

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

MODELAGEM, SIMULAÇÃO E RESULTADOS EXPERIMENTAIS DE UM SISTEMA DE RASTREIO DE POTÊNCIA MÁXIMA PARA GERADORES SOLARES DE SATÉLITES ARTIFICIAIS

RELATÓRIO FINAL DE INCIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Bolsista – Alexandre Nunes de Souza Nassabay (FEG – UNESP Bolsista

PIBIC/CNPq)

E-mail: alexmagnus_000@hotmail.com

Orientador - Dr. Marcelo Lopes de Oliveira e Souza (DMC/ETE/INPE) E-mail: marcelo@dem.inpe.br

Co-orientador – Renato Oliveira de Magalhães (DEA/ETE/INPE)

E-mail: renato@dea.inpe.br

Janeiro de 2008

Índice

Introdução	3
A Ferramenta MATLAB	3
O Simulink	3
Construção do Sistema	3
Atividades Correlatas	9
Referências Bibliográficas	10

Índice de Figuras

Figura 1 – Representação do sistema elétrico de um satélite	4
Figura 2 – Dados do painel Solar	4
Figura 3 – Bloco do painel solar e sensores de tensão e corrente	5
Figura 4 – Rastreador de pico	.5
Figura 5 – Sistema de Condicionamento do sinal de erro	.6
Figura 6 – Gerenciador de reset	.6
Figura 7 – Atuador	.7
Figura 8 – Bloco barr	.7
Figura 9 – O sistema completo	8
Figura 10 – Gráficos resultantes da simulação – sinal de entrada	8
Figura 11 – Gráficos resultantes da simulação – outros sinais	9

Introdução

Uma eficiência máxima é pré-requisito para se garantir o avanço de um projeto espacial. No âmbito da eficiência energética, o desenvolvimento de um sistema capaz de maximizar a potência disponível para as cargas embarcadas permite um melhor aproveitamento das mesmas. Para um satélite, o rastreador de potência máxima tem por objetivo ajustar a relação tensão-corrente da carga de modo a drenar a maior potência da fonte (painel) e disponibilizar o máximo possível de energia para as cargas (bateria). Utilizando-se das ferramentas a serem estudadas pretende-se simular um destes sistemas, averiguando sua funcionalidade.

No decorrer do período entre agosto de 2007 e janeiro de 2008, desejando-se criar modelos

de sistemas de rastreamento de máxima potência, foram feitos os estudos introdutórios ao ambiente MATLAB, paralelamente ao estudo dos mesmos. Posteriormente, estudou-se o programa Simulink para o desenvolvimento de diagramas de blocos, assim como a simulação dos sistemas representados.

A Ferramenta MATLAB

O MATLAB consiste em um ambiente de trabalho permite a manipulação computacional de dados numéricos ou não, desde que transcritos na forma de matrizes. Matriz e o nome dado ao objeto básico de manipulação do MATLAB, pois pode sofrer operações tal qual sua contra parte matemática. Conforme se avança no domínio do uso deste software o conceito de matriz é expandido para conter outras significações alem do costumeiro conjunto numérico.

Devido ao uso de comandos próprios, é possível usar comandos de programação importados de outras linguagens de alto nível para se chegar ao resultado desejado, assim como o agrupamento desta rotina em uma nova função definida pelo usuário. Uma vez sabendo um primeiro grupo de comandos, já é possível desenvolver diversas operações, das mais básicas até a resolução de equações diferenciais.

O Simulink

O Simulink é a parte gráfica do pacote MATLAB. Com este sistema é possível usar blocos pré-construídos na criação e simulação de sistemas. A partir deste programa é que se farão as simulações propostas.

Construção do Sistema

Segundo Magalhães (2005), esquematicamente, a rede elétrica de um satélite pode ser representada por:

Figura 1: Representação do sistema elétrico de um satélite. Fonte: Magalhães (2003)..

Antes das cargas, tem-se:

O gerador fotovoltaico;

A unidade de condicionamento de potência, que pode ser subdividida da seguinte forma:

Sistema de rastreamento da potência máxima – sistema que busca efetuar uma máxima transferência de potência entre painel e carga;

Regulador de tensão do barramento – controla a tensão disponível para as cargas conforme esta é requisitada;

Modelagem do painel

O gerador solar apresenta a seguinte relação ente tensão e corrente:

 $i = Isc - {Is^{*}[exp(v/Vt)] - 1},$

onde:

i – corrente de saída do painel;

Isc - corrente fornecida pela fonte controlada do modelo;

Is – corrente de saturação do diodo;

v – tensão à qual a placa solar é submetida;

Vt - tensão originária pela ação da agitação térmica do material constituinte do diodo;

Figura 2: Dados do painel Solar. À esquerda: Modelo de Célula fotovoltaica; Ao centro: Curva

característica do painel; À direita: Gráfico da potência contra tensão; Neste caso considerou-se Isc=0.01A, Vt=0,171, Is=2*E-15;

Para representar tais características no Simulink para posterior simulação, foi utilizado o bloco "Look-up Table", cuja propriedade é devolver na saída os dados de entrada segundo uma correlação definida pelo usuário. Tal correlação pode ser uma função matemática, ou uma tabela de dados. Se o valor da entrada não bate com algum dos valores tabelados, o sistema usa de interpolação ou de extrapolação para aproximar um valor adequado. Para o caso, entra-se com o valor de tensão, e obtém-se a correspondente corrente, conforme descrito pela Figura 1. Também ligados ao bloco, estão as saídas de tensão e corrente que farão as vezes de sensores para as respectivas medidas.

Figura 3: Bloco do painel solar e sensores de tensão e corrente. Para uma dada entrada de tensão (não mostrada), o bloco look-up table retorna uma correspondente corrente. Esse destaque corresponde ao bloco SAG (do inglês Solar Array Generator) da construção à direita que, além do painel, apresenta as saídas de tensão e corrente ligadas ao osciloscópio (bloco Scope), e a dedução do valor da potência feita pelo produto I x V (executado pelo bloco Dot Product).

Uma vez tendo disponível o sinal de potência, deve-se direcioná-lo ao rastreador de pico de potência, constituído por um bloco comparador, um bloco de memória e um bloco que permita limpar a memória via sinal de reset (bloco Product). A função deste conjunto se resume a comparar sucessivamente o valor atual de potência com o valor imediatamente anterior e disponibilizar para o sistema o mais alto dentre eles.

Figura 4: Rastreador de pico. A construção interna do PPT (do inglês Power Peak Tracking – Rastreador de Pico de Potência) permite que se armazene no bloco Memory o máximo encontrado pelo bloco MinMax. O reset da memória se dá ao ocorrer um sinal de nível lógico baixo (valor zero), proveniente da entrada RST. À esquerda, a conexão do PPT com o sensor de potência e a disponibilização dos sinais de saída para osistema.

Munido dos sinais de potência instantânea e de potência máxima, pode-se subtrair o

primeiro do último para se gerar um sinal de erro. Passando este sinal por um subsistema de condicionamento, obter-se-á o sinal desejado para correção da diferença de potência observada. Com esta finalidade produziu-se o seguinte esquema:

Figura 5: Sistema de Condicionamento do sinal de erro. A função deste segmento do Rastreador de Potência é produzir um sinal de controle que atue sobre a tensão que o painel solar é submetido. Analisa-se o comportamento da potência instantânea em relação à máxima para saber se a correção a ser aplicada à tensão é positiva ou negativa.

Auxiliando na regulação do sistema, há um bloco de reset, que limpa a memória do PPT para melhor ajuste do sistema às condições dinâmicas sofridas pelo painel. A reinicialização se dá quando a potência instantânea fica abaixo de um predeterminado nível da potência máxima alcançada. Então se houver uma diminuição da potência entregue pelo gerador solar, haverá o rastreamento do pico dentro das novas condições regentes.

Figura 6: Gerenciador de reset. O sistema reinicializará toda vez que o erro for superior a um determinado valor da potência de pico (neste caso, 95%).

O controle da tensão do painel é feito pelo atuador, que controla o ângulo que este faz em relação ao sol. Este recebe o sentido de rotação gerado pelo condicionador de sinais e ajusta o painel conforme a necessidade. Esquematicamente:

Figura 7: Atuador. Controle da rotação representado por um contador Up-Down. A contagem para quando não há iluminação (sinal dl –day ligth), para não haver gastos com o motor durante o eclipse.

Uma vez otimizada a potência obtida pelo gerador, esta é levada às cargas pelo barramento. Na ocorrência de um período de eclipse, este deve alternar entre o painel e a bateria agregada ao conjunto. A tarefa é executada pelo bloco barr:

Figura 8: Bloco barr. Atua via sinal dl (dayligth) sobre o uso de energia da bateria ou do painel.

Como um todo, o sistema fica:

Figura 9: O sistema completo.

Como resultado da simulação desse sistema obteve-se a Figura 10. No quadro superior, a linha azul representa a tensão; e a verde a corrente atuantes no painel. No segundo quadro, em azul tem-se a potência instantânea e, em vermelho, a potência rastreada pelo sistema. No penúltimo quadro, em azul, tem-se o comportamento do sinal de reset, enquanto em verde, tem-se o sinal de erro, representado em maior escala no último quadro (cor vermelha). Para essa simulação, usou-se um painel descrito por: i = 0.01 - (2E-15 x (exp (V/0,171)))

Para o reset, limitou-se o erro a 5% da potência máxima retida pelo PPT. Aliando isso à baixa potência registrada (da ordem de miliwatts), o erro, assim como o sinal de correção, possuem baixa amplitude.

Figura 10: Gráficos resultantes da simulação – sinal de entrada. Potência no painel.

Figura 10: Gráficos resultantes da simulação – outros sinais. Acima – detalhe da potencia sobre o painel. Segundo Quadro: Tensão obtida; Terceiro Quadro: Corrente obtida (em verde); Quarto e Quinto Quadro: Potências de saída (azul) e máxima (verde), sendo que no quinto quadro a mesma figura, ampliada. Sexto Quadro: detalhe do sinal de rotação para as primeiras 24 horas;

Atividades Correlatas

Como extensão ao presente trabalho, sugere-se: > Inclusão de um modelo mais aprimorado de bateria;

> Preparo do sistema para resposta à sobrecargas;

> Esquematização do circuito eletro-eletrônico supondo a confecção do equipamento.

Referências Bibliográficas

1) PRODENGE. *Curso de MATLAB 5.1; Introdução à Solução de Problemas de Engenharia (Apostila, 2a edição)*; Programa Prodenge/ Sub-Programa Reenge; Universidade do Estado do Rio de Janeiro.

2) MARCHAND, P. *Graphics and GUIs with MATLAB (Third Edition)*.(Editora cidade -- pegar), 2003.

3) KING, J. *MATLAB 4.0 for Engineers*. The Benjamin/Cummings Publishing Company, Inc. Redwood City, CA, USA, 1995.

4) MAGALHÃES, R. O., Souza M. L. O. *Modeling and Design of a Peak Power Tracking System for Solar Array Generators of Artificial Satellites*, 3rd IECEC International Energy Conversion Engineering Conference – San Francisco, Califórnia, EUA, 15-18 Aug, 2005, Paper 40454IECEC2005

5) MAGALHÃES, R. O. *Modelagem, Simulação e Validação Experimental de um Sistema de Rastreio de Potência Máxima para Geradores Solares de Satélites Artificiais,* INPE, São José dos Campos – SP, 2006 (INPE-14491-TDI/1172)

6) The Math Works, Inc. *The Student Edition of Simulink – User's Guide*. Prentice Hall, Inc., Englewood Cliffs, New Jersey, USA, 1996;

7) OGATA, K. *Engenharia de Controle Moderno (4^a Edição)*. Pearson Education do Brasil, São Paulo – SP.