of NDVI time series for classification. 63

xiv



LIST OF TABLES

Page

2.1 Number of samples used for training the classification algorithm. . . . . . 8
2.2 Data included in each classification. . . . . . . . . . . . . . . . . . . . . . 9
2.3 Hyperparameter used while training our Deep Learning neural networks.

All the trainings used the same optimizer (Adam ), number of Layers
(5), validation split (20%), and a learning rate of 0.001. . . . . . . . . . . 9

3.1 Sentinel-2 spatial, spectral, and temporal resolution. . . . . . . . . . . . 19
3.2 Number of samples per image in which two experts agreed. . . . . . . . . 24
3.3 Label recoding of the detection algorithms. . . . . . . . . . . . . . . . . . 25
3.4 F1 scores, user, and producer accuracies for each cloud detection algorithm. 27
3.5 User and producer accuracies for each tile and cloud-detection algorithm. 28

4.1 Spatial and spectral resolution of Sentinel-2. . . . . . . . . . . . . . . . . 41
4.2 Confusion matrix of the Bands classification model. . . . . . . . . . . . . 45
4.3 Confusion matrix of the Indices classification model. . . . . . . . . . . . 45
4.4 Summary of selected approaches for deforestation mapping. We report

the best accuracy obtained by each work. . . . . . . . . . . . . . . . . . . 50

xv





CONTENTS

Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LAND COVER CLASSIFICATIONS OF CLEAR-CUT DEFOR-
ESTATION USING DEEP LEARNING . . . . . . . . . . . . . . 5

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 COMPARISON OF CLOUD COVER DETECTION ALGO-
RITHMS ON SENTINEL–2 IMAGES OF THE AMAZON
TROPICAL FOREST . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Cloud detection algorithms . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Algorithm configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.5 Validation sample set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.6 Label compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.7 Validation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 DETECTING TROPICAL DEFORESTATION USING TIME
SERIES OF SENTINEL-2A IMAGES . . . . . . . . . . . . . . . . 37

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xvii



4.3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Accuracy assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Code and data availability . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 REPRODUCIBLE GEOSPATIAL DATA SCIENCE: EX-
PLORATORY DATA ANALYSIS USING COLLABORATIVE
ANALYSIS ENVIRONMENTS . . . . . . . . . . . . . . . . . . . . 55

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 The e-sensing platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 A Web Service for retrieving time series . . . . . . . . . . . . . . . . . . 57
5.5 Interactive and collaborative analysis environments . . . . . . . . . . . . 58
5.6 Analysis of time series of vegetation indexes . . . . . . . . . . . . . . . . 59
5.7 A collaborative environment - Jupyter notebook . . . . . . . . . . . . . . 60
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xviii



1 INTRODUCTION

Currently, one of the few proven ways to fight the on-going climate crisis is to
massively remove carbon from the atmosphere and the device we have at hand
to do it are trees. However, contrary to common-sense, the trend in the tropics is
towards continuing deforestation. This is disturbing, once deforestation perturbs the
carbon cycle and it negatively affects water, air, biodiversity, and the sustainability
of society.

Under pressure of human activities, tropical forests suffer of small scale and il-
legal deforestation (KALAMANDEEN et al., 2018; BRANCALION et al., 2018), frag-
mentation (HANSEN et al., 2020; MONTIBELLER et al., 2020), understory fire (BAR-

LOW; PERES, 2008; BARLOW et al., 2019), agriculture expansion (GOLLNOW et al.,
2018), lack of land tenure security (AZEVEDO-RAMOS et al., 2020), and infrastructure
projects (BARBER et al., 2014; MUELLER et al., 2016; FEARNSIDE, 2016), among oth-
ers. This coincides with the fact that such forests are continuously being considered
as sources instead of sinks of CO2 (ARAGÃO et al., 2018). Despite their importance,
the available global accounts of deforestation are subject to inaccuracies regarding
not only their statistics but also their semantics (QIN et al., 2019; RICHARDS et al.,
2017; TROPEK et al., 2014). Besides, these accounts are unfit for preventive actions
because they arrive too late due to the time required to collect, organise, and process
vast amounts of data.

National forest monitoring programs target specific forests aiming to prevent and
discourage deforestation (CHAZDON et al., 2016; FOLEY et al., 2005; HANSEN; LOVE-

LAND, 2012). Take, for example, two Brazilian initiatives: PRODES – Monitoring
Project for Deforestation in the Legal Amazon by Satellite – and DETER – Near
Real-Time Deforestation Detection System (DINIZ et al., 2015). They rely on satel-
lite imagery, hardware, software, and human interpretation for producing medium
resolution maps which played a key role during the deforestation reduction period
on the first decade of the 21st century.

However, existing forest monitoring programs based on visual interpretation are close
to their practical limit because of the continually increasing demands of resources
considering the amount, diversity, and improvements on remote sensing data. For
example, PRODES and DETER analyse the Legal Brazilian Amazon 1, which is 60%
of the whole Amazon forest, detecting deforestation patches larger than 6.25 ha. Both

1In this thesis, we use the term Amazônia to make reference to the whole biome, while the term
Amazon is used when referring to one of its parts e.g. Amazon rainforest.

1



projects use supervised classification methods. However, they are exclusively focused
on intact forest and they cannot keep pace not only with the increasing volume of
data and their finer spatiotemporal resolution, but also with emerging challenges
such as forest degradation, conversion, or modification. Finally, their effectiveness is
undermined by deforesters who have already learned how to avoid detection (ASNER

et al., 2005; DIAS et al., 2016; SHIMABUKURO et al., 2012).

Answering the challenges posed to deforestation monitoring systems requires de-
tailed and updated representations of Land Use and Land Cover (LUCC). Such
representations would allow a deeper integration to digital representations of other
components of the Earth system. With this motivation, in this thesis we consider
three relevant questions: How can satellite data can be prepared for analysis?; How
best to analyse big remote sensing data sets?; and What are the analysis options
available for LUCC scientists?

Regarding the first question, the current satellite image distribution model is based
on files covering small areas for a single date. However, for best results in analysis,
Earth observation data needs to be stored using multidimensional arrays having
spatial, temporal, and thematic dimensions. Thus, production of data cubes of anal-
ysis ready data (ARD) is a major trend in Earth observation. Using data cubes,
processing is done in cloud services, freeing scientists from the burden of searching,
gathering, and curating data. One crucial topic for producing ARD is the use of
methods for detecting cloud cover and shadows. For this reason, in Chapter 3 of this
document, we analyse the alternatives for cloud detection on Sentinel–2 images.

As for the second question, machine learning techniques have emerged as the pri-
mary tools for extracting information form Earth observation data cubes. However,
machine learning methods are not a panacea; these methods are prone to overfitting
and not good at dealing with unexpected cases. Also, many estimates of accuracy
of machine learning methods for EO data analysis published in the literature rely
on simple validation techniques. Usually, these validation techniques overestimate
the actual performance of the classification. Therefore, it is important to be rigor-
ous and careful when using machine learning techniques for EO data. In Chapters 2
and 4, we apply machine learning techniques for detecting deforestation in the Brazil-
ian Amazon on Landsat 8 and Sentinel–2 images, respectively. More specifically, in
Chapter 4, we undertake a careful performance assessment. This assessment shows
the benefits and pitfalls of using machine learning for EO data analysis.

Finally, a remaining issue is related to the interaction of knowledge, data, and al-

2



gorithms. Analysis of Earth observation data combines science and art, relying on
several cycles of trial and error. To advance research, scientists rely on a hypothesis-
test cycle and diaries – or notebooks – to keep a record of their findings. This process
also relies on computer code, which scientists write their own way, following the same
hypothesis-test cycle over small data sets. Nowadays, computers also help scientists
to manage their digital notebooks based on concepts such as Literate Program-
ming and Overlay Journals. These notebooks are being taken to the web in the
form of collaborative analysis environments, which are on-line documents that mix
code, descriptions, data, tables, and charts to summarise the results of a scientific
research. This electronic approach to analysis fits well the current data distribu-
tion model based on files (KNUTH, 1984; HEY et al., 2009; PEREZ; GRANGER, 2007).
In Chapter 5, we explore the properties of notebooks for analysing time series of
vegetation indexes.

3





2 LAND COVER CLASSIFICATIONS OF CLEAR-CUT DEFORESTA-
TION USING DEEP LEARNING1

2.1 Abstract

Using Deep Learning Neural Networks, we made supervised classifications of a small
region of the Brazilian Amazon in order to map clear-cut deforestation. We organized
Landsat 8 Surface Reflectance images into time series and we classify the images us-
ing the bands ad a Linear Mixture Model. We obtained similar accuracies using
both data sets when compared to the data reported by the Brazilian Amazon Defor-
estation Monitoring Program (PRODES). These results suggest the possibilities of
using automatic supervised techniques to extend the coverage of forest monitoring
programs to those excluded areas by lack of human resources.

2.2 Introduction

Monitoring the tropical forest through remote sensing helps reducing deforesta-
tion (SEYMOUR; HARRIS, 2019). Usually, monitoring efforts focus on either account-
ing, alerting, or following land use after deforestation. In the Brazilian Amazon,
each of these aims stands for three projects: (i) Brazilian Amazon Deforestation
Monitoring Program (PRODES), whose reports accurately estimates clear-cut of
pristine forest, (ii) the near real-time deforestation detection system (DETER),
that produces fast alerts of change in forest areas for law enforcement authorities,
and (iii) TERRACLASS, which tracks land use and cover after clear-cut deforesta-
tion (SHIMABUKURO et al., 2012).

To achieve high accuracies (e.g. TERRACLASS accuracy is above 77% (ALMEIDA et

al., 2016), these monitoring projects rely on expert visual classifications, which are
costly and time-consuming. For example, PRODES consolidated forest loss rates
are published months after deforestation happened. In the other hand, DETER
reports deforestation faster than PRODES but with lower confidence levels regarding
the deforested areas. The accuracy-speed tradeoff between PRODES and DETER
shapes not only their accuracy, but also the interpretation of their results. These
differences make the data prone to misunderstandings by the public with daring
consequences for the academia (ESCOBAR, 2019).

1This chapter was adapted from the proceedings of GeoInfo 2019:
Sanchez, A., Picoli, M., Andrade, P.R., Simões, R., Santos, L., Chaves, M., Begotti, R., Camara, G.,
2019. Land Cover Classifications of Clear-cut Deforestation Using Deep Learning. In: Geoinfo2019.
pp. 48–56.
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We believe that PRODES must continue being the reference regarding deforestation
in the Amazon for both historical and statistical reasons. We also believe science
should explore and provide new and better answers. This brings up to the question
of how to close the accuracy-speed gap by finding a cheaper and reproducible way to
monitor clear-cut deforestation. An alternative is to train machine how to spot de-
forestation, given that they are good for boring repetitive tasks. Teaching machines
is a current challenge to science and the possibility of improving forest monitoring
systems with the available techniques is worth it.

In this work, we automatically classify deforestation using Neural Networks on a
study area of the Amazon rainforest. The aim of this study is to evaluate a cutting-
edge classification process on deforestation detection that uses Deep Learning and
satellite image time series. By comparing the raw classification maps without ap-
plying on it any post-processing algorithms, we are able to assess the bottom-line
accuracy of our classification process. Our findings give us an idea on how far we are
from reach the same accuracies of non-automatic visual classification systems such
as PRODES. In what follows, we present the material and methods used generate
the maps.

2.3 Material and methods

Our area of interest is located in the Brazilian Amazon forest, in the state of Pará,
between the municipalities of Altamira and São Félix de Xingu. This area is char-
acterized by large amounts of deforestation and a long rainy season (Figure 2.1).
We obtained Landsat-8 images of the Path-Row 226/064 from National Aeronau-
tics and Space Administration (NASA) through the Geological Service of the United
States of America (WULDER et al., 2019), including atmospheric correction and cloud
identification, as shown in Figure 2.2.

To train the classification algorithm, we collected sample points of forest and defor-
estation from the PRODES project. PRODES provides public access to deforestation
data including where and when deforestation was detected. These samples were care-
fully selected to be representative of each class along each PRODES year (Figure 2.3
and Table 2.1).
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Figure 2.1 - Area of interest. Path Row 226 064 in Landsat World Reference 2.

To prepare the data for classification, we stacked Landsat-8 images into one-year
time series. We organized our data into PRODES years, which range from August
to July, in order to match the seasonality of the dry and wet seasons. Each yearly
dataset was stored in TIFF files, one for each variable.

Figure 2.2 - Number of clouded pixels by PRODES year from 2013 (leftmost image) to
2016 (rightmost image).
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Table 2.1 - Number of samples used for training the classification algorithm.

Label Year Samples

Deforestation

2014 1185
2015 1138
2016 1122
2017 1077

Forest 2013-2017 1100

Figure 2.3 - Sample distribution across the area of interest.

For the sake of comparison, we arranged Landsat data in three groups. The first
includes Landsat bands and a vegetation index. The second includes the End Mem-
bers of the global calibrated Spectral Mixture Model as described in (SOUSA; SMALL,
2017). The last one is the combination of the other two (Table 2.2).

We ran a supervised classification using Deep Learning technique. Deep Learning is
concerned to statistically estimate complicated functions out of generalizable pat-
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terns in training data. This technique corresponds to supervised learning because,
given a set of samples, the computer learns how to identify new (unknown) instances
as forest or deforestation. As we increase the number of samples, the computer im-
proves its classificatory capabilities (GOODFELLOW et al., 2016).

Table 2.2 - Data included in each classification.

Classification Id Description Variables in the classification

Bands Landsat Bands and
vegetation index. nir, red, swir2, ndvi

MM Spectral mixture model. Vegetation, substrate, dark

Bands_MM Landsat bands and
mixture model.

nir, red, swir2, vegetation,
ndvi, substrate, dark

We trained a feedforward Deep Learning Neural Network using the yearly time
series in our samples. The training process is about finding the right parameters
(weight and bias) and hyperparameters of the Neural Network. The network hyper-
parameters are concerned with finding the best parameters while the parameters are
directly concerned in classifying the data (BENGIO, 2012). In order to maximize our
chances of finding the best hyperparameters, we explored the solution space (the
combinatory of all the possible hyperparameter values) by a successive process of
randomization and pruning, as shown in Table 2.3.

Table 2.3 - Hyperparameter used while training our Deep Learning neural networks. All
the trainings used the same optimizer (Adam ), number of Layers (5), valida-
tion split (20%), and a learning rate of 0.001.

Experiment Id Activation Batch size Dropout rates Epochs Units
Bands selu 64 0.4 200 700
MM selu 64 0.4 300 600
Bands_MM sigmoid 64 0.5 300 1000

We validate our results by asking remote sensing experts to classify a set of random
points, which were compared to our resulting maps. Regarding software and hard-
ware, we used QGIS and R to prepare the samples, and a combination of R, Keras,
and TensorFlow to train our neural network and to classify the images. To achieve
parallelism during computations, we relied on GNU Parallel along the tools pro-
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vided by operating systems based on the Linux kernel (ABADI et al., 2016; CHOLLET

et al., 2017; TEAM, 2013; SIMOES et al., 2019; TANGE et al., 2011). The machine has
32 64-bit INTEL processors with 128 GB RAM running Ubuntu 14.04 with Linux
kernel 4.4.

2.4 Results

Once we were done training our Network, we classify the time series derived from
Landsat-8 images. We did not apply any postprocessing because we are interested
in finding how far we can we reach by using only Deep Learning.

The classification results are shown in Figure 2.4. The areas painted as white are
deforestation in other years, water bodies, or non-forest areas, which are ignored
in the comparison. Remarkably, the classifications display small roads in the forest
which are missing from the PRODES (Figure 2.4, PRODES year 2017, to the South
of each map). Regarding noise, these classification presents two types: one is salt
and pepper noise which is product from random errors in the classification, while the
other type is elongated and clustered, resembling north-west to south-east clouds
(Figure 2.4, year 2014, to the North-West and to the South-East).

Figure 2.4 - Classification results and PRODES map (right most column) from 2014 to
2017. A PRODES year runs from August to July.
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To validate our classification, we selected a set of 150 random points and then
we asked experts in remote sensing to perform a visual classification. The user
and producer accuracy of the classification (Figure 2.5) are above 50% with few
exceptions. In general, for the forest, the producer accuracy is larger than the user
and the opposite holds true for the deforestation on each PRODES year.

Figure 2.5 - Classification validation using samples classified by experts. The given years
correspond to the PRODES year (August-July).

The forest validation points tend to have a producer greater than the user accuracy
while the opposite holds true for the deforestation class. For the forest, this means
that more often the reference data was rightly tagged. The classifier accuracy is
higher for the deforestation than for the forest areas.

Figure 2.6 - Comparison of the classification to PRODES.
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We also estimated how similar are our results if compared to PRODES. The simi-
larity is reported in Figure 2.6 in the form of user and producer accuracies. While
our results present large similarity regarding the forest class, for the deforestation
class the user accuracy is low. As a reference, we ran the same comparison between
MAPBIOMAS 4.1 (see https://mapbiomas.org) and PRODES and we observed
high accuracy for the forest class and lower for deforestation (Figure 2.7). These
results are consistent to those of (MAURANO; ESCADA, 2019).

Figure 2.7 - Comparison of MAPBIOMAS 4.1 to PRODES.

2.5 Discussion

We used annual time series of Landsat-8 data to classify a scene for the years from
2014 to 2017. Despite obtaining good classification accuracy, they are still far from
those obtained by visual classification used in forest monitoring projects such as
PRODES. We ran our classification using Deep Learning Neural Networks with
three sets of data: Landsat bands plus NDVI, Linear Mixture Model, and their com-
bination. However, we did not observe much difference among them in the accuracy.
This is favorable for using the Linear Mixture Model giving its smaller data size and
its corresponding reduction in processing time.

However, this study was constrained to a small region of the Amazon forest for short
period of time. Besides, the amount of clouds in the area of interest is a limitation.
Another limiting factor on the accuracy of the classifications is the relative propor-
tions of pixels, which can induce artifacts (e.g. ratio of forest to deforestation pixels
is approximately 60 to 1).
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2.6 Conclusion

Monitoring the Amazon forest is hard, mainly due to its extent and almost constant
cloud cover. We acknowledge this fact and at the same time reinforce the scientific
need of proposing, adapting, and testing new approaches to improve classifications
and/or to reduce financial costs to produce such classifications. In this work, we
used Deep Learning Neural Networks over time series to identify deforestation in
Landsat images. We believe that our method can support the monitoring systems
because the use of time series reduces the gap between the time of deforestation and
its detection.

In the results, we also found that some areas classified by us as deforestation were
later found as deforestation in PRODES. We would like to quantify to which extent
this corresponds to the identification of forest degradation. This is possible because
PRODES only reports clear cuts. Our classifications could identify early signs of
deforestation, which could improve monitoring systems as DETER.

Although the accuracy of our automatic classifications are inferior to those of visual
monitoring systems such as PRODES, the approach has great potential to be im-
proved with post-processing procedures such as spatial and temporal filters. Another
possibility is to increase the temporal resolution of the images to create longer time
series. A better temporal resolution might reduce the negative effects of cloudiness
in our classification. To achieve this, we are planning to use products of the Harmo-
nized Landsat Sentinel-2 project (CLAVERIE et al., 2018). Another next step in our
research is to increase the area of interest to cover the whole state of Pará.

Finally, automatic classification results have the potential to help decision mak-
ers to design policies and enforce laws such as the Forest Code (Brazilian Law
12.651 of 2012). Instead of being a concurrent of visual interpretation, they can
work in a complementary way. For instance, they could be used as a first step to
identify deforestation using less resources if it could be possible to guarantee that
false negative deforestation spots would be minimum. The errors in the automatic
classifications identified visually can then be used as input to further improve the
classification model.
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3 COMPARISON OF CLOUD COVER DETECTION ALGORITHMS
ON SENTINEL–2 IMAGES OF THE AMAZON TROPICAL FOREST1

3.1 Abstract

Tropical forests regulate the global water and carbon cycles and also host most of the
world’s biodiversity. Despite their importance, they are hard to survey due to their
location, extent, and particularly, their cloud coverage. Clouds hinder the spatial and
radiometric correction of satellite imagery and also diminishing the useful area on
each image, making it difficult to monitor land change. For this reason, our purpose
is to identify the cloud detection algorithm best suited for the Amazon rainforest
on Sentinel–2 images. To achieve this, we tested four cloud detection algorithms
on images spread in five areas of the Amazonia. Using more than eight thousand
validation points, we compared four cloud detection methods: Fmask 4, MAJA,
Sen2Cor, and s2cloudless. Our results point out that FMask 4 has the best overall
accuracy on images of the Amazon region (90%), followed by Sen2Cor’s (79%),
MAJA (69%), and S2cloudless (52%). We note the choice of method depends on the
intended use. Since MAJA reduces the number of false positives by design, users
that aim to improve the producer’s accuracy should consider its use.

3.2 Introduction

The world’s tropical forests are essential places for environmental sustainability and
the future of our planet. They combine high biodiversity and significant carbon
storage with ecological services (ANTONELLI et al., 2018; OMETTO et al., 2014). Since
the 1980s, the world’s tropical forests have undergone substantial change. Agricul-
tural expansion worldwide happened at the expense of tropical forest areas (GIBBS

et al., 2010). In particular, the Brazilian Amazon rain forest has suffered significant
deforestation. According to Brazil’s National Institute for Space Research (INPE),
deforestation has reached 20% of the Amazon rain forest in the country (INSTITUTO

NACIONAL DE PESQUISAS ESPACIAIS - INPE, 2019). Producing qualified assessments
of land-use and land cover change in Amazonia is essential for evidence-based policies
that can protect the forest (NEPSTAD et al., 2014; SOTERRONI et al., 2018).

Earth observation data is the primary source of assessments of deforestation in

1This chapter is an adapted version of the paper on MDPI’s Remote Sensing journal:
Sanchez, A.H., Picoli, M.C.A., Camara, G., Andrade, P.R., Chaves, M.E.D., Lechler, S., Soares,
A.R., Marujo, R.F.B., Simões, R.E.O., Ferreira, K.R., Queiroz, G.R., 2020. Comparison of Cloud
Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote Sens.
12, 1284.
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Amazônia. Since the late 1980s, INPE produces annual estimates of clear-cut ar-
eas of forest with the PRODES project and daily indications of deforestation alerts
with the DETER initiative (SHIMABUKURO et al., 2012). PRODES and DETER are
the authoritative sources of information that support Brazil’s actions in protecting
Amazônia (ASSUNÇÃO et al., 2015; GIBBS et al., 2015a). As a companion to the moni-
toring of clear-cut areas, INPE and its partners also produce periodic maps of land-
use change in deforested areas in Amazônia with the TerraClass project (ALMEIDA

et al., 2016). Universities and research groups complement INPE’s work (SOUZA JU-

NIOR et al., 2013; TYUKAVINA et al., 2017). Altogether, there is a substantial amount
of land-use change information on the Brazilian Amazon derived from remote sens-
ing data.

Despite the widespread data availability, the complexity of land-use transitions in
Amazônia requires continuous improvements in image classification. Law enforce-
ment actions by the Brazilian federal government managed to reduce deforestation
from 2.7 Mha (million hectares) in 2004 to an average of 0.6 Mha between 2009
and 2018. Despite such reduction, deforestation in Amazonia is still at a relatively
high level. To understand the complex interplay between crop production, cattle
ranching, and land speculation, ever more detailed data is required.

To improve monitoring of the Amazon forest from satellites, researchers are investi-
gating the use of big data analytics (HANSEN et al., 2013; PICOLI et al., 2018). Such
methods rely on the increase of data provided by the new generation of satellites
such as Sentinel–2 (DRUSCH et al., 2012). However, to use these large data sets in
tropical forest areas, researchers need suitable methods of automated cloud detection
in optical imagery.

Traditional alternatives for dealing with cloud cover include combining informa-
tion from various dates and selecting a “best pixel” for an extended period (GRIF-

FITHS et al., 2013). These methods lead to the loss of temporal information required
to identify crop types (BROWN et al., 2013; PICOLI et al., 2018) and pasture man-
agement (RUFIN et al., 2015; JAKIMOW et al., 2018). To capture temporal informa-
tion, many researchers prefer methods that identify cloud-covered pixels and replace
them with interpolated estimates (ZHU; WOODCOCK, 2012). When different satel-
lites are combined to produce a denser time series (CLAVERIE et al., 2018), replacing
cloudy pixels by interpolated values becomes feasible. For this reason, automated
cloud detection algorithms are a necessary complement to big Earth observation
data analytics.
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Cloud detection algorithms are an active research field (ZHU; WOODCOCK, 2012;
LOUIS et al., 2016; HAGOLLE et al., 2017; FRANTZ et al., 2018; QIU et al., 2019). Each
algorithm has specific characteristics and ad hoc techniques; thus, comparing them
on a theoretical basis is hard. In practice, performance assessment is done by select-
ing representative images and assessing how well each algorithm performs in each
image. As an example, Baetens et al. (BAETENS et al., 2019) compare three cloud
detection methods (MAJA, Sen2Cor, and Fmask) using 32 images from 10 different
locations. As a reference for comparison, the authors use a machine learning method
to identify clouds for Sentinel–2 images. Given the different land cover, the diversity
of sensors, and the advances in detection methods, such comparisons serve as general
guidance only.

In this paper, we approach the problem of comparing different cloud detection algo-
rithms from a regional viewpoint. Given the importance of monitoring land change
in Amazônia we consider cloud detection methods for Sentinel-2 MSI images in
this region. We consider four cloud detection algorithms: Fmask 4 (QIU et al., 2019),
MAJA (HAGOLLE et al., 2017), Sen2Cor 2.8 (LOUIS et al., 2016), and s2cloudless (ZU-

PANC, 2019). Cloud formation in Amazônia is distinct from most continental ar-
eas (ROBERTS et al., 2001). The forest produces its own rain (POSCHL et al., 2010).
The rainforest generates the aerosols that make up the cloud condensation nucleus
in the region (ARTAXO et al., 2009). The probabilities of cloud coverage in satellite
imagery depend not only on the month of the year but also on the location inside
Amazônia (ASNER, 2001). Cloud types are heterogeneous in the Amazon biome;
the southern region of the Amazônia has high aerosol concentration, whereas the
northern and northwestern regions have low aerosol concentration and high precip-
itation (CECCHINI et al., 2017; ARTAXO et al., 2009). These characteristics indicate
different processes in cloud formation in subregions of the Amazon biome.

During the wet season, the precipitating clouds in the Amazon basin are either low-
level stratus type clouds (up to 2–5 km altitude) or high-level convective systems
(more than 6 km altitude) (ARTAXO et al., 2009). The different land cover influence
the amount and type of clouds. Deep clouds are commonly found over the forest while
shallow clouds are frequent over deforested areas (DURIEUX, 2003; WANG et al., 2009).
Water bodies absorb visible and near-infrared radiation diminishing the reflectivity
of the thin clouds above (SUN et al., 2020). The high reflectivity of artificial surfaces
induces commission errors in cloud detection over urban areas (ZHU; HELMER, 2018).
Such differences pose a challenge for cloud detection algorithms in Amazonia; they
need to consider many types of cloud formations and associated shadows. These
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singular characteristics suggest that it is useful to take images over Amazônia as a
study case when comparing cloud detection methods.

The rest of this article is organized as follows. We first introduce the study area and
the sample regions. Then we present the cloud detection algorithms and how we
configured them. Later we show how the classes resulting from each cloud detection
algorithm compares to the others. Finally, we introduce our results and then we
discuss some implications of this work.

3.3 Materials and methods

3.3.1 Study area

The Amazon forest covers half of Brazil (49.3%) and provides four-fifths of
its groundwater (81%) with an average rainfall of approximately 2300 mm per
year (DAVIDSON et al., 2012). Persistent cloud cover in Amazônia is a significant
limitation for deforestation monitoring by satellite. Using the Landsat archive from
1984 to 1997, Asner (ASNER, 2001) shows how the probability of cloud cover on
Landsat images depends not only on the month of the year but also on its loca-
tion inside Amazônia. From June to August, the chance of finding one image with
less than 30% cloud cover is 60–90% in southeastern Amazônia. In the southwest-
ern part, cloud cover is persistent all year round. While the recent availability of
medium-resolution (10–100 m) sensors with higher temporal frequency than Landsat
has improved the chances of obtaining cloud-free pixels, cloud cover in rain forests
such as Amazônia will always be a challenge for optical remote sensing.

3.3.2 Data selection

This study uses images from the Sentinel–2A satellite, launched in 2015. The satellite
is part of the Copernicus Earth Observation program of the European Union, which
is operated by the European Space Agency (ESA) and managed by the European
Commission. It carries the Multispectral Instrument (MSI), which detects 13 bands
of the electromagnetic spectrum spanning from the visible to the short infrared
(SWIR) wavelengths at spatial resolutions of 10 m, 20 m, and 60 m, with a revisit
period of 10 days (DRUSCH et al., 2012) (see Table 3.1). MSI’s three bands at 60
m resolution are dedicated to atmospheric correction and cloud screening, leaving
ten bands for land observation (WOLANIN et al., 2019). Sentinel-2A data enables
researchers to explore the changes on Earth’s surface due to its open data access
policy and its temporal, spatial, and spectral resolutions.
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Table 3.1 - Sentinel-2 spatial, spectral, and temporal resolution.

Band Resolution(m) Wavelength (nm) Revisit period (days)
B01 Coastal aerosol 60 443 10
B02 Blue 10 490 10
B03 Green 10 560 10
B04 Red 10 665 10
B05 Vegetation red edge 20 705 10
B06 Vegetation red edge 20 740 10
B07 Vegetation red edge 20 783 10
B08 NIR 10 842 10
B8A Vegetation red edge 20 865 10
B09 Water vapour 60 945 10
B10 SWIR - Cirrus 60 1375 10
B11 SWIR 20 1610 10
B12 SWIR 20 2190 10

SOURCE: Gascon et al. (2017).

To assess cloud detection algorithms over Amazônia, we chose five areas repre-
sentative of its climate heterogeneity. We identify them using the tiling system
of Sentinel–2:

T19LFK: Covers part of the states of Acre and Amazonas, including an indigenous
land (Terra Indígena Apurianã) and a protected area (Reserva Extrativista
Chico Mendes). The region is associated with significant recent deforesta-
tion.

T20NPH: This area is in the state of Roraima, North of Brazil, and it partially
covers a national forest (Floresta Nacional de Roraima) and an indigenous
land (Terra Indígena Yanomami).

T21LXH: This area covers part of the state of Mato Grosso; it includes fragmented
forest areas, soybean crops, pasture, and water reservoirs.

T22MCA: In the Para State, this area overlaps various indigenous reserves (Arara,
Araweté, Kararaô, Koatinemo, and Trincheira) and part of a conservation
unit; most of the area is covered by native forest with some deforested
areas to the North.

T22NCG: This area is in the state of Amapá, including part of a National Forest
(Amapá), a national park (Montanhas do Tumucumaque), and an indige-
nous land (Waiãpi).
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Tiles T21LXH and T19LFK represent areas where most of the deforestation in Ama-
zonia occurred since the 1970s. Tile T21LXH is a hotspot of Brazil’s agricultural
frontier with a well-defined dry season from July to September. Tile T19LFK is
under the direct influence of the urban area of Rio Branco, the capital of Acre, in-
cluding both deforestation and protected areas. Deforestation has increased recently
in the region of tile T22MCA, threatening indigenous lands. Unlike the others, tiles
T20NPH and T22NCG are in the Northern hemisphere, where the seasons and cloud
patterns differ from areas to the south of the Equator. Tile T22NCG has much cloud
cover all year round and low deforestation. Tile T20NPH overlaps forest and nat-
ural savanna, where emerging mining activities are menacing indigenous territories
(Figure 3.1).

Figure 3.1 - Study area location. Left: Brazil in South America. Right: Location of
the Amazon biome along the Sentinel–2 tiles T19LFK, T20NPH, T21LXH,
T22MCA, and T22NCG.
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3.3.3 Cloud detection algorithms

The paper compares four algorithms: Fmask 4 (QIU et al., 2019), MAJA (HAGOLLE et

al., 2017), Sen2Cor 2.8 (LOUIS et al., 2016), and S2cloudless (ZUPANC, 2019). Fmask
4 and s2cloudless are specific for cloud detection. MAJA and Sen2Cor 2.8 are im-
age processors; they generate cloud masks as part of image conversion from radi-
ance at the top of the atmosphere to reflectance from ground targets. To process
Landsat 8 data, USGS uses a version of the Fmask method that requires the ther-
mal band (FOGA et al., 2017). Fmask 4 is a version of Fmask that has been ad-
justed to be used with sensors without thermal bands. ESA uses Sen2Cor to process
Sentinel–2 images. MAJA is developed by CNES and is used by applications such
as Sen2Agri (DEFOURNY et al., 2019). The Sentinel Hub uses S2cloudless for the
fast generation of cloud masks (ZUPANC, 2019). These methods represent the latest
generation of cloud detection algorithms for optical remote sensing images.

Fmask 4 (QIU et al., 2019) is the most recent version of Fmask (ZHU; WOODCOCK,
2012). Earlier versions of Fmask required a thermal band and worked only on Land-
sat images. The latest version also works on Sentinel–2 images (QIU et al., 2019). To
distinguish between clouds and bright surfaces in Landsat 8 images, Fmask 4 uses
the thermal band. In the case of Sentinel–2 images, it takes the view angle parallax
of the NIR bands (FRANTZ et al., 2018). To reduce false positives resulting from snow
and built-up areas, Fmask 4 uses spectral and contextual features. To distinguish
land from water, it relies on global surface water map (PEKEL et al., 2016). Fmask 4
matches clouds with their shadows based on similarity. It iterates cloud height from
a minimum to a maximum level; for each possible height, it computes the similarity
between cloud and cloud shadows (ZHU et al., 2015). When processing Sentinel–2
images, its cloud and cloud shadow masks have a 20 m resolution (QIU et al., 2019).

Sen2Cor processes Sentinel–2 data to estimate Bottom-Of-Atmosphere (BOA) re-
flectances from Top-Of-Atmosphere (TOA) data (LOUIS et al., 2016). It takes Level-
1C images and adjusts for atmospheric effects, generating Level-2A surface re-
flectance products (LOUIS et al., 2016; GASCON et al., 2017). It generates two types
of results: (1) atmospheric correction products, such as aerosol optical thickness,
surface reflectance, and water vapour maps; and (2) cloud screening and scene Clas-
sification (SCL), which assigns a class to each pixel. Sen2Cor provides two quality
indicators: A cloud confidence map and a snow confidence map with values rang-
ing from 0 to 100%. The distinction between cloudy, clear and water pixels in the
SCL and the output of the cloud confidence map are used to produce the cloud

21



confidence information (GASCON et al., 2017). The current version of Sen2Cor (2.8)
increases the accuracy of classification on water, urban, and bare areas while re-
ducing false positives for snow. Other improvements include cirrus detection, false
cloud detection due to permanent bright targets, classification of water pixels in-
side of cloud borders, and discrimination between topographic and cloud shadow
pixels (MUELLER-WILM, 2019).

Sentinel Hub’s S2cloudless is a machine-learning based cloud detector (ZUPANC,
2019). Its input is Level-1C top of atmosphere data from 10 Sentinel–2 bands (bands
1-5 and 8-12) combined with pairwise band differences and band ratios. It uses the
LightGBM algorithm (KE et al., 2017) trained over multiple clouded and non-clouded
samples over the world. As training data, is uses cloud masks provided by MAJA
as a proxy for ground truth. S2cloudless trained its classification model with 15, 000
Sentinel–2 tiles from 596 geographically unique areas in 77 different countries.

MAJA (MACCS-ATCOR Joint Algorithm) combines two methods: (a) the Multi-
sensor Atmospheric Correction and Cloud Screening (MACCS); and (b) the At-
mospheric & Topographic Correction (ATCOR). It builds on these methods by in-
cluding time-series of images to improve detection of reflectance changes due to
clouds (HAGOLLE et al., 2015). The method assumes that surface reflectances with-
out clouds are stable in time, while clouds or cloud shadows result in quick varia-
tions (HAGOLLE et al., 2017). MAJA uses multi-temporal images that contain the
most recent cloud-free observation for each pixel. At each new image, the algorithm
updates this composite with the newly-available cloud-free pixels. Thus, it processes
the data for a given location in chronological order (BAETENS et al., 2019). The al-
gorithm needs to be initialized to fix cases where a given pixel has no cloud-free
observations. To cover these specific cases, MAJA also uses a mono-temporal crite-
rion based only on spectral information (HAGOLLE et al., 2017).

3.3.4 Algorithm configuration

To run Fmask 4, MAJA 3.2.2, and Sen2Cor 2.8, we used Linux Docker containers.
The Fmask 4 implementation uses the MATLAB code available at GitHub (https:
//github.com/GERSL/Fmask). For Sen2Cor 2.8, we installed the version provided
by ESA (https://step.esa.int/main/third-party-plugins-2/sen2cor/). The
MAJA implementation was obtained from CNES (https://logiciels.cnes.
fr/fr/content/maja). We downloaded S2cloudless 1.4.0 from the Sentinel Hub
(https://www.sentinel-hub.com/). Run-time parameters are described below.
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Fmask 4: Dilation parameters for cloud, cloud shadows, and snow were set to 3,
3, and 0 pixels, respectively. The cloud probability threshold was 20%,
following Qiu et al. (QIU et al., 2018).

S2cloudless: Cloud probability threshold was set to 70%, using a four-pixel convo-
lution for averaging cloud probabilities and dilation of two pixels, following
the parameters set by Zupanc et al. (ZUPANC, 2019).

Sen2Cor 2.8: The tests used the same configuration as that of the Land Cover
maps of ESA’s Climate Change Initiative.2

MAJA: The evaluation used the same configuration as that of the Sen2Agri appli-
cation.3

3.3.5 Validation sample set

To validate the resulting cloud masks, we used sample points tagged by remote
sensing experts through visual interpretation, following the work of Foga et al. and
Zhu et al. (FOGA et al., 2017; ZHU; HELMER, 2018). We selected a set of random
locations inside each Sentinel–2 tile. Since Sentinel–2 images at 10 m resolution have
over 120 million pixels, standard statistical techniques indicate that using about 400
samples per image is enough to achieve a 95% confidence level with a 5% margin of
error (ISRAEL, 1992). Five experts labeled those points in 20 images of five tiles (see
Table 3.2). The labels were "cloud", "cloud shadow", "clear", and "other". The "other"
label is a placeholder for samples that the experts could not tag. Since the areas of
cloud shadow are small compared to other labels, we tried to ensure there were at
least 50 samples of cloud shadows. Two different experts classified each point; only
those where both experts agreed were selected. Because of the need for agreement
between experts, the final number of selected samples changes from image to image
(see Table 3.2).

2Land Cover CCI Climate Research Data Package http://maps.elie.ucl.ac.be/CCI/
viewer/download.php

3Sen2Agri http://www.esa-sen2agri.org.
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Table 3.2 - Number of samples per image in which two experts agreed.

Tile Date Samples
T19LFK 2016/10/04 382
T19LFK 2017/01/02 437
T19LFK 2018/05/07 392
T19LFK 2018/11/03 452
T20NPH 2016/09/01 326
T20NPH 2016/11/10 246
T20NPH 2017/02/18 353
T20NPH 2017/07/18 311
T21LXH 2017/03/28 496
T21LXH 2018/06/11 474
T21LXH 2018/09/19 436
T21LXH 2018/10/09 457
T22MCA 2017/06/03 368
T22MCA 2017/06/23 404
T22MCA 2018/04/19 445
T22MCA 2018/06/28 447
T22NCG 2016/09/29 464
T22NCG 2016/10/19 426
T22NCG 2017/05/27 346
T22NCG 2017/07/06 433

3.3.6 Label compatibility

Since the algorithms tested (see Section 3.3.3) use different labels, we recoded their
results to match the labels in the validation sample set. In particular, MAJA pro-
duces an 8-bit mask, so that many labels can be applied to a pixel, allowing combina-
tions that are not available in the results of other algorithms. For example, MAJA’s
mask allows tagging a pixel as a shadow projected on top of a cloud from another
cloud in a neighboring image. To make MAJA’s more detailed results compatible
with the output of the other methods, we prioritize clouds over cloud shadows and
cloud shadows over clear pixels. Table 3.3 shows how the original codes for each
method were relabelled for compatibility.
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Table 3.3 - Label recoding of the detection algorithms.

Expert label Fmask4 MAJA s2cloudless Sen2Cor
Clear 0 Clear land 0-1 Clear 0 Clear 4 Vegetation

1 Clear water 5 Non vegetated
3 Snow 6 Water

11 Snow
Cloud 4 Cloud 2-3 Cloud 1 Cloud 8 Cloud medium probability

6-7 Cloud 9 Cloud high probability
10-11 Cloud 10 Thins cirrus
14-63 Cloud
64-127 Cirrus
128-191 Cloud
192-255 Cirrus

Cloud shadow 2 Cloud shadow 4-5 Cloud shadow 2 Dark area pixels
8-9 Cloud shadow 3 Cloud shadows
12-13 Cloud shadow

Other 0 No data
1 Saturated or defective
7 Unclassified
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3.3.7 Validation metrics

To compare the results of the algorithms, we use the F1 score (CHINCHOR, 1992) and
the user’s, producer’s, and overall accuracies (STORY; CONGALTON, 1986). The F1
score (Equation 3.1) is the harmonic mean of the precision (Equation 3.2) and recall
rates (Equation 3.3). The producer’s accuracy measures how well a certain label
has been classified. It is computed by dividing the correctly classified pixels in each
class by the total number of pixels of the corresponding class. The user’s accuracy
indicates the probability that prediction represents reality. It is computed by dividing
the correctly classified pixels in each label by the total number of pixels classified
in that label. The overall accuracy indicates the quality of the map classification. It
is calculated by dividing the total number of correctly classified pixels by the total
number of reference pixels.

F1 score = 2 × Precision×Recall

Precision+Recall
(3.1)

Precision = TruePositives

TruePositives+ FalseNegatives
(3.2)

Recall = TrueNegatives

TrueNegatives+ FalsePositives
(3.3)

3.4 Results

In our experiments, Fmask 4 has the best overall accuracy, followed by Sen2Cor,
MAJA, and S2cloudless (see Table 3.4). Fmask 4 consistently outperforms the other
algorithms in overall, user’s and producer’s accuracies for all classes. It also has the
best results considering individual tiles. For cloud shadow detection, Fmask 4 has a
better performance than Sen2Cor. Although MAJA has the ability to detect cloud
shadows, in practice the methods extend its cloud mask to include shadows. MAJA
is a conservative method that uses dilation operators to improve the user’s accuracy
of the clear sky. Therefore, no shadows are reported by MAJA. This is observable
in either the images themselves or Figure 3.2, in which MAJA consistently detects
more cloud pixels than the other methods. For accuracy assessment, we merged both
types of clouds for computing the information in Table 3.4 and Table 3.5 to be able
to compare Fmask 4 and Sen2Cor with the other methods.
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Table 3.4 - F1 scores, user, and producer accuracies for each cloud detection algorithm.

Fmask4 MAJA s2cloudless Sen2Cor
Label F1 user prod F1 user prod F1 user prod F1 user prod
Clear 0.90 0.90 0.89 0.73 0.82 0.66 0.44 0.42 0.46 0.77 0.67 0.89
Cloud 0.94 0.91 0.96 0.77 0.64 0.97 0.66 0.59 0.75 0.89 0.90 0.88
C. Shadow 0.79 0.84 0.75 0.00 0.00 0.50 0.95 0.34
Overall 0.90 0.69 0.52 0.79

When comparing the overall accuracy of Sen2Cor with that of MAJA, their de-
sign choices stand out. MAJA has a better user’s accuracy for clear sky pixels
than Sen2Cor; for producer’s accuracy of this class, Sen2Cor is superior. Conversely,
MAJA has a better producer’s accuracy than Sen2Cor for cloud pixels; for the user’s
accuracy, the situation is inverted. This situation also holds in individual tiles (see
Table 3.5). The designers of MAJA have chosen to maximize the probability that
pixels labeled as a clear sky are correct.

The behavior of S2cloudless is erratic; sometimes it produces results visually similar
to those of Fmask 4 or Sen2Cor (see Figure 3.3), while in some other occasions it
misclassifies clear pixels as clouds (see Figure 3.2). For example, for tile T21LXH on
28 March 2017 and tile T22MCA on 28 June 2018, S2cloudless has a particularly
poor performance. Figure 3.4) shows tile T21LXH on 28 March 2017, a case where
S2cloudless performs differently from the other methods.

These results showed that the four algorithms produce their best results on images
with few well-defined (crisp) clouds. Except for s2cloudless, the algorithms agree on
the shape and the number of areas classified as either cloud or clear. However, they
cannot adequately approximate the shape of clouds and their shadows on thin semi-
transparent cirrus or tightly packed clouds (see Figure 3.5). The accurate detection of
cloud shadows is challenging because dark surfaces, such as wetlands, burned areas,
and terrain shadows can be easily confused with cloud shadows (QIU et al., 2019).
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Table 3.5 - User and producer accuracies for each tile and cloud-detection algorithm.

Fmask4 MAJA s2cloudless Sen2Cor
Tile Label F1 user prod F1 user prod F1 user prod F1 user prod
T19LFK Clear 0.83 0.81 0.86 0.66 0.69 0.63 0.47 0.31 0.94 0.66 0.52 0.92

Cloud 0.96 0.96 0.96 0.90 0.85 0.97 0.77 0.94 0.66 0.94 0.96 0.92
C. Shadow 0.68 0.71 0.66 0.00 0.00 0.00
Overall 0.92 0.82 0.64 0.84

T20NPH Clear 0.91 0.95 0.88 0.78 0.89 0.70 0.53 0.47 0.62 0.84 0.73 1.00
Cloud 0.95 0.90 1.00 0.71 0.56 0.98 0.57 0.54 0.60 0.93 0.99 0.88
C. Shadow 0.80 0.82 0.78 0.00 0.00 0.59 1.00 0.42
Overall 0.91 0.67 0.50 0.84

T21LXH Clear 0.88 0.82 0.95 0.80 0.89 0.72 0.35 0.33 0.36 0.78 0.64 0.99
Cloud 0.94 0.96 0.92 0.77 0.64 0.98 0.60 0.52 0.70 0.91 0.99 0.83
C. Shadow 0.81 0.89 0.75 0.00 0.00 0.58 0.98 0.41
Overall 0.90 0.71 0.45 0.81

T22MCA Clear 0.94 0.94 0.94 0.88 0.83 0.93 0.58 0.62 0.54 0.85 0.74 0.98
Cloud 0.94 0.90 0.98 0.82 0.71 0.97 0.70 0.56 0.93 0.95 1.00 0.90
C. Shadow 0.81 0.89 0.74 0.00 0.00 0.49 0.87 0.34
Overall 0.92 0.77 0.58 0.83

T22NCG Clear 0.87 0.95 0.80 0.42 0.70 0.30 0.23 0.34 0.18 0.63 0.64 0.63
Cloud 0.87 0.79 0.96 0.58 0.43 0.92 0.61 0.46 0.94 0.71 0.62 0.83
C. Shadow 0.80 0.82 0.77 0.00 0.00 0.53 0.97 0.36
Overall 0.86 0.48 0.43 0.65

28



Figure 3.2 - Number of pixels classified on each Sentinel–2A image.
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Figure 3.3 - Clouds detected on the Sentinel–2A image T19LFK of May 7, 2018. The color
picture (a) uses bands 12, 8 and 3.

The pictures shown in Figure 3.4 confirm the results discussed above. While Fmask4
has the best performance, it is interesting to compare MAJA with Sen2Cor. MAJA
uses squircles (i.e., a shape between a circle and a rectangle) to fill in the cloud shape,
ensuring the total coverage of each cloud in detriment of cloud shadows. Thus, MAJA
sometimes incorporates clear pixels in its cloud mask, as also reported by (BAETENS

et al., 2019). By contrast, Sen2Cor approximates the shape of the cloud from the
inside, filling in the clouds’ boundaries with saturated labels — particularly with
thin cirrus clouds — which produces rough borders (see Figure 3.5). Furthermore,
Sen2Cor cannot detect small clouds which are correctly identified by Fmask 4 and
MAJA (e.g. see the small clouds at the center of Figure 3.3).
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Figure 3.4 - Clouds detected on the Sentinel–2A image T21LXH of March 28, 2017. The
image is composed of bands 12, 8 and 3.

The shadow masks produced by Fmask 4 are displaced regarding to the shadows
visible in the images. This is a consequence of the coarse spatial resolution of the
digital elevation model used by the method. As for their shapes, Fmask 4 matches
well the cloud shadows respect to the clouds producing them, while in Sen2Cor
the cloud shadows have smoother and different boundaries than their clouds (see
Figure 3.5). Our results confirm the work of Qiu et al. (QIU et al., 2019) and Baetens
et al. (BAETENS et al., 2019), who report that Fmask 4 works better in detecting
clouds and cloud shadows than Sen2Cor for Sentinel–2A images.
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Figure 3.5 - Detail of clouds over Amazonia in Sentinel–2A image T22MCA of June 23,
2017. The image is composed of bands 4, 3 and 2.

We could not compute the accuracies for cloud shadow detection for MAJA and
S2cloudless. This is expected from s2cloudless but it comes as a surprise in the case
of MAJA. An explanation is MAJA’s greedy behavior regarding clouds; it tends to
tag pixels as clouds in disregard of their shadows (see Figure 3.2). An alternative
explanation is due to our interpretation of the MAJA’s bit mask where we prioritized
clouds over cloud shadows (see Section 3.3.6).

Sen2Cor tags many pixels as saturated, defective, or unclassified which we labeled
as other (see Table 3.3). A visual inspection reveals most of the saturated pixels are
the external border of clouds (see Figure 3.3). On the other hand, Sen2Cor in tile
T21LXH for 08 March 2017 (see Figure 3.4) mistakenly displays cloud and cloud
shadow pixels along the riverbank, almost perfectly profiling the whole river; this
could be caused by suspended matter in the water. Sen2Cor problems to detect cloud
cover over water were also reported by (QIU et al., 2019; SEGAL-ROZENHAIMER et al.,
2020). As discussed above, the shapes of clouds in the Sen2Cor mask are rougher
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compared to the smoother results using the other algorithms. Despite these issues,
Sen2Cor is a reliable method for cloud detection. Its producer’s accuracies for clear
sky and clouds are respectively 89% and 88%. If its errors in detecting cloud shadows
can be tolerated by the user, its efficiency and ease of use may justify its choice for
bulk processing.

S2cloudless erratically mixes land features and clouds, particularly on images with
few clouds. It does not spot cloud shadows. We could not to confirm the claims made
by the authors of this method (ZUPANC, 2019) about the good performance of this
algorithm. One explanation is that the clouds in tropical forests such as Amazonia
are not adequately included in the S2cloudless training set.

3.5 Discussion

The results of this study show that the Fmask 4 algorithm consistently performs
better than the alternatives for Sentinel-2 images of the Amazon rain forest. Fmask
4 had an overall accuracy of 90%, followed by Sen2Cor (79%), MAJA (69%) and
s2cloudless (52%). Our results are different from those of Baetens et al. (BAETENS

et al., 2019) who concluded that MAJA and Fmask 4 perform similarly with an
overall accuracy around 90%, while Sen2Cor had an overall accuracy of 84%. We
now consider some hypothesis that could account for such significant differences.

As noted by Baetens et al. (BAETENS et al., 2019), for satellites without thermal
bands cloud detection methods use thresholds. Different thresholds are set for the
visible bands, the 1.38 µm band, and the Normalized Difference Snow Index. These
approximations address important challenges for cloud detection methods: distin-
guishing clouds from snow, mountain tops, bright deserts, and large built-up objects.
Since each cloud detection method relies on different ad hoc hypotheses, its useful-
ness varies from scene to scene. For this reason, no single study can provide defini-
tive guidance. Studies that target specific regions, such as the current paper, provide
valuable advice even though its results cannot be generalized to non-forest areas.

A comparison done by Baetens et al. (BAETENS et al., 2019) uses 10 different sites,
including equatorial forests, deserts and semi-deserts, agricultural areas, mountains,
and snowy areas. Their results provide a balance between different targets that
could be confused with clouds. By contrast, our study deals only with forest and
agriculture areas; the images tested have no deserts, mountains or snow. By focusing
on the Amazon biome, our results are intended as guidance for experts interested
in measuring land change in the region. Given its focus, these results cannot be
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generalized to non-forest regions.

A further consideration that could explain part of the differences between our work
and that of Baetens et al. (BAETENS et al., 2019) is the choice of training data sets.
While we use random sampling, those authors preferred to rely on active learning.
An active learning model uses a few good quality samples instead of a large en-
semble of random points. These good quality samples are used to train a machine
learning model (random forest) whose output provides labels to a large set point for
classification. In theory, this method has the advantage of being able to provide a
larger number of points to test the algorithm. Machine learning models have a ten-
dency to overfit their training data, which could cause wrong predictions (HASTIE

et al., 2009). The alternative is to use random samples, which rely on standard
statistical assumptions. However, random samples can miss some cloud properties.
Clouds come in different shapes, sizes, and transparencies; it is often hard to dis-
tinguish overlapping clouds at different heights from images. Random samples can
also misrepresent minority labels such as cloud shadows. Therefore, both random
sampling and active learning have their advantages and shortcomings for evaluating
cloud detection algorithms. Further testing and comparison are required to evaluate
these approaches.

Another source of divergence between our result and that of Baetens et al. (BAETENS

et al., 2019) is due to class relabeling. Cloud detection algorithms codify their results
using different levels of detail. To enable comparisons, we had to recode them to
the same set of labels. This process implies a loss of information, in particular for
MAJA, which provides the most detailed data about its detection process. Thus,
our recoding process could have had a negative impact on our evaluation of MAJA.

Despite the differences discussed above, there are points of convergence between our
work and earlier papers such as Baetens et al. (BAETENS et al., 2019) and Qiu et al.
(QIU et al., 2019) related to Fmask 4 performance. The overall user’s and producer’s
accuracy values for Fmask 4 are broadly consistent in the three studies. Qiu et al.
(QIU et al., 2019) report producer’s accuracies for clouds, shadows and clear pixels to
be 93%, 70%, and 97%, while our results are 96%, 75%, and 90%. Thus, we consider
that Fmask 4 to be a reliable method that we recommend to be used for cloud
detection in Sentinel-2 images of the Amazon rain forest.
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3.6 Conclusion

In this work, we compared four cloud detection algorithms on Sentinel–2A images of
the Amazon tropical forest, and we found that Fmask 4 performs the best. We tested
four cloud detection algorithms — FMask 4, Sen2Cor, MAJA, and S2cloudless —
on 20 images with a different amount of cloud coverage, spread over five regions
of Amazonia. We validated the results of the cloud detection algorithms using the
criteria of experts on remote sensing who classified approximately 400 random points
on each image. To determine the best algorithm, we computed the F1 score and
the overall, user, and producer accuracies. We found that FMask 4 has an overall
accuracy of 90% to detect clouds, while Sen2Cor’s OA is 79%, MAJA’s OA is 69%,
and S2cloudless’s OA is 52%. Based on these results, we recommend the use of
Fmask 4 for cloud detection of Sentinel-2 images of the Amazon region.

The choice of method depends on the intended use. Therefore, users should con-
sider the benefits of each method before making their choices. Since MAJA reduces
the number of false positives by design, users that aim to improve the producer’s
accuracy should consider its use. These characteristics could make MAJA suitable,
for example, to build cloud-free monthly mosaics. Despite the poor performance of
S2cloudless in our study, we consider that the use of machine learning methods for
cloud detection is a promising way forward. As more good quality samples become
available, its performance will improve. Finally, Sen2Cor is an efficient method to
detect clouds in Sentinel-2 images. Despite not having the best performance, its ease
of use may appeal to those that need fast processing of large data sets.

We expect our work to impact on the building of data cubes of analysis-ready
data from satellite imagery, like those currently under construction by the Brazil
Data Cube project4. Another application is for improving the time series analysis
of Land Use and Land Cover change of deforested areas, which is particularly hard
because of cloud coverage. Given the performance of FMask 4, space agencies and
committees such as CEOS should consider the value of working together to develop
a standardized best quality cloud detection methods that could be shared and used
for remote sensing optical imagery. The R and Python scripts used to compare
the performance of cloud detection algorithms are available on GitHub: https:
//github.com/brazil-data-cube/compare-cloud-masks.

4Brazil Data Cube project http://brazildatacube.org/
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4 DETECTING TROPICAL DEFORESTATION USING TIME SERIES
OF SENTINEL-2A IMAGES1

4.1 Abstract

In this paper, we use a machine learning algorithm combined with satellite im-
age time series at 10 meter resolution for detecting small deforestation patches in
the Amazon rainforest. We ran a supervised classification using random forest and
Sentinel-2A images for identifying Deforestation, Forest and Other classes. For clas-
sifying, we selected two different sets of attributes, one including only bands and
another including exclusively vegetation indices. We used 36 images from August
2018 to July 2019 of the tile 20LKP, located in the border between the west of Brazil
and the north of Bolivia. The images were processed to surface reflectance and the
clouds were masked using the algorithm Fmask. Then, we used K-Fold technique for
selecting the best combinations of Sentinel-2A bands and vegetation indices. Later,
we used bootstrapping for improving the good practices for accuracy assessment.
Our classification using bands obtained F1 score of 93% for Deforestation, 85% for
Forest, and 78% for Other while using vegetation indices we obtained 91%, 85%, and
82% for Deforestation, Forest, and Other, respectively. These results indicate that
our proposed method is scalable and accurate, which is of paramount importance
for forest monitoring systems that support decision and policy makers in the context
of the current global climate crisis.

4.2 Introduction

Forests play an important role in the global climate by regulating the water and
carbon cycles. However, deforestation diminishes the capacity of the forest to store
carbon, putting it back into the atmosphere, worsening the current climate cri-
sis (EXBRAYAT et al., 2017). To protect the Amazon tropical forest, Brazil set up law
enforcement policies and monitoring systems, which reduced deforestation during the
first decade of the 21st century. However, this decreasing trend has been reverted
in the last years (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE, 2020).
This new trend can be explained by a direct expansion of pasture areas, an indirect
expansion of agricultural crops, a relaxation of laws protecting indigenous lands,
and a lack of policy enforcement (PICOLI et al., 2020; RICHARDS, 2015; BEGOTTI;

PERES, 2020; ANONYMOUS, 2019).Additionally, the current Brazilian government
has allowed farmers to grow sugar cane in the Amazon by revoking in November of
2019 the Decree 6,961 of 2009 (FERRANTE; FEARNSIDE, 2020), and it is presenting a

1This chapter is being submitted to the MDPI’s Remote Sensing journal.
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bill to the Congress allowing mining exploration in indigenous lands (bill 191/2020).

Current deforestation monitoring systems heavily rely on Remote Sensing platforms
for data acquisition (FINER et al., 2018). These systems provide the public, decision
makers, and law enforcement agencies with either deforestation accounting, defor-
estation warnings, or both (ACHARD et al., 2010; MILODOWSKI et al., 2017). Exam-
ples of the former are PRODES and Global Forest Watch (GFW) (SHIMABUKURO

et al., 2012; HANSEN et al., 2013), and of the latter are DETER (DINIZ et al., 2015),
MapBiomas Alert2, and Imazon Deforestation Alert System (SAD)3. Deforestation
monitoring systems such as GFW and PRODES use 30 meter resolution images
from the Landsat program. This program has been collecting satellite imagery since
the 1960s, which fits well for deforestation accounting and long-term trend analy-
sis (WULDER et al., 2019). However, the rise of small area deforestation challenges
current monitoring systems, implying a need for constantly improving these sys-
tems in regards of their resolution, coverage, and accuracy (HANSEN et al., 2020;
KALAMANDEEN et al., 2018; RICHARDS et al., 2017).

Cloud computing services are becoming cheaper, enabling access to a large amount
of processing power and storage capacity. These advances allow scientists to process
larger Earth Observation (EO) data at finer resolutions and at the same time cov-
ering larger extents (GIULIANI et al., 2019; MAHECHA et al., 2020). However, we still
need effective methods to improve accuracy, accuracy assessment, and take advan-
tage of all available data in an automated process.

Most Land Use and Land Cover change maps using remote sensing published in
the literature use the space-first, time-later paradigm, also known as multitempo-
ral classification (CAMARA et al., 2016a). These maps compare changes between two
dates (multitemporal images); however, such two-date comparisons miss the ac-
tual change information, which is only available in the temporal component. This
deficiency can be tackled by employing time series, which can better characterize
the phenomena on Earth’s surface by describing both trends and discrete events
of change (GOMEZ et al., 2016). Moreover, advances in machine learning techniques
can deal with the large volumes of data available nowadays. Machine learning al-
gorithms have been used for Land Use and Land Cover classification (PICOLI et

al., 2018; SIMOES et al., 2020) and for deforestation detection (GRINAND et al., 2013;
ADARME et al., 2020). Time series combined with machine learning techniques might

2MapBiomas Alert is available at http://alerta.mapbiomas.org
3Imazon SAD is available at https://infoamazonia.org/en/datasets/

deforestation-imazon-sad/
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produce high accuracy classifications.

Our hypothesis is that, by using time series of Earth Observation imagery, we can
improve the spatial accuracy of deforestation maps. We achieve this by means of
high-dimensional data cubes using all available images coupled to machine learning
algorithms. This is a consistent and efficient way of mapping deforestation over large
datasets of EO imagery. In this paper, we introduce a novel method that uses time
series build from a Sentinel-2A data cube to map annual deforestation over the
Amazon forest using the full depth of available EO data. This method can improve
deforestation detection in the highly dynamic and cloud contaminated time series
of tropical forest (MUELLER et al., 2016). Besides, our approach is automated and
can be scaled up to the whole Amazon biome, making it suitable to be used in
deforestation monitoring systems.

4.3 Materials and methods

4.3.1 Study area

Our study area is located in the Amazon rainforest between Brazil and Bolivia. It
displays a stark contrast between developed anthropic activities and natural forests
with different levels of deforestation (see Figure 4.1). On the Brazilian side is the
state of Rondônia, which has an area of 237.7 thousand km2. Between 1989 and
2019, it had lost 11.1 thousand km2 of forest (INSTITUTO NACIONAL DE PESQUISAS

ESPACIAIS - INPE, 2020). The amount of cattle in Rondônia has increased from
1.59 to 14.36 millions (an increase of ≈ 800%), from 1989 to 2018 (INSTITUTO

BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE, 2018), being the major defor-
estation driver in this State. Our study area also includes two indigenous lands:
Igarapé Ribeirão, in the municipality of Nova Mamoré, and Igarapé Lage, in the mu-
nicipality of Guajará-Mirim. Additionally, there are three land reserves: Rio Ouro
Preto Extractive Reserve, Rio Ouro Preto Biological Reserve, and Rio Pacaás Novos
Extractive Reserve. On the other hand, the Bolivian side of our study area includes
a state park for environmental protection in the province of Federico Román, in the
department of Pando.
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Figure 4.1 - Left: location of the study area. Right: Sentinel-2 image from 28 September,
2019 (bands 432, Tile 20LKP), indigenous lands, and conservation units of
the study area.

4.3.2 Data

We used 36 images of Multispectral Instrument (MSI) on-board Sentinel-2A located
in the tile 20LKP, from August 2018 to July 2019. These images were processed to
surface reflectance (level 2A) using the software Sen2Cor version 2.8. In our data pre-
processing we observed that, on average, half of each time series (≈ 19 observations)
is clouded.

We applied the Fmask4 cloud detection algorithm to the images in our study area
following the results on (SANCHEZ et al., 2020b), which compares MAJA, Sen2Cor,
s2cloudless, and Fmask4, and points to the better performance of the latter algorithm
over the Amazon forest on Sentinel-2 images. To fill in the no-data values introduced
by Fmask4, we applied a linear interpolation along the time dimension.
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We resampled the Sentinel-2A bands of 20 m of spatial resolution to 10 m using bilin-
ear interpolation. Besides the MSI bands, we used three spectral indices: Normalized
Difference Vegetation Index (NDVI) (HUETE et al., 1985), Enhanced Vegetation In-
dex (EVI), Normalized Difference Moisture Index (NDMI) (CIBULA et al., 1992). The
attributes are listed in Table 4.1.

Table 4.1 - Spatial and spectral resolution of Sentinel-2.

Attribute Resolution
(m)

Wavelength
(nm)

B02 - Blue 10 490
B03 - Green 10 560
B04 - Red 10 665
B08 - Broad infrared (bnir) 10 842
B8A - Narrow infrared (nnir) 20∗ 865
B11 - Short-wavelength infrared (swir1) 20∗ 1610
B12 - Short-wavelength infrared (swir2) 20∗ 2190
Enhanced Vegetation Index (EVI) 10 -
Normalized Difference Vegetation Index (NDVI) 10 -
Normalized Difference Moisture Index (NDMI) 10∗∗ -

∗ Attributes later resampled to 10 meters.
∗∗ Using resampled attributes. A

SOURCE: Gascon et al. (2017)

.

Vegetation indices have been widely used to monitor vegetation conditions, such
as biomass production, plant health, plant stress, water use, etc. Some vegetation
indices most commonly used are NDVI and EVI, both been used used to quantify
vegetation greenness, however EVI is more sensitive to differences in densely vege-
tated areas (WEIER; HERRING, 2000). NDMI uses the shortwave infrared band (swir),
which is sensitive to changes in the water content of vegetation canopies, hence is
better than NDVI to map clearcut and partial harvests in forest areas (WILSON;

SADER, 2002; SCHULTZ et al., 2016).

We organized the observations in chronological order, creating a data cube with
four dimensions (longitude, latitude, time, and attributes) (APPEL; PEBESMA, 2019).
These data were generated and stored in the scope of Brazil Data Cube project4.

4For more details, see http://brazildatacube.org.
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Our training data set has 481 samples distributed into three classes: Forest (144),
Other (295), and Deforestation (42). These samples were collected through visual
interpretation from Sentinel-2A images and additionally assisted by high spatial res-
olution imagery available at Google Earth, from August 2018 to July 2019. The time
series corresponding to the samples were extracted from our Sentinel-2A data cube.

4.3.3 Classification

We selected the two best models after training different combinations of attributes
listed in Table 4.1, using the training data set. To accomplish this, we ran a set of
33 k-fold experiments (k = 10) using a Random Forest (RF) model with a thousand
trees. The criterion used for selection was the highest median of F1 score value for
the Deforestation class.

We used Random Forest to build our classification models of deforestation. RF is one
of the most used machine learning models applied to the classification remote sensing
data (BELGIU; DRAGUT, 2016). It explores the solutions to classification problems
by randomly and recursively building decision trees of observations and variables.
RF uses an ensemble of decision trees to classify unlabeled inputs by means of a
majority voting schema (BREIMAN, 2001).

We generated two maps of deforestation using the two aforementioned RF models,
which were trained using the time series of the 481 sample data set. During training,
we used RF models of 1000 threes and the full depth of Sentinel-2A time series,
comprising 36 observations over time. The parameter for choosing the best forest
RF models was the GINI index (BREIMAN, 2001).

Finally, we applied a spatial Bayesian smoothing algorithm using a 3 × 3 window.
This method reclassifies the pixels based on the RF probabilities associated to each
class and each pixel. The algorithm changes those pixels classes with high entropy to
the neighborhood’s class with low entropy using Bayesian inference. In these steps,
we extensively used sits (CAMARA et al., 2018), an open source software package
developed by our research team for the R environment for statistical computing
and graphics (IHAKA; GENTLEMAN, 1996). Finally, the classes with higher probabil-
ity were chosen for each pixel.

4.3.4 Accuracy assessment

We assessed the accuracy of our classification maps following the good practice
guidelines by (OLOFSSON et al., 2014). The sampling and validation were done sep-
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arately for both classified maps. We selected strata based on the area of each class
in our classification maps. For both maps, we assumed a target standard error for
the overall accuracy of ≈ 0.025.

To conjecture an accuracy, we set up a bootstrap experiment on which we selected
42 random samples for each class (38 for training, 4 for test); we selected this number
because it matches the number of training Deforestation samples. Every ten itera-
tions, we merged the test results and computed its user accuracy (UA). We repeated
this entire process 100 times and used the median as the conjectured accuracy to
determine the number of validation samples, which are 252.

Then, we collected two independent sets of 252 samples (one for each map) fol-
lowing an equal allocation sampling design: 84 for Forest, 84 for Other, and 84 for
Deforestation. This validation data set was collected through visual interpretation,
the same way as the training data set. Finally, we calculated the confusion matrix,
producer’s and user’s accuracy, bias-corrected error estimates, which are presented
in the next section.

4.4 Results

The two models that presented the highest median of F1 score for the Deforestation
class were: 1) the combination of the blue, bnir, green, nnir, red, swir1, and swir2
bands (hereafter Bands); and 2) the combination of EVI, NDMI, and NDVI indices
(hereafter Indices). For the Bands model, the median of F1 score for Deforestation is
96.9%. For the Indices model, the median of the F1 score for Deforestation is 95.6%.

Our results of the two RF classifications using Sentinel-2A data cube are shown
in Figure 4.2. For the Bands classification, the mapped areas are 8,688 ha (0.7%)
for Deforestation, 765,022 ha (63.5%) for Forest, and 431,894 ha (35.8%) for Other.
For the Indices classification, the classes areas are 7,736 ha (0.6%) for Deforestation,
784,021 ha (65%) for Forest, and 413,848 ha (34.3%) for Other. By comparing Bands
to Indices, we observe differences of 952 ha (+12.3%) in the class Deforestation,
18,999 ha (–2.4%) in Forest, and 18,046 ha (+4.4%) in Other.
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Figure 4.2 - Bands and Indices classified maps using MSI/Sentinel-2A data cube from
August 12th of 2018 to July 28th 2019.

For both classification maps, it is possible to verify visually that the deforesta-
tion in 2019 occurred mostly near Other areas. Both the Igarapé Ribeirão and the
Igarapé Lage indigenous lands presented deforestation areas in 2019. However, in
the Igarapé Ribeirão indigenous land, we observed deforestation occurring mainly
near its borders.

Following the guidelines proposed by (OLOFSSON et al., 2014), we need to inform
the conjectured UA for each class to calculate the size of the validation data set.
To determine these parameters for both classification models, we setup a bootstrap
experiment of 100 rounds.

Based on the bootstrap results for the Bands model, we conjectured an user accuracy
(UA) of 82% for Forest, 81% for Other, and 84% for Deforestation. For Indices
model, we conjectured 81% for Forest, 81% for Other, and 82% for Deforestation.
Both conjectures resulted in a sample size of 252.

To validate the maps, we decided to allocate equally the number of samples for
each class (84 samples). These samples were randomly and independently selected
from the class strata of each map. We used two validation data sets, one for each
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classification map. The confusion matrices are shown in Tables 4.2 and 4.3.

Table 4.2 - Confusion matrix of the Bands classification model.

Predicted

Deforestation Forest Other Producer
accuracy

Reference
Deforestation 75 0 9 89.2%
Forest 1 76 7 90.4%
Other 1 18 65 77.3%
User accuracy 97.4% 80.8% 80.2%
F1 score 93.1% 85.3% 78.7%

Table 4.3 - Confusion matrix of the Indices classification model.

Predicted

Deforestation Forest Other Producer
accuracy

Reference
Deforestation 74 1 9 88.0%
Forest 1 70 13 83.3%
Other 2 8 74 88.0%
User accuracy 96.1% 88.6% 77.0%
F1 score 91.9% 85.8% 82.2%

In the Bands classification, we obtained an UA of 97.4% for the Deforestation class,
surpassing our conjecture. However, we fell short in the case of the Other class, where
we expected 81% UA, but we obtained 80.2%. For the Forest class, we get an UA of
80.8%, almost equal to our conjecture. In the Indices classification, the Deforestation
UA is 96.1%, greater than our conjecture. For the Other class, we obtained an UA
less than our conjecture. Finally, the Forest UA was 88.6%, exceeding our conjecture.

For Deforestation, the Bands classification has highest values of F1 score when com-
pared with Indices classification. The Forest and Other classes had better results
of F1 score using Indices than using Bands model. Our classifications have overall
accuracy of 88.9% for Bands and 84.9%for Indices.
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4.5 Discussion

The MSI sensor on board of the Sentinel-2A satellite has 13 bands from which can be
derived more than 240 spectral indices5. These attributes have different discrimina-
tory power in regards of deforestation. In consequence, we used our training samples
to test different attribute combinations and to verify their accuracy and robusticity
for classification. The k-folds technique guided us in the process of model selection,
allowing us to compare different attribute combinations (LEVER et al., 2016). From a
list of 11 bands and three indices, we ran 33 k-fold experiments for each combination.

We selected the two best models, one using the bands blue, broad nir, green, narrow
nir, red, swir1, and swir2 bands (Bands), and the other using the indices EVI, NDMI,
and NDVI (Indices). Several studies have successfully tested and applied indices to
detect deforestation (GRINAND et al., 2013; HAMUNYELA et al., 2016; SCHULTZ et al.,
2016; ADARME et al., 2020). Also, other authors obtained robust results using spectral
mixture models, where the most common endmembers are green vegetation, non-
photosynthetic vegetation, and bare soil (ASNER, 2009; SOUZA JUNIOR et al., 2013;
SCHULTZ et al., 2016). However, to the best of our knowledge, there is not in the liter-
ature any method relying exclusively on spectral bands for detecting deforestation.

The use of spectral bands has many advantages because they convey specific in-
formation for different land features. For example: to estimate chlorophyll content,
the best wavelengths regions — or bands — of the electromagnetic spectrum are
the green and red (GITELSON; MERZLYAK, 1994; CLEVERS; KOOISTRA, 2012). The
red band is also used to classify soil. In the nir region, healthy plants have higher
reflectance due to leave structures and it can be used to assess canopy variation in
vegetation biomass. The water in vegetation is known to absorb energy in the in-
frared region (broad nir, narrow nir, swir 1 and swir 2), hence these bands can be used
to classify this cover (JENSEN, 2009). This absorption is more dominant in the swir
region. Conversely, dry soil tends to exhibit a much higher reflectance in this same
wavelength region (JENSEN, 2009), which can be useful for deforestation detection.

The two classification models applied in this study use the Random Forest algorithm.
Both obtained similar accuracy using either seven spectral bands or three vegeta-
tion indexes. However, the accuracy of the classification using Bands is slightly
and consistently better than the accuracy using Indices. Besides, the classification
using Bands is smoother in appearance, with less salt and pepper effect (see Fig-

5Index DataBase - Sentinel-2A indices https://www.indexdatabase.de/db/is.php?sensor_
id=96
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ure 4.2). This could indicate that Bands model is delivering more information to the
classification algorithm.

Figure 4.3 depicts some examples of the classification map. In the Figure 4.3a, it
is possible to verify a small deforested area on the upper left that was detected by
both models. In general, the classification using Bands classifies deforested areas
homogeneously, while the model that uses Indices classifies deforestation patches
heterogeneously. The Bands model classifies deforested patches with less discontinu-
ities, similar to the maps produced by PRODES and GFW (INSTITUTO NACIONAL

DE PESQUISAS ESPACIAIS - INPE, 2020; HANSEN et al., 2013).

In Figure 4.3b, it is possible to observe that the classification using Indices identified
several spots of the Other class within the deforestation patch. This may be an
indication that, in the time series, these areas did not have a spectral responses
similar to forest. However, it was not possible to verify visually. This can happen
because of the vegetation indices, EVI, NDVI, and NDMI, which are related to plant
biomass, may have captured something that the spectral bands, used separately, did
not identify, e.g. the vegetative vigor. This can be an indication of forest degradation.

In Figure 4.3c, where there was a clear-cut, the classification using Indices did not
detect the full extent of deforestation, while the Bands model map the entire de-
forested patch. Also, we can note that Indices model produces a border effect. The
sensitivity of the Indices model in classifying small forests areas can be observed in
Figure 4.3d, where the model classified a riparian forest in the upper left corner.

In the validation step, the Forest class had confusion mainly with the Other class,
in both classifications. This happened because of the classification models were not
trained to identify different percentage of tree cover, as done by (HANSEN et al., 2013).
Also, it was verified that some areas of secondary vegetation had been mapped as
Forest. This problem could be solved by exploring long-term time series.

The lowest accuracy occurred in the Other class (F1 score equal to 78.8% for Bands
and 82.2% for Indices). This class includes heterogeneous features such as pasture
and abandoned and degraded areas, which were not considered in this study. Possibly
by adding these features as new classes in the model might increase accuracy. The
identification of these areas could be of interest to other types of analysis such as
those of (GIBBS et al., 2015b), (PICOLI et al., 2020), and (PARENTE et al., 2017).
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Figure 4.3 - Deforestation patches comparisons between Bands and Indices models. The
two columns from left show Sentinel-2A images of start date and end date
(true color). The central coordinates of the patches are (in WGS84): (a)
(−64.97182 − 10.28505); (b) -65.30635 -10.05332; (c) −64.8961 − 10.28891;
(d) (-64.96943 -10.33271).

In order to validate the maps, we followed the good practice guidelines proposed
by (OLOFSSON et al., 2014). To calculate the sample size, the authors suggest that
users conjecture the UA based on past experience with similar works. In this study,
we propose a less subjective procedure, by using the training samples and bootstrap
techniques to conjecture the UA for strata.
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Since the UA estimates the probability that a pixel be classified correctly according
to the reference, it can be used to check the reliability of the classification model.
Our accuracy obtained with the validation was satisfactory for the detecting defor-
estation. The observed UA was 97.4% for the Bands model and 96.1% for the Indices
model. Additionally, the PA was 89.2% for Bands and 88% for Indices, showing that
both classifiers are robust for mapping deforestation.

These accuracies are promising when compared to some important works in the
deforestation literature (Table 4.4). All these works use the space-first approach.
For example, (SOUZA JUNIOR et al., 2013) use a decision tree to detect deforestation
in Landsat 5 and 7 images, the results achieved were 85% for UA and 92% for PA.
It is important to highlight that, contrary to our work, this classification included
a manual step of editing deforestation polygons by specialists.

Another example is the work of (ADARME et al., 2020) with NDVI derived from
Landsat 8 images and several machine learning methods based on Deep Learning and
Support Vector Machine algorithms on the Brazilian Amazon forest. They obtained
a F1 score for deforestation ranging from 39% to 63% (depending on the number
of training areas), while our time series approach reaches F1 score slightly above
91% (see Tables 4.2 and 4.3). (SCHULTZ et al., 2016) used Landsat and BFAST on
time series of 8 vegetation indices, obtaining satisfactory accuracies above 80% in
the best case scenario (NDFI). Their results are on the same range as ours and both
support our claim regarding the use of time series for deforestation monitoring of
the Amazon forest.

When we comparing our proposed method with previous works in the literature
(Table 4.4), we observed that, to the best of our knowledge, our approach is the
only one that combines time series and machine learning algorithm. Among several
deforestation detection studies observed in the literature, the use of Random Forest,
Deep Learning, and Support Vector Machine is a applied to multitemporal images,
such as the works by (GRINAND et al., 2013) and (ADARME et al., 2020). Regarding
time series and deforestation detection, the most used method is BFAST (HAMUN-

YELA et al., 2016; SCHULTZ et al., 2016), a algorithm based on the statistical additive
decomposition of time series. This method is generally applied to a single attribute
time series.
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Table 4.4 - Summary of selected approaches for deforestation mapping. We report the best accuracy obtained by each work.

Method Description Accuracy
Random Forest using
Landsat 7 (GRINAND et
al., 2013).

They classified deforestation in some regions of Madagascar using Random
Forest using Landsat B1, B4, B5, NIRI, and NDVI from 2000 to 2010.

60.7% (UA);
41.0% (PA); 48.9%
(F1 score∗)

Decision tree and man-
ual editing using Land-
sat 5 and 7 (SOUZA JU-
NIOR et al., 2013).

They combine spectral mixture model (green vegetation, non-photosynthetic
vegetation, and soil components) with decision trees. The method comprehends
both manual and automatic steps. The work was applied in the Brazilian trop-
ical rainforest area.

85% (UA); 92% (PA);
88.3% (F1 score∗)

Breaks For Additive
Season and Trend
(BFAST) Monitor
method using Landsat
5 and 7 time series
(SCHULTZ et al., 2016).

The performance of Landsat time series (LTS) of eight vegetation indices was
assessed for monitoring deforestation across the tropics. Three sites (Brazil,
Ethiopia, Vietnam) were selected based on differing remote sensing observation
frequencies, deforestation drivers and environmental factors. For the Brazilian
area the best result to deforestation detection was achieved using the NDFI
index.

80.4 (UA∗); 89.3
(PA∗); 84.6%
(F1 score∗)

Breaks For Additive
Season and Trend
(BFAST) using Land-
sat 5 and 7 time series
(HAMUNYELA et al.,
2016).

They used the NDVI derived by Landsat 5 and 7 (from April 1984 to December
2014) to detect deforestation events applying BFAST, in one area in Brazil and
other in Bolivia tropical forests. To reduce the spatial seasonal variations they
propose to calculate the spatially normalized NDVI (sNDVI). Thet detected
deforestation from sNDVI time series using BFAST. The best result, to de-
forested detection, was achieved using sNDVI time series calculated applying
using a spatial context to account for seasonality.

Brazil: 93.9% (UA∗);
94.9% (PA∗); 94.4%
(F1 score∗)
Bolivia: 98.4% (UA∗);
97.4% (PA∗); 97.9%
(F1 score∗)

Deep Leaning and Sup-
port Vector Machine
algorithms using Land-
sat 8 multitemporal
images (ADARME et al.,
2020).

They classified the deforestation in two Brazilian regions, one in the Amazon
and other in the Cerrado biome. For this they used the NDVI by Landsat 8
images acquired at tow different dates, and evaluates the methods to detect
deforestation: Early Fusion, Siamese Network, Convolutional Support Vector
Machine, and Support Vector Machine. The images were divided into 15 tiles:
four tiles were selected for training, two tiles for validation, and nine tiles for
testing. The best result to deforestation detection in Amazon region was using
four tiles for training and the Early Fusion algorithm.

63.2% (F1 score)

Random Forest using
Sentinel-2A time series
(by the authors)

We introduce a method of using time series build from Sentinel-2A data cube
to map deforestation over the Amazon forest. For more information see Section
2. The best result to deforestation detection was achieved using the bands
combination blue, bnir, green, nnir, red, swir1, and swir2.

97.4% (UA); 89.2%
(PA); 93.1% (F1 score)

* Values estimated from accuracy figures in the original papers.
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As noted by (RICHARDS et al., 2017; KALAMANDEEN et al., 2018; HANSEN et al.,
2020), the size of the patches of deforestation has been reduced over the past few
years. This trend poses a challenge for deforestation monitoring systems. In Figure
4.4, it is possible to observe that ≈ 30% of the deforestation areas mapped by the
Bands model have 1 ha or less. This value goes up to ≈ 34% for Indices. Part of
this increase can be explained by the salt and pepper effect discussed earlier most
frequently present in the Indices model.

Although the minimum mapping unit is 0.09 ha for 30 m images, e.g. Landsat, the
effective unit tends to be larger as it is hard to validate isolated pixels. On this scale,
the spatial attributes of deforestation like shape and texture vanish. These spatial
attributes are commonly used by experts to validate the deforestation. Furthermore,
the lower spatial resolution the greater the edge effect, as there is a spectral mixing
of targets in the pixels belonging to borders. The use of Sentinel-2A, which has a
minimum mapping unit of 0.01 ha (10 m resolution), can be a feasible solution for
small patches detection, once it has a smaller area of mixing targets.

Figure 4.4 - Distribution of deforestation patches in the Bands and Indices classifications.
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Due to its high accuracy, we believe our classification method could have a positive
impact by being integrated into existing non-automatic deforestation monitoring
systems. Another application of our classification method could be supporting non-
automatic deforestation monitoring systems, that usually use exclusion masks to
avoid visiting already reviewed areas, to detect deforestation in secondary vegeta-
tion. However, our method is constrained by the the inability to distinguish among
natural and anthropogenic deforestation and we avoided the identification of for-
est degradation such as selective cut or fire. We also acknowledge that time series
classification misses important spatial attributes such as shape, size, shadow, tone,
texture, and location.

4.6 Conclusions

Combining machine learning and time series improved the identification of defor-
estation in the Amazon rainforest. The successive and consistent observations of a
place in time series capture the forest dynamics and deliver more information to clas-
sification algorithms than using independent multi-temporal analysis. Time series
make better use of the data available, decreasing the chances of miss-classification
due to noisy observations.

We investigated which combination of Sentinel-2A attributes performs better defor-
estation detection. Here, we generated and validated two classifications. The first one
uses a Random Forest model with the bands blue, green, red, broad infrared, narrow
infrared, short-wavelength infrared 1, and short-wavelength infrared 2. The second
one also uses Random Forest model, but the inputs are the spectral indices En-
hanced Vegetation Index, Normalized Difference Vegetation Index, and Normalized
Difference Moisture Index. We conclude that, for deforestation detection purposes,
the first model (using bands) performed better. In addition, the 10 m spatial res-
olution of Sentinel-2A images allows mapping smaller areas of deforestation that
would not be detected in coarser spatial resolution sensors, such as OLI/Landsat 8
(30 m) and WFI/CBERS-4 (64 m). This could solve part of the challenge that, over
the past few years, it has been observed that deforestation patches are becoming
smaller (KALAMANDEEN et al., 2018).

By using the time series of EO imagery, we obtained reliable classification models
(UA > 96%) with accuracy above those reported in the literature for detecting
deforestation. This is possible due to the availability of high-dimensionality data
cubes coupled with machine learning techniques.
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The maps generated by the proposed method can support the enforcement of policies
and agreements to fight deforestation, such as the Brazilian Forest Code and the
Soy and Cattle Moratorium. Without reliable deforestation maps, the monitoring
and law enforcement activities lose their effect on supporting environmental policies
and agreements. Furthermore, the maps we produced can also feed climate change
as well as land use models.

Our approach demands low expert intervention, and hence can easily be automated
and scaled. Because of these characteristics, it is feasible to integrate our method
in deforestation monitoring systems. Our method was facilitated by a data cube
platform specialized in satellite image time series, the Brazil Data Cube platform.
However, the application of this method in large areas will require significant com-
putational infrastructure. Thus, building institutional mechanisms, involving public,
private, and multilateral organizations, is required to guarantee continuity of invest-
ments in wide-ranging monitoring systems.

4.7 Code and data availability

The code used in our experiments is provided under the GNU General Public License
v3.0 and is available in (SANCHEZ, 2020). The R package sits (Satellite Image Time
Series) provides tools for handling time series of Remote Sensing images, including
data retrieval, visualization, and machine learning methods (e.g. Random Forest).
The latest release of sits is available on GitHub at https://github.com/e-sensing/sits.

Our results are available in the PANGAEA platform (SANCHEZ et al., 2020a). They
contain the deforestation maps of 2019 in GeoTIFF format at 10 meter resolution as
well as the files with the training data set (481 samples), validation data sets (252
samples for each Bands and Indices) in CSV format.
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5 REPRODUCIBLE GEOSPATIAL DATA SCIENCE: EX-
PLORATORY DATA ANALYSIS USING COLLABORATIVE ANAL-
YSIS ENVIRONMENTS1

5.1 Abstract

The answers to planetary problems could be hidden in gigabytes of satellite im-
agery from the last 40 years. Unfortunately, scientists lack the means for processing
such amount of data as they are used to work over small quantities of satellite
images. To amend this issue, we propose the use of web services from Big Earth
data platforms along collaborative analysis environments. Both Web services and
collaborative analysis environments fit the hypothesis-test workflow followed by re-
searchers while writing analysis routines. Besides, the early use of Big Earth data
structures eases the subsequent process of scaling analysis up to larger extensions.
To test our proposal, we use our own Big Earth observation data platform, on which
decades of satellite images are arranged into data cubes. By using our Web services
platform, we integrate those data cubes into our collaborative analysis environment
(a Jupyter notebook). Since our analysis routines consume the same data structure
of the whole data sets, it is easier to scale up the analysis.

5.2 Introduction

The process of analyzing Earth observation data is a combination of science and
art. It requires knowledge, perseverance and some resignation for the effort put
on failed tests which never reach the final publications. To advance their re-
search, scientists rely on a hypothesis-test cycle and diaries —or notebooks—
to keep record of their findings. This process also relies on computer code,
which scientists write their own way, following the same hypothesis-test cycle
over small data sets. Nowadays, computers also help scientists to manage their
digital notebooks based on concepts such as Literate Programming and Over-
lay Journals. Furthermore, these notebooks are being taken to the web in the
form collaborative analysis environments, which are on-line documents that mix
code, data, descriptions, and tables to summarize the results of scientific re-
search. This electronic approach to analysis fits well the current data distribution

1This chapter is an adapted version of the paper on Revista Brasileira de Cartografia:
Sánchez, A., Vinhas, L., Queiroz, G., Simoes, R., Gomes, V., Assis, L.F., Llapa, E., Camara, G.,
2018. Reproducible geospatial data science: Exploratory data analysis using collaborative analysis
environments. Rev. Bras. Cartogr. 70, 1844–1859. It is also an extended version of the paper
presented in the XVII Brazilian Symposium on GeoInformatics (GEOINFO 2017): Sanchez, A.,
Picoli, M., Andrade, P. R., Simões, R., Santos, L., Chaves, M., Begotti, R., & Camara, G. (2019).
Land Cover Classifications of Clear-cut Deforestation Using Deep Learning. Geoinfo, 48–56.
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model based on files (KNUTH, 1984; HEY et al., 2009; PEREZ; GRANGER, 2007).

However, this approach is unsuitable to the analysis of large regions of space
and time; as a result, there are few global scale analyses in the scientific lit-
erature. Besides, a file-based model —as the one used to distribute satellite
imagery— fosters problems such as data duplication and lack of traceability. On
the other hand, global data sets are either unavailable or just too large for indepen-
dent result validation. Both scenarios worsen the current scientific reproducibility
crisis (BAKER, 2016; ANONYMOUS, 2016).

This situation shows the issues of scaling up software routines for data analysis.
Putting aside those related to computing power —they are already addressed in
the literature on the data deluge or big data— we focus on the transit from small
to large datasets. It is important for scientists to keep fast and short iterations of
think-code-test and to minimize the amount of re-work incurred while scaling up
analysis (BELL et al., 2009; BOYD; CRAWFORD, 2012; LI et al., 2016).

We addressed this problem by setting up collaborative analysis environments along
big Earth data web services. The former enables fast iterations of the hypothesis-
test cycle while the latter enables scientist to analyze increasingly larger data sets.
In other words, the earlier scientist use with Big Earth observation data structures,
the easier to scale analysis to larger extensions.

In this paper, we examine how Web services provided by big data platforms can be
integrated into the analysis workflow of Earth observation data. To achieve this, we
briefly introduce a computing platform – developed by us— and its web services
(Section 5.3 and Section 5.4). Then, we describe analysis environments and how the
into the scientists’ workflow (Section 5.5). Finally, we test our approach by setting
up Jupyter notebook – a collaborative analysis environment – in which we mixture
the web services provided by our platform and the analysis analytical tools provided
by the Python programming language.

5.3 The e-sensing platform

The Brazilian National Institute for Space Research (INPE) runs the e-sensing
project. This project is building a platform for scientist to research Land Use and
Land Cover Change (LUCC). The platform sorts decades of satellite images into
multidimensional space-time arrays.

The main requirements to these platforms are analytical scaling, software reuse, col-
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laborative work, and replication. Analytical scaling is about moving data and code
among computing platforms with little or no modifications at all. Software reuse
refers to the ability to run code from different origins. Collaborative work and repli-
cation are about sharing and replicating analysis results. We address software reuse,
collaborative work, and replication by using open source and open access software
and data. Our platform only hosts open source software and open access data such as
MODIS and LANDSAT images (CAMARA et al., 2016a; STONEBRAKER et al., 2009).

We have been using our platform to classify time series of vegetation indexes of
the Amazon and Cerrado biomes into LUCC classes. Later, during post-processing
stages, we analyze the LUCC trajectories over time. But the data workflow inside
our platform relies on a mixture of technologies such as scripting languages (R,
Python, Bash), distributed storage (SciDB, Hadoop), and operating system tools.
As a result, the scientific reproducibility of our results is compromised. Therefore,
we chose web services as the way to expose our platform computing capabilities
while hiding its internal complexities (ASSIS et al., 2016; CAMARA et al., 2016b; LU et

al., 2016; MACIEL et al., 2019; MAUS et al., 2016).

On the other hand, the CEOS Data Cube Platform (CEOS-ODC) handles storing,
accessing, and managing metadata of remotely sensed data. CEOS-ODC is built
on top of the Australian Geoscience Data Cube. Just as e-sensing, the CEOS-ODC
platform can process large amounts of satellite imagery using open source tools.
However, they employ different analysis and architectures. While e-sensing is fo-
cused on time series analysis, CEOS-ODC puts spatial before temporal analysis.
Regarding architectures, e-sensing is built on top of array databases while CEOS-
ODC is built around the programming language python and data files; this difference
is subtle but important since databases are independent of programming languages.
As a consequence, the e-sensing platform is able to run analysis written in different
languages while CEOS-ODC is constrained to python scripts (CEOS, 2016).

5.4 A Web Service for retrieving time series

Sharing and re-using computer resources has been important since the 90s because
writing software is error-prone and high performance hardware is expensive. Nowa-
days, Web services are a common way to address this matter. Web services are the
standardized way to access software and data over the World Wide Web indepen-
dently of operating systems and programming languages. Through them, scientists
can access the data and algorithms available in our platform. At the same time, web
services hide complexities – such as mixed technologies, and distributed storage –
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behind a uniform interface.

The Web Time Series Service (WTSS) retrieves time series of Earth Observation
data for specific locations on Earth. WTSS reduces the gap between data and
remote-sensing time-series clients through simple text representations using JSON
(a standard file format). Traditionally, assembling time series of Earth Observation
imagery is a time-consuming task because users need to sequentially open several
image files, extract some pixels, and then store them. Instead, WTSS connects to a
multidimensional array database and makes temporal queries on behalf of the client.
WTSS exposes three main operations list_coverages, describe_coverage, and time_-
series. list_coverages returns a JSON list of the available coverages in the service.
describe_coverage retrieves metadata of a specific coverage. Finally, the time_series
operation retrieves specific time series. WTSS implementation is publicly available
on-line (VINHAS et al., 2017).

Moreover, WTSS has clients for the QGIS software and for the scripting languages
R and Python. These WTSS clients enable scientists to access our data from on-line
analysis environments.

5.5 Interactive and collaborative analysis environments

Literate programming is a style of coding software in which programs are treated
as pieces of literature. That is, natural and machine languages are weaved together
into a document where thought order prevails over code optimizations. Its goal is
to create programs easier to understand and maintain and to achieve this, literate
programming makes explicit the reasoning behind the code (KNUTH, 1984).

Note how literate programming fits the way scientists analyses their data. Once data
is collected, scientists make research questions, and then formulate hypotheses for
later testing them on the data. The question making and hypothesis formulating is
better described using natural language while data processing and hypothesis testing
are automated using code.

The modern realization of literate programming is the on-line analysis environments.
Using modern technologies, they add collaboration and interactivity to the tradi-
tional scientific notebooks and laboratory journals. Some examples are the R and
Jupyter notebooks. It is worth noticing that R notebooks are focused in R while
Jupyter notebooks support various programming languages. For this reason, we pre-
ferred the latter.
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Statistical data analysis is crucial to science. From the computing perspective, the
most popular and powerful computing tools for statistical analysis are R and Python.
R is a computing environment designed for statistical analysis while Python is a gen-
eral purpose programming language focused on readability and extensibility. Both
support numerical processing, statistical data structures; the former natively while
the latter trough code libraries such as SciPy. Both R and Python are supported
by large communities of users coming from either the field of statistics or com-
puter science. In this paper we preferred python because most of the authors come
from computer science field (IHAKA; GENTLEMAN, 1996; VIRTANEN et al., 2020; RED-

MONK. . . , ).

IPython adds facilities to Python for scientific computing. IPython has an inter-
active command with tailor-made features for scientists, such as code completion,
plotting, and parallel and distributed processing. These characteristics are taken to
the web in the form of Jupyter notebooks. For example, the data and algorithms
regarding the recent astronomic discovery of gravitational waves are available as
Jupyter notebooks (KLUYVER et al., 2016; CANTON et al., 2014; USMAN et al., 2016).

5.6 Analysis of time series of vegetation indexes

Vegetation indexes are simple estimates of vegetation activity derived from satellite
imagery. They are independent of measurement units and for this reason they are
well suited for Land cover identification. However, satellite imagery is subject to noise
which induces variance on the time series of vegetation indexes (HUETE et al., 1985;
JIANG et al., 2008). Statistical analysis provides several tools for time series analy-
sis; some of them are of common usage for image analysis (e.g. line fitting, Fourier
decomposition, Whitaker smoother, and the Kalman filter) and classification (e.g.
Dynamic Time Warping), particularly for noise removal and classification (ATKIN-

SON et al., 2012). In this section we provide a trivial summary of analysis techniques
because a complete discussion is beyond the scope of this paper.

Line fitting is the process of finding the straight line which minimizes the differences
to the points in the time series. Line fitting is useful to find global trends in the data
and it is the starting point for more complex fittings.

Fourier decomposition is a smoothing technique which is based on the Discrete
Fourier Transform (DFT) and its inverse function. Assuming that time series are
originally defined in the time domain, DFT converts time series data to the frequency
domain while the inverse DFT convert from back from the frequency to the time
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domain. In the frequency domain, a time series is the sum of sinusoids characterized
by a frequency. Higher frequencies correspond to noise. Smoothing is achieved by
removing these high-frequency sinusoids and then reconstructing the time series
using the inverse DFT (HEIDEMAN et al., 1984; JAKUBAUSKAS. et al., 2001).

The Whitaker smoother computes smoothed values for each observation using least
squares over the linear combination of nearest observations, while penalizing the
roughness of the smoothed results (ATZBERGER; EILERS, 2011; EILERS, 2003). The
Kalman filter is an algorithm for estimating an unobserved quantity from a set of
noise observations. As new observations are available, the Kalman filter improves
its estimation, and due to its simplicity and speed, it is suitable for applications in
engineering, econometrics, and more recently, remote sensing (GREWAL; ANDREWS,
2010; KLEYNHANS et al., 2011).

Dynamic Time Warping (DTW) is an algorithm that computes a similarity mea-
sure – a distance – between two time series. Given a set of time series of known
land coverages (the patterns), we compute the DTW distances to a time series of an
unknown land cover (the samples). The samples are assigned to the labels of the pat-
terns with the shortest DTW distance (BERNDT; CLIFFORD, 1994). These analysis
methods are applied to time series of vegetation indexes in the following section.

5.7 A collaborative environment - Jupyter notebook

We setup a Jupyter notebook for the exploratory analysis of time series of vegetation
indexes. It mixes the web services provided by our platform and the analytical tools
provided by the Python programming language. This notebook presents three com-
mon jobs regarding time series of vegetation indexes: Exploratory analysis, filtering
or smoothing, and classification.

In the exploratory analysis, we get the data and then plot the time series and its
location on a map. Listing 5.1 shows how to retrieve MODIS data into a data frame
which is a table-like data structure. Lines 1 to 3 load the existing libraries, while
lines 4 to 6 establish a point on Earth, some vegetation indexes, and where to find
the Web Service. Line 7 retrieves time series from the Web Service, and finally, lines
9 to 13 arrange the data into a data structure called data frame.
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Listing 5.1 - Get a time series into a Python pandas data frame.
1 import pandas as pd
2 from wtss import wtss
3 from tsmap import *
4 w = wtss("http :// www.dpi.inpe.br/tws")
5 latitude = -14.919100049
6 longitude = -59.11781088
7 ts = w. time_series (" mod13q1_512 ", ("ndvi", "evi"), \
8 latitude , longitude )
9 ndvi = pd. Series (ts["ndvi"], index = ts. timeline ) * \

10 cv_scheme [’attributes ’][’ndvi ’][’scale_factor ’]
11 evi = pd. Series (ts["evi"], index = ts. timeline ) * \
12 cv_scheme [’attributes ’][’evi ’][’scale_factor ’]
13 vidf = pd. DataFrame ({’ndvi ’: ndvi , ’evi ’: evi })

Once the time series is formatted as a data frame, it is possible to apply on it
functions that receive and return data frame’s columns as parameters. In this way,
we smoothed our time series using the Whittaker smoother (Figure 5.1), the Kalman
filter, and the Fourier decomposition.

Figure 5.1 - An on-line analysis environment for time series of Earth observation data.
This environment displays a description of the Whitaker smoother, its Python
implementation, and its results when applied to a time series of vegetation in-
dexes.
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Listing 5.2 - Filter a time series using the Whitaker smoother.
1 from whittaker import *
2 vidf[’ndvi_wf ’] = pd. Series ( whittaker_filter (ndvi ,1000) , \
3 index = ts. timeline )
4 vidf[’evi_wf ’] = pd. Series ( whittaker_filter (evi ,1), \
5 index = ts. timeline )
6 fig , ax = matplotlib . pyplot . subplots ( figsize = (15, 5))
7 ax.plot ()
8 vidf[’ndvi ’]. plot ()
9 vidf[’evi ’]. plot ()

10 vidf[’ndvi_wf ’]. plot ()
11 vidf[’evi_wf ’]. plot ()
12 ax. legend ()
13 fig. autofmt_xdate ()

The code used to apply filters on the data is illustrated in Listing 5.2. Line 1 imports
the filter which is applied to vegetation indexes (lines 2 and 4). The remaining lines
of code print the filtered vegetation indexes along with the original data (lines 6 to
13). This code pattern is repeated for applying the Kalman filter and the Fourier
decomposition (Figure 5.2).

Figure 5.2 - Fourier decomposition of time series of vegetation indexes.

The last example in our Jupyter notebook is classification. We used Dynamic Time
Warping (DTW) to classify time series of vegetation indexes. We prepared a set
of pattern time series corresponding to the land covers cerrado and forest. We also
collected a set of sample points from which we know the latitude, the longitude and
the land cover over a specific time interval; then we retrieved the time series of these
points using WTSS. Figure 5.3 shows the time series of both patterns and samples.
Listing 5.3 shows the code required to read the prepared files, retrieve the time series
and to do the classification: Lines 1 and 2 load libraries while lines 3 and 6 load
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patterns of vegetation indexes and samples points from text files. Line 7 retrieves
the time series corresponding to the samples. Finally, line 8 calls the classifier on
the samples using the patterns.

Figure 5.3 - Patterns (top) and samples (bottom) of NDVI time series for classification.

Listing 5.3 - Python code for classifying time series using Dynamic Time Warping.

1 from dtw import *
2 from tools import *
3 patterns_ts = pd. read_json (" examples / patterns .json", \
4 orient =’records ’)
5 patterns_ts [" timeline "] = pd. to_datetime ( patterns_ts [" timeline "])
6 samples = pd. read_csv (" examples / samples .csv")
7 samples_ts = wtss_get_time_series ( samples )
8 classification = classifier_1nn ( patterns_ts , samples_ts )

In summary, we joined data and analysis environments in order to plot, filter, and
classify time series of Earth observation data by means of Jupyter notebooks and web
services. This approach is flexible as users can use the same data and web services
over different programming languages and analysis environments. For example, we
setup another notebook using R, a statistical programming language. We do not
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describe this R notebook here, but the code is available on-line2.

5.8 Conclusions

In this paper, we discussed how literate programming is being taking to the Web
as interactive and collaborative analysis environments. We also showed how these
environments are enhanced with web services and how both —environments and
services— help scientists to prepare their analysis routines. We set up a Jupyter
notebook in which we analyzed data retrieved by the Web Time Series Service.
In this way, we showed how to display, filter, smooth and classify time series of
vegetation indexes. This is a convenient for scientists not only to interact with time
series of Earth observation data but also to prepare their analysis routines before
running them on big Earth observation data platforms such as e-sensing.

Web services close the gap between big Earth observation data and analysis tools by
means of collaborative environments for small amounts of data. As the amount of
data to be processed increases, it is better to send the analysis routine to the data
which is an ongoing effort at the e-sensing project.

Finally, we would like to remark that the aforementioned the Jupyter notebook, the
Web Time Series Service, and the analysis routine are available on-line to everyone
at http://github.com/e-sensing/wgiss-py-webinar.

2e-Sensing: Big Earth observation data analytics for Land Use and Land Cover change infor-
mation https://github.com/e-sensing/SITS_R_notebook
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6 CONCLUSION

In this thesis, we address scientific questions related to the Land Use and Land
Cover component of the Earth system. Specifically, we focus on the use of Earth
Observation data for information extraction, analysis, and distribution. Regarding
data preparation, we investigate the performance of the available cloud detection
algorithms on images of the Amazon forest. On the matter of transforming raw
satellite data into deforestation maps, we propose a classification method based on
time series and machine learning. Lastly, we test an approach for making exploratory
data analysis data and methods available to scientists through the combination
of literate programming with interpreted and high level programming languages
running on web environments.

Regarding cloud detection algorithms, we found that Fmask performs better than
other algorithms and so we used it later in our classifications. Cloud masking is of
paramount importance downstream in the current trend of remote sensing which is
moving to data cubes and analysis ready data. Cloud detection is a dynamic area.
Since the publication of our paper, Fmask had two minor improvements, moving
from version 4.0 to 4.2. Fmask also introduced the trend of supporting masking
on images from different sensors and satellites. However, their algorithm is still
largely coupled to the spectral bands offered by each satellite. On the other hand,
the perspective of using time series and machine learning for cloud masking are
brought by the MAJA and s2cloudless algorithms. We believe both approaches will
eventually overcome the constraints imposed by each sensor and would be available
to other Earth observation platforms, such as CBERS.

Next, we tested the use of remote sensing time series to detect clear-cut deforestation
using machine learning networks and a linear mixture model and the raw bands of
Landsat 8. These experiments probed the feasibility of our method and taught us two
valuable lessons on how to refine it: We found the need of finer spatial and temporal
resolution of deforestation monitoring systems. We also found that deep learning
requires numerous samples which are costly to collect and validate. For that reason,
our following classification was based on Sentinel-2 images with Random Forest on
which our results resemble better visual classifications.

The use of time series and machine learning for analyzing massive datasets of Earth
observation data is a promising approach for accurate and detailed understanding
of the Earth system. In our experiments, we demonstrate that it is feasible to pro-
duce high-quality deforestation maps with a resolution of ten meters, despite the
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recurrent cloud cover over the Amazon forest. Our work brings valuable lessons for
deforestation monitoring systems. For example, a monitoring system based on our
experiments could use massive amounts of computing power to identify not only
new but also recurrent deforestation, which would improve Carbon inventories that
feed global models of planetary climate.

Our results also point to the need to make data, information, and methods avail-
able to scientist across operating systems, protocols, and languages. The amount
of data involved, processing time, and analysis method complexity are barriers to
the distribution of knowledge and perhaps more importantly, science reproducibility.
In this thesis, we explore how collaborative analysis environments could encourage
scientist to move from localized and small multitemporal datasets to large time
series of Earth observation data online. As these technologies spread, putting to-
gether curated data collection along tested analysis algorithms, the missing element
is scientific brain power for proposing and testing hypothesis.

Lastly, the future of our research lies in using our analysis on larger extents of the
Amazon forest and also, in exploring beyond time series into using fast and scalable
spatio-temporal analysis methods.

We believe the results in this theses are valuable for the currently on-going project
Brazil Data Cube. This project is currently building arrays of Earth observation data
similar to those we used in Chapter 2 and Chapter 4 for the five Brazilian biomes
(Amazônia, Cerrado,Mata Atlántica, Caatinga, Pampa, and Pantanal). Our findings
regarding cloud masking, classification methods, use of time series, and access to
data and methods could improve their results and scientific reach, particularly for
Amazônia.
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