

INPE-13008-PRE/8285

SÍNTESE ESPECTRAL ESTELAR EM ALTA RESOLUÇÃO: ABUNDÂNCIA DO CARBONO E NITROGÊNIO EM ESTRELAS DE TIPO SOLAR DA VIZINHANÇA SOLAR

Lívia de Souza Ribeiro*

*Bolsista UNITAU

Relatório Final de Projeto de Iniciação Científica (PIBIC/CNPq/INPE), orientado pelo Dr. André de Castro Milone

> INPE São José dos Campos 2005

SÍNTESE ESPECTRAL ESTELAR EM ALTA RESOLUÇÃO: ABUNDÂNCIA DO CARBONO E NITROGÊNIO EM ESTRELAS DE TIPO SOLAR DA VIZINHANÇA SOLAR

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/CNPq/INPE)

Lívia de Souza Ribeiro (UNITAU, Bolsista PIBIC/CNPq) E-mails: <u>livia@das.inpe.br</u> <u>liviaribeiro@gmail.com</u>

Dr. André de Castro Milone (CEA/DAS/INPE, Orientador) E-mail: <u>acmilone@das.inpe.br</u>

COLABORADOR

Dr. Gustavo Frederico Porto de Mello (UFRJ)

Junho de 2005

SUMÁRIO

RESUMO	3
CAPÍTULO 1 – INTRODUÇÃO	4
CAPÍTULO 2 – ESPECTROSCOPIA ESTELAR	7
CAPITULO 3 – AMOSTRA E TRATAMENTO DE DADOS	11
 3.1 - AMOSTRA. 3.2 - OBSERVAÇÕES. 3.3 - REDUÇÕES. 	11 11 12
CAPÍTULO 4 – SÍNTESE ESPECTRAL	17
 4.1 – AJUSTE DO PERFIL DA LINHA. 4.2 – PARÂMETROS PARA A SÍNTESE ESPECTRAL. 4.2.1 – MODELOS ATMOSFÉRICOS 4.2.2 – VALORES DE gf SOLARES. 4.2.3 – PARÂMETROS ATMOSFÉRICOS. 4.2.4 – PARÂMETROS PARA CONVOLUÇÃO ESPECTRAL. 4.3 – DETERMINAÇÃO DAS ABUNDÂNCIAS. 4.3.1 – CARBONO. 4.3.2 – NITROGÊNIO. 	17 17 18 19 19 19 19 19 23 24 28
CAPÍTULO 5 – CONCLUSÕES E TRABALHOS FUTUROS	31
CAPÍTULO 6 – APRESENTAÇÕES	33
APÊNDICE A	34
REFERÊCIAS	34

RESUMO

O estudo das abundâncias químicas por entre estrelas de tipo solar da vizinhança a solar é importante porque as composições fotosféricas fornecem informações fundamentais sobre os processos de nucleossíntese ocorridos e sobre a

história de evolução química do disco da Galáxia. A distribuição das abundâncias químicas destas estrelas não está bem estabelecida, especialmente dos elementos do grupo CNO. As abundâncias fotosféricas do Carbono e Nitrogênio de uma amostra de nove estrelas foram determinadas no presente estudo. Utilizamos a síntese espectral de bandas moleculares do Sistema Swan do C₂ e Sistema Vermelho do CN e de linhas atômicas do C I, aplicada por meio de um método diferencial tendo como referência o próprio Sol e abrangendo a região $\lambda\lambda$ 5000-8300Å. Os espectros de alta resolução (R=47.000) e elevada razão sinal-ruído (250≤S/R≤450), incluindo o solar de referência foram obtidos com o espectrógrafo Èchelle Feros instalado no telescópio 1,52m no Europa Southern Observatory; cedidos gentilmente pelo Prof. Dr. Gustavo P. Melo (OV/UFRJ). Utilizamos o código Moog, os modelos de atmosfera MARCS, as listas moleculares de Kurucz e atômicas do Vienna Atomic Lines Database. Os parâmetros fotosféricos foram determinados de forma homogênea por outros trabalhos. As abundâncias obtidas para o C e N abrangem respectivamente os intervalos -0,19≤[C/Fe]≤0,01 dex, com média igual a -0,06 dex, e -0,50≤[N/Fe]≤0,00 dex com média igual a 0,25 dex. Investigaremos também as relações entre estas abundâncias e [Fe/H]. Resultados secundários são velocidades de rotação: 0,3<v.seni<4,9 km/s. Pretende-se ainda aplicar a metodologia desenvolvida e calibrada para um conjunto maior de estrelas a fim de obtermos uma amostra representativa. Paralelamente relataremos a compilação dos resultados deste trabalho num artigo científico. Agradecemos ao Pibic-INPE/CNPq e ao projeto temático da Fapesp "Nossa Galáxia e Formação Estelar".

CAPÍTULO 1 – INTRODUÇÃO

A história e evolução química da Galáxia estão intimamente ligadas ao início do Universo. Inicialmente existiam apenas Hidrogênio , Hélio e outros elementos leves (Li, Be e B) e através de reações de fusão termonucleares nos interiores estelares, tem ocorrido à fusão do Hidrogênio em Hélio, quando este processo termina, começa a fusão do Hélio num elemento mais pesado, e assim sucessivamente. A evolução das composições químicas numa Galáxia ou no próprio Universo deve-se a este processo de nucleossíntese estelar, na qual as estrelas sintetizam elementos químicos pesados a partir dos mais leves e posteriormente ejetam estes elementos para o meio interestelar e novas estrelas se formam a partir deste material enriquecido.

Sabemos também que a história da Galáxia está fundamentalmente escrita na evolução de sua composição química. Isto porque dados precisos sobre abundâncias

de muitos elementos revelam numerosos detalhes sobre processos nucleossintéticos operantes no ambiente do início do seu enriquecimento.

O questionamento cada vez mais profundo sobre mecanismos que operaram na origem da Galáxia, tem dirigido os estudos com o intuito de se criar modelos de evolução para que melhor possamos entender os processos de nucleossíntese ocorridos e sobre a história de nossa Galáxia.

A ferramenta básica na leitura destes registros é a espectroscopia estelar. Através dela importantes propriedades físicas e dinâmicas de estrelas da Galáxia e de outras Galáxias são determinadas a partir destas técnicas em baixa e alta resolução. A relação de intensidade das linhas de absorção, a forma do contínuo permitem determinar temperaturas, densidades e abundâncias químicas de estrelas. Pelo perfil e posição das linhas espectrais têm-se informações sobre rotação, expansão e velocidades de recessão do sistema observado. Todas estas propriedades estão relacionadas com as condições de formação e a evolução de objetos celestes.

Até agora não há evidências que comprovem vida em outro planeta, mas a corrida por novas descobertas nesta área é cada vez mais intensa. Sabemos que somente após várias gerações de estrelas é que há condições para a formação dos planetas telúricos, e com o evoluir da química do carbono, a possibilidade de vida. Isso porque a formação molecular no espaço tende para moléculas complexas.

Elementos tais como o Carbono, Oxigênio, Hidrogênio e Nitrogênio podem combinar-se para formar cianeto de hidrogênio, água e amoníaco, que por sua vez, podem se combinar para dar origem a aminoácidos simples, os principais blocos de construção da vida. Entretanto a distribuição das composições, no disco da Galáxia, especialmente dos elementos do grupo CNO por diversas razões não está bem estabelecida.

Alguns estudos recentes sugerem que as estrelas excessivamente ricas nos elementos pesados em sua composição não podem manter sistemas planetários como o nosso. Tais estrelas podem tender a formar planetas gigantes de modo que estes planetas se condensem, antes que o disco protoplanetário tenha se dissipado totalmente. A interação do planeta com o disco faz com que ele espirale para o interior do sistema indo ocupar uma órbita muito próxima da estrela, destruindo quaisquer planetas telúricos que tenham se formado.

Outra possibilidade é que as estrelas ricas em metais formem planetas gigantes com grande eficiência, de modo que o grande número de planetas em órbitas próximas provoca atrações gravitacionais destrutivas que rompem as órbitas estáveis, ejetando planetas para fora do seu sistema e lançando alguns deles para o seu interior; o que também, provoca a destruição das órbitas de planetas telúricos.

Se for verdade como parece ser, poderia apresentar-se uma situação na qual apenas estrelas com características similares as do Sol, como idade, brilho e estrutura podem formar planetas como o nosso.

As estrelas de tipo solar (F8-G5 IV-V) da vizinhança solar (distâncias inferiores a 25 parsecs) formam uma população estelar mais adequada para o estudo

da evolução química da Galáxia, principalmente do disco, pois distribuições de abundâncias de estrelas de tipo solar da vizinhança solar poderiam guardar registros de eventos passados que forneceriam novas informações da evolução química da Galáxia, principalmente do disco. A composição química da atmosfera dessas estrelas não foi alterada pela evolução das mesmas, suas abundâncias fotosféricas são representativas do meio interestelar onde as estrelas se formam e da época quando se formaram.

Estas estrelas possuem dispersão de idade igual à idade da Galáxia, pois são estrelas cujo nascimento ocorreu desde a época da formação da Galáxia e vivas ainda hoje. Por serem semelhante ao Sol uma análise diferencial pode ser aplicada com muita vantagem, porque o Sol é a estrela que melhor conhecemos e sua estrutura é semelhante à das estrelas em estudo.

Em geral os astrônomos supõem que o Sistema Solar foi formado a partir do material que representaria as condições reinantes na Galáxia em geral, portanto as abundâncias solares são geralmente consideradas no estabelecimento do padrão a ser empregado para outras estrelas, admitindo assim que o Sol representa a abundância cósmica dos elementos químicos. Contudo, esta visão pode ainda ser questionada. Não temos certeza de que o Sol possua uma composição química representativa por entre estrelas semelhantes a ele.

Assim este trabalho tem por objetivo, investigar e determinar as abundâncias fotosféricas do Carbono e do Nitrogênio, por meio de síntese espectral de bandas eletrônico-vibracionais moleculares do C_2 e do CN proeminentes na região óptica, aplicando-se um método diferencial tendo como referência o próprio Sol, representado pelo espectro de Ganimedes, para uma amostra de nove estrelas de tipo solar da vizinhança solar.

CAPÍTULO 2 – ESPECTROSCOPIA ESTELAR

A espectroscopia é a ferramenta fundamental para o estudo de atmosferas planetárias ou estelares. Define-se a resolução espectral como sendo a razão entre o comprimento de onda (λ) e a largura total a meia intensidade ($\Delta\lambda$) for de uma linha espectral de perfil, determinado pelo instrumento. Em símbolos:

$R = \lambda / \Delta \lambda$	

Equação 2.1

Emprega-se o termo espectroscopia quando $\Delta\lambda$ for no máximo 90 % de λ .

A luz é uma radiação eletromagnética possuindo uma natureza dual, ondapartícula. Todas as radiações eletromagnéticas viajam através do vácuo com velocidade de aproximadamente de 299.792,458 km/s. E é desta forma que a maior parte da informação existente sobre o Universo chega a Terra. A radiação produzida nas regiões mais centrais da estrela interage com o material que a compõe, sendo espalhada, absorvida e emitida várias vezes até que venha a atingir a superfície e abandonar a estrela. O mesmo processo ocorre em menor escala quando a radiação adentra na atmosfera terrestre, com isso a estrutura espectral da radiação emitida vai sendo alterada.

A distância que o fóton percorre sem sofrer nenhuma mudança, absorção ou espalhamento é chamado de caminho livre médio do fóton e é muito pequena dentro de uma estrela, por isso a probabilidade de um fóton abandonar a estrela sem sofrer nenhuma alteração é muito pequena também. Essa região da estrela na qual é emitida a radiação observada chamamos de atmosfera. Também a probabilidade do um fóton sofrer absorções depende de seu comprimento de onda. No caso de um fóton cuja energia corresponda a de uma transição eletrônica de um átomo ou íon presente na atmosfera da estrela em grande quantidade, terá uma probabilidade de absorção maior.

A detecção óptica de elementos numa atmosfera estelar é feita através da observação de linhas ou bandas moleculares, presentes nos espectros de estrelas cuja luz vinda do seu interior atravessa a sua atmosfera. Em espectroscopia atômica, a origem das linhas dos espectros é devido à emissão ou absorção de um fóton quando a energia de um átomo varia devido a uma transição eletrônica. Na espectroscopia molecular, a origem das linhas dos espectros é explicada pela variação da energia da molécula através de uma transição eletrônica ou devido a mudanças no estado rotacional e vibracional.

Através do espectro contínuo, podemos obter a temperatura superficial da estrela que o emitiu. As linhas de absorção indicam as substâncias químicas presentes. Cada linha no espectro da estrela esta associada à presença de um elemento ou composto químico, bem como suas abundâncias e as condições de densidade e pressão da fotosfera (meio absorvedor).

O estudo da atmosfera de uma estrela depende das interações entre a radiação e a matéria na qual ela se propaga. Primeiramente, a matéria na qual um feixe de radiação se propaga pode emitir radiação na direção do feixe aumentando sua intensidade, ou pode absorver radiação do próprio diminuindo a sua intensidade. A equação do transporte radiativo na fotosfera estelar é dada pela variação da intensidade específica ao longo do caminho percorrido pelos fótons.

Onde I₂ é a intensidade específica da radiação para um dado comprimento de onda (λ), que vem do interior da estrela e que sofre absorções ao longo da fotosfera mais a reemissão dessa energia eletromagnética no mesmo comprimento de onda, ρ é a densidade do meio, k₂ é o coeficiente total de absorção por massa, τ_2 é a profundidade óptica num comprimento de onde, ou seja, representa a absorção possível e depende das propriedades físicas do meio (ρ , T, k_{λ}) e S_{λ} é a razão entre o coeficiente total de emissão e o coeficiente total de absorção.

Para podermos analisar os espectros observados, temos ainda que fazer algumas correções importantes, em relação ao efeito Doppler que modifica o perfil da linha, ou seja, devido a rotação da estrela e relativas ao instrumento utilizado na coleta de espectros, as quais serão descritos ao longo deste trabalho.

Os espectros devem ter uma correção em relação ao efeito Doppler, este efeito é a variação sistemática do comprimento de onda devido à velocidade relativa da fonte emissora, ou seja, a existência de partículas movendo-se com certa velocidade relativa à fonte de radiação produzirá uma absorção deslocada do centro da linha.

$$\frac{\Delta\lambda}{\lambda} = \frac{v_r}{c}$$

Equação 2.5

A forma de uma linha espectral é chamada de perfil da linha. O perfil da linha representa a variação espectral da densidade do fluxo (intensidade com o comprimento de onda). A forma da linha reflete as propriedades da atmosfera de estrela: temperatura, pressão, gravidade superficial, densidade de massa e dispersão de velocidades, mas o perfil observado também é alargado pelo instrumento de observação. Em alguns casos, uma linha espectral não é suficientemente isolada de tal forma que possa ser feito um único ajuste para todo perfil da linha sem que uma linha vizinha influencie a medida. Nestes casos, efetuam-se ajustes múltiplos fazendo com que perfis gaussianos sejam ajustados simultaneamente à linha desejada e às linhas adjacentes, que também fazem parte da lista de linhas a serem utilizadas para a análise.

O perfil de uma linha de absorção é modelado pela função gaussiana, que leva em conta a velocidade de rotação da estrela (Vseni), o alargamento do perfil instrumental e o movimento de turbulência fotosférica (Vseni) em conjunto com o coeficiente linear de escurecimento de limbo da estrela e o alargamento instrumental.

$$\sigma^2(\lambda) = \sigma^2(\lambda)tur + \sigma^2(\lambda)rot + \sigma^2(\lambda)inst$$

$$\sigma^{2}(\lambda)$$
tur = $\frac{\ln 2}{c}$ (Vturb. λ)

Equação 2.7

A velocidade de microturbulência é um parâmetro que visa justificar parte do alargamento encontrado em linhas espectrais nas atmosferas estelares, necessário para explicar as intensidades observadas, insuficientemente descritas pelo alargamento Doppler.

Por fim consideraremos que cada sub camada fotosférica está em Equilíbrio Termodinâmico Local (ETL), pelo fato de que o ETL é uma excelente aproximação para elas. Isto é, localmente, as condições físicas numa sub camada da fotosfera podem ser consideradas em equilíbrio termodinâmico. Neste caso, de excitação e ionização todas as populações dos níveis dependem de só um parâmetro, a temperatura cinética das partículas.

CAPITULO 3 – AMOSTRA E TRATAMENTO DE DADOS

3.1 – AMOSTRA

A amostra selecionada deve representar adequadamente a população de estrelas de tipo solar da vizinhança solar. Então foram selecionadas estrelas suficientemente brilhantes (V \leq 6,5), bastante adequadas para uma análise espectroscópica a partir do hemisfério sul cujos espectros apresentariam alta resolução e alta razão sinal-ruído (S/R). Estas estrelas devem compreender os tipos F8-G5 IV-V e as classes de luminosidade IV-V, todas com distâncias inferiores a 25 parsecs.

Os parâmetros temperatura efetiva e metalicidade das estrelas selecionadas foram restringidos aos intervalos 5500°K <Tef< 6200°K e -0,5 <[Fe/H]< +0,5 respectivamente, a fim de que as estrelas não tenham propriedades muito diferentes da do Sol.

Os espectros utilizados neste projeto foram adquiridos e cedidos gentilmente pelo Prof. Dr. Gustavo Porto de Mello (UFRJ) no Observatório de Cerro Tololo (CTIO, Chile) e no Observatório Sul Europeu (ESO, Chile), utilizando-se de espectrógrafos Échelle no foco Coudê, cobrindo as regiões $\lambda\lambda 4000 - 7500$ Å, todos em alta resolução (R=47000).

A amostra inicial totaliza 100 estrelas, a qual representa adequadamente os parâmetros necessários para população de estrelas de tipo solar da vizinhança solar. Para o presente estudo foram escolhidas inicialmente 26 estrelas listadas na Tabela 3.1, dentre o total da amostra, totalizando 47 espectros.

Conforme já foi dito anteriormente, a análise espectroscópica é diferencial em relação ao Sol. Normalmente são utilizados alguns satélites de Júpiter como objetos que representem o espectro solar. Neste caso, como representante do Sol, foi utilizado o espectro observado do satélite Ganimedes.

3.2 – OBSERVAÇÕES

Em agosto de 2004, acompanhamos as observações realizadas pelo Dr. Gustavo P. Mello no OPD (Observatório do Pico dos Dias) do LNA (Laboratório Nacional de Astrofísica), localizado em Brasópolis – MG, onde pudemos participar de duas noites de observação no período de 28/08 a 30/08 no Telescópio 1,6 m Perkin-Elmer. O espelho primário tem 1,6 m de diâmetro e a razão focal no foco Cassegrain é f/10. O projeto óptico é tipo Ritchey-Chrétien. No foco Coudê a razão focal é f/31,2 após algumas conversões, uma vez que o secundário fornece f/150. O telescópio de 1,6m aponta e acompanha alvos no céu sob controle de um programa de computador. O objetivo desta etapa extra do trabalho foi conhecer na prática uma missão de observação espectroscópica estelar em alta resolução.

3.3 – REDUÇÕES

Todas as etapas de redução foram realizadas com as rotinas do pacote IRAF (Image Reduction and Analysis Facility).

Primeiramente foram escolhidas 26 estrelas de um conjunto de estrelas analisadas de forma homogênea (BASE1) para o projeto, a seguir todos os espectros passaram por uma inspeção onde foi medida a razão S/R de todos os espectros. As razões S/R que foram obtidas aparecem na **Tabela 3.1**.

Estrela	Tipo		Relação	Sinal/Ruído	
	Espectral	λ 5018 Å	λ 5040 Å	λ 7454 Å	λ 8067 Å
HR1006	G3	334	306	298	278
HR1084	K2	309	279	598	214
HR1136	K0	253	228	198	230
HR1532	G3	320	319	306	380
HR209	G5	330	328	316	219
HR370	F8	186	369	298	356
HR448	G9	228	173	256	158
HR506	F8	512	242	256	298
HR509	G8	567	448	358	369
HR5568	K4	136	127	125	185
HR6060	G2	286	262	253	297
HR6416	G8	215	211	241	216
HR695	B9,5	216	253	270	274
HR699	K4,5	211	190	198	210
HR7373	G8	265	295	376	262

HR753	K3	161	178	156	203
HR7703	G1	220	244	215	264
HR77	F9	375	360	485	429
HR7875	F8	214	154	189	213
HR810	G0	397	420	350	423
HR8314	-	257	471	406	326
HR8323	-	92	80	98	106
HR8387	K4	161	150	165	145
HR8501	G1	433	150	250	365
HR963	-	560	385	485	256
HR996	G5	349	500	325	481

Tabela 3.1

Deste modo foram selecionadas as estrelas, com espectros razão S/R \geq 250, as quais estão listadas na **Tabela 3.2**, incluindo o Sol, onde estão apresentados também os parâmetros fotosféricos: Tméd (°K) – Temperatura efetiva média, Log g – logaritmo da gravidade superficial, [Fe/H] – ¹Metalicidade da estrela e (u) – Coeficiente linear de escurecimento de limbo.

Estrela	Tef (°K)	Log g	[Fe/H]	(u)	<s r=""></s>
Sol	5780	4,44	0,00	0,667	555
HR1006	5706	4,50	-0,21	0,673	320
HR1532	5818	4,36	+0,09	0,658	387
HR209	5821	4,45	-0,08	0,665	258
HR509	5369	4,30	-0,50	0,709	562
HR6060	5807	4,45	+0,05	0,658	367
HR695	5903	3,87	+0,03	0,650	250
HR7373	5583	4,14	+0,39	0,685	250
HR77	5942	4,48	-0,07	0,648	367
HR810	6127	4,42	+0,11	0,630	480
			T-1-1-20	·	·

Tabela 3.2

Os espectros já estavam corrigidos do deslocamento Doppler, devido à velocidade radial da estrela em relação ao observador.

A seguir foram selecionados os intervalos úteis dos espectros, onde houvesse linhas de absorção do C_2 e CN proeminentes na região, longe de linhas atômicas e telúricas que pudessem atrapalhar no cálculo da síntese espectral. Os intervalos úteis selecionados estão a seguir:

λλ 5800 – 5900 Å Linhas atômicas FeI λ5852,2 Å FeI λ5855,1 Å FeI λ5856,1 Å FeI λ5859,6 Å

 $[[]Fe/H] = \log [n(Fe)/n(H)]_* - \log [n(Fe)/n(Fe)]_*$ onde n(elemento) é densidade numérica de elemento químico.

λλ 7400 - 7900 ÅBandas moleculares CN(5,2) λ 7453 Å CN(2,0) λ 7873 Å

λλ 8000 – 8300 Å Banda molecular CN(3,1) λ 8067 Å

A primeira região ($\lambda\lambda$ 5800 – 5900 Å) foi escolhida para que pudéssemos calcular a velocidade de rotação de cada estrela, utilizando quatro linhas do Ferro, isoladas e bastante intensas, existentes nesta região.

A segunda região ($\lambda\lambda$ 5000 – 5400 Å) foi escolhida para o cálculo de síntese espectral, para determinar a abundância química do Carbono, através de duas linhas atômicas do carbono e três bandas moleculares da hidroxila (C₂).

A terceira e quarta região $(\lambda\lambda 7400 - 7900 \text{ Å e } \lambda\lambda 8000 - 8300 \text{ Å})$ selecionadas foram escolhidas para o cálculo de síntese espectral, para determinação da abundância química do Nitrogênio através de bandas moleculares do Cianogênio (CN). Estas linhas moleculares selecionadas são menos intensas que as do carbono, porém são as mais intensas encontradas para o Sistema Eletrônico do vermelho nesta região.

Em seguida, foram recortados os espectros nos intervalos selecionados e efetuadas as médias entre os espectros de mesma estrela, para todas as noites observadas.

Finalmente, foi feita a normalização do fluxo dos espectros para todas as regiões a serem trabalhadas neste projeto. Para isso, com o auxílio do Atlas Solar e do Catálogo Solar, escolhemos pequenos intervalos ($0.5 \le \Delta\lambda \le 1.5$ Å), que estivessem livres de quaisquer linhas atômicas, moleculares e atmosféricas-terrestres. O contínuo espectral das regiões selecionadas foi ajustado por função spline (do tipo de ordem 3 no mínimo), colocando o mesmo no valor unitário.

As **Figuras 3.1**, **3.2**, **3.3** e **3.4** mostram exemplos de espectros normalizados nas diferentes regiões em estudo.

Figura⁵⁸⁵⁰ – Espectro²Solar Normalizado na⁵⁸⁵⁶cião, utilizada para a determinação da velocidade de Rotação.

Figura 3.2 – Espectro Solar Normalizado, na região utilizada para a calibração das absorções devidas à molécula MgH.

Figura 3.4 – Espectro do Sol normalizado numa das regiões selecionadas, utilizado para a determinação da abundância do Nitrogênio. CAPÍTULO 4 – SÍNTESE ESPECTRAL

O objetivo da síntese espectral é reproduzir o espectro observado calculandose um espectro teórico de modo a obter a abundância do elemento estudado, tal como descrito em Milone (1991) e Milone et al. (1992).

Para o cálculo do espectro de cada estrela foi utilizada a técnica de síntese espectral através de programa MOOG, desenvolvido por Sneden (2000).

O programa MOOG resolve o transporte radiativo fotosférico, adicionando as absorções por linhas atômicas e moleculares, fundamentado no ETL em camadas plano-paralelas, além de incluir uma análise de abundâncias fotosféricas.

4.1 – AJUSTE DO PERFIL DA LINHA

Como já mencionamos, foram selecionadas regiões onde houvesse linhas e de compostos atômicos do C e N e moleculares envolvendo tais elementos. Elas são listadas na TabelaA1 do Apêndice A, onde estão contidos os valores do comprimento de onda (λ), potencial de excitação da transição eletrônica correspondente (χ), e log gf (obtido para o espectro solar).

4.2 – PARÂMETROS PARA A SÍNTESE ESPECTRAL

Para gerar os espectros teóricos, o programa MOOG, necessita de um conjunto confiável de parâmetros de entrada, resultantes da análise espectroscópica: uma lista de linhas atômicas, obtidas no banco de dados do Vienna Atomic Lines Database (VALD) e linhas moleculares de Kurucz (1993) e um modelo estratificado para a fotosfera estelar representando os perfis superficiais de temperatura, densidade eletrônica e pressão para uma estrela de Tef, gravidade superficial, conforme discussão do **Capítulo 2** e composição química elemental determinadas, pois a intensidade das linhas das moléculas formadas por C e N são influenciadas pelas abundâncias desses elementos.

Para um determinado elemento químico qualquer X, sua abundância é calculada na fotosfera da estrela usando a fórmula abaixo:

Quando não se conhece tal abundância fotosférica logarítmica para um dado elemento numa estrela assume-se [X/Fe] = 0.

$$Log n (X) * = Log n (X) _{Sol} + [Fe/H] * + [X/Fe] *$$

Equação 4.1

N°	_									
Atômico	Log n	HR	HR	HR	HR	HR	HR	HR	HR	HR
Símbolo	(X)	1006	1532	209	509	6060	695	7373	77	810
	Sol			_ • • •						• - •

6	С	8,55	8,34	8,64	8,47	8,05	8,55	8,58	8,94	8,48	8,66
7	Ν	7,97	7,76	8,06	7,89	7,47	8,02	8,00	8,36	7,90	8,08
8	0	8,87	8,66	8,96	8,79	8,37	8,92	8,90	9,26	8,80	8,98
11	Na	6,33	6,12	6,28	6,20	5,83	6,35	6,36	6,72	6,14	6,43
12	Mg	7,58	7,37	7,67	7,50	7,08	7,63	7,61	7,97	7,51	7,69
13	Al	6,47	6,26	6,44	6,36	6,24	6,52	6,45	6,86	6,24	6,51
14	Si	7,55	7,34	7,58	7,47	7,05	7,60	7,58	7,94	7,50	7,70
20	Ca	5,45	5,24	5,61	5,40	4,95	5,52	5,45	5,84	5,42	5,57
21	Sc	3,17	2,96	3,26	3,09	2,67	3,29	3,20	3,56	3,10	3,28
22	Ti	5,03	4,82	5,12	4,95	4,53	5,07	5,06	5,42	4,96	5,14
23	V	4,00	3,79	3,97	3,98	3,36	4,12	3,95	4,39	3,83	4,09
24	Cr	5,67	5,46	5,76	5,59	5,17	5,72	5,70	6,06	5,60	5,78
25	Mn	5,39	5,18	5,35	5,20	4,89	5,43	5,35	5,78	5,12	5,45
26	Fe	7,50	7,29	7,59	7,42	7,00	7,55	7,53	7,89	7,43	7,61
27	Co	4,92	4,71	5,01	4,84	4,42	4,95	4,95	5,31	4,85	5,03
28	Ni	6,25	6,04	6,28	6,05	5,75	6,29	6,19	6,64	6,09	6,53
39	Y	2,24	2,03	2,33	2,16	1,74	2,29	2,27	2,63	2,17	2,35
56	Ba	2,13	1,92	2,39	2,25	1,63	2,29	2,23	2,52	2,22	2,24
57	La	1,22	1,01	1,31	1,14	0,72	1,27	7,41	1,61	1,15	1,33
58	Ce	1,55	1,34	1,64	1,47	1,05	1,62	1,58	1,94	1,48	1,66
62	Sm	1,01	0,80	1,10	0,93	0,51	1,15	1,04	1,40	0,94	1,12
		-	C.L.L.	4 1 A 1	1						

Tabela 4.1 – Abundância calculada para as estrelas

Estes valores de abundâncias para cada elemento foram adicionados ao modelo atmosférico de cada estrela.

4.2.1 – MODELOS ATMOSFÉRICOS

Um modelo de atmosfera é um modelo físico para as camadas mais externas de uma estrela que descreve como certos parâmetros variam com a profundidade das camadas. Estes parâmetros podem ser escritos em função da chamada profundidade óptica (τv). A profundidade óptica em certo comprimento de onda é uma quantidade que determina a fração absorvida da intensidade irradiada por uma determinada camada. Ou seja:

$$Iv (\tau = 1) = \underline{Io} \\ E$$

Equação 4.2

$$Iv(\tau) = Io e^{-\tau v}$$

Equação 4.3

 $d\tau v \equiv \kappa v \rho ds$

Equação 4.4

16

$$\tau \mathbf{v} \equiv \int_{0}^{\mathbf{r}} \kappa \mathbf{v} \, \rho \, \mathrm{ds}$$

Equação 4.5

A solução da equação de transporte radiativo, no caso das atmosferas estelares, é muito complicada, devido aos coeficientes de emissão e absorção, neste caso variam devido à posição e comprimento de onda (ou freqüência). Por isso algumas simplificações são realizadas, para tornar o problema tratável. Supomos que podemos dividir a atmosfera em camadas, de tal forma que cada camada possa ser considerada em equilíbrio termodinâmico a uma dada temperatura. Também consideramos que o fluxo em cada camada deve ser o mesmo, e igual ao fluxo na atmosfera. O fluxo superficial da estrela é dado por:

$$F(R) \equiv \sigma T^4 ef$$

Equação 4.6

Os modelos das atmosferas estelares adotados baseiam-se na aproximação plano-paralela para a atmosfera estelar, estratificada em 35 camadas com Equilíbrio Termodinâmico Local (ETL) e Equilíbrio Radiativo.

4.2.2 – VALORES DE gf SOLARES

Os pesos estatísticos do nível eletrônico inferior da transição (g) e a força de oscilador (f), também conhecida como a probabilidade da transição ocorrer entre os níveis eletrônicos, são propriedades dos átomos e em conjunto formam gf.

A formação de certa linha atômica na atmosfera estelar depende dos valores desta grandeza relativa à transição entre os níveis envolvidos (Silva, 2002). Os valores de gf utilizados na análise foram determinados de forma iterativa a partir do modelo atmosférico calculado para o Sol. Através da seguinte relação:

Log $F(\lambda)$ sintético	_	gf sintético
Log $F(\lambda)$ Observado	—	gf Real

Equação 4.7

4.2.3 – PARÂMETROS ATMOSFÉRICOS

Para a obtenção das abundâncias químicas de uma estrela devemos ter informações de alguns parâmetros básicos que caracterizem os modelos atmosféricos. Sendo eles a temperatura efetiva, a gravidade superficial, a abundância de elementos pesados e também a velocidade de microturbulência, já descrita anteriormente. Os parâmetros atmosféricos utilizados na análise foram determinados em outros trabalhos, em sua maioria, de forma homogênea.

4.2.4 – PARÂMETROS PARA CONVOLUÇÃO ESPECTRAL

O espectro sintético necessita ser convoluído considerando-se o alargamento instrumental da observação, o coeficiente linear de escurecimento de limbo (u) e a velocidade de rotação estelar projetada na linha de visada. O alargamento instrumental é estimado a partir da **equação 2.1** descrita anteriormente.

O escurecimento do limbo em atmosferas estelares é um efeito que deve ser considerado em diversos problemas. A aproximação feita para encontrar o coeficiente de escurecimento do limbo relaciona-se com a seguinte expressão:

$$\frac{I(\theta)}{I(\theta=0)} = (1-u) + u \cos \theta$$

Equação 4.8

A velocidade de rotação estelar projetada foi obtida a partir da síntese de quatro linhas do Fe I, suficientemente isoladas. Foram ajustados os gfs de cada uma das linhas em estudo no espectro solar fixando o valor da abundância do Ferro no Sol log $n(Fe) = 7,5\pm 0,05$ dex, o alargamento instrumental FWHR = 0,171Å, o coeficiente linear de escurecimento de limbo (u = 0,667) e a velocidade de rotação projetada do Sol (1,8 km/s). Em seguida ajusta-se o perfil das quatro linhas do Fe I em cada espectro variando a velocidade de rotação (Vseni).

Na tabela a seguir estão listadas as velocidades de rotação Vseni mostradas através de médias efetuadas entre as abundâncias fornecidas pela síntese das quatro linhas em estudo com média variando entre 0,5 e 1,0 km/s para as estrelas analisadas.

Objeto	V.seni Média (km/s)	Objeto	V.seni Média (km/s)
Sol	1,8	HR6060	4,8
HR1006	3,5	HR695	4,2
HR1532	4,9	HR7373	1,9
HR209	2,0	HR77	3,8
HR509	0,3	HR810	4,3

Tabela 4.2

A **figura 4.1** mostra um exemplo de ajuste de um perfil teórico (calibração do método).

Figura 4.1 – Espectro Ganimedes mostrando as quatro linhas de Ferro utilizadas na determinação da velocidade de rotação projetada das estrelas.

Figura 4.2 – Ajuste do perfil de uma das linhas do Fe I no espectro solar, utilizado para calibrar o método.

4.3 – DETERMINAÇÃO DAS ABUNDÂNCIAS

Foram calculados espectros teóricos para as regiões de 3 bandas vibracionais do Sistema Swan do C₂ e para a região do Sistema do Vermelho do CN. Nas regiões das bandas no C₂ foram incluídas linhas moleculares do MgH, para as quais foram reproduzidas as linhas da banda $(0,0)\lambda 5210$ Å.

Figura 4.3 – Espectro Ganimedes mostrando as linhas do MgH utilizadas na calibração do método reproduzindo a abundância do Mg –Magnésio- (7,58±0,10 dex).

Primeiramente foi efetuada a reprodução do espectro solar com o objetivo de ajustar os valores do gf de determinadas linhas atômicas, e de forma generalizada, de certas linhas moleculares.

As abundâncias obtidas neste trabalho serão dadas pela razão [Elemento/Fe] do elemento em questão.

4.3.1 – CARBONO

Para determinarmos as abundâncias do Carbono na amostra selecionada, escolhemos quatro regiões de trabalho, listadas a seguir. A região $\lambda\lambda 5160_{5170}$ Å, foi utilizada para calibrar o método seguindo à intensidade das linhas do MgH e abundância solar fotosférica do Mg, citada anteriormente.

λλ5045-5055Å/ λλ5127-5137Å/ λλ5160-5170Å/ λλ5375-5385 Å

As abundâncias foram obtidas a partir da síntese de algumas bandas moleculares do C_2 e linhas atômicas do Carbono suficientemente isoladas. Efetuouse a síntese espectral do conjunto de linhas selecionadas com o objetivo de reproduzir o espectro solar obtido na mesma resolução que os demais objetos em estudo, fazendo a calibração do método diferencial ao Sol. Para o espectro solar foi ajustado o gf de cada uma das linhas em estudo, também foi fixado o valor das abundâncias dos elementos, de linhas próximas que pudessem influenciar no cálculo da síntese, estes valores adotados foram obtidos em outros trabalhos de forma homogênea.

As **Figuras 4.4a, b, c, d** e **e,** apresentam respectivamente a reprodução do espectro solar nas regiões das bandas do C₂: $(0,0)\lambda 5165$, $(0,0)\lambda 5135$ Å e (1,1) $\lambda 5128$ Å e regiões de linhas atômicas do CI: $\lambda 5052,2$ Å e $\lambda 5380,3$ Å.

Figura 4.4 a – Síntese espectral da banda (0,0) do C₂ para o Sol em torno de λ 5165Å, apresentando o espectro observado com símbolos · . As legendas referemse à variação na abundância do Carbono em 0,05 dex.

Figura 4.4 b – Síntese espectral da banda (0,0) do C₂ para o Sol, em torno de λ 5135Å, apresentando o espectro observado com símbolos · As legendas referem-se à variação na abundância do Carbono em 0,05 dex.

Figura 4.4 c – Síntese espectral da banda (1,1) do C₂, em torno de λ 5128Å, apresentando o espectro observado com símbolos ·. As legendas referem-se à variação na abundância do Carbono em 0,05 dex.

Figura 4.4 d – Síntese espectral reproduzindo o perfil da linha atômica do Carbono em λ 5052,2Å, apresentando o espectro observado com símbolos ·. As legendas referem-se à variação na abundância em 0,05 dex.

Carbono em λ 5052,2Å, apresentando o espectro observado com símbolos ·. As legendas referem-se à variação na abundância em 0,05 dex.

Por fim foram calculadas as médias ponderadas para: as abundâncias obtidas em todas as regiões, para uma mesma estrela e sua respectiva incerteza, a razão [C/H] e sua incerteza e [C/Fe] e sua incerteza.

 = {
$$\sum_{1}^{N=5} [Log N(c) / \sigma^2] } / \sum_{1} (1 / \sigma^2)$$

Equação 4.9

$$\sigma < \text{Log N(C)} = \sqrt{\{1/[\Sigma(1/\sigma^2)]\}}$$

Equação 4.10

$$[C/H] = (Log N(C)) - Log N(C) Sol$$

Equação 4.11

$$\sigma$$
 [C/H] = $\sqrt{\sigma < Log N(C) > 2 + 0.05^2}$

Equação 4.12

$$[C/Fe] = [C/H] - [Fe/H]*$$

Equação 4.13

$$\sigma [C/Fe] = \sqrt{\{(\sigma [C/H])^2 + (\sigma [Fe/H])^2 \}}$$

Equação 4.14

Os resultados obtidos para as abundâncias do Carbono para as estrelas são apresentados a seguir na **Tabela 4.3**:

Estrela	Log n (c)	[C/H]	[C/Fe]
Sol	8,55±0,02	0,00±0,05	0,00±0,07
HR1006	8,31±0,02	-0,24±0,05	-0,03±0,07
HR1532	8,45±0,03	-0,10±0,06	-0,19±0,10
HR209	8,40±0,03	-0,15±0,06	-0,07±0,08
HR509	8,03±0,03	-0,52±0,06	-0,02±0,08
HR6060	8,54±0,03	-0,01±0,05	-0,05±0,07
HR695	8,57±0,02	0,02±0,05	-0,01±0,07
HR7373	8,95±0,03	0,40±0,05	0,01±0,07
HR77	8,38±0,03	-0,17±0,06	-0,10±0,10
HR810	8,60±0,02	0,05±0,05	-0,06±0,06

Tabela 4.3

4.3.2 – NITROGÊNIO

Para determinarmos as abundâncias do Nitrogênio na amostra selecionada, escolhemos três regiões de trabalho, listadas a seguir.

λλ7450-7460Å/ λλ7870-7880Å/ λλ8060-8070Å

As abundâncias foram obtidas a partir da síntese de algumas bandas moleculares do CN suficientemente isoladas. Seguiram-se os mesmos passos realizados para a obtenção da abundância do Carbono.

As **Figuras 4.5a**, **b**, **c** e **d**, apresentam respectivamente a reprodução do espectro solar nas regiões das bandas do CN: $(5,2) \lambda 7452$ Å e $(2,0) \lambda 7874$ Å e $(3,1) \lambda 8067$ Å.

A primeira região foi descartada devido ao fato que todos os espectros estelares eram bastante ruidosos exatamente no intervalo espectral da banda CN (5,2), impossibilitando a determinação das abundâncias de forma confiável.

A segunda região também foi descartada por estar com razão sinal/ruído muito baixa para o espectro solar, não possibilitando a calibração do método e assim impedindo a obtenção das abundâncias para as estrelas em estudo.

Para a terceira região foi obtida a abundância do nitrogênio através de uma banda molecular do CN, isolada visualizada facilmente nos espectros estelares.

Figuras 4.5 a – Reprodução do espectro solar na região da banda (5,2) do CN, em torno de λ 7452Å. O espectro observado é representado pela linha contínua.

Figuras 4.5b – Reprodução do espectro solar na região da banda (2,0) do CN, em torno de λ 7874Å. O espectro observado é representado pela linha contínua.

CN, em torno de λ 8067Å, apresentando o espectro observado com os símbolos ·. As legendas referem-se à variação na abundância do Nitrogênio em 0,15 dex.

As incertezas obtidas para as abundâncias do Nitrogênio foram maiores do que as obtidas pra o Carbono pelo fato de estarmos trabalhando com apenas uma região e porque os espectros na região adotada possuíam menores S/R. Por último calculamos a razão [C/H] e sua incerteza e [C/Fe] e sua incerteza de acordo com as equações 4.7, 4.8, 4.9 e 4.10. Os resultados obtidos para o Nitrogênio estão listados a seguir:

Estrela	Log n (c)	[N/H]	[N/Fe]
Sol	7,97±0,07	0,00±0,10	0,00±0,11
HR1006	7,61±0,20	-0,36±0,21	-0,15±0,22
HR1532	7,81±0,20	-0,16±0,21	-0,25±0,22
HR209	7,89±0,25	-0,08±0,26	-0,00±0,27
HR509	7,97±0,20	0,00±0,21	-0,50±0,22
HR6060	7,97±0,15	0,00±0,17	0,05±0,18
HR695	8,00±0,15	0,03±0,17	0,00±0,18
HR7373	8,34±0,09	0,37±0,11	-0,02±0,12
HR77	7,80±0,15	-0,17±0,17	-0,10±0,18
HR810	7,98±0,15	0,01±0,17	-0,10±0,18
HR695 HR7373 HR77 HR810	8,00±0,15 8,34±0,09 7,80±0,15 7,98±0,15	0,03±0,17 0,37±0,11 -0,17±0,17 0,01±0,17	0,00±0,18 -0,02±0,12 -0,10±0,18 -0,10±0,18

Tabela 4.3

CAPÍTULO 5 – CONCLUSÕES E TRABALHOS FUTUROS

As possíveis tendências das razões de abundâncias em função da metalicidade é uma importante informação para as teorias de evolução da Galáxia. Para isso foram construídos diagramas [C/Fe] x [Fe/H] e [N/Fe] x [Fe/H], que são mostrados nas figuras a seguir.

Os estudos dirigidos programados a assuntos relacionados ao projeto foram realizados plenamente.

Pretende-se como continuação, estender este trabalho a um conjunto maior de estrelas, para que possamos ter uma maior base de dados e assim melhor analisar os resultados, especialmente às demais estrelas do conjunto inicial de 26 estrelas (Base 1).

Pretende-se também compilar todos os resultados num artigo científico a ser submetido ao A&A.

CAPÍTULO 6 – PARTICIPAÇÃO EM EVENTOS

No início do mês de agosto de 2004, acompanhamos uma missão realizada pelo Prof. Dr. Gustavo P. de Mello no OPD do Laboratório Nacional de Astrofísica (LNA), situado em Brasópolis – MG, onde pudemos participar de duas noites de observações espectroscópicas em alta resolução no telescópio de 1,6m.

No mês de dezembro de 2004, apresentamos resultados parciais na forma de pôster, no workshop "Instrumentação e Ciência com os Telescópios SOAR e Gemini" realizado pelo Instituto Milênio MEGALIT, no IAG/USP.

Está aceito para uma sessão de painéis sobre Estrelas na XXXI Reunião Anual da Sociedade Astronômica Brasileira a ocorrer em início de agosto.

APÊNDICE A

Na tabela a seguir segue um exemplo de um arquivo de linha utilizado para o cálculo da síntese espectral, onde a primeira coluna representa o comprimento de onda em unidades de Å, a segunda coluna represente uma identificação do átomo ou composto molecular, interno ao MOOG, a terceira coluna mosta o potencial de excitação da molécula ou composto molecular (χ), dado em eV, a quarta coluna o gf, a quinta coluna mostra a energia de dissociação molecular em eV e a última coluna é um campo de comentário a cerca da transição eletrônica molecular ou atômica.

TABELA A.1 - Arquivo de linhas utilizado para cálculo da síntese em torno da linha C I λ5380,3 Å.

******	******	******
5380.1970	112.0 1.606 0.386E-02 0. 1.270 0.	43.5P 13
5380.2200	606.0 2.549 0.123E-03 0. 6.156 0.	105.0R01
5380.2210	112.0 1.629 0.572E-02 0. 1.270 0.	46.5P02
5380.2240	6.0 8.851 0.933E-02 0.000E+00 0. 0.	C I 0.989
5380.2560	22.0 3.148 0.646E-03 0.000E+00 0. 0.	Ti I 0.999
5380.2650	6.0 8.851 0.151E-02 0.000E+00 0. 0.	C I 0.997
5380.2670	606.0 1.336 0.357E+00 0. 6.156 0.	43.0P34
5380.2780	606.0 1.355 0.357E+00 0. 6.156 0.	43.0P34
5380.2870	112.0 1.062 0.195E+00 0. 1.270 0.	37.5Q01
5380.2950	606.0 1.417 0.223E+00 0. 6.156 0.	36.0P 4 😵 5
5380.3110	606.0 3.082 0.620E+00 0. 6.156 0.	101.0P35
5380.3180	112.0 0.967 0.222E+00 0. 1.270 0.	26.5Q23
5380.3330	606.0 1.811 0.141E-03 0. 6.156 0.	72.0Q23
5380.3370	6.0 7.685 0.165E-01 0.000E+00 0. 0.	C I 0.914

5380.3410	606.0 1.520 0.347E-03 0. 6.156 0.	44.0Q 45
5380.3770	606.0 3.452 0.257E-03 0. 6.156 0.	112.0P 35
5380.3930	606.0 3.452 0.282E-03 0. 6.156 0.	113.0R 35
5380.4470	112.0 0.967 0.743E-04 0. 1.270 0.	27.5R 23
5380.4530	606.0 3.082 0.632E+00 0. 6.156 0.	103.0P 35
5380.5230	606.0 1.693 0.161E-04 0. 6.156 0.	30.0R 67
5380.5490	606.0 1.417 0.156E-03 0. 6.156 0.	36.00 45
5380.5490	606.0 2.674 0.138E-03 0. 6.156 0.	86.0P 46
5380.5680	606.0 3.453 0.254E-03 0. 6.156 0.	111.0P 35
5380.6120	606.0 1.402 0.159E-03 0. 6.156 0.	35.00 45
5380 6280	112.0 0.967 0.771E-04 0 1.270 0	265P 2 3
5380 6280	606 0 2 225 0 137E-03 0 6 156 0	87 0R 23
5380 6290	39 0 1 900 0 218E+02 0 000E+00 0 0	Y 10 999
5380 6960	606 0 1 417 0 228E+00 0 6 156 0	37 0P 45
5380 7160	24 0 4 416 0 672E-02 0 000E+00 0 0	Cr I 0 999
5380 7190	606.0 1.619.0.654E-01.0.6156.0	21 OP 67
5380 7380	606.0 2.964 0.602E+00 0 6.156 0	98 0P 35
5380 7580	1120.0967.0231E+00.0.1270.0	27 50 23
5380.7780	606.0.2.661.0.103E-03.0.6156.0	95 OP 24
5380.0030	606.0 1.520 0.357E-03 0. 6.156 0	70.00 12
5380.9050	606.0 1.257 0.120E-03 0. 6.156 0.	66 00 01
5380.9500	606.0 + 1.207 + 0.120E + 0.0 + 0.150 + 0.0	58 0P 45
5380.9810	$57109170706E_{01}0000E_{01}0000E_{01}0000$	J a II 0 983
5380.9090	$6060 \pm 337 + 349E \pm 00 \pm 01 + 00 + 00 = 0.000$	12 OP 34
5381.0020	606.0 + 740.0 + 337E + 00.0 + 6156.0	56 0R 45
5381.0020	22.1 + 1566 + 0.107E + 0.0 + 0.000E + 0.0 + 0.000E + 0.0 + 0.000E + 0.000	$T_{1} = \frac{1}{2} \frac{1}$
5381.0150	22.111.5000.107E-010.000E+0000.0.	00 0P 57
5381.0550	$27.0 \pm 0.550 \pm 0.0000 \pm 0.0000 \pm 0.0000000000$	50.01 - 57
5381.1040	27.0 1.950 0.427E-02 0.000E+00 0. 0.	25 0P 45
5381.1550	$606.0 + 1.402 + 0.210 \pm 0.0 + 0.150 $	33.01 - 43
5381.1410	$606.0 \ 2.127 \ 0.554E\pm00 \ 0.61566 \ 0.6156 \ 0.61566 \ 0.61566 \ 0.61566 \ 0.61566 \ 0.61$	04 0P 57
5381.1480	$606.0 \ 1.257 \ 0.120E \ 0.2 \ 0.150 \ 0.$	67 00 01
5381.1820	606.0 + 1.257 + 0.120E - 05 + 0. + 0.150 + 0.	66 0P 01
5381.1850	606.0 + 1.257 + 0.555E + 00 + 0.150 + 0.150 + 0.00000 + 0.00000 + 0.00000 + 0.0000000 + 0.00000 + 0.0000 + 0.0000 + 0.	57 0P 45
5381.2270	606.0 + 1.609 + 0.545E + 00 + 0.100 + 0.150 + 0.00000 + 0.00000 + 0.00000 + 0.0000000 + 0.00000 + 0.0000 + 0.0000 + 0.	20 0P 67
5381 2330	606.0 + 1.020 + 0.025E + 01 + 0.01150 + 0.0156	20.01 07 66 0P 34
5381.2550	$39.0 \pm 901 = 0.174 \text{ F}_{-01} \pm 0.000 \text{ F}_{+00} \pm 0.0000 \text{ F}_{-01}$	V 10900
5381.2430	$6060 \pm 584 + 0.217 = 0.000 \pm 0.000 \pm 0.000 = 0.0000 \pm 0.00000 \pm 0.00000 \pm 0.00000 \pm 0.00000 \pm 0.00000 \pm 0.00000000$	36 0P 56
5381 2520	606.0 + 1.584 + 0.217E + 04 + 0.0.156 + 0.0.156 + 0.0.0156 + 0.0	35 0P 45
5381 2610	591.0508.0286E-01.0000E+00.0	Pr II 0 997
5381 2030	606.0 1.800 0.106E.03 0.6156.0	58 00 1855
5381.2930	41007400012E020000E+0000	NIL 1 0 000
5381.3070	$41.0 \ 0.740 \ 0.712E-02 \ 0.000E+00 \ 0. 0.$	65 0P 01
5381 3380	606.0 + 1.257 + 0.545E + 00 + 0.150	52 0P 23
5381.3530	606.0 + 1.275 + 0.554E + 00 + 0.150	50 0P 45
5381.3520	606.0 1.205 0.187E-03 0 6.156 0	52.00 23
5381.5570	606.0 + 1.295 + 0.187E + 0.0 + 0.156 + 0.00000 + 0.00000 + 0.0000000 + 0.00000 + 0.00000 + 0.0000 +	52.0Q23
5381 /500	$606.0 \ 2.746 \ 0.731 \text{F}_{-}07 \ 0.5456 \ 0.556 \ $	102 0P 12
5381 / 520	$240.3422.0265E_04.0.000E\pm00.0.0$	Cr I 0 900
5381 /600	$27.0 \ 5.722 \ 0.203 \text{ B} - 04 \ 0.000 \text{ B} + 00 \ 0. 0.$	56 0R 34
5381 /700	$606.0 \ 3 \ 137 \ 0.559E+00 \ 0.6156 $	95 OP 57
********	**************************************	/ ل U.U. ********************************

REFERÊNCIAS

- Da Silva, R.O. 2003, Dissertação de Mestrado. INPE (INPE 9877 TUD/873), sob orientação de A. de C. Milone e G. F. Porto de Mello.
- Díaz-Cordovés, J., Claret, A., Gimenez, A. Astronomy and Astrophysics Supplement Series, v. 110.
- Edvardsson et al. 1993, A&A, 275, n. 1, p. 101-152.
- INPE 2002, Introdução à Astronomia e Astrofísica, INPE (INPE -7177-PUD/38).
- Kurucz, R. L., Furenlid, I., Brault, J., Testerman, I. The solar flux atlas from 296 nm to 1300nm. New Mexico: National Solar Observatory, 1984.
- Kurucz, R. L., Atomic and molecular data for opacity calculations. Revista Mexicana de Astronomia y Astrofísica, v.23,n. 45-48,1992.
- Kurucz, R. L., Atomic and molecular databases. Banco de dados. Disponível em: <u>http://Cfaku5.harvard.edu</u>
- Maciel, W. J. 1991, Astronomia e Astrofísica curso de Extensão universitária, IAG-USP.
- Moore, C. E., Minnaert, M., Houtgast, J. The solar spectrum 2935 Å to 8770 Å. Whashington D.C.: Government Printing Office, 1996.
- Sneden, C. 2002, Synthetic stellar spectra, <u>http://verdi.as.utexas.edu/moog.html</u>
- Vienna Atomic Lines Database (VALD), http://www.astro.univie.ac.at/~vald