

PROPAGAÇÃO DA ATITUDE DE SATÉLITES ARTIFICIAIS ESTABILIZADOS POR ROTAÇÃO COM O TORQUE AERODINÂMICO

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

José Ezequiel Chiaradia (UNESP, Bolsista PIBIC/CNPq) Email: joseezequielchiaradia@hotmail.com

> Hélio Koiti Kuga (DEM/INPE, Orientador) E-mail: hkk@dem.inpe.br

Prof^a. Dra. Maria Cecília F. P. S. Zanardi (DMA/UNESP, Co-orientadora) E-mail: cecilia@feg.unesp.br

Julho 2010

AGRADECIMENTOS

Ao CONSELHO NACIONAL DE PESQUISA E DESENVOLVIMENTO – CNPq pelo apoio financeiro recebido através da bolsa de iniciação científica junto ao programa PIBIC do INPE.

RESUMO

Este trabalho tem por objetivo determinar uma solução analítica para as equações do movimento de satélites estabilizados por rotação incluindo as parcelas devido ao Torque Aerodinâmico. Aplicações serão feitas para os Satélites Brasileiros de Coleta de Dados, o SCD1 e o SCD2. O Torque Aerodinâmico depende de vários parâmetros tais como, o coeficiente de arrasto, a área da superfície transversal do satélite, o comprimento característico e a densidade atmosférica. Duas soluções são apresentadas, uma delas considerando um valor médio da densidade atmosférica para as altitudes do SCD1 e SCD2. Na segunda solução é introduzido o modelo TD-88 para a densidade atmosférica. Os resultados da abordagem realizada apontam que o torque aerodinâmico tem grande influência no módulo da velocidade de rotação e na ascensão reta do eixo de rotação, e que esta influência aumenta quando a margem estática se distancia do eixo de rotação do satélite.

ATTITUDE PROPAGATION OF ARTIFICIAL SATELLITE SPIN-STABILIZED WITH AERODINAMIC TORQUE

ABSTRACT

This work aims to determine an analytical solution for the equations of motion of spin-stabilized satellites including the parcels due to Aerodynamic Torque. Applications will be made to the Brazilian satellite data collection, the SCD1 and SCD2. The Aerodynamic Torque depends on various parameters, such as the drag coefficient, the transverse surface area of the satellite, the characteristic length and density of the atmosphere. Two solutions are given, one assuming an average value of atmospheric density to altitudes of SCD1 and SCD2. In the second solution is used into the model TD-88 for the atmospheric density. The results show that the influence of the aerodynamic torque is bigger in the spin velocity and the right ascension and that influence increase with increase of the distance of the spin axes.

SUMÁRIO

Lista de Figuras	6
Lista de Símbolos	7
Lista de Siglas e Abreviaturas	8
1 Introdução	9
2 Fundamentação Teórica	11
2.1 Modelamento do Torque Aerodinâmico	11
2.2 Sistemas de Coordenadas	11
2.3 As Componentes da Força de Arrasto	14
2.4 Componentes do Torque Aerodinâmico	16
3 Primeira Solução	19
4 Solução Analítica com TD-88	21
5 Simulações Numéricas	24
5.1 Simulações com o SCD1	24
5.2 Simulações com o SCD2	29
6 Conclusões	34
Referências Bibliográficas	36

LISTA DE FIGURAS

Figura 1 – Definição do ângulo γ_s	15
Figura 2 – Ascensão reta com me = 0,5	25
Figura 3 – Declinação do eixo de rotação com me = 0,5 para o SCD1	25
Figura 4 – Velocidade de rotação com me = 0,5 para o SCD1	26
Figura 5 – Ascensão reta com a margem estática não coincidente com o eixo de rotação para o SCD1	28
Figura 6 – Declinação do eixo de rotação com margem estática não coincidente com o eixo	29
de rotação para o SCD1	
Figura 7- Velocidade de rotação com a margem estática não coincidente com o eixo de	29
rotação para o SCD1	
Figura 8 – Ascensão reta com me = 0,5 para o SCD2	30
Figura 9 - Declinação do eixo de rotação com me = 0,5 para o SCD2	31
Figura 10 - Velocidade de rotação com me = 0,5 para o SCD2	31
Figura 11 – Ascensão reta com a margem estática não coincidente com o eixo de rotação para o SCD2	33
Figura 12 – Declinação do eixo de rotação com a margem estática não coincidente com o eixo de rotação para o SCD2	33
Figura 13 – Velocidade de rotação com a margem estática não coincidente com o eixo de rotação para o SCD2	34

LISTA DE SÍMBOLOS

А	- Matriz de Rotação
α	- Ascensão Reta
C _D	- Coeficiente de Arrasto atmosférico
СМ	- Centro de Massa
СР	- Centro de Pressão
d	- dias contados em um ano
\vec{D}	- vetor Força de Arrasto
δ	 Declinação do Eixo de Rotação
e	- Excentricidade
f_x, f_0, k_0	- constantes relacionadas ao fluxo solar
F_b	- Fluxo Solar Médio
F_x	- Fluxo Solar
g _n	- termos que relacionam a densidade com a latitude
	- Inclinação Orbital
$I_x, I_y \in I_z$	- momentos principais de inercia do satelite
I, J, K	- versores do sistema Inercial ou Equatorial
$\hat{i}_o,\hat{j}_o,\hat{k}_o$	- versores do Sistema Orbital
\hat{i},\hat{j},\hat{k}	- versores no Sistema do Satélite
K_p	- Índice Geométrico
me	- Margem Estática
mē	- vetor Margem Estática
me_x , me_y , me_z	- componentes da margem estática
N_A	- Módulo do Torque Aerodinâmico
\vec{N}_A	- vetor Torque Aerodinâmico
$ ho_s$	- Densidade Atmosférica
<i>r</i> '	- distância geocêntrica do satélite
R ₁	- Matriz de Rotação 1
R_2	- Matriz de Rotação 2
\mathbf{R}_{1}^{t}	- Transposta da Matriz de Rotação 1
S	- Área de secção transversal
t	- hora local
V	- Anomalia verdadeira
V	 Módulo da Velocidade do Satélite
\vec{v}	 vetor Velocidade do Satélite
W	- Velocidade de Rotação
γ_s	- ângulo entre os vetores velocidade e posição do satélite
λ	- Comprimento Característico
arphi	- Latitude Geográfica Local

LISTA DE SIGLAS E ABREVIATURAS

UNESP	-	Universidade Estadual Paulista
INPE	-	Instituto Nacional de Pesquisas Espaciais
SCD1	-	Satélite Brasileiro de Coleta de Dados nº 1
SCD2	-	Satélite Brasileiro de Coleta de Dados nº 2

1 INTRODUÇÃO

O objetivo deste trabalho é determinar soluções analíticas para as equações do movimento de satélites estabilizados por rotação, incluindo parcelas do torque aerodinâmico. Implementar numericamente estas soluções e comparar os resultados com os dados reais dos Satélites Brasileiros de Coleta de Dados – SCD1 e SCD2.

As equações do movimento de satélites estabilizados por rotação são descritas em termos do módulo da velocidade de rotação (W), da ascensão reta (α) e da declinação do eixo de rotação do satélite (δ). Estas equações dependem das componentes dos torques externos atuantes no satélite, expressas em um sistema fixo no satélite, no qual o eixo z coincide com o eixo de rotação do satélite. Neste projeto são incluídas as parcelas referentes ao torque aerodinâmico.

As forças aerodinâmicas são criadas pela colisão das moléculas de ar rarefeito da alta atmosfera com a superfície do satélite. A resultante dessas forças atua em um ponto chamado centro de pressão (CP). A distância entre CP e o centro de massa (CM) do satélite é chamada de margem estática (*me*). Quando a margem estática não é nula, um torque, o Torque Aerodinâmico (TA), pode ser produzido pela Força Aerodinâmica. Este torque é predominante em satélites de baixa altitude (com perigeu menor que quatrocentos quilômetros), uma vez que depende da quantidade de moléculas de ar na atmosfera da Terra. A magnitude deste torque está diretamente relacionada com a altitude em que o satélite se encontra em relação à superfície terrestre, dependendo, entre outros parâmetros, da viscosidade, temperatura, densidade e velocidade do som em cada ponto da atmosfera.

A atuação da Força Aerodinâmica diminui a velocidade do satélite no perigeu, causando, com o tempo, a diminuição do semi-eixo orbital. Isso acarreta a circularização da órbita, diminuindo a vida útil do satélite.

A magnitude o torque aerodinâmico pode ser expressa pelo seguinte modelo (ZANARDI, REAL, 2003; ZANARDI, 2005):

$$N_A = \frac{1}{2} \rho v^2 S C_D \lambda \tag{1}$$

em que ρ é a densidade local, v é a velocidade do satélite em relação à atmosfera, S é a área da seção transversal de referência, C_D é o coeficiente de arrasto e λ é um comprimento característico. Todos os parâmetros envolvidos com o torque aerodinâmico são muito complexos e algumas simplificações são assumidas neste trabalho para estimar a magnitude deste torque. O comprimento característico (λ) está relacionado com a margem estática. Para aplicações com satélites cilíndricos este comprimento pode ser associado ao raio da base ou com a altura do satélite. A velocidade (v) do satélite em relação à atmosfera é assumida como sendo a velocidade orbital, desprezando a rotação da atmosfera da Terra. A área de seção transversal depende da forma do satélite e da direção de incidência das moléculas de ar. Aqui é assumida uma seção constante e relacionada com a área da base do satélite ou com sua área lateral. A determinação do coeficiente de arrasto (C_D) em escoamento de moléculas livres é complexa, dependendo do mecanismo da reflexão das moléculas. Em geral, o coeficiente de arrasto pode assumir valores entre 1,0 e 2,5, pois as aplicações a serem realizadas consideram um satélite de forma aproximadamente cilíndrica e com altitude da ordem de 700 km.

A variação da magnitude do torque aerodinâmico com a altitude está relacionada com a densidade atmosférica em cada ponto da órbita do satélite. A magnitude do TA é aqui avaliada e suas componentes incluídas nas equações do movimento rotacional de satélites estabilizados por rotação.

2 FUNDAMENTAÇÃO TEÓRICA

2.1. Modelamento do Torque Aerodinâmico

O modelo matemático para o torque aerodinâmico utilizado aqui foi baseado em Sene (2007) e Zanardi (2005). No modelo de TA aqui desenvolvido se considera apenas a força de arrasto (\vec{D}), com mesma direção e sentido contrário à velocidade (\vec{v}) do satélite. O cálculo do coeficiente de arrasto é muito complexo, tendo sido adotado C_D = 2,2, valor adequado para satélites artificiais (Wertz, 1978). Para a velocidade em relação ao meio (\vec{v}) é assumido igual a velocidade orbital, assumindo uma atmosfera não girante. Para a densidade atmosférica (ρ_s), é utilizado na primeira solução um valor médio da densidade atmosférica de 10⁻¹⁴kg/m³ referente as altitudes se encontram os satélites SCD1 e SCD2, e na segunda solução é introduzido o modelo de densidade atmosférica TD-88 (Zanardi, 2005). Nas simulações numéricas são considerados varias posições e valores para a margem estática.

Primeiramente são determinadas as componentes do TA no sistema do satélite considerando o TA resultante apenas de \vec{D} . O TA é expresso pelo produto vetorial:

$$\vec{N}_{A} = \vec{m}e \times \vec{D} \tag{1}$$

A margem estática é dada no sistema do satélite, sendo suas componentes me_x e me_y definidas em função do raio da base do satélite e a componente me_z do comprimento do satélite.

2.2. Sistemas de Coordenadas

A força de arrasto \vec{D} sobre o satélite tem a mesma direção da velocidade orbital, e é expressa no sistema orbital $(\hat{i}_o, \hat{j}_o, \hat{k}_o)$, dessa forma são utilizadas matrizes de rotação para obter as componentes da força de arrasto no sistema do satélite $(\hat{i}, \hat{j}, \hat{k})$. A relação entre o Sistema Equatorial e o Sistema do Satélite é dada pela equação matricial em (2) a seguir.

$$\begin{pmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & sen\delta & \cos\delta \\ 0 & -\cos\delta & sen\delta \end{pmatrix} \begin{pmatrix} -sen\alpha & \cos\alpha & 0 \\ -\cos\alpha & -sen\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{I} \\ \hat{J} \\ \hat{K} \end{pmatrix}$$
(2)

De onde obtemos a matriz de rotação R_1 , dada por (3), que é o produto das duas matrizes centrais da equação matricial (2).

$$R_{I} = \begin{pmatrix} -sen\alpha & \cos\alpha & 0 \\ -\cos\alpha sen\delta & -sen\alpha sen\delta & \cos\delta \\ \cos\alpha \cos\delta & sen\alpha \cos\delta & sen\delta \end{pmatrix}$$
(3)

Para relacionar o Sistema Equatorial $(\hat{I}, \hat{J}, \hat{K})$ com o Sistema Orbital são necessárias três rotações representadas pelos ângulos: Ω (longitude do nodo ascendente), I (inclinação orbital) e $(\omega + v)$ (argumento do perigeu mais anomalia verdadeira). Realizando as três rotações necessárias encontramos a relação expressa em (4).

•

$$\begin{pmatrix} \hat{i}_{o} \\ \hat{j}_{o} \\ \hat{k}_{o} \end{pmatrix} = \begin{pmatrix} \cos(\omega+\nu) & sen(\omega+\nu) & 0 \\ -sen(\omega+\nu) & \cos(\omega+\nu) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos I & senI \\ 0 & -senI & \cos I \end{pmatrix} \begin{pmatrix} \cos\Omega & sen\Omega & 0 \\ -sen\Omega & \cos\Omega & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{I} \\ \hat{J} \\ \hat{K} \end{pmatrix} (4)$$

desenvolvendo o produto das matrizes centrais em (4) obtemos a matriz R_2 dada por (5), produto das três matrizes da equação matricial.

$$\mathbf{R}_{2} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
(5)

$$r_{11} = \cos\Omega \cos(\omega + v) - sen\Omega sen(\omega + v) \cos I$$

$$r_{12} = sen\Omega \cos(\omega + v) + \cos\Omega sen(\omega + v) \cos I$$

$$r_{13} = sen(\omega + v) senI$$

$$r_{21} = -\cos\Omega sen(\omega + v) - sen\Omega \cos(\omega + v) \cos I$$

$$r_{22} = -sen\Omega sen(\omega + v) + \cos\Omega \cos(\omega + v) \cos I$$

$$r_{23} = \cos(\omega + v) senI$$

$$r_{31} = sen\Omega senI$$

$$r_{32} = -\cos\Omega senI$$

$$r_{33} = \cos I$$

(6)

Temos, então, as seguintes ralações matriciais entre o Sistema Equatorial, Sistema do Satélite e Sistema Orbital expressas de (7) a (9):

$$\begin{pmatrix} \hat{i}_{o} \\ \hat{j}_{o} \\ \hat{k}_{o} \end{pmatrix} = \mathbf{R}_{2} \begin{pmatrix} \hat{I} \\ \hat{J} \\ \hat{K} \end{pmatrix}$$

$$\begin{pmatrix} \hat{i} \\ \hat{k} \end{pmatrix} \qquad \begin{pmatrix} \hat{I} \\ \hat{j} \end{pmatrix}$$

$$(7)$$

$$\begin{pmatrix} \hat{j} \\ \hat{k} \end{pmatrix} = \mathbf{R}_1 \begin{pmatrix} \hat{J} \\ \hat{K} \end{pmatrix}$$
(8)

$$\begin{pmatrix} \hat{I} \\ \hat{J} \\ \hat{K} \end{pmatrix} = \mathbf{R}^{\mathsf{t}}_{1} \begin{pmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{pmatrix}$$
 (9)

Substituindo (9) em (7), temos a relação entre o Sistema Orbital e Sistema do Satélite dado por (10).

$$\begin{pmatrix} \hat{i}_{o} \\ \hat{j}_{o} \\ \hat{k}_{o} \end{pmatrix} = \mathbf{R}_{2} \mathbf{R}_{1}^{t} \begin{pmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{pmatrix}$$
(10)

Chamando a matriz $R_2 R_1^t$ de A, e a_{ij} os termos desta matriz, teremos a matriz expressa em (11) e seus elementos dados por (12) a (17).

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
(11)

$$a_{11} = [(\cos(\omega + \nu)\cos(\Omega) - \sin(\omega + \nu)\cos(I)\sin(\Omega))(-\sin(\alpha)) + (\cos(\omega + \nu)\sin(\Omega) + \sin(\omega + \nu)\cos(I)\cos(\Omega))\cos\alpha]$$
(12)

$$a_{12} = [(\cos(\omega + v)\cos(\Omega) - \sin(\omega + v)\cos(I)\sin(\Omega))(-\sin(\delta)\cos(\alpha)) + (\cos(\omega + v)\sin(\Omega) + \sin(\omega + v)\cos(I)\cos(\Omega)(-\sin(\delta)\sin(\alpha)) + (13) + (\sin(\omega + v)\sin(I)\sin(\delta)]$$

$$a_{13} = [(\cos(\omega + v)\cos(\Omega) - \sin(\omega + v)\cos(I)\sin(\Omega))\cos(\delta)\cos(\alpha) + + (\cos(\omega + v)\sin(\Omega) + \sin(\omega + v)\cos(I)\cos(\Omega))\cos(\delta)\sin(\alpha) + + (-\sin(\omega + v)\sin(I))\sin(\delta)]$$
(14)

$$a_{21} = [(-\operatorname{sen}(\omega + v)\cos(\Omega) - \cos(\omega + v)\cos(I)\operatorname{sen}(\Omega))(-\operatorname{sen}(\alpha)) + (-\operatorname{sen}(\omega + v)\operatorname{sen}(\Omega) + \cos(\omega + v)\cos(I)\cos(\Omega))\cos(\alpha)]$$
(15)

$$a_{22} = [(-\operatorname{sen}(\omega + v)\cos(\Omega) - \cos(\omega + v)\cos(I)\operatorname{sen}(\Omega))(-\operatorname{sen}(\delta)\cos(\alpha)) + (-\operatorname{sen}(\omega + v)\operatorname{sen}(\Omega) + \cos(\omega + v)\cos(I)\cos(\Omega))(-\operatorname{sen}(\delta)\operatorname{sen}(\alpha)) + (16) + (\cos(\omega + v)\operatorname{sen}(I))\operatorname{sen}(\delta)]$$

$$a_{23} = [(-\operatorname{sen}(\omega + v)\cos(\Omega) - \cos(\omega + v)\cos(I)\operatorname{sen}(\Omega))\cos(\delta)\cos(\alpha) + + (-\operatorname{sen}(\omega + v)\operatorname{sen}(\Omega) + \cos(\omega + v)\cos(I)\cos(\Omega))\cos(\delta)\operatorname{sen}(\alpha) + + (\cos(\omega + v)\operatorname{sen}(I))\operatorname{sen}(\delta)]$$
(17)

Obs: As componentes a_{31} , a_{32} e a_{33} , não fazem parte da expressão do torque aerodinâmico, pois é admitido que a força aerodinâmica atua apenas no plano orbital.

2.3. As componentes da Força de Arrasto

A força de arrasto no Sistema Orbital é dada por (Zanardi, 1990) :

$$\vec{D} = -D(\cos(\gamma_s)\vec{i}_o + sen(\gamma_s)\vec{j}_o)$$
(18)

Em que $\vec{i}_o = a_{11}\vec{i} + a_{12}\vec{j} + a_{13}\vec{k}$ e $\vec{j}_o = a_{21}\vec{i} + a_{22}\vec{j} + a_{23}\vec{k}$, γ_s é o ângulo entre o vetor posição e o vetor velocidade do satélite (como mostra a Figura 1) e

$$D = \frac{1}{2}\rho_{\rm S}SC_{\rm D}V_{\rm S}^2 \tag{18a}$$

sendo V_S o módulo da velocidade do satélite.

Figura 1 – Definição do ângulo γ_s .

As componentes da força de arrasto no Sistema do Satélite são dadas então por:

$$\vec{D}_{X} = -D[a_{11}\cos(\gamma_{s}) + a_{21}sen(\gamma_{s})]\vec{i}$$

$$\vec{D}_{Y} = -D[a_{12}\cos(\gamma_{s}) + a_{22}sen(\gamma_{s})]\vec{j}$$
(19)

$$\vec{D}_{Z} = -D[a_{13}\cos(\gamma_{s}) + a_{23}sen(\gamma_{s})]\vec{k}$$

ou ainda, substituindo (12) a (17) em (19), temos:

$$\begin{split} \vec{D}_{\chi} &= -D\{[(\cos(\omega+\nu)\cos(\Omega) - \sin(\omega+\nu)\cos(I)\sin(\Omega))(-\sin(\alpha)) + \\ (\cos(\omega+\nu)\sin(\Omega) + \sin(\omega+\nu)\cos(I)\cos(\Omega))\cos\alpha]\cos(\gamma_{s}) + \\ &+ (\cos(\omega+\nu)\cos(\Omega) - \cos(\omega+\nu)\cos(I)\sin(\Omega))(-\sin(\alpha)) + \\ &+ (-\sin(\omega+\nu)\sin(\Omega) + \cos(\omega+\nu)\cos(I)\cos(\Omega))\cos(\alpha)]\sin(\gamma_{s})\}\vec{i} \\ \vec{D}_{\gamma} &= -D\{[(\cos(\omega+\nu)\cos(\Omega) - \sin(\omega+\nu)\cos(I)\sin(\Omega))(-\sin(\delta)\cos(\alpha)) + \\ &+ (\cos(\omega+\nu)\sin(\Omega) + \sin(\omega+\nu)\cos(I)\cos(\Omega)(-\sin(\delta)\sin(\alpha)) + \\ &+ (\sin(\omega+\nu)\sin(I)\sin(\delta)]\cos(\gamma_{s}) + [(-\sin(\omega+\nu)\cos(\Omega) - \\ &- \cos(\omega+\nu)\cos(I)\sin(\Omega))(-\sin(\delta)\cos(\alpha)) + (-\sin(\omega+\nu)\sin(\Omega) + \\ &\cos(\omega+\nu)\cos(I)\cos(\Omega))(-\sin(\delta)\sin(\alpha)) + (\cos(\omega+\nu)\sin(I))\sin(\delta)]\sin(\gamma_{s})]\}\vec{j} \end{split}$$
(20)

$$\vec{D}_{Z} = -D\{[(\cos(\omega + v)\cos(\Omega) - \sin(\omega + v)\cos(I)\sin(\Omega))\cos(\delta)\cos(\alpha) + (\cos(\omega + v)\sin(\Omega) + \sin(\omega + v)\cos(I)\cos(\Omega))\cos(\delta)\sin(\alpha) + (-\sin(\omega + v)\sin(\Omega))\sin(\delta)]\cos(\gamma_{s}) + [(-\sin(\omega + v)\cos(\Omega) - (\cos(\omega + v)\cos(I)\sin(\Omega))\cos(\delta)\cos(\alpha) + (-\sin(\omega + v)\sin(\Omega) + \cos(\omega + v)\cos(I)\sin(\Omega))\cos(\delta)\sin(\alpha) + (\cos(\omega + v)\sin(I))\sin(\delta)]\sin(\gamma_{s})]\vec{k}$$
(22)

Temos ainda, as seguintes relações:

$$sen(\gamma_s) = \frac{V_x}{V_s}$$
(23)

$$\cos(\gamma_S) = \frac{V_Y}{V_S} \tag{24}$$

, sendo:

$$(V_S)^2 = (V_X)^2 + (V_Y)^2$$
(25)

com (Bate, 1978):

$$V_X = \left(\frac{\mu}{a(1-e^2)}\right)^{1/2} esen(v)$$
(26)

$$V_{Y} = \frac{(\mu a(1-e^{2}))^{1/2}}{r'}$$
(27)

sendo a o semi-eixo maior da órbita, e a excentricidade da órbita, μ a constante gravitacional da Terra e r' o módulo do vetor posição do satélite.

Assim, a velocidade orbital do satélite é dada por:

$$V_s = \left(\frac{\mu}{p} (1 + 2e\cos(v) + e^2)\right)^{1/2}$$
(28)

Podemos assim reescrever o seno e o co-seno de γ_s como se segue :

$$sen(\gamma_s) = \frac{1 + e\cos(v)}{(1 + 2e\cos(v) + e^2)^{1/2}}$$
(29)

$$\cos(\gamma_s) = \frac{esen(v)}{(1 + 2e\cos(v) + e^2)^{1/2}}$$
(30)

2.4. Componentes do Torque Aerodinâmico

O Torque Aerodinâmico (TA) é representado pelo produto vetorial da margem estática pela força de arrasto no sistema do satélite, assim sendo o TA fica expresso por:

$$\vec{N}_{A} = \vec{m}e \times \vec{D} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ me_{X} & me_{Y} & me_{Z} \\ D_{X} & D_{Y} & D_{Z} \end{vmatrix}$$
(31)

As componentes do TA no sistema do satélite são, então, expressas por:

$$N_{AX} = D_Z m e_Y - D_Y m e_Z$$

$$N_{AY} = D_X m e_X - D_Z m e_X$$

$$N_{AZ} = D_Y m e_X - D_X m e_Y$$
(32)

ou ainda:

$$\vec{N}_A = N_{AX}\vec{i} + N_{AY}\vec{j} + N_{AZ}\vec{k}$$
(33)

Para encontrar as componentes do TA médio é necessário integrar suas componentes para um período orbital, sendo que aqui o instante inicial é assumido quando o satélite se encontra no pericentro. Neste trabalho é admitido que margem estática é fixa e assim a determinação do torque médio é associado a determinação da força de arrasto média. Inicialmente na determinação do torque médio também é assumido um valor médio para a densidade, de modo que ela não interfere no cálculo da média.

Para isso pode-se expandir $sen(\gamma_s)$ e $cos(\gamma_s)$ em séries de Maclaurin para simplificar os cálculos, pois a excentricidade dos satélites são muito pequenas, em torno de 0,05. Assim obtemos:

$$(1+2e\cos(v)+e^2)^{1/2}=1-\frac{1}{2}x+\frac{3}{8}x^2+\theta(x^3)$$
(34)

em que $x = 2e\cos(v) + e^2$

Considerando apenas os termos da expansão até a ordem dois (e^2) simplifica-se o seno e o co-seno de γ_s em:

$$sen(\gamma_s) = esen(v)(1 - e\cos(v))$$
(35)

$$\cos(\gamma_s) = 1 - \frac{e^2}{2} sen^2(v)$$
 (36)

Dessa forma substituindo (35) e (36) nas expressões (20), (21) e (22), as componentes do arrasto no sistema do satélite ficam simplificadas na seguinte forma:

$$D_{X} = \Delta(\phi(v)[a_{11}] + \theta(v)[a_{21}])$$

$$D_{Y} = \Delta(\phi(v)[a_{12}] + \theta(v)[a_{22}])$$

$$D_{Z} = \Delta(\phi(v)[a_{13}] + \theta(v)[a_{23}])$$
(37)

em que

$$\Delta = -\frac{1}{2}\rho_s SC_D \frac{\mu}{p} \tag{37a}$$

$$\varphi(\mathbf{v}) = e \operatorname{sen}(\mathbf{v}) - \frac{e^2}{2} \operatorname{sen}(2\mathbf{v})$$
(37b)

$$\theta(\mathbf{v}) = 1 + \frac{e^2}{2} \operatorname{sen}^2(\mathbf{v})$$
 (37c)

A força de arrasto média é calculada por:

$$\vec{D}_{m} = \frac{1}{T} \int_{t_{0}}^{t_{0}+2\pi} \vec{D} dt$$
(38)

em que $T = \frac{2\pi a^{3/2}}{\mu^{1/2}}$

As seguintes relações auxiliam no cálculo da integral do arrasto médio:

$$h = r^{2} \frac{dv}{dt} \Rightarrow \vec{D}_{m} = \frac{1}{T} \int_{0}^{2\pi} \vec{D} \frac{r^{2}}{h} dv$$

$$r = \frac{p}{1 + e\cos(v)}$$

$$p = \frac{h^{2}}{\mu} \Rightarrow h^{2} = p\mu$$

$$\Rightarrow \vec{D}_{m} = \frac{p^{3/2}}{T\mu^{1/2}} \int_{0}^{2\pi} \vec{D} (1 + e\cos(v))^{-2} dv$$
(39)

É preciso utilizar mais uma expansão em série de Maclaurin para simplificar a resolução da integral (39). Desenvolvendo a expansão para o integrando, temos:

$$(1 + e\cos(v))^{-2} = 1 - 2e\cos(v) + 3e^{2}\cos^{2}(v) + \theta(e^{3})$$
(40)

Assim, as componentes médias do arrasto no sistema do satélite ficam representadas pelas expressões a seguir:

$$D_{\rm Xm} = \frac{\Delta p^{3/2}}{T\mu^{1/2}} \int_{0}^{2\pi} (\phi^*(v)(a_{11}) + \theta^*(v)(a_{21})) dv$$

$$D_{\rm Ym} = \frac{\Delta p^{3/2}}{T\mu^{1/2}} \int_{0}^{2\pi} (\phi^*(v)(a_{12}) + \theta^*(v)(a_{22})) dv$$

$$D_{\rm Zm} = \frac{\Delta p^{3/2}}{T\mu^{1/2}} \int_{0}^{2\pi} (\phi^*(v)(a_{13}) + \theta^*(v)(a_{23})) dv$$
(41)

Após um longo processo algébrico, resolvidas as integrais, se encontram as componentes médias do arrasto, dadas por:

$$D_{Xm} = \Psi \cos(\omega) [\cos I \cos(\Omega - \alpha) + \sin(\Omega - \alpha)]$$

$$D_{Ym} = \Psi \cos(\omega) [-\sin \delta \cos(\Omega - \alpha) + \cos I \sin \delta \sin(\Omega - \alpha) + \sin I \cos \delta]$$

$$D_{Zm} = \Psi \cos(\omega) [\cos \delta \cos(\Omega - \alpha) + \cos I \cos \delta \sin(\alpha - \Omega) + \sin I \sin \delta]$$
(42)

onde a constante $\Psi = -\left(\frac{e}{4a^{3/2}}\right)\rho_s SC_D \mu p^{1/2}.$

(42a)

As componentes médias do TA são expressas, então, no sistema do satélite, em termos das componentes médias do arrasto e das componentes da margem estática.

$$N_{AXm} = D_{Zm}me_Y - D_{Ym}me_Z$$

$$N_{AYm} = D_{Xm}me_Z - D_{Zm}me_X$$

$$N_{AZm} = D_{Ym}me_X - D_{Xm}me_Y$$
(43)

3 PRIMEIRA SOLUÇÃO

Com as componentes médias do TA determinadas no sistema do satélite o passo seguinte é substituir suas componentes nas equações do movimento, de modo a determinar uma primeira solução incluindo a influência do TA. Nesta fase são integradas analiticamente as componentes do torque médio no sistema do satélite e após um longo processo algébrico é determinada uma primeira solução para α , δeW . Nesta solução se considera a margem estática como metade da altura do satélite, e a densidade atmosférica média para as altitudes do SCD1 e SCD2 de 10^{-14} kg/m³.

As equações do movimento são dadas por:

$$\frac{d\alpha}{dt} = \frac{N_{Xm}}{I_Z W \cos \delta}$$
(44)
$$\frac{d\delta}{dt} = \frac{N_{Ym}}{I_Z W}$$
(45)
$$\frac{dW}{dt} = \frac{N_{Zm}}{I_Z}$$
(46)

Substituindo as componentes do TA médio nas equações do movimento, o método de aproximações sucessivas em primeira ordem é aplicado, considerando a aproximação inicial dada pelo movimento rotacional não perturbado, o que corresponde a ascensão reta, declinação do eixo de rotação e velocidade de rotação constantes. Deste modo, a solução analítica obtida é válida para um período orbital, devendo ser reavaliada a cada período orbital.

Integrando as equações (44) a (46), encontramos a primeira solução dada por:

$$\alpha = \frac{\Psi \cos \omega_0}{I_z W_0 \cos \delta_0} [(\cos \delta_0 \cos(\Omega_0 - \alpha_0) + \cos I_0 \cos \delta_0 \sin(\alpha_0 - \Omega_0) + + \sin I_0 \sin \delta_0) m e_Y - (-\sin \delta_0 \cos(\Omega_0 - \alpha_0) + \cos I_0 \sin \delta_0 \sin(\Omega_0 - \alpha_0) + + \sin I_0 \cos \delta_0) m e_Z]t + \alpha_0$$
(47)

$$\delta = \frac{\Psi \cos \omega_0}{I_Z W_0} [(\cos I_0 \cos(\Omega_0 - \alpha_0) + \sin(\Omega_0 - \alpha_0))me_Z - (\cos \delta_0 \cos(\Omega_0 - \alpha_0))\cos I_0 \sin(\Omega_0 - \alpha_0) + \sin I_0 \sin \delta_0)me_X]t + \delta_0$$
(48)

$$W = \frac{\Psi \cos \alpha_{0}}{I_{z}} \{ [\frac{\eta_{\delta} \eta_{\alpha}}{\eta_{\delta} \eta_{\alpha}^{2} + 1} (\operatorname{sen}(\delta_{0} + \eta_{\delta}T) \operatorname{sen}(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T) - \frac{1}{\eta_{\alpha}} \operatorname{sen}(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T) .$$

$$\cdot \operatorname{sen}(\delta_{0} + \eta_{\delta}T)) + \cos I_{0} \frac{\eta_{\delta}^{2} \eta_{\alpha}}{((\eta_{\alpha} \eta_{\delta})^{2} - 1)} (\operatorname{sen}(\delta_{0} + \eta_{\delta}T) \cos(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T) +$$

$$+ \frac{1}{\eta_{\delta}^{2}} \cos(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T) \operatorname{sen}(\delta_{0} + \eta_{\delta}T)) + (\frac{1}{\eta_{\delta}} \operatorname{sen}I_{0} \operatorname{sen}(\delta_{0} + \eta_{\delta}T))]me_{x} -$$

$$- [(\frac{1}{\eta_{\alpha}} \cos I_{0} \operatorname{sen}(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T)) + (\frac{1}{\eta_{\alpha}} \cos(\Omega_{0} - \alpha_{0} - \eta_{\alpha}T))]me_{y} -$$

$$- [\frac{\eta_{\delta} \eta_{\alpha}}{(\eta_{\delta} \eta_{\alpha}^{2} + 1} (\operatorname{sen}(\delta_{0}) \operatorname{sen}(\Omega_{0} - \alpha_{0}) - \frac{1}{\eta_{\alpha}} \operatorname{sen}(\Omega_{0} - \alpha_{0}) \operatorname{sen}(\delta_{0})) +$$

$$+ \cos I_{0} \frac{\eta_{\delta}^{2} \eta_{\alpha}}{((\eta_{\alpha} \eta_{\delta})^{2} - 1)} (\operatorname{sen}(\delta_{0}) \cos(\Omega_{0} - \alpha_{0}) + \frac{1}{\eta_{\delta}^{2}} \cos(\Omega_{0} - \alpha_{0}) \operatorname{sen}(\delta_{0})) +$$

$$+ (\frac{1}{\eta_{\delta}} \operatorname{sen}I_{0} \operatorname{sen}(\delta_{0}))]me_{x} + [(\frac{1}{\eta_{\alpha}} \cos I_{0} \operatorname{sen}(\Omega_{0} - \alpha_{0})) + (\frac{1}{\eta_{\alpha}} \cos(\Omega_{0} - \alpha_{0}))]me_{y}$$

Com ψ dada por (42a).

4 SOLUÇÃO ANALÍTICA COM TD-88

Na primeira solução é considerado um valor médio para a densidade atmosférica de 10⁻¹⁴kg/m³ para as altitudes do SCD1 e SCD2. Nesta segunda solução é adotado o modelo TD-88 de Sehnal e Pospísilová (1988) para a densidade atmosférica.

O modelo TD-88 é definido no intervalo entre 150 a 750 quilômetros de altitude, e possui vários parâmetros, entre eles, os fluxos solares, sendo F_b o fluxo solar médio em três rotações solares e F_x o fluxo solar medido no comprimento de onda de 10,7 centímetros, ambos com valores no intervalo de 60 a 220, e o índice geométrico K_p , com valores no intervalo de zero a dez.

A densidade ρ_s , é definida pela expressão (SEHNAL; POSPISILOVÁ, 1988)

$$\rho_{s} = f_{x} f_{0} k_{0} \sum_{n=1}^{7} (K_{n,0} + \sum K_{n,j} \exp\left[\frac{120 - (r' - R_{T})}{29 j}\right]) g_{n}$$
(50)

Onde $(r'-R_T)$ é a altitude do satélite em questão em relação à superfície da Terra, sendo R_T

o raio terrestre, e $K_{n,j}$, n = 1, 2,..., 7, e j = 0, 1, 2, 3 são constantes numéricas. As constantes f_x , f_0 e k_0 descrevem a dependência direta da densidade com o fluxo solar, através de:

$$f_{x} = 1 + a_{1}(F_{x} - F_{b})$$

$$k_{0} = 1 + a_{3}(K_{p} - 3)$$

$$f_{0} = a_{2} + f_{m}$$

$$f_{m} = \frac{(F_{b} - 60)}{160}$$
(51)

Os termos g_n descrevem a dependência da densidade com a latitude geográfica local (φ) e com o fluxo solar médio, através de:

$$g_{1} = 1$$

$$g_{2} = \frac{f_{m}}{(2 + a_{4})}$$

$$g_{3} = \operatorname{sen}(d - p_{3})\operatorname{sen}(\varphi)$$

$$g_{4} = (a_{5}f_{m} + 1)\operatorname{sen}[2(d - p_{5})]$$

$$g_{6} = (a_{7}f_{m} + 1)\operatorname{sen}(t - p_{6})\cos(\varphi)$$

$$g_{7} = (a_{8}f_{m} + 1)\operatorname{sen}[2(t - p_{7})]\cos^{2}(\varphi)$$
(52)

Sendo *d* o dia contado em um ano, *t* é a hora local, p_n , n = 3, 4...7, são as chamadas fases, e a_i , *i* = 4,5...8, são constantes, definidas no modelo original TD.

A latitude local é determinada a cada instante, segundo os elementos orbitais I (inclinação orbital), ω (argumento do perigeu) e v (anomalia verdadeira), e é dada por: $\varphi = \arccos[sen(\omega + v)sen(I)], -90^{\circ} \le \varphi \le 90^{\circ}$

Para esta segunda solução, introduzindo o modelo TD-88 são recalculadas as componentes médias da força de arrasto no sistema do satélite através da integração analítica das componentes do arrasto.

Introduzindo o modelo TD-88 no lugar da densidade nas componentes do arrasto e manipulando algebricamente foram obtidas várias integrais do tipo mostrado em (53):

$$A\int_{0}^{2\pi} \exp^{\frac{-d}{(1+e\cos v)}} \beta(v) dv$$
(53)

em que A é a parte constante formada por termos independentes de *v* das matrizes de rotação e $\beta(v)$ é a parte dependente da anomalia verdadeira, *exp* é a base Euler e *d* = *p*/29. Para simplificar a integração, são utilizadas duas expansão em série de Maclaurin para $\exp^{\frac{-d}{(1+e\cos v)}}$.

Na primeira expansão é encontrada a seguinte expressão:

$$\exp^{\frac{-d}{(1+e\cos\nu)}} = \exp^{-d(1-e\cos\nu+e^2\cos^2\nu+\theta(e^3))}$$
(54)

Expandindo a nova expressão se obtém:

$$\exp^{\frac{-d}{(1+e\cos v)}} = \exp^{-d} + d\exp^{-d} e\cos v + \frac{1}{2}(-2d\exp^{-d} + d^2\exp^{-d})e^2\cos^2 v + \theta(e^3)$$
(55)

Feitas a simplificações no integrando e utilizando algumas identidades trigonométricas, são solucionadas analiticamente as diversas integrais em um longo processo algébrico que não serão mostrados aqui. No entanto, as integrais envolvendo os termos g_6 e g_7 não são solúveis analiticamente, sendo para elas realizada uma avaliação em relação à sua contribuição no resultado final com as demais integrais, sendo percebida uma contribuição desprezível, assim as parcelas referentes a elas podem ser descartadas na solução final.

As componentes do arrasto com o modelo TD-88 podem ser expressas como sendo:

$$D_{Xm} = \Psi^* \{ \left(\sum_{n=1}^4 K_{n,0}^* g_n^* \right) \int_0^{2\pi} (\varphi(v)[a_{11}] + \theta(v)[a_{21}]) dv + K_{3,0} \int_0^{2\pi} g_3(v)(\varphi(v)[a_{11}] + \theta(v)[a_{21}]) dv + \exp^b \left(\sum_{n=1}^4 \sum_{j=1}^3 K_{n,j}^* g_n^* \right) \int_0^{2\pi} Q(v)(\varphi(v)[a_{11}] + \theta(v)[a_{21}]) dv + \left(\sum_{j=1}^3 K_{3,j} \right) \int_0^{2\pi} g_3(v)(\varphi(v)[a_{11}] + \theta(v)[a_{21}]) dv \}$$

$$D_{Ym} = \Psi^* \{ \left(\sum_{n=1}^4 K_{n,0}^* g_n^* \right) \int_0^{2\pi} (\varphi(v)[a_{12}] + \theta(v)[a_{22}]) dv + K_{3,0} \int_0^{2\pi} g_3(v)(\varphi(v)[a_{12}] + \theta(v)[a_{22}]) dv + \exp^b \left(\sum_{n=1}^4 \sum_{j=1}^3 K_{n,j}^* g_n^* \right) \int_0^{2\pi} Q(v)(\varphi(v)[a_{12}] + \theta(v)[a_{22}]) dv + \left(\sum_{j=1}^3 K_{3,j} \right) \int_0^{2\pi} g_3(v)(\varphi(v)[a_{12}] + \theta(v)[a_{22}]) dv \}$$

$$D_{Zm} = \Psi^* \{ (\sum_{n=1}^{4} K_{n,0}^* g_n^*) \int_{0}^{2\pi} (\varphi(v)[a_{13}] + \theta(v)[a_{23}]) dv + K_{3,0} \int_{0}^{2\pi} g_3(v)(\varphi(v)[a_{13}] + \theta(v)[a_{23}]) dv + \exp^b (\sum_{n=1}^{4} \sum_{j=1}^{3} K_{n,j}^* g_n^*) \int_{0}^{2\pi} Q(v)(\varphi(v)[a_{13}] + \theta(v)[a_{23}]) dv + (\sum_{j=1}^{3} K_{3,j}) \int_{0}^{2\pi} g_3(v)(\varphi(v)[a_{13}] + \theta(v)[a_{23}]) dv \}$$

em que
$$\Psi^* = -\frac{\mu p^{1/2}}{4\pi a^{3/2}} SC_D f_x f_0 k_0$$
, e $b = \frac{120 + R_T}{29}$
e em que $Q(v) = \exp^{-d} + d \exp^{-d} e \cos v + \frac{1}{2} (-2d \exp^{-d} + d^2 \exp^{-d})e^2 \cos^2 v + \theta(e^3)$.

e as constantes

 $k_{1,0}^*, k_{2,0}^*, k_{3,0}^* e k_{4,0}^*$ e $g_1^*, g_2^*, g_3^* e g_4^*$ são respectivamente as constantes $k_{1,0}, k_{2,0}, k_{4,0} e k_{5,0} e g_1^*, g_2^*, g_3^* e g_4^*$ do modelo TD-88.

5 SIMULAÇÕES NUMÉRICAS

Serão aqui apresentadas as simulações para a primeira solução determinada, utilizando o valor médio para a densidade atmosférica e variando o valor da margem estática.

5.1. Simulações com o SCD1

As simulações com o TA para o SCD1 são realizadas para 40 dias com atualização de dados a cada dia, admitindo diferentes valores para a margem estática. Nestas simulações com a primeira solução obtida para o TA, verifica-se que a maior influência é na velocidade de rotação, que tende a aumentar com o deslocamento da margem estática em relação ao eixo de rotação do satélite. Para valores da margem estática coincidente com o eixo de rotação do satélite, até um máximo de 0,5m, nota-se uma mínima influência sobre a velocidade de rotação como mostram a tabela 1 e figura 4.

A ascensão reta e declinação do eixo de rotação sofrem pouca influência do TA, como pode ser visto nas figuras 2 e 3, em que me=0.5, $me_x=0$, $me_y=0$ e $me_z=0.5$.

Figura 2 – Comportamento da ascensão reta com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

Figura 3 – Comportamento da declinação do eixo de rotação com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

Figura 4 – Comportamento da velocidade de rotação com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

	me = 0.5 $mex = 0$ $mey = 0$ $mez = 0.5$					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe	
234,1000	77,3000	90,8100	0	0	0	
234,1228	77,3137	90,8100	0,3828	-0,3763	0,1000	
233,7699	77,7030	90,7100	0,2299	-0,3870	0,0900	
233,5773	78,1022	90,6200	0,0473	-0,3978	0,1000	
233,5750	78,5112	90,5200	-0,1550	-0,4188	0,1000	
233,7830	78,9400	90,4200	-0,3570	-0,4100	0,0900	
234,2011	79,3587	90,3300	-0,6289	-0,4213	0,1000	
234,8992	79,7872	90,2300	-0,9008	-0,4128	0,1100	
235,8771	80,2055	90,1200	-1,2429	-0,3945	0,1000	
237,2043	80,6036	90,0200	-1,6157	-0,3864	0,1100	
238,9106	80,9916	89,9100	-1,9794	-0,3484	0,1000	
240,9850	81,3394	89,8100	-3,0550	-0,5206	0,2700	
244,1397	81,8569	89,5400	-2,4803	-0,2631	0,1900	
246,7188	82,1147	89,3500	-2,8112	-0,2153	0,1900	
249,6244	82,3225	89,1600	-3,1156	-0,1575	0,1900	
252,8261	82,4704	88,9700	-3,3239	-0,1096	0,1800	
256,2240	82,5685	88,7900	-3,4760	-0,0315	0,2000	
259,7585	82,5870	88,5900	-3,4415	0,0270	0,1800	
263,2406	82,5457	88,4100	-3,3094	0,1057	0,1900	
266,5717	82,4249	88,2200	-3,1283	0,1449	0,1900	
269,7029	82,2645	88,0300	-2,8371	0,2045	0,1800	
272,5253	82,0445	87,8500	-3,2247	0,1945	0,2400	
275,7181	81,8349	87,6100	-1,7319	0,2149	0,1900	
277,4051	81,6055	87,4200	-1,4949	0,2355	0,1800	
278,8439	81,3564	87,2400	-1,2461	0,2564	0,1800	
280,0247	81,0875	87,0600	-0,9853	0,2675	0,1800	
280,9374	80,8087	86,8800	-0,8026	0,2787	0,1700	
281,6617	80,5201	86,7100	-0,5783	0,2901	0,1700	
282,1577	80,2215	86,5400	-0,4123	0,2915	0,1700	
282,4850	79,9231	86,3700	-0,2150	0,2831	0,1600	
282,6135	79,6347	86,2100	-0,0565	0,2847	0,1700	
282,5830	79,3463	86,0400	-0,9170	0,1263	0,1600	
283,4120	79,2182	85,8800	0,4020	0,2682	0,0800	
282,9235	78,9497	85,8000	0,4935	0,2497	0,0700	
282,3455	78,7013	85,7300	0,5855	0,2213	0,0700	
281,6779	78,4828	85,6600	0,6679	0,2128	0,0800	
280,9309	78,2742	85,5800	0,7509	0,1942	0,0700	
280,1042	78,0856	85,5100	0,8142	0,1756	0,0700	
279,2178	77,9170	85,4400	0,8778	0,1370	0,0700	
278,2717	77,7883	85,3700	0,9117	0,1183	0,0600	
α TA-	α Inpe	δ TA	$-\delta$ Inpe	WTA	-WInpe	
M= -1,1118	DP= 1,4735	M= -0,0120	DP=0,2852	M= 0,1410	DP=0,0548	

Tabela 1 – Simulação com SCD1 com a margem estática sobre o eixo de rotação.

Deslocando a margem estática do eixo de rotação, a velocidade de rotação aumenta consideravelmente. Para a margem estática dentro de um certo intervalo, obtêm-se resultados melhores como mostram as simulações realizadas com a margem estática

me = 0,1 m variando até me = 0,02 m e não coincidente com o eixo de rotação.

As tabelas 3-7 com mais resultados das simulações com a margem estática variando para o SCD1 se encontram no Apêndice A.

As figuras 5-7 mostram respectivamente a ascensão reta, declinação do eixo de rotação e velocidade de rotação para simulações utilizando os seguintes valores: $me = 0,1, me_x = 0.001744, me_y = 0.00003$ e $me_z = 0.09998$.

Figura 5 – Ascensão reta com a margem estática não coincidente com o eixo de rotação. Os pontos vermelhos são os simulados.

Figura 6 – Declinação do eixo de rotação com margem estática não coincidente com o eixo de rotação. Os pontos vermelhos são os simulados.

Figura 7– Velocidade de rotação com a margem estática não coincidente com o eixo de rotação. Os pontos vermelhos são os simulados.

5.2. Simulações com o SCD2

As simulações com o SCD2 são realizadas para 38 dias e nota-se que a influência do TA é maior sobre a velocidade de rotação. A ascensão reta e declinação do eixo de rotação sofrem pouca influência do TA, e se a margem estática coincide com o eixo de rotação, a influência sobre a velocidade de rotação passa a ser mínima para qualquer valor da margem estática menor que 0,5m.

As figuras 8-10, e tabela 2 mostram a ascensão reta, declinação do eixo de rotação e velocidade de rotação para a me=0,5, e as componentes $me_x = 0$, $me_y = 0$ e me_z = 0,5 e as figuras 11-13 com me = 0,02, $me_x = 0.00035$, $me_y = 0.00001$ $me_z = 0.01999$.

Figura 8 – Ascensão reta com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

Figura 9 - Declinação do eixo de rotação com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

Figura 10 - Figura 4 – Velocidade de rotação com me = 0,5, em que os pontos azuis são os valores reais fornecidos pelo INPE, e vermelhos os simulados.

me = 0.5 $mex = 0$ $mey = 0$ $mez = 0.5$					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe
281,7000	62,7400	34,5700	0	0	0
281,8044	62,7621	34,5700	0,2744	-0,2179	-0,0200
281,6393	62,9973	34,5900	0,2593	-0,2127	-0,0200
281,4932	63,2222	34,6100	0,2132	-0,2078	-0,0200
281,3961	63,4370	34,6300	1,3461	0,0470	0,0001
280,1667	63,3927	34,6300	0,1067	-0,0673	0,0100
280,1770	63,4572	34,6200	0,0870	-0,0728	0,0001
280,2062	63,5218	34,6200	0,0762	-0,0582	0,0100
280,2440	63,5665	34,6100	0,0640	-0,0635	0,0002
280,2907	63,6113	34,6100	0,0407	-0,0587	0,0100
280,3563	63,6463	34,6000	0,0463	-0,0537	0,0001
280,4107	63,6717	34,6000	1,7007	0,2017	0,1200
278,8055	63,4383	34,4800	0,0755	-0,0117	0,0600
278,8183	63,4142	34,4200	0,0783	-0,0058	0,0500
278,8203	63,3805	34,3700	0,0803	-0,0095	0,0600
278,8115	63,3472	34,3100	0,0915	-0,0128	0,0500
278,7821	63,3144	34,2600	0,1021	-0,0156	0,0600
278,7323	63,2821	34,2000	0,1023	-0,0279	0,0600
278,6720	63,2604	34,1400	0,1020	-0,0296	0,0600
278,6015	63,2392	34,0800	0,1015	-0,0308	0,0600
278,5208	63,2185	34,0200	0,1008	-0,0315	0,0600
278,4300	63,1985	33,9600	0,1000	-0,0415	0,0600
278,3293	63,1890	33,9000	0,0993	-0,0410	0,0700
278,2188	63,1801	33,8300	1,6188	1,9601	0,1400
276,5839	61,1711	33,6900	0,1639	0,1411	0,0003
276,3952	60,9832	33,6900	0,1952	0,1532	0,1400
276,1670	60,7856	33,5500	2,4170	1,4056	0,1200
273,7008	59,3448	33,4300	0,3108	0,2348	0,0200
273,3359	59,0789	33,4100	0,3659	0,2389	0,0300
272,9118	58,8132	33,3800	0,3918	0,2432	0,0300
272,4586	58,5478	33,3500	0,8286	0,2978	0,0100
271,5665	58,2322	33,3400	0,4265	0,2322	-0,0200
271,0749	57,9872	33,3600	0,4449	0,2372	-0,0200
270,5642	57,7423	33,3800	0,4942	0,2223	-0,0200
270,0041	57,5174	33,4000	0,5141	0,2074	-0,0200
269,4248	57,3124	33,4200	0,5548	0,2024	-0,0200
268,8062	57,1175	33,4400	0,5662	0,1775	-0,0200
268,1782	56,9524	33,4600	0,3382	0,1824	-0,0500
α TA-	αInpe	δ TA	$-\delta$ Inpe	WTA	-WInpe
M = 0,4021	DP= 0,5341	M= 0,1382	DP= 0,4059	M= 0,0286	DP= 0,0486

Tabela 2 – Simulação com SCD1 com a margem estática sobre o eixo de rotação.

Figura 11 – Ascensão reta com a margem estática não coincidente com o eixo de rotação. Os pontos vermelhos são os simulados.

Figura 12 – Declinação do eixo de rotação com a margem estática não coincidente com o eixo de rotação. Os pontos vermelhos são os simulados.

Outras simulações para o SCD2 com diferentes valores de margem estática podem ser conferidos nas tabelas 8-11 nos Apêndice B.

6 CONCLUSÕES

Com os resultados das simulações numéricas realizadas para o SCD1 e SCD2 com atualização de dados para a primeira solução do TA obtida pode-se concluir que a influência do TA é maior para a velocidade de rotação que para a ascensão reta e declinação do eixo de rotação tanto para o SCD1 quanto para o SCD2. Se a margem estática tem as componentes $me_x e me_y$ nulas, a influência TA sobre a velocidade de rotação é mínima, e se $me_x e me_y$ são diferentes de zero, há uma aumento considerável na influência do TA sobre a velocidade de rotação quando estas componentes aumentam.

A ascensão reta e declinação do eixo de rotação sofrem pouca influência do TA para valores de $me_x e me_y$ diferentes de zero. Para o SCD1 as médias das diferenças dos valores reais e os simulados para a ascensão reta vale aproximadamente 1,1º para as diversas simulações realizadas. Esta diferença ocorre devido a pequena ordem de grandeza do TA para a altitudes da órbita do SCD1. Já para o SCD2 esse valor é menor

e vale aproximadamente 0,4° para as várias simulações realizadas. Isto ocorre devido as correções de atitude realizadas durante o período considerado.

A variação da declinação do eixo de rotação com o TA é sempre pequena, e a média não ultrapassa 0,5º para as simulações realizadas.

As simulações com a segunda solução estão sendo realizadas. Na continuidade deste trabalho deverão ser realizadas comparações com os resultados incluindo os torques de gradiente de gravidade, magnético residual e devido às correntes de Foucault, determinados em projetos anteriores (CHIARADIA et al, 2006; CHIARADIA, 2007; CHIARADIA, 2008; CHIARADIA et al., 2008).

Resultados deste trabalho deverão ser apresentados no SINCINPE 2010 e um trabalho foi submetido para o Colóquio Brasileiro de Dinâmica Orbital.

REFERÊNCIAS BIBLIOGRÁFICAS

CHIARADIA, C.E. et al. **Propagação analítica da atitude de satélites artificiais estabilizados por rotação com torque devido as correntes de Foucault.** Resumo dos trabalhos, XIII Colóquio Brasileiro de Dinâmica Orbital, 2006, Bertioga, p.23, 2006.

CHIARADIA, C.E. Influência do Torque de Gradiente de Gravidade na Atitude de Satélites Artificiais estabilizados por rotação. Trabalho de Graduação de Licenciatura em Física. Guaratinguetá, 2007.

CHIARADIA, J.E. Relatório Final de Iniciação Científica, PIBIC 2007/2008. FEG/UNESP – Guaratinguetá, 2008.

CHIARADIA, J.E., ZANARDI, M.C., CHIARADIA, C.E. Satélites Artificiais Estabilizados por Rotação: abordadagem analítica para a propagação de atitude com torque de gradiente de gravidade In: Anais do CBDO2008, Águas de Lindóia, Guaratinguetá: Feg/UNESP, p.49, 2008.

REAL, F.F.; ZANARDI, M.C.F.P.S. Comparasion of external torques magnitudes acting on the spacecraft, In: WINTER, O.C.; PRADO A.F.A. Advances in space dynamics 3. São José dos Campos: INPE, 2002. p.503-516.

SENE, L.T.F. **Propagação da atitude de satélites artificiais estabilizados por rotação com quatérnions.** 2007. 115f. Trabalho de Graduação – Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá, 2007.

SEHNAL, L., POSPÍSILOVÁ, L. Thermospheric model TD88. Preprint No. 67
of the Astronomical Institute of Czechoslovakian Academy of Sciences, 1988.
WERTZ, J.R. Spacecraft Attitude Determination and Control. London, Reidel, vol. 73,

1978.

ZANARDI, M.C.F.P.S. Dinâmica **da Atitude de Satélites Artificiais**. Tese de Livre Docência, FEG/UNESP, Guaratinguetá, SP, 2005.

APÊNDICE A

Tabelas com simulações para o SCD1, sendo M a média das diferenças no período e DP o desvio padrão.

	$me_x = 0,001744$ $me_y = 0,00003$ $me_z = 0,09998$						
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe		
234,1000	77,3000	90,8100	0	0	0		
234,1036	77,3021	91,4964	0,3636	-0,3879	0,7864		
233,7447	77,6920	91,1452	0,2047	-0,3980	0,5252		
233,5458	78,0919	90,9401	0,0158	-0,4081	0,4201		
233,5371	78,5017	90,7621	-0,1929	-0,4283	0,3421		
233,7383	78,9316	90,5987	-0,4017	-0,4184	0,2687		
234,1496	79,3513	90,4536	-0,6804	-0,4287	0,2236		
234,8409	79,7811	90,3033	-0,9591	-0,4189	0,1833		
235,8121	80,2008	90,1467	-1,3079	-0,3992	0,1267		
237,1332	80,6006	90,0033	-1,6868	-0,3894	0,0933		
238,8342	80,9902	89,8533	-2,0558	-0,3498	0,0433		
240,9049	81,3399	89,7175	-3,1351	-0,5201	0,1775		
244,0557	81,8595	89,4154	-2,5643	-0,2605	0,0654		
246,6355	82,1192	89,2023	-2,8945	-0,2108	0,0423		
249,5449	82,3288	88,9967	-3,1951	-0,1512	0,0267		
252,7535	82,4785	88,7998	-3,3965	-0,1015	0,0098		
256,1617	82,5782	88,6234	-3,5383	-0,0218	0,0334		
259,7092	82,5979	88,4393	-3,4908	0,0379	0,0293		
263,2064	82,5578	88,2909	-3,3436	0,1178	0,0709		
266,5534	82,4376	88,1585	-3,1466	0,1576	0,1285		
269,7005	82,2776	88,1061	-2,8395	0,2176	0,2561		
272,5377	82,0576	87,0564	-3,2123	0,2076	-0,5536		
275,7450	81,8476	87,3244	-1,7050	0,2276	-0,0956		
277,4429	81,6177	87,2829	-1,4571	0,2477	0,0429		
278,8912	81,3679	87,1808	-1,1988	0,2679	0,1208		
280,0797	81,0980	87,0606	-0,9303	0,2780	0,1806		
280,9986	80,8182	86,9328	-0,7414	0,2882	0,2228		
281,7277	80,5284	86,8110	-0,5123	0,2984	0,2710		
282,2271	80,2287	86,6856	-0,3429	0,2987	0,3156		
282,5567	79,9289	86,5573	-0,1433	0,2889	0,3473		
282,6864	79,6392	86,4360	0,0164	0,2892	0,3960		
282,6563	79,3494	86,3018	-0,8437	0,1294	0,4218		
283,4862	79,2197	86,1791	0,4762	0,2697	0,3791		
282,9964	78,9499	86,1269	0,5664	0,2499	0,3969		
282,4168	78,7002	86,0816	0,6568	0,2202	0,4216		
281,7471	78,4804	86,0330	0,7371	0,2104	0,4530		
280,9976	78,2706	85,9711	0,8176	0,1906	0,4611		
280,1681	78,0809	85,9157	0,8781	0,1709	0,4757		
279,2787	77,9111	85,8568	0,9387	0,1311	0,4868		
278,3293	77,7813	85,7944	0,9693	0,1113	0,4844		
αTA-	α Inpe	δ TA	$-\delta$ Inpe	WTA	-WInpe		
M= -1,1096	DP= 1,5130	M = -0,0099	9 DP=0,2902	M= 0,2328	DP=0,2306		

Tabela 3 – Simulação com me = 0,1.

	$me_x = 0,00139 me_y = 0,00002 me_z = 0,07999$						
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe		
234,1000	77,3000	90,8100	0	0	0		
234,1029	77,3017	91,3592	0,3629	-0,3883	0,6492		
233,7437	77,6916	91,0581	0,2037	-0,3984	0,4381		
233,5447	78,0915	90,8761	0,0147	-0,4085	0,3561		
233,5356	78,5014	90,7137	-0,1944	-0,4286	0,2937		
233,7367	78,9312	90,5630	-0,4033	-0,4188	0,2330		
234,1477	79,3511	90,4289	-0,6823	-0,4289	0,1989		
234,8387	79,7809	90,2886	-0,9613	-0,4191	0,1686		
235,8097	80,2007	90,1413	-1,3103	-0,3993	0,1213		
237,1306	80,6004	90,0066	-1,6894	-0,3896	0,0966		
238,8314	80,9902	89,8646	-2,0586	-0,3498	0,0546		
240,9019	81,3399	89,7360	-3,1381	-0,5201	0,1960		
244,0525	81,8596	89,4403	-2,5675	-0,2604	0,0903		
246,6324	82,1193	89,2319	-2,8976	-0,2107	0,0719		
249,5419	82,3291	89,0293	-3,1981	-0,1509	0,0593		
252,7508	82,4788	88,8339	-3,3992	-0,1012	0,0439		
256,1593	82,5786	88,6567	-3,5407	-0,0214	0,0667		
259,7074	82,5984	88,4694	-3,4926	0,0384	0,0594		
263,2051	82,5582	88,3147	-3,3449	0,1182	0,0947		
266,5527	82,4381	88,1708	-3,1473	0,1581	0,1408		
269,7004	82,2780	88,0909	-2,8396	0,2180	0,2409		
272,5382	82,0580	87,2188	-3,2118	0,2080	-0,3912		
275,7460	81,8481	87,3815	-1,7040	0,2281	-0,0385		
277,4443	81,6182	87,3103	-1,4557	0,2482	0,0703		
278,8929	81,3683	87,1926	-1,1971	0,2683	0,1326		
280,0818	81,0984	87,0605	-0,9282	0,2784	0,1805		
281,0009	80,8186	86,9223	-0,7391	0,2886	0,2123		
281,7302	80,5287	86,7908	-0,5098	0,2987	0,2508		
282,2297	80,2289	86,6565	-0,3403	0,2989	0,2865		
282,5593	79,9291	86,5199	-0,1407	0,2891	0,3099		
282,6891	79,6393	86,3908	0,0191	0,2893	0,3508		
282,6591	79,3495	86,2494	-0,8409	0,1295	0,3694		
283,4890	79,2198	86,1193	0,4790	0,2698	0,3193		
282,9991	78,9500	86,0615	0,5691	0,2500	0,3315		
282,4194	78,7001	86,0113	0,6594	0,2201	0,3513		
281,7497	78,4803	85,9584	0,7397	0,2103	0,3784		
281,0001	78,2705	85,8929	0,8201	0,1905	0,3829		
280,1705	78,0807	85,8346	0,8805	0,1707	0,3946		
279,2810	77,9109	85,7735	0,9410	0,1309	0,4035		
278,3314	77,7810	85,7095	0,9714	0,1110	0,3995		
αTA-	α Inpe	δ TA	δ Inpe	WTA-	-WInpe		
M = -1.1095 DP = 1.5145		M= -0,0098	DP= 0,2904	M= 0,2146	DP = 0,1770		

Tabela 4 - Simulação com me = 0,08.

	$me_x = 0,00105 me_y = 0,00002 me_z = 0,05999$						
αTA	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe		
234,1000	77,3000	90,8100	0	0	0		
234,1021	77,3013	91,2219	0,3621	-0,3887	0,5119		
233,7428	77,6912	90,9711	0,2028	-0,3988	0,3511		
233,5435	78,0911	90,8121	0,0135	-0,4089	0,2921		
233,5342	78,5010	90,6652	-0,1958	-0,4290	0,2452		
233,7350	78,9309	90,5272	-0,4050	-0,4191	0,1972		
234,1458	79,3508	90,4042	-0,6842	-0,4292	0,1742		
234,8365	79,7807	90,2740	-0,9635	-0,4193	0,1540		
235,8073	80,2005	90,1360	-1,3127	-0,3995	0,1160		
237,1279	80,6003	90,0100	-1,6921	-0,3897	0,1000		
238,8285	80,9901	89,8760	-2,0615	-0,3499	0,0660		
240,8990	81,3399	89,7545	-3,1410	-0,5201	0,2145		
244,0494	81,8597	89,4652	-2,5706	-0,2603	0,1152		
246,6293	82,1195	89,2614	-2,9007	-0,2105	0,1014		
249,5389	82,3293	89,0620	-3,2011	-0,1507	0,0920		
252,7481	82,4791	88,8679	-3,4019	-0,1009	0,0779		
256,1570	82,5789	88,6900	-3,5430	-0,0211	0,1000		
259,7055	82,5988	88,4996	-3,4945	0,0388	0,0896		
263,2038	82,5587	88,3385	-3,3462	0,1187	0,1185		
266,5520	82,4386	88,1831	-3,1480	0,1586	0,1531		
269,7003	82,2785	88,0757	-2,8397	0,2185	0,2257		
272,5386	82,0585	87,3793	-3,2114	0,2085	-0,2307		
275,7470	81,8486	87,4387	-1,7030	0,2286	0,0187		
277,4458	81,6186	87,3378	-1,4542	0,2486	0,0978		
278,8947	81,3687	87,2045	-1,1953	0,2687	0,1445		
280,0838	81,0988	87,0604	-0,9262	0,2788	0,1804		
281,0032	80,8189	86,9117	-0,7368	0,2889	0,2017		
281,7326	80,5291	86,7706	-0,5074	0,2991	0,2306		
282,2322	80,2292	86,6274	-0,3378	0,2992	0,2574		
282,5620	79,9293	86,4824	-0,1380	0,2893	0,2724		
282,6918	79,6395	86,3456	0,0218	0,2895	0,3056		
282,6618	79,3496	86,1971	-0,8382	0,1296	0,3171		
283,4917	79,2198	86,0595	0,4817	0,2698	0,2595		
283,0019	78,9500	85,9962	0,5719	0,2500	0,2662		
282,4220	78,7001	85,9410	0,6620	0,2201	0,2810		
281,7523	78,4803	85,8838	0,7423	0,2103	0,3038		
281,0026	78,2704	85,8147	0,8226	0,1904	0,3047		
280,1729	78,0805	85,7534	0,8829	0,1705	0,3134		
279,2832	77,9106	85,6901	0,9432	0,1306	0,3201		
278,3336	77,7808	85,6247	0,9736	0,1108	0,3147		
<i>α</i> TA-	α Inpe	δ TA	- δ Inpe	WTA	-WInpe		
M = -1,1095 DP = 1.5160		M= 0,0097	DP= 0,2902	M= 0,19630	DDP=0,1242		

Tabela 5 -	Simula	cão com	me =	0.06.
		7		

	$me_x = 0,00069 me_y = 0,00001 me_z = 0,03999$						
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe		
234,1000	77,3000	90,8100	0	0	0		
234,1014	77,3009	91,0846	0,3614	-0,3891	0,3746		
233,7419	77,6908	90,8841	0,2019	-0,3992	0,2641		
233,5423	78,0908	90,7481	0,0123	-0,4092	0,2281		
233,5328	78,5007	90,6168	-0,1972	-0,4293	0,1968		
233,7333	78,9306	90,4915	-0,4067	-0,4194	0,1615		
234,1438	79,3505	90,3795	-0,6862	-0,4295	0,1495		
234,8343	79,7804	90,2593	-0,9657	-0,4196	0,1393		
235,8048	80,2003	90,1307	-1,3152	-0,3997	0,1107		
237,1253	80,6002	90,0133	-1,6947	-0,3898	0,1033		
238,8257	80,9901	89,8873	-2,0643	-0,3499	0,0773		
240,8960	81,3400	89,7730	-3,1440	-0,5200	0,2330		
244,0463	81,8598	89,4902	-2,5737	-0,2602	0,1402		
246,6262	82,1197	89,2909	-2,9038	-0,2103	0,1309		
249,5359	82,3295	89,0947	-3,2041	-0,1505	0,1247		
252,7454	82,4794	88,9019	-3,4046	-0,1006	0,1119		
256,1547	82,5793	88,7233	-3,5453	-0,0207	0,1333		
259,7037	82,5992	88,5297	-3,4963	0,0392	0,1197		
263,2026	82,5591	88,3623	-3,3474	0,1191	0,1423		
266,5514	82,4390	88,1954	-3,1486	0,1590	0,1654		
269,7002	82,2790	88,0604	-2,8398	0,2190	0,2104		
272,5391	82,0590	87,5381	-3,2109	0,2090	-0,0719		
275,7480	81,8490	87,4958	-1,7020	0,2290	0,0758		
277,4472	81,6191	87,3652	-1,4528	0,2491	0,1252		
278,8965	81,3691	87,2163	-1,1935	0,2691	0,1563		
280,0859	81,0992	87,0602	-0,9241	0,2792	0,1802		
281,0054	80,8193	86,9011	-0,7346	0,2893	0,1911		
281,7351	80,5294	86,7504	-0,5049	0,2994	0,2104		
282,2348	80,2295	86,5982	-0,3352	0,2995	0,2282		
282,5647	79,9296	86,4449	-0,1353	0,2896	0,2349		
282,6946	79,6397	86,3004	0,0246	0,2897	0,2604		
282,6645	79,3498	86,1447	-0,8355	0,1298	0,2647		
283,4945	79,2199	85,9997	0,4845	0,2699	0,1997		
283,0046	78,9500	85,9308	0,5746	0,2500	0,2008		
282,4247	78,7001	85,8707	0,6647	0,2201	0,2107		
281,7549	78,4802	85,8092	0,7449	0,2102	0,2292		
281,0050	78,2703	85,7364	0,8250	0,1903	0,2264		
280,1752	78,0803	85,6723	0,8852	0,1703	0,2323		
279,2855	77,9104	85,6067	0,9455	0,1304	0,2367		
278,3357	77,7805	85,5398	0,9757	0,1105	0,2298		
α TA-	α Inpe	δ TA	$-\delta$ Inpe	WTA	WInpe		
M= -1,1094	DP= 1,5175	M= -0,0097	' DP= 0,2908	M= 0,1779	DP=0,0738		

Tabela 6 - Simulação com me = 0,04.

me = 0.02 mex = 0.00035 mey = 0.00001 mez = 0.01999					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe
234,1000	77,3000	90,8100	0	0	0
234,1007	77,3004	90,9473	0,3607	-0,3896	0,2373
233,7409	77,6904	90,7970	0,2009	-0,3996	0,1770
233,5412	78,0904	90,6840	0,0112	-0,4096	0,1640
233,5314	78,5003	90,5684	-0,1986	-0,4297	0,1484
233,7317	78,9303	90,4557	-0,4083	-0,4197	0,1257
234,1419	79,3503	90,3547	-0,6881	-0,4297	0,1247
234,8322	79,7802	90,2447	-0,9678	-0,4198	0,1247
235,8024	80,2002	90,1253	-1,3176	-0,3998	0,1053
237,1226	80,6001	90,0167	-1,6974	-0,3899	0,1067
238,8228	80,9900	89,8987	-2,0672	-0,3500	0,0887
240,8930	81,3400	89,7915	-3,1470	-0,5200	0,2515
244,0431	81,8599	89,5151	-2,5769	-0,2601	0,1651
246,6231	82,1198	89,3205	-2,9069	-0,2102	0,1605
249,5330	82,3298	89,1273	-3,2070	-0,1502	0,1573
252,7427	82,4797	88,9360	-3,4073	-0,1003	0,1460
256,1523	82,5796	88,7567	-3,5477	-0,0204	0,1667
259,7018	82,5996	88,5599	-3,4982	0,0396	0,1499
263,2013	82,5596	88,3862	-3,3487	0,1196	0,1662
266,5507	82,4395	88,2077	-3,1493	0,1595	0,1777
269,7001	82,2795	88,0452	-2,8399	0,2195	0,1952
272,5395	82,0595	87,6949	-3,2105	0,2095	0,0849
275,7490	81,8495	87,5529	-1,7010	0,2295	0,1329
277,4486	81,6195	87,3926	-1,4514	0,2495	0,1526
278,8982	81,3696	87,2282	-1,1918	0,2696	0,1682
280,0879	81,0996	87,0601	-0,9221	0,2796	0,1801
281,0077	80,8196	86,8906	-0,7323	0,2896	0,1806
281,7375	80,5297	86,7302	-0,5025	0,2997	0,1902
282,2374	80,2297	86,5691	-0,3326	0,2997	0,1991
282,5673	79,9298	86,4075	-0,1327	0,2898	0,1975
282,6973	79,6398	86,2552	0,0273	0,2898	0,2152
282,6673	79,3499	86,0924	-0,8327	0,1299	0,2124
283,4972	79,2199	85,9398	0,4872	0,2699	0,1398
283,0073	78,9500	85,8654	0,5773	0,2500	0,1354
282,4273	78,7000	85,8003	0,6673	0,2200	0,1403
281,7574	78,4801	85,7346	0,7474	0,2101	0,1546
281,0075	78,2701	85,6582	0,8275	0,1901	0,1482
280,1776	78,0802	85,5911	0,8876	0,1702	0,1511
279,2877	77,9102	85,5234	0,9477	0,1302	0,1534
278,3379	77,7803	85,4549	0,9779	0,1103	0,1449
αTA-	α Inpe	δ TA	$-\delta$ Inpe	WTA	-WInpe
M= -1,1093	DP= 1,5190	DP= $1,5190$ M= $-0,0096$ DP= $0,2909$ M= $0,1595$ DP=		DP= 0,0363	

Tabela 7 - Simulação com me = 0,02.

APÊNDICE B

Tabelas com simulações para o SCD2, sendo M a média das diferenças no período e DP o desvio padrão.

mex = 0,00139 mey = 0,00002 mez = 0,07999					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe
281,7000	62,7400	34,5700	0	0	0
281,7167	62,7436	34,3643	0,1867	-0,2364	-0,2257
281,5475	62,9828	34,3104	0,1675	-0,2272	-0,2996
281,3982	63,2120	34,2658	0,1182	-0,2180	-0,3642
281,2987	63,4312	34,2293	1,2487	0,0412	-0,4007
280,0688	63,3905	34,1891	0,0088	-0,0695	-0,4309
280,0788	63,4596	34,1358	-0,0112	-0,0704	-0,4842
280,1087	63,5287	34,1001	-0,0213	-0,0513	-0,5099
280,1484	63,5779	34,0623	-0,0316	-0,0521	-0,5477
280,1979	63,6271	34,0423	-0,0521	-0,0429	-0,5577
280,2672	63,6663	34,0204	-0,0428	-0,0337	-0,5796
280,3263	63,6955	34,0166	1,6163	0,2255	-0,4634
278,7254	63,4650	33,8991	-0,0046	0,0150	-0,5209
278,7442	63,4443	33,8495	0,0042	0,0243	-0,5205
278,7529	63,4137	33,8183	0,0129	0,0237	-0,4917
278,7515	63,3832	33,7853	0,0315	0,0232	-0,4747
278,7300	63,3528	33,7705	0,0500	0,0228	-0,4295
278,6884	63,3224	33,7543	0,0584	0,0124	-0,3857
278,6368	63,3021	33,7471	0,0668	0,0121	-0,3329
278,5751	63,2819	33,7499	0,0751	0,0119	-0,2701
278,5033	63,2618	33,7645	0,0833	0,0118	-0,1955
278,4216	63,2418	33,7946	0,0916	0,0018	-0,1054
278,3299	63,2319	33,8479	0,0999	0,0019	0,0179
278,2282	63,2221	33,9331	1,6282	2,0021	0,2431
276,5974	61,2123	33,9075	0,1774	0,1823	0,2175
276,4160	61,0227	34,2120	0,2160	0,1927	0,6620
276,1948	60,8231	34,9581	2,4448	1,4431	1,5281
273,7420	59,3744	32,4861	0,3520	0,2644	-0,9239
273,3813	59,1051	32,9251	0,4113	0,2651	-0,4549
272,9606	58,8358	33,1135	0,4406	0,2658	-0,2365
272,5101	58,5665	33,2241	0,8801	0,3165	-0,1159
271,6198	58,2472	33,3107	0,4798	0,2472	-0,0493
271,1296	57,9980	33,4133	0,4996	0,2480	0,0333
270,6195	57,7488	33,5000	0,5495	0,2288	0,1000
270,0595	57,5196	33,5735	0,5695	0,2096	0,1535
269,4796	57,3104	33,6365	0,6096	0,2004	0,1965
268,8598	57,1112	33,6898	0,6198	0,1712	0,2298
268,2302	56,9420	33,7345	0,3902	0,1720	0,2245
α TA- α Inpe		δ TA- δ Inpe		WTA-WInpe	
M= 0,3790 DP= 0,5518		M= 0,1577 DP= 0,4116		M= -0,1828 DP = 0,4347	

Tabela 8 - Simulação com me = 0,08.

mex = 0,00105 mey = 0,00002 mez = 0,05999					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe
281,7000	62,7400	34,5700	0	0	0
281,7125	62,7427	34,4157	0,1825	-0,2373	-0,1743
281,5431	62,9821	34,3803	0,1631	-0,2279	-0,2297
281,3936	63,2115	34,3519	0,1136	-0,2185	-0,2781
281,2940	63,4309	34,3295	1,2440	0,0409	-0,3005
280,0641	63,3903	34,2993	0,0041	-0,0697	-0,3207
280,0741	63,4597	34,2568	-0,0159	-0,0703	-0,3632
280,1040	63,5291	34,2301	-0,0260	-0,0509	-0,3799
280,1438	63,5784	34,1992	-0,0362	-0,0516	-0,4108
280,1934	63,6278	34,1842	-0,0566	-0,0422	-0,4158
280,2628	63,6672	34,1653	-0,0472	-0,0328	-0,4347
280,3222	63,6966	34,1624	1,6122	0,2266	-0,3176
278,7215	63,4662	34,0443	-0,0085	0,0162	-0,3757
278,7407	63,4457	33,9922	0,0007	0,0257	-0,3778
278,7497	63,4153	33,9562	0,0097	0,0253	-0,3538
278,7486	63,3849	33,9164	0,0286	0,0249	-0,3436
278,7275	63,3546	33,8929	0,0475	0,0246	-0,3071
278,6863	63,3243	33,8657	0,0563	0,0143	-0,2743
278,6351	63,3041	33,8453	0,0651	0,0141	-0,2347
278,5738	63,2840	33,8324	0,0738	0,0140	-0,1876
278,5025	63,2639	33,8284	0,0825	0,0139	-0,1316
278,4212	63,2439	33,8359	0,0912	0,0039	-0,0641
278,3299	63,2340	33,8609	0,0999	0,0040	0,0309
278,2287	63,2241	33,9074	1,6287	2,0041	0,2174
276,5981	61,2142	33,8531	0,1781	0,1842	0,1631
276,4170	61,0245	34,0816	0,2170	0,1945	0,5316
276,1961	60,8248	34,6066	2,4461	1,4448	1,1766
273,7440	59,3758	32,7222	0,3540	0,2658	-0,6878
273,3835	59,1063	33,0464	0,4135	0,2663	-0,3336
272,9630	58,8368	33,1801	0,4430	0,2668	-0,1699
272,5126	58,5674	33,2556	0,8826	0,3174	-0,0844
271,6224	58,2479	33,3181	0,4824	0,2479	-0,0419
271,1322	57,9985	33,4000	0,5022	0,2485	0,0200
270,6221	57,7491	33,4700	0,5521	0,2291	0,0700
270,0621	57,5197	33,5301	0,5721	0,2097	0,1101
269,4822	57,3103	33,5823	0,6122	0,2003	0,1423
268,8624	57,1109	33,6274	0,6224	0,1709	0,1674
268,2326	56,9415	33,6659	0,3926	0,1715	0,1559
αTA-	α TA- α Inpe		$-\delta$ Inpe	WTA-WInpe	
M= 0,3779 DP= 0,5528		M= 0,1586 DP= 0,4119		M= -0,1299 DP=0,3291	

Tabela 9 – Simulação com me = 0,06.

me = 0.04 $mex = 0.00069$ $mey = 0.00001$ $mez = 0.03999$					
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe
281,7000	62,7400	34,5700	0	0	0
281,7084	62,7418	34,4672	0,1784	-0,2382	-0,1228
281,5388	62,9814	34,4502	0,1588	-0,2286	-0,1598
281,3891	63,2110	34,4379	0,1091	-0,2190	-0,1921
281,2893	63,4306	34,4297	1,2393	0,0406	-0,2003
280,0594	63,3902	34,4096	-0,0006	-0,0698	-0,2104
280,0694	63,4598	34,3779	-0,0206	-0,0702	-0,2421
280,0993	63,5294	34,3601	-0,0307	-0,0506	-0,2499
280,1392	63,5789	34,3361	-0,0408	-0,0511	-0,2739
280,1889	63,6285	34,3262	-0,0611	-0,0415	-0,2738
280,2585	63,6681	34,3102	-0,0515	-0,0319	-0,2898
280,3181	63,6978	34,3083	1,6081	0,2278	-0,1717
278,7177	63,4675	34,1895	-0,0123	0,0175	-0,2305
278,7371	63,4472	34,1348	-0,0029	0,0272	-0,2352
278,7465	63,4169	34,0941	0,0065	0,0269	-0,2159
278,7457	63,3866	34,0476	0,0257	0,0266	-0,2124
278,7250	63,3564	34,0153	0,0450	0,0264	-0,1847
278,6842	63,3262	33,9772	0,0542	0,0162	-0,1628
278,6334	63,3061	33,9435	0,0634	0,0161	-0,1365
278,5725	63,2860	33,9149	0,0725	0,0160	-0,1051
278,5017	63,2659	33,8923	0,0817	0,0159	-0,0677
278,4208	63,2459	33,8773	0,0908	0,0059	-0,0227
278,3299	63,2360	33,8739	0,0999	0,0060	0,0439
278,2291	63,2261	33,8816	1,6291	2,0061	0,1916
276,5987	61,2161	33,7988	0,1787	0,1861	0,1088
276,4180	61,0263	33,9511	0,2180	0,1963	0,4011
276,1974	60,8265	34,2548	2,4474	1,4465	0,8248
273,7460	59,3772	32,9582	0,3560	0,2672	-0,4518
273,3856	59,1075	33,1676	0,4156	0,2675	-0,2124
272,9653	58,8379	33,2468	0,4453	0,2679	-0,1032
272,5151	58,5683	33,2871	0,8851	0,3183	-0,0529
271,6249	58,2486	33,3254	0,4849	0,2486	-0,0346
271,1348	57,9990	33,3867	0,5048	0,2490	0,0067
270,6247	57,7494	33,4400	0,5547	0,2294	0,0400
270,0647	57,5198	33,4868	0,5747	0,2098	0,0668
269,4848	57,3102	33,5282	0,6148	0,2002	0,0882
268,8649	57,1106	33,5649	0,6249	0,1706	0,1049
268,2351	56,9410	33,5972	0,3951	0,1710	0,0872
αTA-	α Inpe	δ TA	$-\delta$ Inpe	WTA-WInpe	
M= 0,3768 DP= 0,5539		M= 0,1595 DP= 0,4122		M= -0,0771 DP=0,2242	

mex = 0,00035 mey = 0,00001 mez = 0,01999						
αΤΑ	δ TA	WTA	α TA- α Inpe	δ TA- δ Inpe	WTA-WInpe	
281,7000	62,7400	34,5700	0	0	0	
281,7042	62,7409	34,5186	0,1742	-0,2391	-0,0714	
281,5344	62,9807	34,5201	0,1544	-0,2293	-0,0899	
281,3845	63,2105	34,5240	0,1045	-0,2195	-0,1060	
281,2846	63,4303	34,5298	1,2346	0,0403	-0,1002	
280,0547	63,3901	34,5198	-0,0053	-0,0699	-0,1002	
280,0647	63,4599	34,4990	-0,0253	-0,0701	-0,1210	
280,0947	63,5297	34,4900	-0,0353	-0,0503	-0,1200	
280,1346	63,5795	34,4731	-0,0454	-0,0505	-0,1369	
280,1844	63,6293	34,4681	-0,0656	-0,0407	-0,1319	
280,2543	63,6691	34,4551	-0,0557	-0,0309	-0,1449	
280,3140	63,6989	34,4541	1,6040	0,2289	-0,0259	
278,7138	63,4688	34,3348	-0,0162	0,0188	-0,0852	
278,7335	63,4486	34,2774	-0,0065	0,0286	-0,0926	
278,7432	63,4184	34,2321	0,0032	0,0284	-0,0779	
278,7429	63,3883	34,1788	0,0229	0,0283	-0,0812	
278,7225	63,3582	34,1376	0,0425	0,0282	-0,0624	
278,6821	63,3281	34,0886	0,0521	0,0181	-0,0514	
278,6317	63,3080	34,0418	0,0617	0,0180	-0,0382	
278,5713	63,2880	33,9975	0,0713	0,0180	-0,0225	
278,5008	63,2680	33,9561	0,0808	0,0180	-0,0039	
278,4204	63,2480	33,9186	0,0904	0,0080	0,0186	
278,3300	63,2380	33,8870	0,1000	0,0080	0,0570	
278,2296	63,2280	33,8558	1,6296	2,0080	0,1658	
276,5994	61,2181	33,7444	0,1794	0,1881	0,0544	
276,4190	61,0282	33,8206	0,2190	0,1982	0,2706	
276,1987	60,8283	33,9026	2,4487	1,4483	0,4726	
273,7480	59,3786	33,1941	0,3580	0,2686	-0,2159	
273,3878	59,1088	33,2888	0,4178	0,2688	-0,0912	
272,9677	58,8389	33,3134	0,4477	0,2689	-0,0366	
272,5175	58,5691	33,3186	0,8875	0,3191	-0,0214	
271,6275	58,2493	33,3327	0,4875	0,2493	-0,0273	
271,1374	57,9995	33,3733	0,5074	0,2495	-0,0067	
270,6274	57,7497	33,4100	0,5574	0,2297	0,0100	
270,0674	57,5199	33,4434	0,5774	0,2099	0,0234	
269,4874	57,3101	33,4741	0,6174	0,2001	0,0341	
268,8674	57,1103	33,5025	0,6274	0,1703	0,0425	
268,2375	56,9405	33,5286	0,3975	0,1705	0,0186	
αTA-	α TA- α Inpe		δ TA- δ Inpe		WTA-WInpe	
M= 0,3757 DP= 0,5549		M= 0,1604 DP= 0,4125		M= -0,0242 DP= 0,1223		