

ESTUDO DA TEORIA DE TRANSIÇÃO VARIACIONAL PARA SISTEMAS DE INTERESSE AMBIENTAL

Henrique de Oliveira Euclides

Bolsista PIBIC/CNPq Instituto Nacional de Pesquisas Espaciais (INPE/MCT), Laboratório Associado de Plasma (LAP), São José dos Campos, SP, CEP 12247-970, CP515, Brasil.

2016

ESTUDO DA TEORIA DE TRANSIÇÃO VARIACIONAL PARA SISTEMAS DE INTERESSE AMBIENTAL

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Henrique de Oliveira Euclides (UNIFESP, Bolsista PIBIC/CNPq) E-mail: henriqueuclides@gmail.com

> Dra Patrícia R. P. Barreto (LAP/INPE, Orientadora) E-mail: patricia@plasma.inpe.br

> > Julho de 2016

Agradecimentos

Agradeço a minha família pelo apoio e motivação.

Agradeço a minha orientadora Dra Patrícia R. P. Barreto pela atenção, disponibilidade a sanar minhas diversas dúvidas no decorrer desse trabalho, e principalmente pela amizade.

Agradeço ao CNPq pelo apoio financeiro.

Resumo

Para esta etapa do projeto, apresentamos a parte gráfica do programa que calcula taxa de reação. O programa foi nomeado APUAMA, que vem do tupi-guarani e significa "veloz", pois calcula velocidades de reação de forma rápida e prática. Nessa versão do programa, desenvolvida no QT, portamos todos os cálculos que fazíamos anteriormente, como as correções de tunelamento, os espectros rovibracionais por Dunham, a apresentação da taxa na forma de Arrhenius. Como saída do programa, temos arquivos texto com informações tabeladas da taxa, os níveis rovibracionais, barreiras de energia, entre outros dados importantes, e também damos a opção ao usuário salvar em arquivo de imagem alguns gráficos, como da taxa, MEP (caminho de mínima energia). Os dados de entrada são definidos em modo texto, para os reagentes, produtos, estrutura de transição, no que se referem à geometria, modos vibracionais e energias. O código APUAMA roda em ambiente Windows em Linux, podendo ainda criar executável que possa ser instalado em diferentes máquinas.

Lista de figuras

Figura 1: Página inicial do APUAMA	.8
Figura 2: Tipos de entradas	.9
Figura 3: Informações de entrada1	0
Figura 4: Entrada para os níveis rovibracionais1	0
Figura 5: Tabela com as energias de vibração e rotação (v, J)1	1
Figura 6: Dados de entrada após a inclusão nos níveis1	2
Figura 7: Saídas do programa1	2
Figura 8: Plot de Arrhenius da taxa de reação com as correções de tunelamento	
consideradas1	.3
Figura 9: Gráfico do caminho de mínima energia1	.3
Figura 10: Barreiras de energia, entalpia de reação e ângulo de inclinação1	4
Figura 11: Taxa como Arrhenius1	15
Figura 12: Comparação das taxas com a temperatura recíproca para a reação CO +CO	
=CO2 + C, com os níveis rovibracionais (8, 8)1	6
Figura 13: Comparação da MEP com correção de ponto zero para a reação CO + CO =	
CO2 + C, com os níveis rovibracionais (8, 8)1	.7
Figura 14: Comparação da taxa de reação para diversos níveis vibracionais e dados	
experimentais	.7
Figura 15: Comparação das taxas com a temperatura recíproca para o etanol hidratado1	8

Sumário

1. INTRODUÇÃO	7
2. APUAMA	8
3. RESULTADOS OBTIDOS	16
1. $CO+CO = CO_2 + C$	16
2. $C_2H_5OH + H_2O = C_2H_4 + HOH_2OH$	18
4. CONCLUSÃO	19
REFERÊNCIAS	20

1. Introdução

O conhecimento das propriedades termodinâmicas de espécies químicas é de fundamental importância para estudos como os de processos de combustão; estudo de reações que ocorrem na atmosfera como o efeito estufa, chuva ácida, camada de ozônio, poluição, composições do espaço interestelar; saber a rapidez com que um medicamento atua no organismo; descoberta de catalisadores para acelerar a síntese de algum produto; processo de dessorção de água de farelo de soja; estudo de crescimento de filmes finos em processos CVD (deposição química a partir da fase vapor) como do tipo diamante, nitreto de boro, carbeto de boro, nitreto de carbono, nanotubos diversos, entre outros.

Visto essas aplicações, conhecer a taxa dessas reações é essencial para sabermos a velocidade com que elas acontecem, outra forma de explicar isto seria a taxa de variação das concentrações dos reagentes e produtos, divididos pelos respectivos coeficientes estequiométricos, em função da variação da temperatura.

Com base em um programa em Fortran desenvolvido pela Dr a Patrícia R. P. Barreto [1], que calcula a taxa de reação, foi desenvolvido o APUAMA, um programa em linguagem C com interface gráfica para essa finalidade. Como nosso programa calcula a velocidade de reação, de forma simples e rápida, nomeamos o programa APUAMA que vem do Tupi Guarani, e significa "veloz". Como dados iniciais para o cálculo da taxa de reação, são necessários conhecer as geometrias, energias e frequências vibracionais no ponto de sela (estrutura de transição), dos reagentes e produtos, que são obtidos previamente, via cálculos de estrutura eletrônica, usando programas específicos para esta finalidade, tais como GAUSSIAN [2], Molpro [3], Gamess [4], Molcas [5], Dalton [6] e tantos outros, e que posteriormente devem ser tabelados num formato pré estabelecido para o uso no cálculo da taxa.

Após termos os dados de entrada no formato padrão, podemos inserí-los no programa da taxa de reação e obtermos as saídas desejadas. No cálculo da taxa, está incluso a correção de tunelamento de pequena curvatura, a correção usando coeficiente de transmissão de Wigner e Eckart, a representação da taxa na forma de Arrhenius, e também incluímos a obtenção dos espectros rovibracionais, pelo método de Dunham, para ajustar reações onde temos reagentes, produtos, e/ou estrutura de transição em estado rovibracional excitado.

2. APUAMA

O programa da taxa foi implementado inicialmente pela Dr a Patrícia R. P. Barreto [7], onde calculava-se a taxa de reação com o coeficiente de transmissão de Wigner. Posteriormente foi incluso a correção de tunelamento de Eckart e o cálculo do caminho de mínima energia [8]. Para a primeira parte do trabalho de graduação, foi feita a tradução do Fortran para o C deste código, onde incluimos a correção de pequena curvatura e os níveis rovibracionais de Dunham. Agora, para esta etapa, desenvolvemos uma interface gráfica, que nomeamos APUAMA, que vem do Tupi-Guarani e significa "veloz".

O programa foi desenvolvido em linguagem C++ no Qt [9], uma ferramenta de desenvolvimento de softwares.

Figura 1: Página inicial do APUAMA

Nessa primeira imagem (figura 1) vemos como o programa inicia, na parte superior temos os botões de entrada de arquivo para reagentes, TS, produtos e reação que são dados obrigatórios para o cálculo da taxa, para os níveis rovibracionais fica a critério do usuário incluir ou não. Os dados de entrada seguem um padrão, e isso é mostrado apertando o botão superior esquerdo chamado "Input Type"(figura 2).

Figura 2: Tipos de entradas

Em azul estão os títulos referentes aos tipos de entrada, em vermelho os dados referentes as moléculas de interesse, como massa, coordenada, energia e frequência, e finalmente, em verde as unidades de cada entrada.

Ao entrarmos com os dados, é mostrado na tela automaticamente suas informações mais relevantes, tais como: nome das espécies, número de átomos, número de modos vibracionais, tipo de molecula (atômica, linear ou não linear), simetria externa e energia, no caso das TS também é mostrado a frequência negativa. Ao finalizar a entrada de dados é possivel conferir se todos os dados foram entrados corretamentes, e corrigir qualquer problema. Durante um cálculo, se necessário, é possivel conferir os dados iniciais pelo botão "Check Input", com isso são mostradas, novamente, todas as informações referentes aos dados iniciais (figura 3).

Figura 3: Informações de entrada

Após entrar com os dados obrigatórios (reagentes, produtos, TS e reação), será permitido calcular os níveis rovibracionais para a espécie desejada, para isso entramos com os valores da curva de energia potencial, calculados previamente, e inserimos o nível v para a vibração e J para rotação, como mostra a figura 4.

Reactants TS Products Reaction Entry Entry Entry Entry Entry Entry Check input Calcutate Check input Calcutate Entry Entry Entry Entry Entry Entry Entry Check input Calcutate Check input Calcutate Product 1 Product 2 Cl HF H FCI Product 2 Product 1 Product 2 Cl HF H FCI Image: Calcutate Imag			APUAMA		
Reactants TS Products Reaction Levels Entry Check input Check Check <th></th> <th></th> <th></th> <th></th> <th>Rovibr</th>					Rovibr
Entry Entry Entry Entry	Reactants	<u>TS</u>	Products	Reaction	Levels
Check input Calcutate	Entry	Entry	Entry	Entry	Entry
Calcutate Enter with vibrational and rotational level (v, j) (between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2 C HF H Ecl v Image: Signed and					Check
Calcutate Enter with vibrational and rotational level (v,j) (between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2 Cl HF H Fcl v 0 0 0 0 j 0 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter Enter Enter			Check input		
Enter with vibrational and rotational level (v,j) (between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2 C HF H FCI v 0 0 0 0 j 0 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter			Calcutate		
Enter with vibrational and rotational level (v.J) (between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2. Cl HF H FCl v 0 0 0 0 j 0 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter Enter Enter					
Enter with vibrational and rotational level (v, J) (between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2 Cl HF H FCl v 0 0 0 0 j 0 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter Enter Enter					
(between 0 and 49) for the species you want. Reactant 1 Reactant 2 Product 1 Product 2 Cl HF H FCl v 0 0 0 0 j 0 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter Enter Enter	E	nter with vibrat	tional and rotatio	onal level (v,J)
Reactant 1 Reactant 2 Product 1 Product 2 Cl HF H FCI v 0 0 0 j 0 0 0 the data were saved as "EspecieName_En.dat". Enter	(b	between 0 and 4	49) for the specie	s you want.	
Cl HF H FCl v 0 5 0 0 0 j 0 0 0 0 0	Reactant 1	1 Reactant	t 2 Produc	t1 P	roduct 2
v 0 0 0 0 j 0 0 0 0 the data were saved as "EspecieName_En.dat". Enter	CI	HF	н		FCI
JOLONOLOUND CONTRACTOR ON	v 0	5	0	h	0
the data were saved as "EspecieName_En.dat".	0 0	6	0		0 2
the data were saved as "EspecieName_En.dat". Enter					
the data were saved as "EspecieName_En.dat". Enter					
Enter	the data v	were saved as "EspecieN	Name_En.dat".		
			Enter		

Figura 4: Entrada para os níveis rovibracionais

Cada nível rovibracional que desejamos incluir deve ser associado a apenas uma espécie, por exemplo: para a reação HF + Cl = HCl + F, devemos entrar com os dados da curva de energia potencial para HF, e depois outro conjunto de dados para HCl. Depois podemos verificar a tabela com todos esses níveis, figura 5, onde cada elemento da tabela (v, J) é um nível de energia com v de vibração e J de rotação.

				APUAMA			
	Reactant Entry	S TS Enti	a de la companya de la	Products Entry	Reacti Entry	R ion L	ovibration evels Entry
				Check input Calcutate			Check
т	able with tl	ne levels o	of vibration	Clear al and rota	tional ener	gy (v, J).	
	1	2	3	4	5	6	7
1	1129.08073	1132.85274	1140.39663	1151.71216	1166.79893	1185.65644	1208.28406
2	3368.54798	3372.28408	3379.75615	3390.96395	3405.90710	3424.58510	3446.99733
3	5587.63820	5591.33955	5598.74212	5609.84567	5624.64983	5643.15410	5665.35788
4	7787.43820	7791.10592	7798.44124	7809.44391	7824.11357	7842.44975	7864.45183
5	9968.93967	9972.57486	9979.84510	9990.75017	10005.28971	10023.46324	10045.27018
6	12133.03921	12136.64291	12143.85021	12154.66085	12169.07450	12187.09069	12208.70884
6	12133.03921 14280.53831	12136.64291 14284.11156	12143.85021	12154.66085	12169.07450	12187.09069	12208.70884
6 7 8	12133.03921 14280.53831 16412.14336	12136.64291 14284.11156 16415.68716	12143.85021 14291.25795 16422.77464	12154.66085 14301.97725 16433.40558	12169.07450 14316.26912 16447.57964	12187.09069 14334.13311 16465.29639	12208.70884 14355.56862 16486.5552€
6 7 8 9	12133.03921 14280.53831 16412.14336 18528.46567	12136.64291 14284.11156 16415.68716 18531.98097	12143.85021 14291.25795 16422.77464 18539.01146	12154.66085 14301.97725 16433.40558 18549.55692	12169.07450 14316.26912 16447.57964 18563.61703	12187.09069 14334.13311 16465.29639 18581.19135	12208.70884 14355.56865 16486.5552€ 18602.27934
6 7 8 9	12133.03921 14280.53831 16412.14336 18528.46567 20630.02143	12136.64291 14284.11156 16415.68716 18531.98097 20633.50916	12143.85021 14291.25795 16422.77464 18539.01146 20640.48452	12154.66085 14301.97725 16433.40558 18549.55692 20650.94730	12169.07450 14316.26912 16447.57964 18563.61703 20664.89716	12187.09069 14334.13311 16465.29639 18581.19135 20682 33370	12208.70884 14355.56862 16486.5552(18602.27934
6 7 8 9 10	12133.03921 14280.53831 16412.14336 18528.46567 20630.02143	12136.64291 14284.11156 16415.68716 18531.98097 20633.50916	12143.85021 14291.25795 16422.77464 18539.01146 20640.48452	12154.66085 14301.97725 16433.40558 18549.55692 20650.94730	12169.07450 14316.26912 16447.57964 18563.61703 20664.89716	12187.09069 14334.13311 16465.29639 18581.19135 20682.33370	12208.70884 14355.56865 16486.55524 18602.27934 20703.25637
6 7 8 9 10 11	12133.03921 14280.53831 16412.14336 18528.46567 20630.02143 22717.23174	12136.64291 14284.11156 16415.68716 18531.98097 20633.50916 22720.69280	12143.85021 14291.25795 16422.77464 18539.01146 20640.48452 22727.61482	12154.66085 14301.97725 16433.40558 18549.55692 20650.94730 22737.99759	12169.07450 14316.26912 16447.57964 18563.61703 20664.89716 22751.84080	12187.09069 14334.13311 16465.29639 18581.19135 20682.33370 22769.14404	12208.70884 14355.56865 16486.55524 18602.27934 20703.25637 22789.90678
6 7 8 9 10 11 12	12133.03921 14280.53831 16412.14336 18528.46567 20630.02143 22717.23174 24790.42260	12136.64291 14284.11156 16415.68716 18531.98097 20633.50916 22720.69280 24793.85786	12143.85021 14291.25795 16422.77464 18539.01146 20640.48452 22727.61482 24800.72826	12154.66085 14301.97725 16433.40558 18549.55692 20650.94730 22737.99759 24811.03362	12169.07450 14316.26912 16447.57964 18563.61703 20664.89716 22751.84080 24824.77363	12187.09069 14334.13311 16465.29639 18581.19135 20682.33370 22769.14404 24841.94788	12208.70884 14355.56862 16486.55524 18602.27934 20703.25637 22789.90678 24862.55588

Figura 5: Tabela com as energias de vibração e rotação (v, J)

Com a inclusão dos níveis rovibracional ocorre uma alteração da energia inicial dos reagentes e/ou produtos, que são automaticamente acrescidas da energia rovibracional desejada. Utilizando o botão "Check Input", aparecerá os dados inicias dos reagentes, TS e produtos, porém com as novas energias, que trocaram de cor, passaram do preto para o vermelho, conforme mostra a figura 6.

Figura 6: Dados de entrada após a inclusão nos níveis

Depois de incluir os dados necessários, podemos calcular a taxa apertando o botão "Calculate". Se os arquivos de entrada estiverem corretos, será criada uma pasta com o nome da sua TS no mesmo diretório onde estavam as entradas, e serão salvos os dados de saída. Será exibida na tela quatro botões para as saídas, figura 7. Isto pode ser visualizado na parte inferior da janela, onde mostramos o caminho onde foi criado o diretório com os arquivos de saída.

×			APUAMA		
Input Type:	Reactants Entry	TS Entry	Products Entry	Reaction Entry	Rovibrational Levels Entry Check
			Calcutate		_
	Succes For rat	sfully calcula e and correctio	ted rate, choose t	the outputs bel	ow.
	For mir For end For rat	nimum energy ergy barriers, ai e as Arrhenius.	path (MEP).	MEP arriers rhenius	
	all data is save /home/henrique/Dropbo	ed in x/IC/Taxa/codigos/Pa	rte Grafica/HCl/FClH_(01,04)_(03,02)_Outputs/	

Figura 7: Saídas do programa

Ao apertarmos o botão "Rate", será exibido um gráfico comparando a taxa com as correções de tunelamento utilizadas, onde inclusive podemos salvar esse gráfico no mesmo diretório designado para as saídas, figura 8. Para as correções de tunelamento de Eckart e pequena curvatura (onde temos integrais que não podem ser resolvidas analiticamente), foi necessário utilizar integração numérica para resolver esses coeficientes de transmissão.

Figura 8: Plot de Arrhenius da taxa de reação com as correções de tunelamento consideradas

Apertando o botão "MEP", exibimos um gráfico que compara o caminho de mínima energia com a correção de energia de ponto zero, figura 9.

Figura 9: Gráfico do caminho de mínima energia

Para o botão "Barriers", exibimos as barreiras de energia no sentido direto e reverso, com a correção de energia de ponto zero ZEP, entalpia de reação e ângulo de inclinação, figura 10.

×			APUAMA		
	Reactants Entry	TS Entry	Products Entry	Reaction Entry	Rovibrational Levels Entry
			Check input Calcutate		Uletx
	Back				
	V	/ _a ^G f= 39	.0156	kcal mol ⁻¹	
	N	/ _a ^G r = 10	.7992	kcal mol ⁻¹	
	C	0H f = 28	.0846	kcal mol ⁻¹	
	E	8eta = 79	.5912	DEG	
	ti	ne data were saved a	as 'Ke.dat'.		

Figura 10: Barreiras de energia, entalpia de reação e ângulo de inclinação

As taxas foram calculadas para um conjunto de temperaturas variando entre 200 e 4000K, de acordo com a TST convencional e três formas de tunelamento diferentes, Wigner, Eckart e pequena curvatura, conforme mostrado na figura 8. Porém para apresentar estes dados de forma compacta ou utilizar em mecanismos cinéticos é necessário escrevelos na forma de Arrhenius [10]. Dentro do código APUAMA existe uma rotina para fazer um ajuste não linear dos dados da taxa e apresentá-los desta forma, como mostra a figura 11, que é chamada através do botão "Arrhenius".

×			APUAMA			
InputType Reacta Entry	nts TS	intry	Product. Entry	s Read	tion	Rovibrational Levels
						Check
			Calcutate			
Back						
		k(T) =	= AT ⁿ exp(-F-	/RT)		
		K(1)				
	k(t)	9.665528e+07	2.546171e+00	3.840950e+04		
	Wigner	5.839335e+07	2.590219e+00	3.722796e+04	-	
	Eckart	5.453645e+00	4.482451e+00	2.868394e+03		
	CVT	9.321684e+07	2.547575e+00	3.851622e+04		
	the data were	e saved as 'Arrh	n.dat'.			

Figura 11: Taxa como Arrhenius

Todos os dados calculados são salvos em arquivos de texto, em diretórios criados pelo APUAMA para este fim, são eles: MEP.dat, para o caminho de mínima energia, Kt.dat, para a taxa de reação, Ke.dat, para o resumo das energias, Arrh.dat para os coeficientes de Arrhenius, A, n, E a e o RMS (erro quadrático médio) de cada ajuste, além de poder salvar os gráficos da MEP e taxa em arquivos BMP. Com isso os dados podem ser utilizados em tabelas e programas gráficos diversos.

3. Resultados Obtidos

1.
$$CO+CO = CO_2+C$$

O cálculo para essa reação é importante para formação de carbono livre em processos de altas temperaturas, tais como em fluxo de gás, e descargas elétricas de não equilíbrio. Esta reação é importante também em processos de reentrada na atmosfera. Segundo ESSENHIGH [11], essa reação só ocorre se os reagentes estiverem em seu estado rovibracional elevado. A figura 12 apresenta a taxa calculada pelo APUAMA para CO no nível rovibracional (8, 8) idêntico para os 2 reagentes.

Figura 12: Comparação das taxas com a temperatura recíproca para a reação $CO + CO = CO_2 + C$, com os níveis rovibracionais (8, 8)

Nessa figura 12, podemos observar uma maior correção de tunelamento de Eckart para baixas temperaturas. Mesmo nesse nível rovibracional, sabemos que a taxa ainda não esta condizente com os valores experimentais. Na figura 13, podemos notar que esta reação endotérmica calculada pelo APUAMA, com barreira de 91.77 kcal mol⁻¹ e após correção de ponto zero, de 92.53 kcal mol⁻¹, a barreira no sentido reverso é de 31.28 kcal mol⁻¹ já com a correção de ponto zero, e a entalpia de reação de 61.07 kcal mol⁻¹. O ângulo de inclinação é de 58.51°.

Figura 13: Comparação da MEP com correção de ponto zero para a reação CO + CO = CO₂ + C, com os níveis rovibracionais (8, 8)

Foram calculadas quatro níveis vibracionais diferentes mantendo o nível rotacional igual a 0 para o sistema completamente singleto, e um nível para um sistema misto, singleto/tripleto. A figura 14 compara as taxas de reações convencionais obtidas para os níveis vibracionais (15, 15), (16, 16), (17, 15), (20, 15) do sistema singleto, e (5, 3) para o sistema misto, calculadas via APUAMA. Nestes casos o primeiro número é o nível vibracional do primeiro CO e o segundo o nível vibracional do segundo CO, uma vez que eles estão rotacional 0. Estas novas taxas são comparadas com dados de referência. A referência [11] está de acordo com o nível vibracional (16, 16), e as referências MAK [12], DUN [13] e IVA [14] estão próximas do nível (20, 15).

Figura 14: Comparação da taxa de reação para diversos níveis vibracionais e dados experimentais

2. $C_2H_5OH + H_2O = C_2H_4 + HOH_2OH$

Em colaboração com a Dr. Alessandra F. Albernaz [15] da Universidade de Brasília (UnB), foi realizado o cálculo da taxa de dissociação do etanol hidratado via APUAMA. Na figura 15 é possível observar a diferença do cálculo da taxa convencional (linha preta) com a correção de Eckart (linha verde) isso ocorre porque em baixas temperaturas a transição de elétrons entre reagentes e produtos é maior para essa reação, devido ao tunelamento.

Figura 15: Comparação das taxas com a temperatura recíproca para o etanol hidratado

4. Conclusão

Nosso objetivo foi desenvolver um código simples de interface gráfica auto explicativa, fácil de utilizar e de obtenção de resultados rápidos para a determinação da velocidade de reação para sistemas gerais. O código desenvolvido permite calcular a taxa de sistemas bimolecular, unimolecular, troca e isomerização, levando em consideração niveis rovibracionais de espécies diatômicas, desde de que a superfície de energia potencial seja especificada a priori. O código apresentado foi testado para sistemas pequenos 3 e 4 átomos, levando em consideração os niveis rovibracionais e sistemas grandes de 12 átomos, não apresentando limitação de números de átomos.

Hoje levamos em consideração três fatores de tunelamento, sendo que, Wigner não é a melhor correção a ser feita, pois depende somente da frequência imaginária da estrutura de transição e não leva em consideração a coordenada de reação. E a correção de Eckart que superdimensiona o tunelamento.

Algumas modificações ainda podem ser implementadas, entre elas, podemos citar: inclusão de outros efeitos de tunelamentos e cálculos de propriedades termodinâmicas de espécies químicas, também escritas na forma polinomial, para a utilização em códigos cinéticos.

Desde trabalho resultou:

- Trabalho apresentado no CHITEL 2015 Congresso de Químicos Teóricos de Expressão Latina, foi realizado nos dias 26-31 de julho de 2015 em Turim, IT, com o título: The Code to determine the rate constant using the rovibrational level of reagent and products.
- Trabalho apresentado no XVIII Simpósio Brasileiro de Química Teórica, que aconteceu em Pirenópolis (GO) de 22 à 25 de Novembro 2015, com o título: Reaction rate of HX+Y systems, with X,Y = H, F, Cl or Br and XY.
- Trabalho aceito para o ISWA International Symposium and Workshop on Astrochemistry, que será realizado em Campinas-SP de 3 à 8 de julho de 2016, com o título: APUAMA: A Software tool for reaction rate calculations.

Referências

[1] BARRETO, P. R. P. Termodinâmica de Gases a Altas Temperaturas e Misturas Quimicamente Reagentes. [S.l.], 2002.

[2] FRISCH, M. J. et al. Gaussian 98, Revision A.9. Pittsburgh PA, 1998. Gaussian.

[3] WERNER, H.-J. et al. MOLPRO, version, a package of ab initio programs. See.

[4] M.W.SCHMIDT et al. General atomic and molecular electronic structure system. J. Comput. Chem., v. 14, p. 1347, 1993.

[5] ANDERSSON, K. et al. MOLCAS Version 5.4. Sweden: [s.n.], 2002.

[6] AIDAS, K. et al. "the dalton quantum chemistry program system". WIREs Comput. Mol. Sci., v. 4, p. 269, 2014.

[7] BARRETO, P. R. P.; GARGANO, R.; VILELA, A. F. A. A simple program to determine the reaction rate and thermodynamic properties of reacting system. J. Mol. Struct. (Theochem), v. 639, p. 167, 2003.

[8] BARRETO, P. R. P.; GARGANO, R.; VILELA, A. F. A. Theoretical study of the reactions bf3+ bx, where x = h or n. I. J. Quantum Chem., v. 103, p. 685, 2005.

[9] QT. 2015. Site: <u>www.qt.io</u>.

[10] ARRHENIUS, S. A. On the reaction rate of the inversion of non-refined sugar upon souring. Z.Phys., v. 4, p. 226, 1889.

[11] ESSENHIGH, K. A. et al. Gas-phase boudouard disproportionation reaction between highly vibrationally excited co molecules. Chem. Phys., v. 330, p. 506, 2006.

[12] MAKSIMOV, A. I. et al. Khim. Vys. Energy, v. 13, p. 358, 1979.

[13] DUNN, O.; HARTECK, P.; DONDES, S. J. Phys. Chem., v. 77, p. 878, 1973.

[14] IVANOV, E. E. et al. Khim. Fiz., v. 7, p. 1694, 1988.

[15] ALBERNAZ, A. F. 2015. Trabalho não publicado.