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ABSTRACT

We analyse premixed flames inside a narrow channel.This topic matters the most

when it comes to security and propulsion. It’s study started in order to analyze

flames propagating in coal mines, contributing later on to chemical industries. In-

trinsically, the problem is two-dimensional, but applying weight mean procedure, it

is possible to describe the problem with 1D conservation equations making usage

of convective heat transfer model. Considering the gas and solid phase conjugated

problem, the system is adiabatic, then all heat transferred from the flame to the

tube walls returns to the fuel mixture. As in most cases the heat conductivity in

the solid phase is much faster than that in the gas phase, problem’s description re-

quires two main thermal zones with very different length scales. The largest scaled

one is associated to solid phase conduction, while the smallest reefers to the gas

phase. The analysis focused in showing the influence of these two thermal zones,

once their differences contribute to the understanding of the propagation of heat on

the channel wall and on the flame. Similar studies on this, however treated in porous

media, show that the flame temperature will probably rise above the adiabatic val-

ues. Solving the particular equations of mass, energy and species conservation, it is

used the method of singular perturbations (asymptotic expansion), mating outcomes

for different regions. The perturbation theory provides solutions as series expansions

having as parameter the ratio between the thermal conductivities of the solid and

gas phases. Other parameters in the mathematical formulation are oxygen and fuel’s

Lewis numbers and also the convective heat transfer parameter. For conditions in

which the convective heat transfer parameter is close to unit, the two phases are not

in thermal equilibrium, so the heat circulation between phases happens largely and

the flame temperature can reach up to twice the adiabatic temperature (theoreti-

cally estimated value). Further, a third region is analyzed along this work. It has

a heat-reactive character and its length scale is appropriate to describe the flame

inner structure. The inner region study coupled with the outer region one solves the

problem.



RESUMO

Neste trabalho estuda-se uma chama pré-misturada estacionária dentro de canais.

Este assunto é de interesse quando se trata de seguranca e propulsão. Comecou a

ser estudado com o intuito de analisar chamas em minas de carvão, contribuindo,

depois, para indústrias qúımicas. Intrinsecamente, o problema é bidimensional, mas

pode ser convertido para uma dimensão considerando o valor médio das variáveis

na direo normal às paredes. Considerou-se a condicão adiabática entre as paredes

do canal e o meio externo, logo todo calor transferido da chama para as paredes

retorna à mistura combust́ıvel. Como na maioria dos casos o transporte condutivo

de calor na fase sólida é muito mais rápido que aquele na fase gasosa, a descricão

do problema demanda a consideracão de duas regiões térmicas de escalas espaciais

caracteŕısticas muito diferentes, sendo a maior relacionada à conducão no sólido e a

menor, conducão no gás. O foco dessa análise é mostrar a influência tanto das duas

regiões térmicas, bem como da recirculacão de calor através das paredes do canal

no comportamento da chama. Trabalhos similares a este, porém em meios porosos,

mostram um aumento na temperatura da chama acima do valor adiabático. Na

solucão das equacões de conservacões da massa, energia e espécie na forma adimen-

sional, particularizadas ao problema, emprega-se o método de perturbacões singu-

lares (expansão assimptótica), acoplando-se os resultados para as diferentes regiões.

O método de perturbacões gera solucões em forma de séries tendo como parâmetro

de expansão a razão entre as condutividades térmicas das fases gasosa e sólida. Os

outros parâmetros que aparecem na formulacão matemática são os números de Lewis

para o oxigênio e combust́ıvel e o parâmetro de transferência de calor convectivo.

Nas condicões que impõem um valor ao parâmetro de transferência de calor con-

vectivo próximo de um, as duas fases não estão em equiĺıbrio térmico, por isso a

recirculacão de calor entre as fases é intensa e a temperatura da chama pode chegar

a até duas vezes a temperatura adiabática (valor estimado teoricamente). Ainda,

uma terceira região é analisada junto com as duas outras. Ela tem um caracter

térmico-reativo e sua escala espacial caracteŕıstica é tal que descreve a estrutura in-

terna da chama. Com o estudo desta região e o acoplamento com a região externa,

o problema fica resolvido.
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1 INTRODUCTION

Propagation of premixed flame in tube or channel has been studied since the end

of XIX century. The main interest is on safety issues. Originally, the safety on coal

mines demanded analyses of flame extinction condition to determine the quenching

distance. Later, the chemical industries which work with reacting flows asked in-

formation to avoid flame propagation inside the tube. Recently with the option of

applying detonation for air plain propulsion, studies on flame propagation are also

focused on the transition deflagration to detonation. It is worth to note that, the

detonation condition depends on the initiation of the flame propagation on tubes or

channels.

In the current problem flame propagation happens in a channel. The flow inside

the channel can be devided, in a first view, in two according its thermal regime.

Upstream the flame, the flow is at low temperature and close to the flame, the tem-

perature is higher than that of the wall temperature. However, far from the flame

the wall temperature is higher than that of the flow. Downstream the flame, the

flow and the channel wall is at thermal equilibrium. The fluid mechanics problem

in the gas phase and thermal problem in both phases are described by the mass,

momentum, species and energy conservation equations. In this view, the flame is a

infinitely thin surface with infinite chemical reaction rate, then the flame tempera-

ture is described by the velocity of the flow.

In general, the thermal conductivity of the solid phase is much larger than that

of the gas phase. By this reason, the upstream of the flame can be divided in two

regions. The larger one is that controlled by the thermal problem in the solid phase

and the smaller one is that controlled by the thermal problem in the gas phase. The

larger region is denoted by outer zone and the smaller region, adjacent to the flame,

is denoted by inner zone.
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2 LENGTH-SCALES AND DESCRIPTION OF

THE PROBLEM

Heat is transfered from the flame to a thin layer of unburnt gas upstream it, to

the channel walls and then back to incoming fresh gas.This heat recirculation al-

lows the flame to reach higher temperatures than those in freely propagating flames.

It is remarkable the difference between gas and solid phases properties. Solid

thermal conductivity can be several times larger than that for gas-phase; for exam-

ple, we have the combination steel (Ks = 52W/mK)-air(Kg = 0.023W/mK). This

condition results in discrepant differences between solid and gas temperatures near

the flame. Also, because of this property, Γ can be defined in advance as he ratio of

the solid and the gas-phase conductivities (Γ ≡ Ks/Kg).

Figure 1: Problem schema and temperatures and fuel mass fraction distributions
for different length-scales.

In a first sight, channel walls heat the unburnt gas in a large region upstream the
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flame. It is called first preheating region. In this large reagion, the two dominant

processes are the heat transfer by the solid walls and the heat exchange between

the solid and gas phase. Coming close to the flame into the small region, the heat

transfer by the gas phase becomes of the same order of magnitude comparing to the

two mentioned processes. Hence, it is importante to determine the local tempera-

tures. As already mentioned, downstream the flame, the solid and gas phase are in

thermal equilibrium.

The characteristic length scale(solid) of the region controled by the heat transfer

by the solid walls and the heat exchange between the solid and gas phase is given

by the ratio between solid-phase conductive heat transfer and gas-phase heat con-

vection, ls = Ks/ρ0u0cp. In addition, the characteristic length scale (gas) of the

region controled by the conductive heat transfer by the gas phase and gas-phase

heat convection, lg = Kg/ρ0u0cp.

It is important to mention that the difference between ls and lg is the ratio be-

tween the solid and gas thermal conductivity, Γ = Ks/Kg.

The present problem consists in a stationary flame, for this, sF = u0, the flame

and incoming gas velocities should be equal in magnitude, but different signs. Up-

stream from the the flame, solid and gas temperatures, such as fuel mass fraction

are equal to their incoming values (T0 e YF0). Unlikely, closer to the flame, both,

unburnt gas and solid walls, reach adiabatic flame temperature T1, while fuel mass

fraction, naturally, reaches zero, for lean mixtures. At the flame sheet, gas tem-

perature gets to the superadibatic peak, Tsup, but quickly returns to its adiabatic

temperature T1.

In this work,the transport and thermodynamic properties are constant, such as

pressure inside the channel. We are considering a reacting lean mixture, formed by

oxidant initial mass fraction YO0 and fuel initial mass fraction YF0. The flow char-

acteristics are ρ0 as the unburnt gas-phase density and u0 as the income velocity.

From global energy conservation, combustion products have temperature T1 =

T0 + YF0Q/Cp, where Q is the heat released in the flame and Cp is the gas-phase

heat capacity.
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3 MATHEMATICAL MODEL

First of all, are presented the conservation equations and then they will be non-

dimensionalized. Due to the large discrepance on the characteristic length scales to

the both thermal problems uptream the flame, it is possible to employ the asymp-

totic expansion method to find the problem solution.

According to characteristic of the flow inside channel or tube, the problem is

described by a two dimensional conservation equations system.

Combustion is assumed to occur following a global one-step mechanism, repre-

sented in mass unit as

F + sO2 → (1 + s)P,

in which s is the ratio between mass of oxygen and mass of fuel in a stoichiometric

reaction.

Therefore, the steady-state conservation equations are:

Mass Conservation:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (1)

Conservation of Momentum:

∂

∂xi
[ρui(u, v)] = −

(
∂

∂x
p,

∂

∂y
p

)
+ µ

[
∂2

∂x2
+

∂2

∂y2

]
(u, v) + ρ(gx, gy) (2)

Energy Conservation:

∂

∂xi
[ρ(u, v)e] =

ρ(u, v)(gx, gy)−
(
∂

∂x
pu,

∂

∂y
pv

)
+ τ

∂

∂xi
(u, v) +K

[
∂2T

∂x2
+
∂2T

∂y2

]
+Qw (3)

As we are looking to a horizontal tube,gravity variations do not apply. Also, the

tube is opened on both sides, so the pressure term should be omitted. With these
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considerations, we have(in 2 D):

∂

∂x
(ρuCpT ) +

∂

∂y
(ρvCpT ) = K

[
∂2T

∂x2
+
∂2T

∂y2

]
+Qw (4)

Species Conservation:

∂

∂x
(ρuYi) +

∂

∂y
(ρvYi) = ∇(ρD∇Yi)− siw (5)

Now, applying the weight average on these laws,integrating them in y, they will

return to their 1D condition:

Mass:

∫
∂

∂x
(ρ~u) +

∂

∂y
(ρ~v) dy = 0

so, we have: ∫ L

0

ρudy = C = ṁ = ρ0u0 (6)

Energy:

∫
∂

∂x
(ρuCpT ) +

∂

∂y
(ρvCpT )dy =

∫ L

0

∂

∂x

(
K
∂T

∂x

)
+

∂

∂y

(
K
∂T

∂y

)
dy +

∫
Qwdy

results in:

Cpṁ
dT

dx
=

d

dx

(
K
dT

dx

)
+ h(Tp − T ) +QẆ (7)

where

T = Tg∫ L

0

wdy = Ẇ ≡ Aρ2YoYF e
−E/RT

K
dT

dy
|L0 = h(Tp − Tg) = h(Tp − T )

If ∫
ρuTdy =

∫
ρudy

∫
Tdy
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is verified and choosing T =
∫ L
0
Tdy .

Energy (Channel wall - solid):

∫ L+h

L

∂

∂x
(ρuCpT ) +

∂

∂y
(ρvCpT )dy =∫ L+h

L

∂

∂x

(
K
∂T

∂x

)
+

∂

∂y

(
K
∂T

∂y

)
dy +

∫ L+h

L

Qwdy

as the solid do not move, it doesn’t have the speed term (u,v), also chemical reactions

are not shown in the solid equations. That gives us:

∂

∂x

(
Kg

∂

∂x
T̄p

)
− h(T̄p − T̄ ) = 0 (8)

Species:

∫ L

0

∂

∂x
(ρuYi) +

∂

∂y
(ρvYi)dy =

∫ L

0

∇(ρD∇Yi)− siwdy

in which i index is the indication for Oxidant or Fuel.

Since there is nothing flowing on vertical direction and the model is symmetric,

velocity and mass fraction derivatives are null.

ṁ
d

dx
Ȳi =

d

dx

(
D
dȲi
dx

)
− siẆ (9)

where, Ȳi =
∫ L
0
Yidy.

3.1 Non-dimensionalization

Definining the non-dimensional variables

yF ≡
ȲF
YF0

, yO ≡
ȲO
YO0

, θ ≡ Cp(T − T0)
YF0Q

=
T − T0
T1 − T0
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Then, Eq. (7) becomes:

dθg
dx

=
1

Γ

d2θg
dx2

+ ΓDay0yFe

[
− β(1−θg)

1−α̂(1−θg)

]
+N(θs − θg) (10)

Equation (8) becomes:
d2θs
dx2
−N(θs − θg) = 0 (11)

Equation (9) for i = F , F stands for fuel, becomes

d

dx
yF =

1

LeFΓ

d2

dx2
yF − ΓDayOyFe

[
− β(1−θg)

1−α̂(1−θg)

]
(12)

in which LeF = Kg/ρCpDF .

Rearranging Eq. (9) for i = O, O stands for oxidant,

d

dx
yO =

1

LeOΓ

d2

dx2
yO − SΓDayOyFe

[
− β(1−θg)

1−α̂(1−θg)

]
(13)

in which S ≡ YF0s/YO0 and LeO = Kg/ρCpDO.

The parameters used were defined by:

Γ ≡ Ks

Kg

, α̂ ≡ (T1 − T0)
T1

, β ≡ E(T1 − T0)
RT1

2 ,

Da ≡ Aρ2YO0e
( − β/α̂)

ρ20u
2
0Cp

, N ≡ Ksh

(ρ0u0Cp)2
.

Dimensionless parameter α̂ measures heat release, β is the Zel’dovich number,

LeF and LeO are Lewis numbers, Da is the Damkhöler number and N measures

heat transfered between phases.

In this problem N � 1, proposing that interphase heat transfer happens widely.

3.2 Outer zone resolution: solution of the order of unity

In the outer zone, reaction is not considered, once it is defined before the flame

sheet. Hence, Eqs. (10) to (13) take the form:

dθg
dx

=
1

Γ

d2θg
dx2

+N(θs − θg) (14)
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0 =
d2θs
dx2
−N(θs − θg) (15)

d

dx
yi =

1

LeiΓ

d2

dx2
yi (16)

where i stands for fuel F and oxygen O.

Then, we can start solving the problem. The first condition to the current

problem is N � 1, as the other terms in the equation are of the order of unity, in

first approximation those unitary terms are neglected which leads to θg = θs. Then,

combining Eqs. (14) and (15) and using θ = θg = θs,

θ =
1

Γ

dθ

dx
+
dθ

dx
+ C (17)

Using the boundary condition θ = 0, for x→ −∞, leads to C = 0 in the region

x < xf . Using the boundary condition θ = 1, for x → ∞, leads to C = 1 in the

region x > xf .

It is searched solution for θ in the form of series,

θ = θ0 + Γ−1θ1 + Γ−2θ3 + o(Γ−2)

Taking θ into Eq. (17) and separating the terms of power of Γ−1, the leading order

problem is
dθ0
dx
− θ0 = −C (18)

Since the solution of the homogeneous equation is e(x−xf ) and the temperature in

the region down stream the flame is limited, the solution of (18) for x > xf is θ = 1,

then,

θ0 =

{
e(x−xf ), for x < xf

1, for x > xf
(19)

The first order problem is

dθ1
dx
− θ1 = −dθ0

dx
(20)

and the solutions are

θ1 =

{
−(x− xf )e(x−xf ), for x < xf

0, for x > xf
(21)

Furthermore, for species conservation equations (16), the leading order term
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gives us:
d

dx
yi0 = 0

Then, the mass fraction upstream the flame is yi0 = C1 = 1 because of yi0 = 1 as x→
−∞. Consequentely, all solutions for upper order terms are zero, yi1 = yi2 = · · · = 0.

3.3 First inner zone resolution: solution of the order of

unity

To describe the thermal problem in the gas phase characteristic length scale, con-

troled by the conductive heat transfer by the gas phase and gas-phase heat convec-

tion, it is necessary to perform the following spatial transformation x̂ = (x− xf )Γ.

The same symbol (̂ ) is used in the other variables to identify them as those describ-

ing this region.

Γ
dθ̂g
dx̂

= Γ
d2θ̂g
dx̂2

+ ΓN0(θ̂s − θ̂g) (22)

0 = Γ2d
2θ̂s
dx̂2
− ΓN0(θ̂s − θ̂g) (23)

Γ
dyi
dx̂

=
Γ

Lei

d2yi
dx̂

(24)

Inside the first inner zone, boundary conditions are determined when the outer

zone solution is matched with the inner zone problem of the order of unity. Per-

forming the change of variables x̂ = (x− xf)Γ, the boundary conditions are:

dθ̂g0
dx̂

=
dθ̂s0
dx̂

= 0,

dθ̂g1
dx̂

=
dθ̂s1
dx̂

= 1,

ŷF = ŷO = 1, for x̂→ −∞

(25)

dθ̂g1
dx̂

=
dθ̂s1
dx̂

= 0,

ŷF = 0 and ŷO = 1− φ, for x̂→∞,
(26)

where φ is the equivalence ratio (≡ sYF/yO).

For this problem, we will try to find a solution as series:
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θ̂g = θ̂g0 + Γ−1θ̂g1 + Γ−2θ̂g2 + . . .

yi = yi0 + Γ−1yi1 + Γ−2yi2 + . . .

θ̂S = 1− Γ−1θ̂s1 + Γ−2θ̂s2 + . . .

(27)

Substitute the solution Eq. (27) into Eq. (22) and defining ε = 1/Γ, we get:

d

dx̂
(θ̂g0+εθ̂g1+ε2θ̂g2) =

d2

dx̂2
(θ̂g0+εθ̂g1+ε2θ̂g2)+N0(1−εθ̂s1+ε2θ̂s2−(θ̂g0+εθ̂g1+ε2θ̂g2))

(28)

Making Eq.(28) ≡ F (θ̂; ε) and taking the limit ε → 0, we shall have for the

leading order:

limε→0 F (θ̂)⇒ θ̂′′g0 − θ̂′g0 −N0(θ̂g0 − 1) = 0

For which the solution is:

θ̂g0 = C1e
1+
√

1+4N0x̂

2 + C2e
1−
√

1+4N0x̂

2 + 1

In order to find C1 and C2, the problem should be separated in two situations x̂ < 0

and x̂ > 0. By using the boundary conditions, θ̂g0 as x̂ → −∞ should match the

profile of θg0 for x = xf . Then, we have for the order of unity solution:{
θ̂g0 = 1− (1− θ̂g0f )er1x̂, for x̂ < 0

θ̂g0 = 1− (1− θ̂g0f )er2x̂, for x̂ > 0
(29)

where θ̂g0f is the gas temperature inside the flame.

Applying the same changes of variables as previously, Eq. (23) takes the form

0 = Γ2d
2θ̂s
dx̂2
−N0Γ(θ̂s − θ̂g) (30)

θ̂s and θ̂g were replaced for the series solution, as happened in Eq.(28). At this point,

the equation for θ̂s should match the solution for θs, for x̂→ −∞. By doing this, it

is assured that the heat flux will be continuos in the solid phase, so dθ̂s/dx̂ should

be equal to Γ−1dθs/dx at the flame .This process resulted in a equation which we

called S(θ̂). Over again, limit will be used to find the order of unity solution.

limε→0 S(θ̂)⇒ 0 = θ̂′′s1 −N0(1− θ̂g0)
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θ̂′′s1 −N0(1− θ̂g0f )er1x̂ = 0, for x̂ < 0

θ̂′′s1 −N0(1− θ̂g0f )er2x̂ = 0, for x̂ > 0
(31)

where

r1 ≡
1 +
√

1 + 4N0

2

r2 ≡
1−
√

1 + 4N0

2

Thus, using boundary conditions described in Eqs. (25) e (26), integrating Eq. (31)

and pushing x̂ to extremes −∞ and ∞, we get:
θ̂′s1 = 1 +

N0(1− θ̂g0f )er1x̂

r1
, for x̂ < 0

θ̂′s1 =
N0(1− θ̂g0f )er2x̂

r2
, for x̂ > 0

(32)

Integrating again, we find the solution for θ̂s1.
θ̂s1 = x̂+

N0(1− θ̂g0f )er1x̂

r21
+ C3, for x̂ < 0

θ̂s1 =
N0(1− θ̂g0f )er2x̂

r22
, for x̂ > 0

(33)

Finally, the values found for the position x̂ = 0 must converge for solutions coming

up and downstream the flame.

If we check θ̂s1 derivatives for the inner zone, we get:
θ̂′s1 = 1 +

N0(1− θ̂g0f )
r1

, for x̂→ 0−

θ̂′s1 =
N0(1− θ̂g0f )

r2
, for x̂→ 0+

∴ 1 +
N0(1− θ̂g0f )

r1
=
N0(1− θ̂g0f )

r2

Which, solving, gives us:

(θ̂g0f ) = 1− r1r2
N0(r1 − r2)

= 1 +
1√

1 + 4N0

(34)

It proves that the temperature at the flame is higher than 1 (adiabatic temperature).
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In fact, if N0 approximates to 0, temperature θ̂g0f could reach 2 times the adiabatic

temperature.

Checking θ̂s1:

θ̂s1 =
N0(1− θ̂g0f )

r21
+ C3, for x̂→ 0−

θ̂s1 =
N0(1− θ̂g0f )

r22
, for x̂→ 0+

∴
N0(1− θ̂g0f )

r21
+ C3 =

N0(1− θ̂g0f )
r22

C3 =

√
1 + 4N0(1− θ̂g0f )

N0

= − 1

N0

For species conservation, substituting series solution, Eq. (24), into Eq. (23), defin-

ing ε = 1/Γ and making ε→ 0, as it was done for Eq. (27), one may find:

ŷi0
′′ − Leiŷi0

′ = 0.

For which the solution is:

ŷF = C4e
LeF (x̂−x̂f ) + C5

ŷO = C6e
LeO(x̂−x̂f ) + C5

Using boundary conditions described in Eqs. (25) and (26), we shall have

ŷi0 = C5 = 1, for x̂→ −∞

ŷF = C4 = −1,

ŷO = C6 = −φ, for x̂→ x̂f

The solutions here described are for N = N0Γ. For this order, flame velocities are

smaller and heat transfer between the phases become relevant.
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4 CONCLUSIONS

Although this project has not been finished yet, some results were already presented.

The order of unity solution was given considering a solid-phase diffusion length-scale

(ls), in which the solid-phase heat conduction and gas-phase convection dominated

the problem. Also, the interphase heat transfer was considered highly substantial,

generating high temperatures, possibly, for low flame speed. Inside the inner zone,

where gas-phase heat convection and conduction are of the same order, we used the

gas-lenght scale lg. By using the results found for the outer zone, when they approach

zero (equivalent to inner zone region), and going on the opposite way (from inner

to outer zone), we were able to find an expression for the gas temperature inside

the flame. Finally, it was concluded that this temperature peak is higher than

the adiabatic temperature. If the interphase heat parameter (N0) approaches zero,

inside the flame, the gas temperature can reach up to two unities.
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