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Abstract

Known as a degenerative and progressive dementia, Alzheimer’s disease (AD) affects

about 25 million elderly people around the world. This illness results in a decrease in the pro-

ductivity of people and places limits on their daily lives. Electroencephalography (EEG), in

which the electrical brain activity is recorded in the form of time series and analyzed using

signal processing techniques, is a well-known neurophysiological AD biomarker. EEG is

noninvasive, low-cost, has a high temporal resolution, and provides valuable information

about brain dynamics in AD. Here, we present an original approach based on the use of

quantile graphs (QGs) for classifying EEG data. QGs map frequency, amplitude, and corre-

lation characteristics of a time series (such as the EEG data of an AD patient) into the topo-

logical features of a network. The five topological network metrics used here—clustering

coefficient, mean jump length, betweenness centrality, modularity, and Laplacian Estrada

index—showed that the QG model can distinguish healthy subjects from AD patients, with

open or closed eyes. The QG method also indicates which channels (corresponding to 19

different locations on the patients’ scalp) provide the best discriminating power. Further-

more, the joint analysis of delta, theta, alpha, and beta wave results indicate that all AD

patients under study display clear symptoms of the disease and may have it in its late stage,

a diagnosis known a priori and supported by our study. Results presented here attest to the

usefulness of the QG method in analyzing complex, nonlinear signals such as those gener-

ated from AD patients by EEGs.

1 Introduction

Alzheimer’s disease (AD) is the main cause of dementia in people over 65 years of age, affect-

ing nearly 25 million people throughout the world [1]. AD is marked primarily by progressive

cognitive impairment, loss of memory, and disorientation of time and space. [2]. With an

unknown cause, AD usually evolves slowly, following a specific pathway that first involves the
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hippocampus, then spreads out to association areas in parietal, lateral temporal, and frontal

regions, eventually affecting all regions of cortex [3, 4]. AD is irreversible. Thus, the earlier a

diagnosis can be made, the sooner the treatment can be started, with a higher chance of success

in slowing down the progression of the disease.

Currently, definitive diagnosis of AD is made on the examination of the brain tissue

accessed by biopsy or necropsy [5]. Since it is possible to be sure that he or she had AD only

after the patient’s death, clinical diagnosis is made by excluding other causes of dementia.

However, in recent years there has been considerable research toward the diagnosis of AD

using biological markers (biomarkers); see [6–9] for a review. Classified into four basic groups,

biochemistry, genetics, neurophysiology, and neuroimaging, AD biomarkers should carry

enough information on pathophysiologic processes active in AD so as to allow the detection of

the disease’s precursor clues before the symptoms onset [7].

Electroencephalography (EEG), in which the electrical brain activity is recorded in the form

of time series and analyzed using signal processing techniques, is a well-known neurophysio-

logical AD biomarker. EEG is noninvasive, low-cost, has a high temporal resolution, and pro-

vides valuable information about brain dynamics in AD [10–15]. Recently, computer-aided

classification methods have been developed and applied to EEG signals to distinguish among

patients with AD, healthy controls, and patients with mild cognitive impairment [9]. AD

affects the characteristics of EEGs. Consequently, EEG analysis can provide useful information

about the dynamics of the brain due to AD. Slowing EEG, decreased EEG coherence, and

decreased EEG complexity are the most distinctive traits in the EEG caused by AD [16]. None-

theless, the diagnosis of AD from EEG data is still open research topic, and it comes without

surprise the wealth of methods proposed in the medical and related literature. These methods,

based on Fast Fourier Transform (FFT) [17–19], Wavelet Transform (WT) [20–23], Phase-

Space Reconstruction [24–26], Eigenvector Methods (EMs) [27, 28], Time Frequency Distri-

butions (TFDs) [29], and the Auto-Regressive Method (ARM) [30], generally require from the

input signal one or more of the following assumptions: stationarity, high time or frequency

resolution, and/or a high signal-to-noise ratio.

In [31], we introduced a simple method for transforming a time series into graphs or net-

works, called the quantile graph (QG) method. The QG method maps relevant properties of

the original time series, such as periodicity or randomness, into the topological features of the

resulting graph. The QG method has been applied to quantify the Hurst exponent of gaussian

white noites and brownian motions [32] and to uncover distinctions between physiological

signals of normal individuals and unhealthy patients [13, 31]. We have also used the QG

method to distinguish in an EEG the pre-ictal from the ictal stage of an epileptic convulsion

[14]. Along the same lines, here we study the QG method as a technique to differentiate

patients with AD from control using EEG signals and to indicate which channels (correspond-

ing to 19 different locations on the patients’ scalp) provide the best discriminating power.

After this introduction, Section 2 and 3 present, respectively, the QG method and the net-

work measures used here for the characterization of complex networks. The EGGs used in this

research are described in Section 4 while the corresponding results are examined in Section 5.

Finally, Section 6 presents the pertinent conclusions.

2 Materials and methods

As described in detail previously [14, 31–33], the QG method converts a time series X ¼
fxðtÞjt 2 N; xðtÞ 2 Rg into a complex network g ¼ fN ;Ag 2 G, with N vertices (or nodes)

and A edges (or arcs). In the QG method, each quantile qi for i = 1, 2, . . ., Q of X is attributed

to a node ni 2 N in g. Two nodes ni and nj are connected with a weighted arc ðni; nj;wk
ijÞ 2 A
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whenever two values x(t) and x(t + k) belong respectively to quantiles qi and qj, with t = 1, 2,

. . ., T and k = 1, . . ., kmax< T. Weights wk
ij in the weighted directed adjacency matrix, which is

denoted as Ak, are equal to the number of times qi at time t is followed by qj at time t + k. Thus,

repeated transitions through the same edge increase the the corresponding weight value [14].

Normalizing Ak, it becomes a Markov transition matrix Wk, with
PQ

j w
k
ij ¼ 1 [32]. As shown

in [14, 32], the QG method is weakly dependent on the choice of Q. Here, the number of quan-

tiles is given by Q� 2T1/3 [34]. A C-code implementation of our method has been made freely

available by Pineda et al. [35].

As an illustrative example, Fig 1 shows a simple application of the QG method, X with

T = 20 and Q = 5 (colored shading). Quantiles are defined as [x(0), x(4)[, [x(4), x(8)[, [x(8), x
(12)[, [x(12), x(16)[, and [x(16), x(20)]. For a given k, the quantiles are mapped into a network

with N ¼ 5 nodes and each quantile is assigned to a node ni 2 N in the corresponding net-

work g. For k = 1, 2, and 5, the nodes ni and nj are connected with weighted arcs ðni; nj;w1
ijÞ,

ðni; nj;w2
ijÞ, and ðni; nj;w5

ijÞ 2 A, respectively. The arc weights are given by (1,1,1), (1,3,1),

(1,5,2), (2,1,1), (2,2,1), (2,4,2), (3,3,2), (3,4,1), (4,1,1), (4,2,1), (4,3,1), (4,4,1), (5,1,1), (5,2,1),

(5,5,2) for k = 1; (1,3,1), (1,5,2), (2,1,1), (2,4,2), (2,5,1), (3,2,1), (3,3,1), (3,4,1), (4,1,1), (4,3,2),

(4,4,1), (5,1,1), (5,2,2), (5,5,1) for k = 2; and (1,4,1), (1,5,1), (2,3,2), (2,5,1), (3,1,2), (3,4,1),

(4,2,1), (4,3,1), (4,4,1), (5,2,2), (5,3,1), (5,4,1) for k = 5. Note that the more repeated transitions

between the quantiles qi and qj occur, the larger the weights between the nodes ni and nj are

(represented in the corresponding network by thicker lines).

Fig 1. Example of the QG method for a time series with T = 20, Q = 5, and k = 1, 2 and 5. The quantile intervals for

the sorted data are given by [x(0), x(4)[, [x(4), x(8)[, [x(8), x(12)[, [x(12), x(16)[, and [x(16), x(20)], i.e., [−7.783, −3.050

[, [−3.050, 0.829[, [0.829, 4.657[, [4.657, 7.070[, and [7.070, 9.090]. The quantiles are mapped into three networks with

N ¼ 5 nodes each and arc weights given by (1,1,1), (1,3,1), (1,5,2), (2,1,1), (2,2,1), (2,4,2), (3,3,2), (3,4,1), (4,1,1),

(4,2,1), (4,3,1), (4,4,1), (5,1,1), (5,2,1), (5,5,2) for k = 1; (1,3,1), (1,5,2), (2,1,1), (2,4,2), (2,5,1), (3,2,1), (3,3,1), (3,4,1),

(4,1,1), (4,3,2), (4,4,1), (5,1,1), (5,2,2), (5,5,1) for k = 2; and (1,4,1), (1,5,1), (2,3,2), (2,5,1), (3,1,2), (3,4,1), (4,2,1), (4,3,1),

(4,4,1), (5,2,2), (5,3,1), (5,4,1) for k = 5.

https://doi.org/10.1371/journal.pone.0231169.g001
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3 Network measures

In the recent past, several studies have shown the relevance and usefulness of complex network

theory to the comprehension of a wide range of phenomena, across various scientific disci-

plines, from social sciences to biology [36]. Complex network theory relies on the use of math-

ematical metrics that can to quantify different features of the network’s topology. Based on the

adjacency matrix A and Markov transition matrix W, we describe the network measures used

in this work, namely the clustering coefficient (CC), the mean jump length (Δ), the between-

ness centrality (BC), the modularity (Mo), and the Laplacian Estrada index (LEE). Code imple-

mentations of those measures have been made freely available by Pineda et al. [35] and

Bounova [37].

3.1 Clustering coefficient

Some networks tend to have more links between adjacent vertices, in a way that their topology

deviates from that of an uncorrelated random network, in which triangles are sparse. This pat-

tern is called clustering [38], and reflects the segregation of edges into tightly connected neigh-

borhoods. There have been various attempts in the literature to develop a clustering coefficient

for weighted networks. Here, the clustering coefficient of a given node ni is given by [38]:

CCi ¼
1

siðdi � 1Þ

P
j;dðwij þ widÞ

2
ðaijajdaidÞ; ð1Þ

where wij is an element in the weighted matrix W, aij = 1 if there is a arc from node ni to node

nj, and 0 otherwise. di is the total degree of node ni, and si is the strength of connectivity of

node ni. The global clustering coefficient for the entire network, denoted as CC, is defined by

the average of the local clustering coefficients over all nodes.

3.2 Mean jump length

Given a Markov transition matrix W of a graph g, it is possible to perform a random walk on it

and compute the mean jump length Δ, defined as follows [32]:

D ¼
1

S

X

s¼1

dsði; jÞ; ð2Þ

where s = S is the total number of jumps, and the length δs(i, j) = |i − j|, with i, j = 1, . . ., Q
being the node indices, as defined by W. As described previously [14], a less time-consuming

approach for the calculation of Δ, for large S, is given by:

D ¼
1

Q
trðPWTÞ; ð3Þ

with WT being the transpose of W, P a Q × Q matrix with elements pi,j = |i − j|, and tr the trace

operation.

3.3 Betweenness centrality

Betweenness is a centrality measure based on shortest paths, widely used in complex network

analysis. The betweenness centrality (BC) of a node nu is given by [39]:

BCnu
¼
X

ij

sðni; nu; njÞ
sðni; njÞ

; ð4Þ
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where σ(ni, nu, nj) is the number of shortest paths between nodes ni and nj that go through

node nu, σ(ni, nj) is the total number of shortest paths between ni and nj, and the sum is calcu-

lated over all pairs ni, nj of distinct nodes [39, 40]. The betweenness centrality for the entire

network, denoted by BC, is defined as the average of the local betweenness centralities over all

nodes.

3.4 Modularity

Recently, the subject of detecting the modular structure of a complex network has gained a

large amount of attention [41]. Networks with high modularity present smaller clusters of

nodes connected more to each other than to the network at large [42]. Several methodologies

have been developed for modules detection and characterization [41]. The goal of a module

identification algorithm is to find Pi that maximizes the modularity M(Pi), where Pi is the set

of nodes of module i. Given the ensemble P of all partitions, the modularity of P 2 P is com-

puted as:

MðPÞ ¼
Xm

i¼1

ei
E
�

di

2E

� �2
" #

; ð5Þ

with E being the total number of edges in the network, di the sum of all node degrees in mod-

ule i, and ei the number of edges within module i. In Eq (5), the sum is evaluated over all the m
modules in the partition P [43]. In the present work, we used the algorithm developed by [44]

for determining P and calculating M(P).

3.5 Laplacian estrada index

Let g be a network without loops and multiple edges. The Laplacian matrix of g is the matrix L
= D − A where D is a diagonal matrix with (d1, . . ., dn) on the main diagonal in which di is the

degree of the node ni. Since L is a real symmetric matrix, its eigenvalues μ1, μ2, . . ., μn are real

numbers. These are referred to as the Laplacian eigenvalues of the underlying network [45].

Let’s assume those to be labelled in a non-increasing manner μ1� μ2 . . .� μn. The Laplacian

Estrada index of a network g is defined as [46]:

LEE ¼ LEEðgÞ ¼
Xn

i¼1

emi : ð6Þ

4 Data

The database was designed jointly by researchers at Florida State University and it was

recorded from the 19 scalp (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5, T6, O1,

and O2) loci of the international 10-20 system using a Biologic Systems Brain Atlas III Plus

workstation [47]. The letters F, C, P, O, and T refer to cerebral lobes (F: frontal, C: central, P:

parietal, O: occipital, and T: temporal). Recordings, which include four groups (denoted as A,

B, C, and D), were made under two rest states: eyes open (groups A and C) by visually fixating

and eyes closed (groups B and D) using a linked-mandible reference forehead ground [47].

Groups A and B represent healthy controls and consist of 24 healthy elderly (average age 72,

range 61-83), all being negative for any neurological or psychiatric disorders. Groups C and D

consist of 24 probable AD patients (average age 69, range 53-85) diagnosed through the

National Institute of Neurological and Communicative Disordersand Stroke (NINCDS) and

the Alzheimer’s Disease and Related Disorders Association (ADRDA), and Diagnostic and
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Statistical Manual of Mental Disorders (DSM)-III-R criteria, as described previously [33, 48].

EEG segments of 8 s duration, band-limited to the range of 1-30 Hz, were recorded at a sam-

pling frequency of 128 Hz (free from eye motion and blinking, and myogenic artifacts) and

extracted from the EEG recordings. An EEG technician was with each patient during the

recordings to monitor the patients’ vigilance state. The database has been provided by Dr.

Dennis Duke of Florida State University and made freely available by Campanharo et al. [49].

A detailed description of the database can be found in [47]. Exemplary data from channel F7

are depicted in Fig 2.

5 Results

5.1 Discriminating between aging and Alzheimer’s disease

We apply the QG method to the problem of discriminating patients with AD from normal

controls. The data from channel F7 was chosen in the simulations due to its closeness to the

hippocampal region, which is is one of the first regions of the brain to be affected by AD. As all

time series have the same length (T = 1, 024), we used Q = 2(1, 024)1/3� 20 and k = 1, 2, . . .,

25 in all calculations. Thus, we mapped 2 × 24 × 25 time series into 1,200 quantile graphs (or

1,200 Ak matrices), and therefore, we obtained 1,200 Wk matrices with Q2 = 400 elements

each. Following, for each group and a given k, we computed the median over all weighed

directed adjacency matrices Ak and obtained the Markov transition matrix of medians. For all

groups, we computed CC(k), Δ(k), BC(k) Mo(k), and LEE(k) versus k using Eqs (1), (3), (4), (5)

and (6), respectively (Fig 3). Note in all cases that the curves for normal controls (A or B) and

patients with AD (C or D) form two distinct clusters with maximum separation at approxi-

mately kmax = 9 for CC(k), kmax = 10 for Δ(k), kmax = 6 for BC(k), kmax = 6 for Mo(k), and kmax

= 8 for LEE(k).

Fig 2. Exemplary EEG segments (channel F7) from each of the four groups (A, B, C, and D). From top to bottom:

health controls, eyes open (group A), health controls, eyes closed (group B), patient with AD, eyes open (group C) and

patient with AD, eyes closed (group D).

https://doi.org/10.1371/journal.pone.0231169.g002
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Fig 4 presents boxplots of CC(k), Δ(k), BC(k), Mo(k), and LEE(k), computed for twelve sam-

ple segments each, for the groups A, B, C, and D, and kmax = 9, kmax = 10, kmax = 6, kmax = 6,

and kmax = 8, respectively. We observe that, irrespective of the metric used to characterize a

given network, the QG method identified health controls with eyes open (group A) and closed

(group B), and patients with AD with eyes open (group C) and closed (group D). We per-

formed ANOVA analysis to quantify the sample mean differences found in Fig 4. Table 1

shows a 95% confidence interval and a p-value of less than 0.05 among the sample means of

the network measures CC, Δ, BC, Mo, and LEE for the groups A, B, C, and D. We also per-

formed a Receiver Operating Characteristic (ROC) analysis [50, 51] in order to quantify how

accurately the QG was able to discriminate subjects and/or patients from any two groups

under different health conditions. Table 2 shows the areas under the ROC curves (AROC) of the

Fig 3. CC(k), Δ(k), BC(k), Mo(k), and LEE(k) versus k, T = 1, 024, Q = 20, and k = 1, 2, . . ., 25 for the groups A

(patients from health controls, eyes open), B (patients from health controls, eyes closed), C (patients with AD, eyes

open), and D (patients with AD, eyes closed).

https://doi.org/10.1371/journal.pone.0231169.g003
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Fig 4. Boxplots of CC(k), Δ(k), BC(k),Mo(k), and LEE(k) for kmax = 9, kmax = 10, kmax = 6, kmax = 6, and kmax = 8,

respectively, for the groups A, B, C, and D. Boxplots from patients with different health states show different means

(placed at the center of each box), which are 0.2077, 0.2033, 0.2248, and 0.2232 for CC(k); 4.8010, 4.2190, 6.6790, and

6.6510 for Δ(k); 0.0111, 0.0129, 0.0061, and 0.0054 for BC(k); 0.0605, 0.0728, 0.0145, and 0.0072 for Mo(k); and

21.9400, 22.1000, 21.7700, and 21.7700 for LEE(k), respectively.

https://doi.org/10.1371/journal.pone.0231169.g004

Table 1. Statistical comparison (95% confidence interval, p< 0.05) among the sample means of the network measures CC, Δ, BC, Mo, and LEE for the groups A, B,

C and, D, through ANOVA.

CC Δ BC Mo LEE
CIHU [-0.0221; -0.0071] [-2.5075; -1.3472] [0.0012; 0.0078] [0.0200; 0.0751] [0.0978; 0.3967]

p − value 2.3900 x 10−8 1.9000 x 10−14 2.3360 x 10−7 5.5930 x 10−9 3.2160 x 10−7

U = {C, D}(unhealthy)

H = {A, B}(healthy)

https://doi.org/10.1371/journal.pone.0231169.t001
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network metrics CC, Δ, BC, Mo, and LEE, for patients in groups A and C, B and D, A and D

and B and C. In all cases, the QG method shows an excelent performance in discriminating

patients with different health conditions. Comparing the results across the five network met-

rics, we also observe that Δ provides the best discriminating power.

Finally, we used a support vector machine (SVM, [18, 52]), which is a supervised machine

for two-class classification problems, to individually classify healthy elderly subjects and

patients with AD. Based on the values of CC(k), Δ(k), BC(k), Mo(k), and LEE(k) of 24 healthy

subjects (groups A and B) and 24 patients with AD (groups C and D) and the k-fold cross-vali-

dation strategy (k = 10), the patients were randomly divided into ten equivalent subsamples.

Among the ten subsamples, nine-fold (90% of samples) were considered the training set and

the remaining fold (10% of samples) was considered the test set. The values of accuracy (ACC)

(100%), sensitivity (SEN) (100%), specificity (SPE) (100%), and area under the curve(AUC)

(1.0) show that the QG method is a reliable technique for differentiating patients in different

health conditions.

5.2 EEG channels influence in the AD detection

To verify the extent to which the electrode location affects the differentiation between normal

controls and patients with AD, we used the 19 EEG channels available in our analysis. Analo-

gous to previous case, since for all channels the time series have the same length (T = 1, 024),

we used Q = 2(1, 024)1/3� 20 and k = 1, 2, . . ., 25 in all calculations. Therefore, we mapped

19 × 2 × 24 × 25 time series into 22,800 quantile graphs (or 22,800 Ak matrices), and therefore,

we obtained 22,800 Wk matrices with Q2 = 400 elements each. For all groups and all channels,

we calculated CC(k), Δ(k), BC(k), Mo(k), and LEE(k) versus k. For a given network measure

and channel, kmax was chosen in such way to obtain the maximum separation between the

curves of normal controls (groups A or B) and patients with AD (groups C or D) and the aver-

age of AROC, denoted here by ÂROC, was computed through the combination between the

groups.

Fig 5 shows the location on scalp of the 19 EEG channels, colored according to the value of

ÂROC for CC, Δ, BC, Mo, and LEE, respectively. The color map indicates values close to one for

ÂROC in all cases, which means that the QG method was effective in differentiating normal con-

trols from patients with AD, regardless of the network measure and the electrode location.

Overall, Δ is the metric that displays the best results with 0:9183 � ÂROC � 1:000. This result

corroborates the knowledge that all patients under study display clear symptoms of the disease.

Regardless of the network measure, the brain damage was found mostly in the parietal lobes

and some loci in the temporal lobes (T5 and T6).

Table 2. Areas under the ROC curves (AROC) of the network measures CC, Δ, BC, Mo, and LEE, for patients in groups A and C, B and D, A and D, and B and C for

kmax = 9, 10, 6, 6 and 8, respectively.

CC Δ BC Mo LEE
AROCAC

0.8472 0.9653 0.8368 0.8785 0.8889

AROCBD
1.0000 1.0000 0.9965 1.0000 0.9583

AROCAD
0.9375 0.9653 0.9167 0.9236 0.9236

AROCBC
0.9167 1.0000 0.9792 1.0000 0.9514

https://doi.org/10.1371/journal.pone.0231169.t002
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5.3 EEG wave patterns in the AD detection

It is widely accepted that Alzheimer’s disease earliest changes are an increase in theta activity

and a decrease in beta activity, which are followed by a decrease in alpha activity [53, 54]. Delta

activity increases later during the course of the disease [53]. In particular, the increase in theta

activity is a typical finding in mild AD. The increase in delta activity is not evident until the

more advanced stages of the disease take place [16, 54–56]. We apply the QG method to check

Fig 5. Location on scalp of the 19 EEG channels, represented by circles and colored according to the value of Â ROC for

CC (A), Δ (B), BC (C), Mo (D), and LEE (E), respectively. Circles with darker colors indicate a better differentiation

between aging and AD.

https://doi.org/10.1371/journal.pone.0231169.g005
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if it can capture the influence of the EEG wave patterns in the AD development. Since the

alpha rhythm increases in amplitude at rest with eyes closed [57], groups B and D were used in

the analysis. Moreover, the data from channel P3 was chosen in the simulations due to its

closeness to the parietal region, which is one of the regions to be later affected by AD.

Wavelet digital filter [58, 59] were used to extract the four EEG frequency bands, i.e., delta

(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). Analogous to previous cases, as

all time series have the same length (T = 1, 024), we used Q = 2(1, 024)1/3� 20 and k = 1, 2, . . .,

25 in all calculations. Thus, we mapped 4 × 24 × 25 time series into 2,400 quantile graphs (or

2,400 Ak matrices), and therefore, we obtained 2,400 Wk matrices with Q2 = 400 elements

each. Following, for each group and wave and for a given k, we computed the median over all

weighed directed adjacency matrices Ak and obtained the Markov transition matrix of

medians.

For all groups and frequency bands, the mean jump length, which is the metric that best

discriminates the groups in our analysis, was computed (Fig 6). Observe that the curves for

normal controls (B) and patients with AD (D) are very similar for theta, alpha, and beta waves,

regardless the value of k. On the other hand, there was statistically significant difference (95%

confidence interval (CI) and a p-value of less than 0.05) between the sample means in groups B

and D for delta waves. (Table 3). This result confirms the prior knowledge that all patients

under study display clear symptoms of the disease and may have it in its late stage.

Fig 6. Δ(k) versus k (channel P3),T = 1, 024, Q = 20, and k = 1, 2, . . ., 25 for delta (Δdelta), theta (Δtheta), alpha (Δalpha),

and beta (Δbeta) waves and patients for the groups B and D.

https://doi.org/10.1371/journal.pone.0231169.g006

Table 3. Statistical comparison between the sample means of the network measure Δ for the groups B and D.

Waves Delta Theta Alpha Beta

CIBD [0.4701; 2.3893] [-1.6573; 1.7063] [-1.2420; 1.1546] [-0.8414; 1.1609]

p − value 0.0045 0.9767 0.9418 0.7497

https://doi.org/10.1371/journal.pone.0231169.t003
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6 Conclusion

Presently, there is no conclusive technique for the accurate diagnosis of AD [60, 61], a highly

incapacitating disease. Thus, an automatic computer implemented technique based solely on

the analysis of EEG data would potentially have a broad application. Building upon the work

described in [33], in this study we presented an application of QG method to the analysis of

EEG data. QGs map frequency, amplitude, and correlation characteristics of a time series

(such as the EEG data of an AD patient) into the topological features of a network. The five

network topological measures used here showed that the QG method is capable of discriminat-

ing health controls (with eyes open or closed) from patients with AD (with eyes open or

closed), and indicate which channels (corresponding to 19 different locations on the patients’

scalp) provide the best discriminating power. All five network topological measures were able

to generate statistically robust positive AD diagnostics, although the mean jump length pro-

vided the best results. Moreover, the combination of the network measures with a machine

learning technique achieved outstanding performance in the two-class pattern classification

problem presented here.

Spatially, the electrodes that best captured the symptoms were those nearer to the left and

temporal-parietal chains. This observation is in line with the current understanding of the AD

progression. Generally, AD mainly affects the left side of the temporal-hippocampal network,

which is responsible for verbal memory and, apparently, is a more vulnerable hemisphere [62].

Furthermore, the joint analysis of delta, theta, alpha, and beta wave results indicate that all AD

patients under study display clear symptoms of the disease and may have it in its late stage, a

diagnosis known a priori and supported by our study.

In conclusion, we can say that the set of results presented in this paper attests that the QG

method is an effective technique for the complex temporal pattern analysis like those found in

EEGs from AD patients. It is worth mentioning that the subjects under study were not submit-

ted to a definitive pathological diagnosis of AD as well as health controls. Some clinical features

were not available at the time of this investigation. Moreover, the number of subjects is quite

small limiting the extrapolations of the findings. Therefore, further research is necessary, with

a larger and richer data set, to estimate the efficacy of the QG method in providing an early

diagnostic of AD patients with only mild cognitive impairment.
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