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Coalescence of binary neutron stars (BNSs) is one of the sources of gravitational waves (GWs) able to be
detected by ground-based interferometric detectors. The event GW170817 was the first observed in the
gravitational and electromagnetic spectra, showing through this joint analysis a certain compatibility with
the models of short gamma-ray bursts (sGRBs) to explain the signature of this system. Due to the intense
magnetic fields of the neutron stars, the plasma magnetosphere stays strongly magnetized and the
propagation of the GW through plasma can excite magnetohydrodynamic (MHD) modes such as Alfvén
and magnetosonic waves. The MHD modes carry energy and momentum through the plasma, suggesting a
mechanism to accelerate the matter during the coalescence of the binaries, explaining some characteristics
of the fireball model of the sGRBs. We present a semianalytical formalism to determine the energy
transferred by the GW-MHD interaction during the inspiral phase of the stars. Using the inferred physical
parameters for GW170817 and considering that the magnetic fields on the surfaces of the stars are 108 T,
we show that the energy in the plasma can reach maximum value ∼1035 J (∼1032 J) for the Alfvén mode
(magnetosonic mode) if the angle formed between the background magnetic field and the GW propagation
direction is θ ¼ π=4. Particularly, for θ ¼ π=2 only the magnetosonic mode is in coherence with the GWs.
In this case, the excited energy in the plasma reaches maximum value ∼1036 J. If the magnetic field on the
surface of the progenitors of the event GW170817 was ∼2 × 109 T then energies comparable to those
inferred for the GRB 170817A could be obtained. In particular, our semianalytical formalism show
consistence with the results obtained by other authors through full general relativistic magnetohydro-
dynamics (GRMHD) simulations.

DOI: 10.1103/PhysRevD.102.043004

I. INTRODUCTION

After the inauguration of a new observational window for
the study of the Universe through the gravitational waves
(GWs) produced by black hole (BH)mergers [1–5], a sign in
GWs of the event GW170817, detected by the LIGO-
VIRGO collaboration, was interpreted as being consistent
with the coalescence of a binary of neutron stars (BNSs) [6].
This detection comes four decades after the seminal
results of [7] who evaluated the orbital decaying of the
PSR B1913þ 16.
The best combination of mass measurement provides the

chirp mass Mc ¼ 1.188þ0.004
−0.002 M⊙ and a total mass range

∼2.73–3.29 M⊙ for GW170817. The masses of the com-
ponents are between 0.86–2.26 M⊙, according to the
masses of known NSs [6].
In addition, a gamma-ray burst, GRB 170817A, was

observed 1.7 s after the coalescing time of GW170817
[8,9]. The combination of the LIGO-VIRGO data allowed

for a precise positioning within an area of 28 deg2 and to a
distance ∼40þ8

−14 Mpc [10]. On the other hand, the GRB
170817A was found in the galaxy NGC4993, consistent
with the location and distance given by the GW data [11].
Traditionally, the GRB progenitors are based on the time

domain duration [12]. Some long GRBs (t ≥ 2 s) are
associated with Type Ic supernova [13,14]. In its turn,
observations by Swift satellite [15] have revealed that some
short GRBs (t ≤ 2 s) are associated with elliptical and small
star-forming galaxies [16]. Additionally, their progenitors
have been associated with mergers of compact objects
[12,17–20]. Similar results were obtained by observations
from Fermi [21–23] and Integral satellites [24].
A part of the energy released by the GRB progenitor is in

the form of highly relativistic jets. These structures can reach
radius ∼1011 m producing γ-rays which are characterized,
nominally, as prompt emission. At a greater distance, for a
range of ∼1012 m, the afterglow, another electromagnetic
counterpart, is produced [25,26]. Despite the extensive study,
the nature of the GRB still remains as an open question [18].
One possibility is that GRBs are produced according to

the so-called “fireball model” [18,27–30], introduced for
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the first time by [31]. Fireballs are essentially dynamical
objects, whose properties grow up quickly with time. The
GRB itself is produced by the internal dissipation within
the outflow, while the afterglow is produced by the external
shock with the surrounding medium. These models are
based on the assumption that ultrarelativistic outflows are
commonly shock generators. Adding some baryon con-
tamination in the fireball, even a small amount of baryons
(10−7–10−5 M⊙), dragged by the radiative sphere would
eventually carry the energy of the fireball, converting the
initial radiative energy into kinetic energy [18].
The internal shock is in interaction with itself. These

shocks can explain the rapidly varying light curves of the
prompt emission. They occur within a structure composed
by relativistic jets, when the outflow of the central engine
takes successive shells with different Lorentz factors.
Multiple shocks appear when the faster shells outgrow
the slowest shells [32–35], and the fireball shock interacts
with the external environment around the source. This
shock explains the afterglow radiation of several wave-
lengths [36–40]. The models of internal and external
shocks do not depend on the nature of the central source.
It is irrelevant whether the initial energy source is due to the
coalescence of compact objects or to collapses produced by
explosions of super massive stars [41].
The critical issue is related to the problem of particle

acceleration in relativistic shocks. The usual model is the
so-called “diffusive shock acceleration model”. In this
model, the particles are accelerated when they repeatedly
cross a shock [42], and magnetic irregularities confine the
particles near the shock [43–46]. In the case of GRBs, the
shocks are relativistic and particle acceleration becomes a
more complicated process. Diffuse shock acceleration can
not be applied because the propagation of the accelerated
particles, close to the shock, can not be described as spatial
diffusion [47–53].
Magnetic fields are the natural way of transmitting the

energy of the central object with a small contribution of
baryons. In an ideal magnetohydrodynamic (MHD)
plasma, this can be considered as magnetic energy carrying
by the outflow of the central object [54]. This model is
dominated by the Poynting flux, without internal shocks.
Despite instabilities, the magnetic energy in the flux can

be converted into kinetic energy from plasma, then into
heat or radiation. Depending on the velocity of this energy
dissipation, the energy conversion may occur near the
central object or outside the photosphere, if the dissipation
is slow. At the same time, the dissipation of the magnetic
energy reduces the total pressure, and the pressure gradient
accelerates the flow out. As a result, a central magnetic
mechanism can provide both acceleration and dissipation
outside the photosphere as required for an efficient prompt
radiation [54].
There are questions for which the internal fireball shock

model does not provide satisfactory answers [54–58].

An alternative model called electromagnetic model
(EMM) was proposed. In this model, the energy of a
dominant Poynting flux is dissipated directly into particles
through plasma instabilities. Although the Poynting
flux is generally most directly observable, this electromag-
netic energy can be transferred to kinetic energy of the
plasma, which will radiate through different processes [59].
Scenarios with dominant Poynting flux require a
strong magnetic field (>1015 G) and large rotation rate
(Ω ∼ 104 s−1) [60]. These characteristics can be found
when a NS merger forms an accretion torus around a
BH and in newborn magnetars [59,61–64].
The presence of charged matter and high magnetic fields

suggests the participation of Alfvén and magnetosonic
waves [65] as an important mechanism for particle accel-
eration, as well as processes involving magnetic reconnec-
tion [66]. Given the high temperatures reached by the
matter in the fireball [67], associated with intense magnetic
fields, the magnetohydrodynamics (MHD) waves are
produced during the coalescence of the compact binary
systems, while they release gravitational waves [68].
The MHD waves can transport energy and momentum

through the plasma. They depend on the characteristics of
the system, such as magnetic field, local density, and also of
the gravitational radiation. This would suggest that MHD
waves may be a possible mechanism for accelerating matter
to high Lorentz factors.
In a vacuum (flat) space-time, GWs and electromagnetic

waves (EMWs) do not interact. However, the GWs and
EMWs can couple on a curved background. In particular,
[69] finds low values for the transfer of electromagnetic
energy to gravitational energy and being proportional to
G=ðπc3ÞB2RT ∼ 10−17. The authors obtain that result for a
light-ray travel time T ∼ 107 years and considering a
constant interstellar magnetic field ∼10−5 G over a scale
∼10 light years.
The EMW traveling through a static electromagnetic

field can be excited by GWs with the same frequency and
wave vector. The efficiency of the process depends upon
the square of the field as well as on the square of its linear
dimension [70]. In a space with a stationary magnetic field,
[71] verified that hB0 is the source of the electromagnetic
radiation, where h is the GW amplitude that modifies the
metric and, as a result, it produces stretch and compression
of the lines of B0.
The GW-EMW interaction has also been studied in [72].

In this case, the interaction results from the decay of a
graviton with energy ℏω0 into a photon with energy ℏω1

plus a plasmon with energy ℏω2, such that the growth rate
of the plasma waves is given by ðk2ω0=k2ω1Þ2ω1ω2=4jh×j2
(considering hþ ¼ 0).
In [73], the authors derived the dispersion relations

governing the coupling between GWs and EMWs and that
propagate in the parallel and perpendicular directions to
the background magnetic field. Waves propagating at an
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arbitrary angle with the magnetic field were not considered.
The authors found that the GW-EMW coupling is related to
the fact that anisotropic perturbations of the distribution
function induce drifts in the electrons and ions, which in
turn generate an electric current.
Therefore, the GW-EMW interaction is mainly related

with the generation of electric currents in the plasma
due to the perturbations in the trajectories of the charged
particles by the passage of the GW through the medium
[74]. The GW propagation along the direction of the
background magnetic field does not generate currents in
the plasma [73,74].
Although the interaction of the GWs with the matter be

weak, the GW-EMW coupling can be altered by the
presence of a strongly magnetized plasma. In particular,
the GW can interact with the EMW producing excitations
in the plasma, that is, Alfvén and magnetosonic waves.
High frequency GWs produced by the NSs merger propa-
gate through the magnetosphere of the system, interacting
with the electromagnetic fields coupled with matter. This
interaction (or coupling) can excite MHD waves, generat-
ing higher harmonics, such as electromagnetic radiation in
the radio frequency band [75,76].
On the other hand, [77] showed that a GW generated by a

magnetar might well be the source of the energy released in
a giant flare and may be even in a short GRB, through the
absorption by the plasma of the GW energy. The authors
assumed a NS magnetic field B ∼ 1016 G, background
density ∼10−14 g cm−3, an adiabatic index Γ ¼ 4=3, and
GW frequency reaching ∼5 kHz.
The GW-EMW coupling is more efficient if the waves

are in coherence, i.e., if the frequencies satisfy some
matching conditions and the relative wave phase remains
unaltered for a long time [78]. In fact, this is a resonant
condition [65,74,79]. Coherent interaction only requires
that the frequencies coincide and that they have identical
phase velocity. According to [78], considering GW-EMW
interaction in a “medium”, the occurrence of such reso-
nances is more rare because the GW velocity is equal to the
light speed, but the velocity of a MHDwave depends on the
Alfvén velocity. Thus, it decreases with the mechanical
pressure and increases with the magnetic pressure.
The condition for coherence to occur can be established

in strongly magnetized plasmas with pressure p and
magnetic field B if 2μ0p=B2 ≪ 1. In this paper, we study
the interaction between GWs and EMWs in a strongly
magnetized plasma, modeled by the general relativistic
magnetohydrodynamics (GRMHD) equations before
merger, and considering the magnetosphere density propor-
tional to the Goldreich-Julian corotation density [80].
When the GW and EMW frequencies are very close, the
electromagnetic energy reaches high values.
In particular, our aim is to present the set of

GRMHD equations describing the interaction of GWs with
the magnetosphere of NSs. This interaction produces

EMWs in the magnetized plasma during the binary inspiral
phase.
We present a semianalytical formulation to describe the

interaction of the þ;×-polarizations with the MHD wave
modes. From this coupling, energy can be transferred from
GWs to EMWs. Additionally, we have shown that the
so-called magnetosonic mode, satisfying the coherence
condition between GWs and EMWs, could reach energies
close to those inferred for GW170817. We discuss what
parameters and physical conditions could contribute to
this.
The paper is organized as follows. In Sec. II, we present

the linearized general relativity (GR) equations and the
wave solution for the inspiral of compact binaries. The
current densities that are generated by the GWs are
presented with the linearized Maxwell equations, using
the 1þ 3 orthonormal frame (ONF) formalism. Moreover,
we show that the approximation of ideal MHD theory
remains valid during the coalescence of the binary system.
In Sec. III, we demonstrate by the closed GRMHD set
equations how the interaction between the plasma and the
GWs happens. With the dispersion relation derived by
the Fourier Transform (FT), we show how to obtain the
solutions for the equations that describe the coupling of
the þ and ×GW polarizations with the EMWs using the
comovel system. For the sake of completeness, we also
present these solutions in the rest frame. In Sec. IV, we
discuss how much energy can be associated with these
processes and we apply our formalism in two examples, the
simulation developed by [64] and the source GW170817.
In Sec. V, we study the refractive index of these systems.
The Poynting vector of the MHD waves is discussed in
Sec. VI. Finally, our results are summarized and further
discussed in Sec. VII, where we also discuss the relevance
of our formalism for studies involving sGRBs.

II. GENERAL RELATIVISTIC
MAGNETOHYDRODYNAMICS EQUATIONS

A. Gravitational waves

The GWs are described as ripples that propagate with
speed of light on the space-time. Their solutions can be
obtained from Einstein’s field equations [81]. The deriva-
tion of the wave equation solutions can be simplified,
neglecting, in large scale, the curved structure of space-time
by the distribution of matter, e.g., GWs of either astro-
nomical objects with intense gravitational fields or cata-
strophic events can be calculated far from source, as weak
ripples on the flat background [82].
Einstein’s full equations, Eq. (1), depend on the space-

time metric tensor (gab) and the momentum-energy tensor
(Tab). The first one results in the Ricci tensor (Rab) and
scalar curvature (R), configuring in the geometric part of
Einstein’s field equations. Last, it is responsible for
curvature of space-time defined by the metric gab [83].
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G and c are the gravitational constant and speed of light,
respectively.

Rab −
1

2
gabR ¼ 8πG

c4
Tab: ð1Þ

In the linearized theory, the metric tensor of the per-
turbed space-time differs from the Minkowski (flat) metric.
The metric gab usually splits as gab ¼ ηab þ hab, with
jhabj ≪ 1 [84] and ηab ¼ ð−1; 1; 1; 1Þ. With negligible
second order terms in hab and the conservation of
energy-momentum (∂aTab ¼ 0), the field equations reduce
to the set of nonlinear equations [85]

□h̄ab ¼ −
16πG
c4

Tab: ð2Þ

The general solution of Eq. (2) is given by Green
functions, applying the transverse traceless (TT) gauge.
The system stays in the comoving frame and the hab tensor
is projected on the perpendicular wave propagation direc-
tion [86]. The perturbation hab does not “compress” nor
“stretch” the space-time elements, but induces a “strain”,
keeping its volume.
Therefore, the GWs are purely transverse with two

polarization modes: hþ and h×. These modes differ by
π=4 rotation around the propagation axis, which satisfies the
quadruple nature of thegravitational field [83,87]. In general,
the GW is the superposition of these two polarizations.
After a multipole expansion and for a distant observer,

the perturbation hab can be written in terms of quadrupole
momentum tensor that depends on the matter density. Thus,
the gravitational emission is not isotropic and the sym-
metric motions of the system do not emit any gravitational
radiation. The amplitude hTTαβ in terms of the quadrupole
momentum tensor is

hTTαβ ðt; r⃗Þ ¼
2G
rc4

Q̈TT
αβ ðt − r=cÞ; ð3Þ

where

QαβðtÞ≡
Z

ρðt; r⃗Þ
�
xαxβ −

1

3
r2δαβ

�
d3x: ð4Þ

For a binary system before coalescence, with masses m1

and m2 and orbital displacement in the plane x-y, the
equations of motion are harmonic oscillations, and they are
given by

x0 ¼ R cosðωstþ π=2Þ; ð5aÞ

y0 ¼ R senðωstþ π=2Þ; ð5bÞ

z0 ¼ 0: ð5cÞ

Initially, the loss of energy of the system due to the GWs
can be neglected. Thus, in the Newtonian approach, the
systembecomes as the one-bodywith equal-mass casewhere
the reduced mass is μ ¼ m1m2=ðm1 þm2Þ. The Newtonian
orbital frequency is given by ω2

s ¼ Gðm1 þm2Þ=R3, where
R is the orbital radius [88]. From these conditions, it is
possible to calculate the quadrupole momentum tensor,
Eq. (4), hence, the perturbation hab for a binary system.
The GW amplitude, in the Fourier space, released by the
binary system in the inspiral phase is given by [88]

hþðfGWÞ¼AeiψþðfGWÞc
r

�
GMc

c3

�
5=6 1

f7=6GW

�
1þcos2ι

2

�
; ð6aÞ

h×ðfGWÞ ¼ Aeiψ×ðfGWÞ c
r

�
GMc

c3

�
5=6 1

f7=6GW

cos2ι; ð6bÞ

where the chirp mass is Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5,
A ¼ π−2=3ð5=24Þ1=2,ψþðfGWÞ, andψ×ðfGWÞ are the phases
of þ;× given by

ψþðfGWÞ ¼ 2πfGWtcoal − ϕc −
π

4
þ 3

4

�
GMc

c3
8πfGW

�
−5=3

;

ð7Þ

ψ×ðfGWÞ ¼ ψþðfGWÞ þ π=2: ð8Þ

Equations (6a) and (6b) are the spectral amplitude
densities. They have units of amplitude intensity over
frequency.
The GW frequency increases with time (t) until the

system reaches the merger at tcoal. In terms of the parameter
τ ¼ tcoal − t, we have

fGWðτÞ ¼
1

π

�
5

256

1

τ

�
3=8

�
GMc

c3

�
−5=8

; ð9Þ

The GW frequency depends on the chirp mass (Mc) of
the binary system, the distance from the observer (r) and
the ι angle with the normal of the orbital system. While the
system coalesces, the orbital radius decreases with the time
τ as

RðτÞ ¼ R0

�
τ

τ0

�
1=4

; ð10Þ

where R0 is the initial orbital radius at t0, thereby
τ0 ¼ tcoal − t0.
With the equations for fGW and R, Eqs. (9) and (10),

respectively, the orbital velocity of the stars in terms of the
GW frequency is
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v ¼ ½πGðm1 þm2Þ�1=3f1=3GW: ð11Þ

When the stars are very close, the gravitational field is
strong and so there are important consequences on the
dynamics of the binary system. In fact, there is a minimum
distance between the stars able of keeping the orbit
circularly stable [89]. It is called inner-most stable circular
orbit (ISCO). On Schwarzschild coordinates, we have

RðISCOÞ ¼
6Gm
c2

; ð12Þ

where m ¼ m1 þm2.
Therefore, the adiabatic inspiral phase occurs at dis-

tances R≳ RðISCOÞ. Close to RðISCOÞ, the dynamics are
dominated by strong field effects and the two stars plunge
toward each other. The inspiral phase ends when the merger
begins. The GW frequency at the ISCO is

fGWðISCOÞ ¼
1

3
ffiffiffi
6

p c3

2πGm
: ð13Þ

The emission of GWs removes energy from the system.
In this way, R must decrease with time while the fGW
increases. The power radiation is then

P ¼ 32

5

c5

G

�
GMcπfGW

c3

�
10=3

: ð14Þ

In Newtonian formalism, the total energy released is
given by

ΔErad ∼
π

2G
ðGMcÞ5=3ðfGWðISCOÞ Þ2=3: ð15Þ

Considering the system GW170817 with total mass
m ¼ 2.73 M⊙, chirp mass Mc ¼ 1.188 M⊙, the frequency
is fGWISCO

≈ 1.61 kHz, and RðISCOÞ ≈ 2.42 × 104 m. The

power radiation evolves like P ≃ 7.49 × 1036f10=3GW and the
energy released is about ΔErad ∼ 1.01 × 1046 J. In these
conditions, Eq. (11) produces β ¼ v=c ≈ 0.406 in the
inner-most stable circular orbit.

B. Electromagnetic fields

We want to see how the GWs induce small perturbations
in the plasma around the stars that form the binary system.
The plasma is in the space-time described by the metric
gab ¼ ηab þ hab. Moreover, the plasma proprieties are
averages over the fluid elements [90,91]. In the MHD
formalism, the equations describing the magnetized plasma
come from the fluid and electromagnetic equations. We
work with the Gaussian units with c ¼ 1 (explicitly shown
otherwise, for convenience).
The Maxwell’s equations in terms of the electromagnetic

field tensors Fab (Maxwell tensor), its dual Fab, and the
4-current density, jb ¼ ðρ; j⃗Þ, are given by [92]

∇bFab ¼ 4πja; ð16aÞ

∇bFab ¼ 0: ð16bÞ

In the 3þ 1 formalism [93], the Maxwell equations can
be described in the comovel frame, whereas the vector
basis of orthonormal tetrad is written in terms of the GW
amplitude [75]

ê0 ¼
� ∂
∂t ; 0; 0; 0

�
;

ê1 ¼
�
0;

�
1 −

hþ
2

� ∂
∂x ;

−h×
2

∂
∂y ; 0

�
;

ê2 ¼
�
0;
−h×
2

∂
∂x ;

�
1þ hþ

2

� ∂
∂y ; 0

�
;

ê3 ¼
�
0; 0; 0;

∂
∂z

�
; ð17Þ

and the metric tensor gab is described by

gabðt; zÞ ¼

0
BBB@

−1 0 0 0

0 1þ hþ h× 0

0 h× 1 − hþ 0

0 0 0 1

1
CCCA: ð18Þ

The linearized Maxwell equations coupled to the gravi-
tational perturbations, in the specified tetrad, are [76]

∇ × E⃗ð1Þ þ ∂B⃗ð1Þ

∂t ¼ −j⃗ð1ÞB ;

∇ × B⃗ð1Þ −
∂E⃗ð1Þ

∂t ¼ 4πj⃗ð1Þ þ j⃗ð1ÞE ;

∇ · E⃗ð1Þ ¼ 4πρð1Þ;

∇ · B⃗ð1Þ ¼ 0: ð19Þ

In the plasma rest frame and considering a collisionless
plasma with no dissipative effects and conductivity σ → ∞,
then the electric field (E⃗ð0Þ), the plasma velocity (v⃗ð0Þ), the
current density (j⃗ð0Þ), and the charged matter density (ρð0Þ)
all disappear.
We take the covariant derivative ∇cFab ¼ ∂cFab þ

Γa
dcFdb þ Γb

cdFad [87] and we disregard terms of order
two or higher ðOðh2þ;×Þ ≈ 0Þ. Here, the superscript (0)
corresponds to the background variables and the notation
(1) corresponds to the perturbed variables.
The current densities induced “gravitationally”, j⃗B and

j⃗E in Eq. (19), are calculated by
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j⃗ð1ÞB ¼ −
Bð0Þ
x

2

∂
∂t

0
B@ hþ

h×
0

1
CA; ð20aÞ

j⃗ð1ÞE ¼ Bð0Þ
x

2

∂
∂z

0
B@ h×

−hþ
0

1
CA: ð20bÞ

We note that in [76], the expression j⃗ð1ÞE has a different
signal from that obtained here. However, the physical
interpretation of this parameter obtained by [76] is the
same as that obtained here. The effect of the GWs is to
induce small perturbations in all quantities of the plasma.
Therefore, all equations are linearized around the unper-
turbed state. Important to note that the functions hþ;×ðz; tÞ
are general, their waveforms depend on the source of
gravitational radiation.

C. Plasma equations

In the ideal MHD formalism, the plasma is described as a
unique fluid, collisionless, without viscosity (and so the
pressure tensor P ¼ pI, where I is the identity matrix), and
no heat dissipation (that is, the heat flux Q⃗ ¼ 0) [90].
The gravitational terms are conservative, besides they are

neglected in comparison with the electromagnetic terms.
Without dissipative effects, the resistivity of the plasma is
insignificant (i.e., the conductivity σ → ∞). For a plasma
with infinite conductivity, the particles quickly restore
the neutrality condition causing the charge ρðr⃗; tÞ and
the current (j⃗) densities to disappear [91]. Therefore, the
system is adiabatic and the energy conservation condition
produces

pð0Þ ¼ kðρð0Þm ÞΓ; ð21Þ

where Γ is the polytropic index (4=5 ≤ Γ ≤ 5=3).
By the first law of thermodynamics dU ¼ dQ − pdV

[94], where U is the internal energy per unit mass, p is the
plasma pressure, and V is the specific volume per unit mass
(V ¼ 1=ρm). With Eq. (21), the internal energy is

Uð0Þ ¼ pð0Þ

ρð0Þm ðΓ − 1Þ
: ð22Þ

Hence, the total relativistic energy-matter of the plasma
with respect to the 4-velocity is given by (the speed of light
c is shown for convenience)

μð0Þ ¼ ρmðc2 þ Uð0ÞÞ ¼ ρð0Þm c2 þ pð0Þ

Γ − 1
: ð23Þ

The relativistic enthalpy (with unit Nm−2) is given by
[54,94]

wð0Þ ¼ μð0Þ þ pð0Þ; ð24Þ

such that μð0Þ and pð0Þ are considered mechanical pressures.
Combining Eqs. (21), (23), and (24), the proper relativ-

istic sound velocity can be calculated by

c2s ¼
∂p
∂μ

����
ad

¼ Γpð0Þ

wð0Þ : ð25Þ

The pressure gradient can be written as∇pð1Þ ¼ c2s∇μð1Þ.
The enthalpy, in Eq. (24), results in the matter density μð0Þ,
when the plasma pressure is neglected or when the plasma
is in the cold plasma approximation.
The conservation of energy-momentum is determined by

∇bTab ¼ ∇b

�
ðμþ pÞuaub þ pgab

þ 1

4π

�
Fa

cFbc −
1

4π
FcdFcd

��
: ð26Þ

The conservation of matter density in the rest frame is

∂ρð1Þm

∂t þ ρð0Þm ∇ · v⃗ð1Þ ¼ 0: ð27Þ

In the comoving frame, the electric field (Eð0Þ), the
velocity of the plasma (v⃗ð0Þ), and the current density (j⃗ð0Þ)
disappear. Therefore, the conservation equation for the
energy-matter density, when the terms of higher order are
negligible, is given by

∂pð1Þ

∂t þ Γpð0Þ∇ · v⃗ð1Þ ¼ 0: ð28Þ

In the nonrelativistic limit when the internal energy is
negligible with respect to the rest-mass energy (p ≪ μ),
Eq. (28) reduces to Eq. (27).
The momentum conservation equation in the comovel

frame can be determined by

ðμð0Þ þ pð0ÞÞ ∂v⃗
ð1Þ

∂t þ∇pð1Þ ¼ j⃗ð1Þ × B⃗ð0Þ: ð29Þ

To complete the set of equations describing the electro-
magnetic field in the ideal MHD approximation, it is
necessary to calculate the Ohm law. That is,

me

nne2
∂j⃗
∂t−

1

nne
∇ ·Pe ¼ E⃗þ v⃗× B⃗−

1

nne
½j⃗× B⃗�−1

σ
j⃗: ð30Þ

Considering the very conductive plasma (σ → ∞), the
quasineutrality condition (E⃗ð0Þ ¼ j⃗ð0Þ ¼ ρð0Þ ¼ 0), colli-
sionless plasma, and without Joule effect (j⃗ · E⃗ ¼ 0), then
the Hall effect ðj⃗ × B⃗Þ and the ∂j⃗=∂t terms disappear in the
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generalized Ohm’s Law. Thus, as in the comoving frame
the plasma velocity is v⃗ð0Þ ¼ 0, we can write the general-
ized Ohm’s law as

E⃗ð1Þ ¼ −v⃗ð1Þ × B⃗ð0Þ: ð31Þ
Thereby, we have the closed set of the variables describing

the strongly magnetized plasma, in the ideal MHD theory,
and that is interacting with the GWs emitted by BNSs.

III. COUPLING GWS TO EMWS

A. GRMHD equations

The set of partial differential equations for the 16 variables
B⃗; E⃗; j⃗; ρm; v⃗; μ; ρ; p—Eqs. (19), (21), (27), (28), (29),
(31)—describing the relativistic and strongly magnetized
MHD plasma that is coupled to the GWs generated by the
evolving binary system, in a Gaussian system with c ¼ 1, is
[68,76]

∇ × E⃗ð1Þ þ ∂B⃗ð1Þ

∂t ¼ −j⃗ð1ÞB ; ð32Þ

∇ × B⃗ð1Þ −
∂E⃗ð1Þ

∂t ¼ 4πj⃗ð1Þ þ j⃗ð1ÞE ; ð33Þ

∇ · E⃗ð1Þ ¼ 4πρð1Þ; ð34Þ

∇ · B⃗ð1Þ ¼ 0; ð35Þ

∂pð1Þ

∂t þ Γpð0Þ∇ · v⃗ð1Þ ¼ 0; ð36Þ

∇pð1Þ ¼ c2s∇μð1Þ; ð37Þ

∂ρð1Þm

∂t þ ρð0Þm ∇ · v⃗ð1Þ ¼ 0; ð38Þ

ðμð0Þ þ pð0ÞÞ ∂v⃗
ð1Þ

∂t þ∇pð1Þ ¼ j⃗ð1Þ × B⃗ð0Þ; ð39Þ

E⃗ð1Þ ¼ −v⃗ð1Þ × B⃗ð0Þ; ð40Þ

where the gravitationally induced current densities are

j⃗ð1ÞB ¼ −
Bð0Þ
x

2

∂
∂t

0
B@ hþ

h×
0

1
CA; ð41Þ

j⃗ð1ÞE ¼ Bð0Þ
x

2

∂
∂z

0
B@ h×

−hþ
0

1
CA: ð42Þ

The matter density and relativistic enthalpy are, respec-
tively,

μð0Þ ¼ ρð0Þm þ pð0Þ

Γ − 1
; ð43Þ

wð0Þ ¼ μð0Þ þ pð0Þ: ð44Þ

B. Dispersion relation

The differential equations are calculated for the strongly
magnetized plasma with background magnetic field
Bð0Þðx; zÞ, oriented in the x-z plane and forming a θ angle
with the z-axis. The GW amplitudes h×;þðz; tÞ propagate
along the z-axis (see Fig. 1).
We are interested in the scenario where the GWs and the

MHD waves are in coherence, i.e., when they have the
same propagation direction, frequency, and the phase
difference remains constant. This means that they must
have very close phase velocities. In this way, the waves may
interact through constructive or destructive interference and
so they can exchange energy.
Taking the second time derivative of Eq. (39), eliminat-

ing pð1Þ by the use of Eq. (36) and B⃗ð1Þ with the aid of
Eqs. (32)–(33), then using Eq. (34) to eliminate E⃗ð1Þ, after
that using the expressions for j⃗ð1ÞE and j⃗ð1ÞB , we can obtain
the plasma perturbation wave equation in terms of the
velocity v⃗ð1Þðz; tÞ of the perturbations. That is,� ∂2

∂t2−u2m∇∇·
�
v⃗ð1Þ−

�
u⃗A

∂2

∂t2− ðu⃗A ·∇Þ∇
�
v⃗ð1Þ · u⃗A

¼ ðu⃗A ·∇Þ2v⃗ð1Þ− u⃗Aðu⃗A ·∇Þð∇ · v⃗ð1ÞÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4πωtot

p
�
∇ðu⃗A · j⃗ð1ÞB Þ− ∂

∂tðj⃗
ð1Þ
E × u⃗AÞ− ðu⃗A ·∇Þj⃗ð1ÞB

�
;

ð45Þ

where the relativistic Alfvén velocities for a noncompres-
sional (shear Alfvén) wave, uA, and for a magnetoacoustic
wave, um (with magnetic enthalpy, that corresponds
to mechanical and magnetic pressures, ωtot ¼ wð0Þþ
jB⃗ð0Þj2=ð4πÞ), are, respectively, defined as

FIG. 1. The background magnetic field forms the θ angle with
the GW vector that is in the z-direction. There is no loss of
generality with this choice.
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u2A ¼ jB⃗ð0Þj2
4πωtot

; ð46Þ

u2m ¼ Γpð0Þ

ωtot
þ jB⃗ð0Þj2

4πωtot
: ð47Þ

Equation (45) is calculated algebraically in the Fourier
space. By applying the Fourier transform with respect to
time and spatial parts, where ω and k are the frequency and

the wave vector of the MHDmodes, respectively, and using
the following definitions:

B⃗ð0Þ ¼ Bð0Þ
x x̂þ Bð0Þ

z ẑ; ð48Þ

u⃗A ¼ uA⊥ x̂þ uAk ẑ; ð49Þ

v⃗ð1Þðz; tÞ ¼ vð1Þx ðz; tÞx̂þ vð1Þy ðz; tÞŷþ vð1Þz ðz; tÞẑ; ð50Þ

we can obtain the dispersion relation

0
BBB@

ω2ð1 − u2A⊥Þ − k2u2Ak 0 −ðω2 − k2ÞuAkuA⊥
0 ω2 − k2u2Ak 0

−ðω2 − k2ÞuAkuA⊥ 0 ω2ð1 − u2AkÞ − k2ðu2m − u2AkÞ

1
CCCAv⃗ð1Þ ¼ −uA⊥ωk

0
B@ uAkhþ

uAkh×
−uA⊥hþ

1
CA: ð51Þ

Equation (51) can be represented as Dv⃗ð1Þ ¼ Jð1ÞGW. The
left side is purely magnetohydrodynamics. It describes the
behavior of the plasma through the Alfvén and magneto-
sonic modes. The right side is purely gravitational and
this term excites the plasma parameters and its respective
modes.
The amplitudes hþ;× on the Fourier space are the source

terms and they depend on the evolutionary stage of the
binary system. In [76], it was used an impulse function as
δðω − ωGWÞ ∝ Ffhþ;×eiωGWðz−tÞgðωÞ to consider only the
instant immediately before the merger. In [68], it was used a
waveform that reproduces the inspiral phase until instants
before the merger as represented by Eqs. (6a)–(6b).
The homogeneous solution of Eq. (51) is obtained when

the gravitational source is turned off (hþ;× ¼ 0). Thus, it is
necessary to calculate the determinant of the D−1-matrix,
where

D−1 ¼

0
BBB@

ω2ðu2
Ak−1Þ−k2ðu2m−u2AkÞ

Λ 0
ðω2−k2ÞuAkuA⊥

Λ

0 1
ω2−k2u2

Ak
0

ðω2−k2ÞuAkuA⊥
Λ 0

ω2ð1−u2A⊥Þ−k2u2Ak
Λ

1
CCCA:

ð52Þ

Denominating the determinant of D−1 as Λðω; kÞ, we
have

Λðω; kÞ ¼ u2Akc
2
sk4 þ ω2½ðu2A⊥ − 1Þu2m þ u2Aku

2
A�k2

− ω4ðu2A − 1Þ; ð53Þ

or in terms of the eigenvalues

Λðk;ωÞ ¼ ð1 − u2AÞðω2 − k2u2sÞðω2 − k2u2fÞ: ð54Þ

The homogeneous solutions are

ω ¼ �kAuAk; ð55Þ

ω ¼ � ks;fffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u2m þ c2s

u2Ak
1 − u2A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − σÞ

pqs
: ð56Þ

The auxiliary parameter σðθÞ in Eq. (56) is given by

σðθÞ≡ 4c2s
u2Ak

1 − u2A

�
u2m þ c2s

u2Ak
1 − u2A

�−2

; ð57Þ

where our expression differs by the factor 1=ð1 − u2AÞ of
that obtained by [76].
As expected, the perturbations produce shear Alfvén

waves (AW) and compressional magnetosonic waves
(MSW). The solutions given in Eqs. (55) and (56) represent
6 equations describing the excitation modes of the plasma.
The negative sign inside the square root of Eq. (56) refers to
the slowMSWwith phase velocity us ¼ ω=ks. The positive
sign refers to the fast MSWwith phase velocity uf ¼ ω=kf.
The equations for uf and us are represented by

u2f;s ¼ cs
uAkffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2A

p �
1� ffiffiffiffiffiffiffiffiffiffiffi

1 − σ
pffiffiffi
σ

p
�
: ð58Þ

Seeing that the D−1-matrix is inverse, the solutions
for the nonhomogeneous linear system are given by

vð1Þα ¼ ðD−1J⃗ð1ÞGWÞα.
We can see that the AW mode is excited by GW

polarization h×, while the MSW mode couples to the
GW polarization hþ.
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C. Comoving frame

The equations presented above are written in the proper
frame. Hence, the results obtained are related to the frames
moving with the plasma velocity around of the compact
binary. Considering the plasma frozen in the magnetic
field lines, the plasma velocity is the same of the stars, as
represented in Eq. (11).

1. Alfvén waves

The D−1
yy component couples to the ×-polarization and

excites Alfvén waves (AWs). Calculating vy ¼ D−1
yy J

ð1Þ
GWyy

with D−1 from Eq. (52), we have

vð1Þy ðk;ωÞ ¼ −h×ðωGWÞ
uAkuA⊥

ω2 − k2u2Ak

ωk: ð59Þ

The perturbed velocity is along the y-axis, perpendicular
to the background magnetic field of the binary system

(vð1Þy ⊥B⃗ð0Þ). This defines theAlfvénvelocity and its direction
as vð1Þy ⊥k⃗A. The velocity propagation of the Alfvén wave is
high when the background magnetic field is parallel to
the z-axis and, considering the phase velocity, we have
ω=kA ¼ uAk ¼ uA cos θ.
The velocity vyðk;ωÞ depends explicitly on the polari-

zation state h×ðωGWÞ and on the MHD wave frequency.

The perturbed magnetic field (Bð1Þ
y ), perturbed electric

fields (Eð1Þ
z and Eð1Þ

x ) and other plasma quantities (jð1Þx ,

jð1Þz and ρð1Þ) are calculated by

−
Eð1Þ
z ðk;ωÞ
Bð0Þ
x

¼ Eð1Þ
x ðk;ωÞ
Bð0Þ
z

¼ −vð1Þy ðk;ωÞ; ð60aÞ

Bð1Þ
y ðk;ωÞ ¼ −vð1Þy ðk;ωÞ Bð0Þ

x

uAkuA⊥

ω2 þ k2u2Ak

2ωk
; ð60bÞ

jð1Þx ðk;ωÞ ¼ −
iω
4π

1 − u2Ak

u2Ak

Eð1Þ
x ðk;ωÞ; ð60cÞ

jð1Þz ðk;ωÞ ¼ iω
4π

Eð1Þ
z ðk;ωÞ; ð60dÞ

ρð1Þðk;ωÞ ¼ ik
4π

Eð1Þ
z ðk;ωÞ: ð60eÞ

The directions of the perturbed electromagnetic fields
and other physical parameters are shown in Fig. 2. The
interaction is more efficient when the wave number (kA) of
the AW is parallel to the wave number (kGW) of the GWs, or
when the background magnetic field is parallel to the GW
direction, that corresponds to θ → 0. In this case, the
Alfvén phase velocity is maximum while the z-component

of the electric field (Eð1Þ
z ) and the magnetic field Bð1Þ

y

become both null. This result is expected and it was also
obtained in studies developed by [73,74].
Because the AW is not compressional, it does not

produce perturbations in the pressure pð0Þ and matter

density ρð0Þm . Therefore, it makes no sense to calculate

pð1Þ and ρð1Þm . On the other hand, the Alfvén waves change
the neutrality state of the plasma and so producing current

densities, jð1Þx and jð1Þz , which are modified as the coales-
cence evolves. Moreover, the AW produces shear in the
background magnetic field lines. See also, using Eq. (60b)

that the perturbed field lines are perpendicular to Bð0Þ
x

during the oscillation, [91].

2. Magnetoacoustic waves

It is expected that the hþ and h× excite slow and fast

MSW in the plasma. Using vx¼D−1
xx J

ð1Þ
GWxx

þD−1
xz J

ð1Þ
GWzz

and

vz ¼ D−1
zx J

ð1Þ
GWxx

þD−1
zz J

ð1Þ
GWzz

to calculate the other velocity
components, we have

vð1Þz ðk;ωÞ ¼ hþðωGWÞω3ku2A⊥
ðω2 − k2u2fÞðω2 − k2u2sÞ

; ð61Þ

vð1Þx ðk;ωÞ ¼ −
vzðk;ωÞ
tan θ

�
1 −

c2sk2

ω2ð1 − u2AÞ
�
; ð62Þ

FIG. 2. The background magnetic field is in the x-z plane and
does the θ angle with the GW direction. The polarization h×
excites the plasma, producing oscillations in the electromagnetic

fields (Eð1Þ
z ; Eð1Þ

x and Bð1Þ
y ). The oscillations produce shear in the

magnetic field lines; this is the Alfvén mode [91].
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where tan θ ¼ uA⊥=uAk by definition of the Alfvén velocity.

We observe that Eq. (62) differs by a factor 1=ð1 − u2AÞ
from that obtained by [76].
The perturbed plasma velocities for the MSW, Eqs. (61)

and (62), are parallel to the background magnetic field
(vð1Þx;zkB⃗ð0Þ). The GW polarization hþ is modified as the
coalescence evolves, and, as a consequence, it perturbs the
plasma velocity and induces oscillations in the x-z plane.
By the condition expressed through Eq. (35), the pertur-
bation of the magnetic field is orthogonal to the direction of

the plasma oscillations. The perturbed magnetic field Bð1Þ
x is

Bð1Þ
x ðk;ωÞ
Bð0Þ ¼ vð1Þz ðω; kÞ sin θ − vð1Þx ðω; kÞ cos θ

−
ω

ωþ k
1 − u2A
u2A

vð1Þx ðω; kÞ
cos θ

: ð63Þ

The MSW is an electromagnetic and compressional
wave because Bð1Þ

x is in the plane of the background
magnetic field. The density of the magnetic field lines
increases with the wave propagation, and, considering that
the charged matter is frozen in these lines, we see as a result
the increase in both pressure and matter density. The

perturbed electric field (Eð1Þ
y ), the perturbed mechanical

pressure (pð1Þ and μð1Þ), and the current density (jð1Þy ) are
calculated as

pð1Þðk;ωÞ ¼ k
ω
Γpð0Þvð1Þz ðω; kÞ; ð64aÞ

μð1Þðk;ωÞ ¼ pð1Þ

c2s
; ð64bÞ

Eð1Þ
y ðk;ωÞ ¼ −vð1Þz ðω; kÞBð0Þ

x þ vð1Þx ðω; kÞBð0Þ
z ; ð64cÞ

jð1Þy ðk;ωÞ ¼ −
iω

Bð0Þ cos θ
Γpð0Þ

c2s
vð1Þx ðω; kÞ; ð64dÞ

since that Γ is the adiabatic polytropic index and, remem-
bering when necessary, u2fu

2
s ¼ ðc2su2Ak Þ=½ð1 − u2AÞ� and

u2f þ u2s ¼ u2m þ c2su2Ak=ð1 − u2AÞ.
The directions of the perturbed electromagnetic fields

and other physical parameters are shown in Fig. 3. The
GW-MSW interaction is more efficient when θ → π=2, this

is because of vð1Þz and Bð1Þ
x being dependent on sin θ. The

MSW phase velocity is calculated by Eq. (56). Usually,
cs ≪ c and the parameter σ → 0 in Eq. (57).
The slow MSW phase velocity is null [see Eq. (56)] and,

independent of θ value, the fast MSW phase velocity
produces uf → uA. If uA in the strongly magnetized plasma
reaches the value of c, then the fast MSW and the GW can

be in coherence, and so it would be possible to transfer
a large quantity of energy from the GWs to the plasma.
The constraint on the coherence of the waves is pre-

served because ∇ · B⃗ð1Þ ¼ 0 and kf
!

· uA
�! ¼ 0. Thus, the

fast MSW is incompressible and it is able to maintain
coherence with the GW (see, e.g., [95]). See that for θ ¼ 0°,

we have vð1Þz ¼ vð1Þx ¼ 0 and, hence, Bð1Þ
x ¼ 0.

The charged matter density is absent in the set of
perturbed quantities shown in Eqs. (64), because it is not
perturbed by the propagation of the magnetoacoustic wave.

D. Rest frame

The equations obtained in the last section are in the
comoving frame. However, we must consider the rest
energy of the stars when we calculate the energy stored
in the plasma by GWs generated through the evolution of
the binary system. To do this, we need to apply the Lorentz
transformation in order to place the equations in the
laboratory frame. Consider that the relativistic wind flows
in the z-direction (in fact, there is no difference if we choose
another direction for the boost).
The Lorentz factor is given by γ ¼ 1=ð1 − β2Þ1=2 while

the β parameter can be calculated by adding two compo-
nents. The first component is the velocity of the plasma that
is distributed around the NS binary [see Eq. (11)]. The

second component is the perturbed velocity vð1Þz obtained
through interaction with the GWs [see Eq. (61)]. The
plasma is frozen in the magnetic field lines, consequently,
the plasma velocity has the same velocity as the stars that
move in the binary system.

FIG. 3. The background magnetic field is on the x-z plane and
making a θ angle with the GW direction. The polarization hþ
excites the plasma, producing oscillations in the electromagnetic

fields (Eð1Þ
y and Bð1Þ

x ). The oscillations produce compression of
the magnetic field lines. This is the magnetoacoustic mode [91].
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The perturbed variables are in the frequency domain and
so we can proceed in two ways: either the Lorentz trans-
formation is directly applied for the variables in the
frequency domain or the parameters of the plasma are
converted for the time domain by the Inverse Fourier
Transform (IFT) and we apply the Lorentz transformation
for returning to the frequency domain. This paper follows
the last one; thereby, the interpretation of the variables in
the time domain is easier than the first case.
The MHD phase velocities transform like u0A⊥ ¼

uA⊥=½γð1 − βuAk Þ�, u0Ak ¼ ðuAk − βÞ=ð1 − βuAk Þ, u0f ¼
ðuf − βÞ=ð1 − βufÞ, and u0s ¼ ðus − βÞ=ð1 − βusÞ. From
now on, the quantities in the comoving frame are repre-
sented with prime ( 0). The boosted velocities associated
with the plasma perturbations are given by v0z ≈ γ2vz
and v0x;y ≈ γvx;y.
The Lorentz transformations for the electromagnetic

fields are given by Ex ¼ γðE0
x þ βB0

yÞ, Ey ¼
γðE0

y − βB0
xÞ, Ez ¼ E0

z, Bx ¼ γðB0
x − βE0

yÞ, By ¼
γðB0

y þ βE0
xÞ, and Bz ¼ B0

z. For an ultrarelativistic
plasma, we have β → 1. Thus, the Lorentz transformation
produces Bx ≈ Ey and By ≈ Ex. Thereby, the electromag-

netic energy integral
R ðjBð1Þ

x j2=ð2μ0Þ þ 2jEð1Þ
y j2ϵ0Þd3k ≃R

2jBð1Þ
x j2=ð2μ0Þd3k or

R ðjBð1Þ
y j2=ð2μ0Þ þ 2jEð1Þ

x j2ϵ0Þd3k≃R
2jBð1Þ

y j2=ð2μ0Þd3k.
In the rest frame, the background magnetic field is

rewritten as B⃗ð0Þ ¼ ðγBð0Þ
x

0; 0; Bð0Þ
z

0Þ. Thus, in the laboratory
frame, in addition to the poloidal component for the
magnetic field, the toroidal component also appears. A
part of this behavior can be seen in the simulations
developed by [64,96].
Note that the background electric field does not vanish in

the laboratory frame and it has value E⃗ð0Þ ¼ ð0;−βγBð0Þ
x

0; 0Þ.
The charge and current densities are boosted in the

z-direction. They are determined by ρð1Þ ¼γðρð1Þ0þβjð1Þz
0Þ,

jð1Þz ¼ γðβρð1Þ0 þ jð1Þz
0Þ, jð1Þx ¼ jð1Þx

0, and jð1Þy ¼ jð1Þy
0. Close

to the merger and in the ultrarelativistic regime (β → 1), we

have ρð1Þðk;ωÞ ≈ jð1Þz ðk;ωÞ.

1. Relativistic Alfvén waves

For the Alfvén mode, the velocity of the perturbation
coupled with the GWs in the rest frame is given by

vð1Þy ðk;ωÞ ¼ −
h×ðωGWÞ

2γ2
ωuA⊥

ð1 − βuAk Þ
ωþ kuAk

ω2 − k2u2Ak

: ð65Þ

See that vð1Þy ðk;ωÞ remains in the same y-direction and
that it depends on the velocity of the stars and Alfvén
phase velocity due to the term ð1 − β2Þ=ð1 − βuAk=cÞ (with
c explicitly placed in the expression).
For θ → 0, the perturbed velocity in the rest frame

returns to the expression of the comovel frame.

However, the perturbed magnetic field decreases, see
Eq. (66) below, with this coherence condition. In general,
for other θ values, we have ð1 − β2Þ=ð1 − βuAk=cÞ < 1.
The component of the perturbed magnetic field stays

B⃗ð1Þ ¼ ð0; Bð1Þ
y ; 0Þ and Bð1Þ

y is given by

Bð1Þ
y ðk;ωÞ ¼ h×ðωGWÞBð0Þ

x

2ð1 − βuAk Þ
ω2 þ k2u2Ak

ω2 − k2u2Ak

: ð66Þ

The components of the perturbed electric field stay

E⃗ð1Þ ¼ ðEð1Þ
x ; 0; Eð1Þ

z Þ where the expressions for E⃗ð1Þ
x;z are

Eð1Þ
z ðk;ωÞ ¼ γ2Bð0Þ

x vð1Þy ðk;ωÞ; ð67aÞ

Eð1Þ
x ðk;ωÞ ¼ γ½βBð1Þ

y
0 − γBð0Þ

z vð1Þy ðk;ωÞ�: ð67bÞ

Note that during the binary coalescence, the components
of the electric field increase, on turn, the current densities in
these directions also increase, mainly, the perturbed electric
field and current density associated to the x-components.

The charge ρð1Þ and current densities jð1Þz and jð1Þx are given,
respectively, by

ρð1Þðk;ωÞ ¼ iγ2

4π

Eð1Þ
z

uAk − β
½uAk ðkþ βωÞ − βðku2Ak þ βωÞ�

ð68aÞ

jð1Þz ðk;ωÞ ¼ iγ2

4π

Eð1Þ
z

uAk − β
½uAk ðβkþ ωÞ − βðβku2Ak þ ωÞ�

ð68bÞ

jð1Þx ðk;ωÞ ¼ −iωγ2

4π

�ð1 − βuAk Þ2
ðuAk − βÞ2 − 1

�

× ½Eð1Þ
x ðk;ωÞ − βBð1Þ

y ðk;ωÞ�: ð68cÞ

The directions of the perturbed electromagnetic field
components remain the same as shown in Fig. 2. The
y-component of the background electric field appears

due to the boost. It was added to the term Bð1Þ0
y in the

x-component of the perturbed electric field according to
Eq. (67b). For β → 0, Eqs. (66), (67), and (68) return to
those written in the proper frame.
Note that the perturbed magnetic field has maximum

value when θ ¼ π=2 and the other plasma parameters also
increases with sinðθÞ. On the other hand, the Alfvén phase
velocity increases with cosðθÞ. Close to the merger, the
plasma is ultrarelativistic, i.e., uA → 1 (c ¼ 1). This coher-
ence condition is established if θ → 0.
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However, in this condition, the perturbed plasma param-
eters become small and this causes the associated energy to
reach low values, even with the increase in the frequency
and amplitude of the GWs.
The Alfvén wave mode is not the more efficient MHD

mode to interact with the GWs, considering that GW phase

velocity remains near to the speed of light when crossing
the region where the plasma is distributed [78].

2. Relativistic magnetosonic waves

For the magnetoacoustic mode, the perturbed velocities
coupled to the GWs are

vð1Þz ðk;ωÞ ¼ hþ
2γ2

ωu2A⊥
ð1 − βuAkÞ2

ð1 − βufÞð1 − βusÞ
ðuf − usÞ½ðuf þ usÞð1þ β2Þ − 2βð1þ ufusÞ�

·

	
ufð1 − βusÞ

�
ufkð1 − βufÞ þ ωðuf − βÞ

ω2 − k2u2f

�

− usð1 − βufÞ
�
uskð1 − βusÞ þ ωðus − βÞ

ω2 − k2u2s

�

; ð69aÞ

vð1Þx ðk;ωÞ ¼ −
hþ
2

ωuA⊥ðuAk − βÞc2s
1− u2A

ð1− βufÞ2ð1− βusÞ2
ðuf − usÞ½ðuf þ usÞð1þ β2Þ− 2βð1þ ufusÞ�

·

	
1− βus
ðus − βÞ2 us

½uskð1− βusÞ þωðus − βÞ�
ω2 − k2u2s

−
1− βuf
ðuf − βÞ2 uf

½ufkð1− βufÞ þωðuf − βÞ�
ω2 − k2u2f



− γ2

�uAk − β

uA⊥

�
vð1Þz ðk;ωÞ; ð69bÞ

where tanθ0 ¼uA⊥
0=uAk

0 ¼uA⊥=½γðuAk−βÞ� and 1 − uA2
0 ¼

ð1 − u2AÞ=½γ2ð1 − βuAkÞ2�.
At this point, we need to be more careful because the

magnetic Bð1Þ
x field component is the biggest and several

steps are needed to obtain the final equation. First, the
boosted expression is Bx ¼ γ½Bx

0 − βEy
0� and the right side

terms are given by

Eð1Þ
y ðk;ωÞ ¼ −vð1Þz ðω; kÞBð0Þ

x þ vð1Þx ðω; kÞBð0Þ
z ; ð70aÞ

Bð1Þ
x ðk;ωÞ
Bð0Þ ¼ vð1Þz ðω; kÞ sin θ − vð1Þx ðω; kÞ cos θ

−
ω

ωþ k
1 − u2A
u2A

vð1Þx ðω; kÞ
cos θ

; ð70bÞ

where the prime ( 0) is hidden to avoid mess. The expression

for Eð1Þ
y results in

Eð1Þ
y ðk;ωÞ¼−

�
Bð1Þ
x ðk;ωÞþ ω

ωþk
1−u2A
u2A

Bð0Þ

cosθ
vð1Þx

�
: ð71Þ

Using the Laplace transformation in the z − t space, we
have

Eð1Þ
y ðz; tÞ ¼ −

�
Bð1Þ
x ðz; tÞ

þ 1− u2A
u2A

Bð0Þ

cosθ
L−1

	
ω

ωþ k
vð1Þx ðk;ωÞ


�
: ð72Þ

Defining v̂ð1Þx ðz; tÞ ¼ L−1fω=ðωþ kÞvð1Þx ðk;ωÞg and
returning the prime ( 0), we obtain

Eð1Þ
y

0ðz; tÞ ¼ −
�
Bð1Þ
x

0ðz; tÞ þ 1 − u2A
0

u2A
0

Bð0Þ0

cos θ0
v̂ð1Þx

0ðz; tÞ
�
: ð73Þ

Now, returning to the expression Bx ¼ γ½Bx
0 − βEy

0� and
using Eq. (73), we find

Bð1Þ
x ðz;tÞ¼ γ

�
Bð1Þ
x

0ðz;tÞð1þβÞþβ

γ

1−u2A
ðuAk −βÞ2B

ð0Þ
z v̂ð1Þx

0ðz;tÞ
�
:

ð74Þ

Finally, using Eqs. (70b) and (73) in the Fourier space,
we obtain the perturbed magnetic field for the MSW as

Bð1Þ
x ðk;ωÞ ¼ −

hþ
2γ2

ωð1 − βufÞ2ð1 − βusÞ2
ðuf − usÞ½ðuf þ usÞð1þ β2Þ − 2βð1þ ufusÞ�

½Ξðk;ωÞ þ Πðk;ωÞ�: ð75Þ

ADAM S. GONTIJO and OSWALDO D. MIRANDA PHYS. REV. D 102, 043004 (2020)

043004-12



The expressions for Ξðk;ωÞ and Πðk;ωÞ are in the
Appendix. The term Ξðk;ωÞ becomes relevant when the
GW propagates perpendicular to the background magnetic
field (θ ¼ π=2). For this condition, the term Πðk;ωÞ
becomes less relevant. The opposite occurs when θ ¼ 0.
The components of the perturbed electric field stay

E⃗ð1Þ ¼ ð0; Eð1Þ
y ; 0Þ, where the expression for Eð1Þ

y is

Eð1Þ
y ðk;ωÞ ¼ γ½Eð1Þ

y
0ðk;ωÞ − βBð1Þ

x
0ðk;ωÞ�: ð76Þ

The directions of the perturbed electromagnetic field
components remain the same as shown in Fig. 3. We only
added the term Bð1Þ

x
0 in the y-component of the perturbed

electric field.
The mechanical pressure and the current density in the

rest frame are, respectively, given by

pð1Þðk;ωÞ ¼ kuf
ω

γð1 − βufÞ
uf − β

Γpð0Þγ2vð1Þz ðk;ωÞ ð77aÞ

jð1Þy ðk;ωÞ ¼ −iωγ2

Bð0Þ
z

Γpð0Þ

c2s
vð1Þx ðk;ωÞ: ð77bÞ

For β → 0, Eqs. (75), (76), and (77) return to the proper
frame.
According to Eq. (56), with cs ≪ c, the fast MSW phase

velocity uf → c and the slow MSW phase velocity us → 0.
These results are independent of θ. Therefore, the fast
MSW mode is more efficient than the slow MSW mode for
interacting coherently with the GWs. While the binary stars

coalesce, the perturbed magnetic field Bð1Þ
x increases with

the resonant interaction, and so the toroidal magnetic field
component also increases.
The electric field produces a current density in the

y-direction. In the last topic above, we show that jð1Þx

increases with the inspiral phase. Thereby, in the x-y plane,
arises a current density responsible for producing a mag-
netic field component in the z-direction. This new magnetic
component is parallel to the poloidal background magnetic
field of the compact binaries. This behavior is also found
in [64,96].
From now on, we return to the international system

of units (SI) with the necessary changes in the MHD
equations. The main replacement rules for translating
the equations from Gaussian to SI are: E⃗ →

ffiffiffiffiffiffiffiffiffiffi
4πϵ0

p
E⃗,

ðρ; j⃗Þ → 1=
ffiffiffiffiffiffiffiffiffiffi
4πϵ0

p ðρ; j⃗Þ, and B⃗ →
ffiffiffiffiffiffiffiffiffiffiffiffi
4π=μ0

p
B⃗.

IV. STORED ENERGY BY THE COUPLING

In this section we will assess how the energy is trans-
ferred from GWs to EMWs during the inspiral phase down
to the merger. The NSs produce a wind composed by
electron-positron pairs and also a plasma satisfying the

ideal MHD theory. This plasma is filling in the space up to
large distances.
We estimate the magnitude of the MHD energy modes

excited by the amplitudes of the GWs and including the
evolution of the perturbed magnetic field and of the plasma
velocities. The stars have an initial magnetic field, in the
comoving frame, that is anchored in the polar caps of each
star. It evolves as a dipole, that is,BðrÞ ¼ B⋆ðR⋆=rÞ3, where
B⋆ andR⋆ are parameters on the surface of the stars [97–99].
The NSs orbit each other with their magnetic fields. The

maximum of the magnetic field of the system remains
nearly constant up to ∼3 ms before the merger (see, e.g.,
[64]). However, it decreases with the distance as a magnetic
dipole [96].
We consider that the magnetic dipole moments

(μ ¼ B⋆R3⋆) are aligned with the orbital angular momentum
during the evolution of the system. In [59], the authors
consider three different configurations of the magnetic
moments with respect to the orbital angular momentum.
The configurations are parallel, antiparallel with the same
moments μ, and parallel with different magnetic moments
(in this last case, μ1 ¼ 100μ2). The authors find that the
antiparallel case is significantly more radiative than the
other cases, especially in the late stage of the coalescence.
The accelerated motion of the NSs induces a wind that is

corotating with the stars. In the MHD approximation, the
plasma is frozen in the magnetic field lines and is forced to
high velocities. The radius at which the tangential linear
velocity is equal to c is the light cylinder radius given by
RLC ¼ c=Ω [99,100], being Ω the orbital frequency of the
system. The magnetosphere of the BNSs extends up to RLC,
and for greater distances the wind is free of forces.
The morphology of the wind is determined by the

magnetic field geometry, since the charged particles are
frozen in the magnetic field lines. The charged matter
density is calculated by the Goldreich-Julian density [80]:

nGJ ¼
2ϵ0
jej Ω⃗ · B⃗; ð78Þ

where ϵ0 is the vacuum permittivity, e is the elementary
charge, and B corresponds to the background magnetic
field.
For the canonical binary system close to the merger, we

have Ω ¼ fGW=2 ¼ 750 Hz. Considering B ¼ 108 T, we
have nGJ ∼ 1019 m−3. Far from the stars, the magnetic field
lines start to open and the particles flow out, unbalancing
the Goldreich-Julian density. As a result, a strong electric
field appears to the longitudinal direction and the “primary”
charged particles can flow out from the star surface with
high Lorentz factor (γp ∼ 107).
Due to the geometry of the magnetic field lines and

to the inverse Compton scattering [101,102], a cascade
effect is created. As a consequence, “secondary” e� pairs
are produced with typical density ns ¼ Mnp, where M is
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the so-called “multiplicity factor”. By the energy conserva-
tion, the Lorentz factor of the “second” particle generation is
γs ¼ γp=M and it can reach values γs ∼ 102 [103].
Based on the above discussion, the morphology of the

BNS magnetosphere is determined by the dipolar magnetic
field and it extends up to the light cylinder radius. Thus, the
GWs generated by the stars during coalescence excite the
plasma. As a consequence, electric currents are generated.
The plasma perturbation produces the MHD modes and

the GW-EMW interaction in the vacuum, or in a medium, is
more efficient when the phase velocities of the waves (GWs
and EMWs) are in coherence. We calculate the electro-
magnetic energy excited by the interaction using Parseval’s
Theorem. The electromagnetic field stores a quantity of
energy which can be calculated as [92]

WðBÞ ¼
Z
ℜr⃗

jBðr⃗Þj2
2μ0

d3r ¼
Z
ℜk⃗

jBðk⃗Þj2
2μ0

d3k; ð79Þ

where μ0 is the vacuum permeability and the magnetic
field spectral density is evaluated over the entire frequency
region Rk⃗.
For the Alfvén mode, the perturbed magnetic field in the

frequency domain, see Eq. (66), and in units of SI is

Bð1Þ
y ðk;ωÞ ¼ h×ðωGWÞBð0Þ

x c
2ð1 − βuAk=cÞ

ω2 þ k2u2Ak

ω2 − k2u2Ak

: ð80Þ

Thus, the integral in Eq. (79) can be calculated by
considering a wave number sphere of radius in the range
½0; k�. The volume element in the frequency domain is
d3k ¼ 4πk2dk and we have for the electromagnetic energy
of the Alfvén wave the following result:

WðBÞ
AW ¼

���� Bð0Þ2
x h2×πc2

2μ0ð1 − βuAk=cÞ2
�
ωAW

uAk

�
3

×

	
1

3
þ 2ω2

ω2
AW

�
2þ ω2

ω2 − ω2
AW

�
−

6ω3

ωAW
tanh−1

�
ωAW

ω

�
����: ð81Þ

Observe that the electromagnetic energy of the GW-
EMW interaction depends on the following physical
parameters: the GW amplitudes, the GW-EMW frequen-
cies, the background magnetic field vector, the Alfvén
phase velocity, and the β factor in the rest frame. See that β
is the sum of the velocity of the stars with the velocity of the
perturbed plasma.
For the magnetosonic mode, we need to simplify the

expression of the perturbed magnetic field [see Eq. (75)].

Consider the phase velocities uf;s [see Eq. (58)] in the
ultrarelativistic limit, where uA → c. As discussed previ-
ously, the phase velocity of the slow magnetosonic mode is
us → 0. On the other hand, the fast magnetosonic mode
can be in coherence with the GWs, where u2f ≈ u2A, when
cs ≪ c.
Taking uAk ¼ uA cosðθÞ and uA⊥ ¼ uA sinðθÞ, we obtain

to the perturbed magnetic field in the frequency domain

Bð1Þ
x ≃

hþBð0Þ

2cð1 − βÞγ4
ω

ðk2u2A − ω2Þ
ð1 − βuA

c Þ
ðβ2uA þ uA − 2βcÞ½βc − uA cosðθÞ�2½c − βuA cosðθÞ�2

× fð1 − βÞβγω cosðθÞðc2 − u2AÞðuA − βcÞ½uA − uA cosðθÞ�½ðβ2 þ 1ÞcuA½cosðθÞ þ 1� − 2β½u2A cosðθÞ þ c2��
− sinðθÞ½2β2c3fγ2kuAðc − βuAÞ½βc − uA cosðθÞ�2 þ ωðuA − βcÞ½γ2½c − βuA cosðθÞ�2 − u2A sin

2ðθÞ�g
þ c½βc − uA cosðθÞ�2fkuAðc − βuAÞ½γ2½βc − uA cosðθÞ�2 þ u2A sin

2ðθÞ� þ γ2ωðuA − βcÞ½c − βuA cosðθÞ�2g�g: ð82Þ

By doing θ ¼ π=2 in Eq. (82), we retrieve the equation for the magnetosonic mode seen earlier in which the propagation
of the GWs is perpendicular to the background magnetic field. So, for θ ¼ π=2 we obtain

Bð1Þ
x ðk;ωÞ ¼ hþBð0Þ

2ðβ − 1Þc2γ4
ω

ðω2 − k2u2AÞ
ð1 − βuA=cÞ

ðβ2uA þ uA − 2βcÞ
× f3c2γ2½−uAðβ2ckþ ωÞ þ β3ku2A þ βcω� þ u2A½uAðβkuA þ 2ωÞ − cðkuA þ 2βωÞ�g: ð83Þ

Integrating Eq. (82) over all frequency space k2dk, we obtain the electromagnetic energy excited by GW-fast MSW
interaction. This result is
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WðBÞ
MSW¼

����πh2þBð0Þ2
x

32μ0uA

ω2

ðω2−ω2
MSWÞ

ð1−βÞ2ðβþ1Þ4½4cosðθÞ−β2cosð2θÞþβ2−8�2
ð1−u2AcosðθÞ=cÞ4

����
×

����
	
4ω3

MSW−6ωMSWω
2þωðω2−ω2

MSWÞ
�
−7 logðωMSW−ωÞþ7 logðωMSWþωÞ−8tanh−1

�
ωMSW

ω

��
����; ð84Þ

where we used γ ¼ 1=ð1 − β2Þ1=2 and ωMSW ¼ kuf.
For energy functions on real domains, we verify that the

terms 1=ðω2
ðAW;MSWÞ − ω2Þ, tanh−1ðωðAW;MSWÞ=ωÞ, and

logðω2
ðAW;MSWÞ − ω2Þ go to infinity when the GWs and

the AWs have the same frequency ωðAW;MSWÞ − ω → 0.
The wave interactions are most efficient when they are in

coherence (resonant) [73,74,78]. Therefore, we will do the
analysis taking into account the condition ωðAW;MSWÞ −
ω ¼ Δω → 0 during the inspiral phase of the system.
Concerning to the θ angle, if θ → 0, then both the

perturbed magnetic field and the perturbed electromagnetic
energy vanish. This result is expected because when the
background magnetic field is parallel to the GW propaga-
tion, there is no coupling between GWs and EMWs. In this

case, the GWpropagates in the same direction ofBð0Þ��!
and so

no electrical current is produced in the plasma [73,74,78,95].
In order to apply our formalism, we consider two

cases for calculating the electromagnetic energy: the
simulations developed by [64] and the event GW170817
[104] where, with our results, a comparison can be made
with its electromagnetic counterpart, that is, the associated
GRB170817A [105].
Table I shows a short summary on the initial conditions

of the simulations developed by [64] and the physical
parameters inferred from the detection of GW170817. It
has been also included in the Table the initial conditions
that we apply to the equations of our formalism developed
in Sec. II.
We consider that the magnetic field on the surface of

the stars associated with GW170817 was 108 T. This is

considered a realistic value for NSs [59,96,98]. For the
equatorial radius of the NSs, we use 1.36 × 104 m [64,98].
Our strategy consists, firstly, of using the results of the

simulations developed by [64] to “calibrate” the discrete
inverse Fourier transform to be applied for our GRMHD
equations. This allows us to obtain parameters such as, for
example, the Alfvén velocity value that better reproduces
the characteristics of these simulations. This procedure will
allow, in the next step, to apply our formalism to the source
GW170817. In the case of the Alfvén velocity, the
comparison with [64] shows that uA ≃ 0.2c.
It is important at this point to highlight some aspects of

these simulations. The initial conditions used by [64]
correspond to an initial separation of 4.5 × 104 m between
the stars (distance measured between the centers of the two
stars). The stars quickly lose angular momentum through
the emission of GWs and after 8 ms of evolution a
hypermassive NS (HMNS) is formed. After ∼ms, the
HMNS loses angular momentum by collapsing to form a
black hole with mass of ∼2.9 M⊙.
Regarding our model, we take the frequency of 100 Hz as

the initial one. This allows us to obtain τ0 ¼ 1.926 s and
R0 ¼ 1.592 × 105 m as indicated in Table I. When τ ¼
2 ms the GW frequency reaches the value 1.314 kHz while
at ISCO the frequency reaches 1.465 kHz. The emission of
GWs causes the orbit to shrink until the NSs make contact,
consequently the light cylinder radius decreases (see Fig. 4).
In the limit of quasicircular orbit, we consider the

inspiral phase until to reach the ISCO at τ ¼ 1.4 ms before
the merger. The simulations in [64] show that the MHD
energy and the toroidal magnetic field have significant

TABLE I. The initial conditions based on the simulations
developed by [64] and the source GW170817 [104]. The values
for the parameters R0, τ0, fGWISCO

and fGWðτ ¼ 2 msÞ are the
initial conditions obtained from our model.

Physical parameter Simulation GW170817

Total Mass 3.0 M⊙ 2.73 M⊙
Chirp Mass 1.31 M⊙ 1.186 M⊙
B⋆ 108 T 108 T
Individual Radius 1.36 × 104 m 1.36 × 104 m
R0 1.592 × 105 m 1.543 × 105 m
τ0 1.926 s 2.259 s
fGWISCO

1.465 kHz 1.610 kHz
fGWðτ ¼ 2 msÞ 1.314 kHz 1.395 kHz

FIG. 4. The evolution of the light cylinder radius as a function
of fGW. We consider the inspiral phase from 100 Hz to
1465.49 Hz (BNSs at ISCO frequency).
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values when τ ≤ 2 ms to the merger (see Fig. 2 of these
authors).
The stars reach high velocities before the merger. The

value of v⋆ can be obtained from Eq. (11) and its relation
with the GW frequency is shown in Fig. 5. Note that v⋆ is
part of the β parameter in the Lorentz factor. We need to add
the perturbed plasma velocity by GW-EMW interaction
with v⋆ in order to obtain β.
The amplitude and frequency of the GWs increase as the

inspiral phase evolves. In Fig. 6, we present the hþ and h×
polarizations in the time domain and as functions of the
frequency fGW. In Fig. 7, we show how the GWamplitudes
evolve in the frequency domain. The region of interaction
for the characterization of the GWs is described by the light
cylinder of the system. The ordinate axis in Fig. 7
represents the amplitude density or a histogram of the
amplitude over the associated frequencies.
We calculate the physical quantities in the frequency

domain as the equations are more easily worked out in that

domain. Then, we apply the discrete inverse Fourier
transform to obtain the physical quantities in the time
domain. Thereby, the expressions in Sec. III are considered
as discrete functions in relation to the wave frequencies.
The expressions are numerically calculated in the range

of 100 Hz to fGWISCO
and in steps of 0.5 Hz in frequency.

Numerical tests show that this frequency step is adequate to
show the behaviors of the functions. The quantities of
interest depend on the GW-EMW frequency as well as the
resonant term given by ωMHD − ωGW ¼ Δω → 0. We use
Δω ¼ 10−1 Hz as a resonance condition between the
waves. Numerical tests show that this value is adequate
to represent the condition Δω → 0.
The gravitational radiation propagates through the mag-

netized plasma and the charged particle trajectories are
perturbed. According to equations in Sec. III, the plasma
velocity increases with the GW amplitude (see Fig. 8).
Moreover the plasma is frozen in the magnetic field lines
and it is in corotation with the stars.

FIG. 7. The evolution of the GW amplitudes as functions of
fGW and in the frequency domain. The red thin line represents
the ×-polarization while the blue thick line represents the
þ-polarization.

FIG. 8. The evolution of the perturbed plasma velocity (vð1Þz ) as
a function of fGW. The plot is shown from the frequency of 1 kHz
as the interaction becomes more significant for fGW > 1.314 Hz.,
that is, 2 ms before the merger.

FIG. 5. The evolution of v⋆=c as a function of fGW. It describes
a part of the β parameter in the Lorentz transformation. The other
part is the perturbed plasma velocity that comes from the
interaction GW-EMW.

FIG. 6. The evolution of the GW amplitudes (hþ and h×) as
functions of fGW and in the time domain. The waveforms are
calculated on discrete form (see [88]). The red thin line represents
the ×-polarization while the blue thick line represents the þ-
polarization.
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The total plasma velocity in the laboratory frame is given
by vð1Þz þ v, where v is defined in Eq. (11). In Fig. 9, we can
see the evolution of the β parameter during the inspi-
ral phase.
Instants before the merger, the plasma reaches velocity

close to the speed of light and so the Lorentz factor goes to
high values. We consider θ ¼ π=4 for the angle formed
between the background magnetic field and the GW
propagation. The phase velocity uf (fast MSW) does not
depend on the θ angle. Additionally, the value π=4 is the
one that best matches the results obtained by [64].
From Figs. 8 and 9 it is possible to verify that the GW-

EMW interaction becomes more prevalent for frequencies
fGW > 1.314 kHz, which correspond to τ ¼ 2 ms before
the merger of the stars occurs. This result can be seen
through the simulations developed by [64].
For the Alfvén mode there is also the component

vð1Þy ðk;ωÞ for the perturbed plasma velocity. Considering

θ ¼ π=4, the value for vð1Þy ðk;ωÞ is slightly higher than

vð1Þz ðk;ωÞ (see Fig. 10). This happens because the last one

is proportional to sin2ðθÞ while the first one is proportional
to sinðθÞ.
The composition of the perturbed velocity components

can not exceed the speed of light. In Fig. 5, the maximum
velocity due to the corotation of the stars is 1.18 ×
108 ms−1 (≃0.395c). Thus the maximum velocity due to
GW-EMW interaction can not exceed 1.8 × 108 ms−1
(≃0.6c). These limits are respected in our model.
The simulations developed by [64] show that the

maximum of the magnetic field in its poloidal and toroidal
components increases significantly around 2 ms before the
merger occurs. In particular, the maximum of the poloidal
component increases by a factor of ∼3 while the maximum
of the toroidal component of the magnetic field, insignifi-
cant at the beginning of the inspiral phase, increases by a
factor of ∼10 for the merger. That is, the toroidal compo-
nent increases from 108 T to 109 T during the last 2 ms for
the merger. In the case of our model, this corresponds to
sweep the band at a frequency of 1.314 kHz (τ ¼ 2 ms) to
1.465 kHz (ISCO).
In our model it is possible to see this effect in two

different ways: either the magnetic field increases directly
or the current densities are responsible for amplifying the
magnetic field. In the first case, Bð1Þ

x ðk;ωÞ and Bð1Þ
y ðk;ωÞ

are components of the toroidal magnetic field and they can
reach high values at the coalescence. In the second case,

jð1Þx ðk;ωÞ and jð1Þy ðk;ωÞ produce a magnetic field in the z-

direction which is the poloidal component while jð1Þz , that
lies in the x-y plane, corresponds to the toroidal component.

See Eqs. (68) and (77). The current density jð1Þy ∝vð1Þx =Bð0Þ
z

where Bð0Þ
z ¼Bð0ÞcosðθÞ and vð1Þx ðk;ωÞ∝1=tanðθÞ. Thereby,

jð1Þy ∝ ðBð0Þ sinðθÞÞ−1 and it increases when θ → 0.

Additionally, see through Eqs. (69) that vð1Þx depends on

the value of vð1Þz . Close to the merger both γ and the

component vð1Þz reach high values (see also Fig. 8). All of

these combinations can increase the value of jð1Þy close to the
coalescence of the stars.
The current density jð1Þx ðk;ωÞ has two strong depend-

encies. The first relates to the term ð1 − βuAk Þ2=ðuAk −
βÞ2 − 1 which decreases as β increases. Note that in the
ultrarelativistic regime, we have β → 1 and that term is
approaching zero. The second is associated with γ and the

electromagnetic fields Eð1Þ
x and Bð1Þ

y which can reach high

values during the merger and, thus, jð1Þx can increase in the
final stages of evolution of the system.
In summary, the current densities acting on the x-y plane

can contribute to the increase in the value of the poloidal
magnetic field. However, [64] show that the growth of this
component is not as significant until the merger of the stars
occurs. After the merger, and until the collapse of the
HMNS produces a black hole, the initial magnetic field

FIG. 10. The evolution of the perturbed plasma velocity in the

y-direction as a function of fGW. The v
ð1Þ
y waveform is similar to

the vð1Þz .

FIG. 9. The evolution of β in the rest frame as a function of
fGW. The star velocities and the perturbed plasma velocity due to
the GW-EMW interaction are considered in the β parameter.
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grows as a result of the Kelvin-Helmholtz instability
[106,107].
On the other hand, the toroidal magnetic field grows

significantly during the coalescence. It is produced through
the quantities jð1Þz ðk;ωÞ, Bð1Þ

x ðk;ωÞ, and Bð1Þ
y ðk;ωÞ. Note

that jð1Þz increases proportionally to the perturbed electric

field Eð1Þ
z which in turn is proportional to the perturbed

velocity vð1Þx ðk;ωÞ. Moreover, this current density gets very
high close to the merger where β → 1.
The evolution of the maximum for the perturbed mag-

netic fields Bð1Þ
x and Bð1Þ

y is shown in Fig. 11. We can see
that these magnetic components increase along the inspiral
phase growing from 108 T up to 109 T in less than 2 ms.
This behavior is similar to that obtained by [64]. Figure 11
is shown for θ ¼ π=4.
While the NSs orbit each other, gravitational radiation is

emitted and it crosses in the magnetized medium that
surrounds the stars. The plasma is frozen in the magnetic
field lines and it extends up to the light cylinder radius (∼10
times the orbital radius).

The particles of the plasma are submitted for forces that
change their trajectories. Thus, the GWs can excite the
plasma parameters by transferring energy through that
excitation. Equations (81) and (84), written in the fre-
quency domain, determine the energy for the MHD modes,
respectively, AW and MSW, excited by the GWs.
Considering that the GW propagation direction does an

angle θ ¼ π=4with the background magnetic field then, we
can determine the energy transferred for the plasma during
the inspiral phase (from 100 Hz up to 1465 Hz). Figure 12
presents the results for AW and MSW modes.
Note that the energy magnitudes obtained from Eqs. (81)

and (84) are similar to those found in the simulations of
[64]. Furthermore, the electromagnetic energy increases
between two and three orders of magnitude during the last
2 ms (∼1200–1465 Hz) of the inspiral phase, a result that
can be also seen in the full GRMHD simulation developed
by [64]. As we choose θ ¼ π=4, the electromagnetic energy
is not the maximum, because of the term sin2ðθÞ in the
energy equation.

FIG. 12. The evolution of the electromagnetic energy excited by
theGW-EMWinteraction as functionoffGW.The reddashed curve
represents the energy transferred to the magnetosonic mode
through the GWs. The blue curve represents the energy transferred
to the Alfvén mode through the GWs. The results presented here
are similar to those found in the full GRMHD simulations
developed by [64]. We consider θ ¼ π=4 (see the text).

FIG. 11. The evolution of the maximum for the perturbed
magnetic fields as function of fGW. The upper panel shows the

Bð1Þ
x amplitude for the magnetosonic mode. The lower panel

shows the Bð1Þ
y amplitude for the Alfvén mode. We consider θ ¼

π=4 on both panels. The evolution of these magnetic field
components, especially in the last 2 ms of the inspiral phase,
are similar to those obtained from the simulations of [64].
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However, for θ ¼ π=4, we can see the behavior of the
Alfvén mode in Fig. 12. Although this mode is not fully in
coherence with the GWs, we have for the Alfvén phase
velocity uAk ¼ uA cosðθÞ ≈ 0.7c and this can be understood
as “an approximated condition of coherence for the GW-
AW interaction”.
If we choose θ → π=2, then only the magnetosonic mode

can be considered in the GW-EMW resonant interaction.
The Alfvén phase velocity vanishes and this MHD mode is
not more in coherence with the GWs. We expect that the
maximum for the perturbed magnetic field and, therefore,
the maximum transfer of energy to occur under resonant
conditions. That is, with the waves in coherence.
Applying θ ¼ π=2 in Eq. (84), we verify that the

GW-EMW interaction, very close to ISCO, produces
∼4.5×1035 J (∼4.5 × 1042 erg) for the MSW mode. This
result is presented in Fig. 13.
Based on the previous discussions, we are in a position to

take the properties of the source GW170817 [104], sum-
marized in Table I, in order to calculate, through our model,
the energy transferred by the GW-EMW interaction.

Figure 14 presents the evolution of the energy (AW and
MSW modes) and considering θ ¼ π=4. The coalescence
frequency for GW170817 is higher than the first case
studied in this work. However, the evolutions of the two
cases are very similar. The energy transferred to the plasma
begins to significantly increase in the last 2 ms for the
merger. In particular, close to ISCO, the transferred energy
reaches its maximum value.
Considering that the NSs of the event GW170817 had

magnetic fields on their surfaces∼108 T at the beginning of
the inspiral phase, and, with θ ¼ π=2, then the energy
associated with the magnetosonic mode could reach values
as high as 1.4 × 1036 J (1.4 × 1043 erg) before the merger.
In Fig. 15 we show the behavior of the energy as a function
of the GW frequency.
The resonant condition for the Alfvén mode occurs

to θ ¼ 0. According to the behavior of the MHD energies
presented in this section, the energy of the Alfvén mode
has amplitude higher than the magnetosonic mode for
θ ¼ π=4.
As previously discussed, this value for the θ angle does

not cause the GW-AW interaction to be in perfect coherence

FIG. 13. The evolution of the perturbed electromagnetic energy
for the MSW mode as a function of fGW. The background
magnetic field is perpendicular to the GW propagation direction,
that is θ ¼ π=2. The energy is maximum very close to ISCO and
can reach ∼4.5 × 1035 J (∼4.5 × 1042 erg). The MSW mode
remains in coherence with the GWs for a wide range of values of
the θ angle. In the particular case, θ ¼ π=2, we have the
maximum amplitude for the excitation of the electromagnetic
energy by the MSW mode.

FIG. 14. The evolution of the electromagnetic energy excited
by the GW-EMW interaction for the source GW170817 detected
by aLIGO-VIRGO [104]. The red dashed curve represents the
energy transferred to the magnetosonic mode through the GWs.
The blue curve represents the energy transferred to the Alfvén
mode through the GWs. We consider θ ¼ π=4 (see the text).
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(resonance). Nevertheless, seeing that the Alfvén phase
velocity is uAk ≈ 0.7c, then we consider θ ¼ π=4 as “an
approximated condition of coherence” for the representa-
tion of the AW mode energy.
Through the behavior of the electromagnetic energy

excited by the MHD modes, as shown in Fig. 14, we can

obtain the representation of the WðBÞ
MSW and WðBÞ

AW functions
through a power series of the GW frequency (or in terms of
the system’s orbital frequency, since fGW ¼ 2forbital). That
is, we can representW ∝ fpGW and the result of that analysis
produces

WðBÞ
MSW ¼ −0.338085f11 þ 5315.82f10 − 3.6113 × 107f9 þ 1.38831 × 1011f8 − 3.32265 × 1014f7 þ 5.13136 × 1017f6

− 5.12839 × 1020f5 þ 3.23774 × 1023f4 − 1.22143 × 1026f3 þ 2.48183 × 1028f2 − 2.23765 × 1030f

þ 6.56468 × 1031; ð85Þ
and

WðBÞ
AW ¼ −0.0579517f12 þ 1006.29f11 − 7.6465 × 106f10 þ 3.34092 × 1010f9 − 9.27454 × 1013f8 þ 1.70623 × 1017f7

− 2.10551 × 1020f6 þ 1.72578 × 1023f5 − 9.10102 × 1025f4 þ 2.90493 × 1028f3 − 5.02533 × 1030f2

þ 3.79387 × 1032f − 7.20951 × 1033: ð86Þ

In [59] full GRMHD simulations of NS binaries are
presented. One of their results shows the behavior of the
luminosities as functions of time. For the simulated

systems, the luminosity can be represented in terms of
powers of the orbital frequency of the binary system.
In particular, considering that the magnetic field on the

surface of stars remains constant during evolution, [59]
shows that L ∝ Ωp. Looking at the simulations of those
authors that present a magnetic configuration similar to that
of our work, we can see that they present p ≈ 1–2 for the
beginning of the inspiral phase.
In the final moments for the merger the growth of

luminosity is of the form p ∼ 12. As luminosity and energy
are directly proportional quantities, the expansion in power
series expressed in our work through Eqs. (85) and (86)
show consistency with the simulations of [59].

V. REFRACTIVE INDEX

Uniform plane waves, ω, can only propagate in plasmas
with frequencies, ωp, such as ω > ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nee2=ðϵ0meÞ

p
.

Otherwise, it occurs in the total reflection of the wave [108]
within the domain of the binary system. A natural example
is the interplay region formed between the interplanetary
medium and Earth’s ionosphere, although the electron
density in the ionosphere increases gradually with the
height. Reflections occur when ω < ωp.
The coefficients of reflection (R) and transmission (T)

are given, respectively, by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

p

q
− ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − ω2
p

q
þ ω

; ð87aÞ

T ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

p

q
þ ω

: ð87bÞ

FIG. 15. The evolution of the perturbed electromagnetic energy
for the MSW mode as function of fGW and associated with the
sourceGW170817.The backgroundmagnetic field is perpendicular
to the GW propagation direction (θ ¼ π=2). The energy is maxi-
mumclose to ISCOand can reach∼1.4 × 1036 J (∼1.4 × 1043 erg).
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For ω > ωp, the values for R and T are real numbers

and the plane wave eiðk⃗·r⃗−ωtÞ propagates through the
conductive layer. Otherwise, for ω < ωp, R is an imaginary
number and the wave does not propagate. It reflects in the
conducting layer.
Another way to evaluate the coefficients of reflection and

transmission is through the boundary condition of the
electrodynamics in the linear medium. Consider a plane
wave E⃗Iðz; tÞ ¼ E⃗0I

eiðkz−ωtÞ propagating in the ẑ-direction
and it strikes at the interface separating two mediums with
different refractive indexes (n1, n2). In terms of the
amplitude of the incident wave, the reflected and trans-
mitted wave amplitudes are

E0R
¼

�
1 − ζ

1þ ζ

�
E0I

; ð88aÞ

E0T
¼

�
2

1þ ζ

�
E0I

; ð88bÞ

where ζ≡ μ1n2=ðμ2n1Þ, μ1 and μ2 are the permeability of
the medium 1 and 2, respectively.
Thus, the coefficients of reflection and transmission are

given, respectively, by

R ¼
�
n1 − n2
n1 þ n2

�
2

; ð89aÞ

T ¼ 4n1n2
ðn1 þ n2Þ2

: ð89bÞ

R and T measure the fraction of the incident energy
that is reflected and transmitted, respectively. Note that
Rþ T ¼ 1 [109]. Therefore, the goal is to find the
refractive index of the plasma medium through the
MHD waves that propagate in it.
First, we apply ×B⃗ð0Þ in the momentum equation,

Eq. (39), substituting E⃗ð1Þ ¼ −v⃗ð1Þ × B⃗ð0Þ and using the
vector property A⃗ × ðB⃗ × C⃗Þ ¼ B⃗ðA⃗ · C⃗Þ − C⃗ðA⃗ · B⃗Þ. Thus,

−
wð0Þ

c2
∂2

∂t2 E⃗
ð1Þ þ ∂

∂t ∇⃗p
ð1Þ × B⃗ð0Þ ¼ −

∂
∂t j⃗

ð1ÞBð0Þ2 ; ð90Þ

with

∂
∂t ∇⃗pð1Þ × B⃗ð0Þ − γpð0ÞB⃗ð0Þ × ½∇⃗ð∇⃗ · v⃗ð1ÞÞ� ¼ 0; ð91Þ

that is calculated from the pressure equation [Eq. (36)].
Then,

−
wð0Þ

c2
∂2

∂t2 E⃗
ð1Þ − γpð0Þ∇⃗ × ∇⃗ × E⃗ð1Þ

þ γpð0Þ

Bð0Þ2 ðB⃗
ð0Þ · ∇⃗Þð∇⃗ · E⃗ð1ÞÞB⃗ð0Þ ¼ −

∂
∂t j⃗

ð1ÞBð0Þ2 ; ð92Þ

with the analogue equations to the Ampère and Faraday
equations in Eq. (33). The term ∂j⃗=∂t can be isolated:

�
u2m −

∂2

∂t2
�
E⃗ð1Þ þ

�
c2s
u2A

ðu⃗A · ∇⃗Þu⃗2A − u2m∇⃗
�
ð∇⃗ · E⃗ð1ÞÞ

¼ u2A

� ∂
∂t j⃗E þ ∇⃗ × j⃗B

�
; ð93Þ

where uA ¼ cBð0Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
μ0wtot

p Þ and u2m ¼ c2s þ u2A are the
Alfvén and compressional velocities, respectively.
Applying the Fourier transform and remembering of the

expression for j⃗E, then Eq. (93) can be algebraically
calculated for ω=k, which is the velocity of the electro-
magnetic wave produced in the plasma through the GW.
That is,

0
BBBBB@

ω2 − k2u2m 0 −
c2suAkuA⊥k

2

u2A

ω2 − k2u2m 0 0

ω2 − k2u2m 0 k2
�
u2m −

c2su2Ak
u2A

�

1
CCCCCA
0
BB@

Eð1Þ
x

Eð1Þ
y

Eð1Þ
z

1
CCA

¼ u2AB
ð0Þ
x kω

0
B@ h×

−hþ
0

1
CA: ð94Þ

Therefore, we note that the x̂-component of the electric
field depends on the h× GW polarization. On the other
hand, the ŷ-component depends on the hþ GW polariza-
tion. From the equation of the ẑ-direction a relation for ω
and k can be obtained. This results in

ω

k
¼ � csuAk

uA
: ð95Þ

The velocities of the electromagnetic waves depends
on the plasma sound velocity, which normally does not
present high values when compared to the speed of light.
The refractive index is calculated as n ¼ ck=ω. Using

the previous results and taking cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γpð0Þ=wtot

p
c, uA ¼

Bð0Þc=
ffiffiffiffiffiffiffiffiffiffi
μwtot

p
, and uAk ¼ uA cos θ, where θ is the angle that

the gravitational wave vector does with the background
magnetic field, we have
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n ¼ 1

cs

1

cos θ

¼ 1

cos θ

ffiffiffiffiffiffiffiffiffiffi
wtot

γpð0Þ

r

¼ 1

cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μð0Þ þ pð0Þ þ Bð0Þ2

μ

�
1

γpð0Þ

s
: ð96Þ

Thus, the refractive index depends on the plasma
parameters: mass density, pressure, and magnetic field.
This makes sense, since in a magnetized plasma system, the
density, the pressure, and the magnetic field are the
parameters responsible for its evolution. For the BNSs,
the magnetic field is high, so the refractive index has also to
be high.
In relation to the surrounding medium, the difference

from a more refringent medium to another less refringent is
that the former does not allow the perturbed electromag-
netic radiation to escape from the system.
To understand this result, we can take Eq. (89) with n1

representing the plasma and n2 the surrounding medium.
As n1 ≫ n2, then we have R ≃ 1 and T → 0.
Through the equation ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nee2=ðϵ0meÞ

p
, with the

Goldreich-Julian density ≈1012 cm−3 to the plasma sur-
rounding the binaries [98], the MHD wave would need to
have a higher frequency than 1 GHz to cross the
conducting layer. As the perturbed MHD wave is in
coherence with the GW frequency, so reaching values
∼kHz, then it collides with the conducting layer being
totally reflected.

VI. THE POYNTING VECTOR

The energy flux density (energy per unit area and per unit
time) carried by the electromagnetic fields can be deter-
mined by the Poynting vector. It is given by

S⃗ð1Þ ¼ 1

μ
E⃗ð1Þ × B⃗ð1Þ: ð97Þ

It can be calculated for the two MHDmodes: Alfvén and
magnetosonic modes. The AW has an electric field in the

Eð1Þ
x x̂ and Eð1Þ

z ẑ directions. The magnetic field is in theBð1Þ
y ŷ

direction. Thus, S⃗ is in the ẑ and x̂ directions. In particular,

S⃗AW ¼ −
1

μ
vð1Þy Bð1Þ

y B⃗ð0Þ: ð98Þ

Substituting the expressions from Sec. III, Eqs. (65) and
(66), for the rest frame, we obtain

S⃗AW ∝ h2×B⃗
ð0Þ ω2

ω2 − k2
; ð99Þ

since ω=k ¼ csuAk=uA. Based on the above equation, the
transported energy depends strongly on the frequency and
amplitude of the GWs.
For the MSW mode, the electric field is in the Eð1Þ

y ŷ

direction while the magnetic field is in the Bð1Þ
x x̂ direction. In

this case, the Poynting vector will be in the ẑ direction. That is,

S⃗MSW ¼ −
1

μ
Eð1Þ
y Bð1Þ

x ẑ: ð100Þ

Using Eqs. (69) and (75), we find the strong dependence
of the Poynting vector with the frequency and amplitude of
the GWs that interact with the plasma.
Electromagnetic fields transport energy and momentum.

When the light strikes a perfect absorber, it transmits its
momentum to the surface. Thus, the radiation pressure can
be obtained from the Poynting vector as

P ¼ S
c
∝ ðh2þ þ h2×Þω2: ð101Þ

Hence, for the model discussed here with the significant
Poynting vector, especially at the instants close to the
merger, the radiation pressure can reach high values.
An interesting analysis of the Poynting vector consists to

find the plasma parameters that amplify or attenuate the
energy carried by the MHD modes. Thus, taking the first
derivative of thePoyntingvectorwith respect to time,wehave

∂
∂t S⃗ ¼ 1

μ

� ∂
∂t E⃗

ð1Þ × B⃗ð1Þ þ E⃗ð1Þ ×
∂
∂t B⃗

ð1Þ
�
: ð102Þ

Substituting the expressions of B⃗ð1Þ and E⃗ð1Þ, we obtain

με
∂
∂t S⃗ ¼ 1

μ

�
−
1

2
∇⃗Bð1Þ2 þ ðB⃗ð1Þ · ∇⃗ÞB⃗ð1Þ

�

þ ε

�
−
1

2
∇⃗Eð1Þ2 þ ðEð1Þ · ∇⃗ÞEð1Þ

�

−
�
1

μ
j⃗E × B⃗ð1Þ þ εE⃗ð1Þ × j⃗B

�
: ð103Þ

The first two terms on the right-hand side correspond to
the Maxwell stress tensor [109]. The derivatives of the
Poynting vector and the Maxwell stress tensor are equal to
the force per unit of volume on the electrical charges in the
plasma. Therefore, the interaction of the GWs with the
electric and magnetic fields exerts the role of force acting
on the charges contained in a certain volume. This result
corroborates the assertion that the coupling of GWs with
magnetized plasma provides energy and momentum to the
charges of the plasma. Finally, if the derivative of S⃗ is zero,
which corresponds to the condition of maximum energy
transport, then the force applied on the charges should be
equal to the Maxwell stress tensor.
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VII. FINAL REMARKS

The main objective of this work is to present a semi-
analytical formalism, which allows to study the coupling
between GWs with strongly magnetized plasma presents in
BNS systems. With the detection of the first BNS merger
observed in GWs (GW170817) followed by electromag-
netic counterpart (GRB 170817A), the era of the multi-
messenger astronomy began.
Thus, it becomes important to develop not only

numerical simulations in full GRMHD but also to develop
semianalytical tools that allow exploring the space of
parameters, contributing to our understanding on the
physics of compact objects and the physical mechanisms
associated with the generation of sGRBs.
Our work has deepened previous studies developed

mainly in [65,69–72,75–78]. However, none of these works
presented the explicit mathematical calculations as we
developed in this article. Additionally, in these previous
works, the authors assume a delta function to calculate the
interaction and the transference of energy between the GWs
and the magnetized plasma of the binary system. We
present the expressions for the full coalescence phase
and discuss the consequences of this interaction.
We consider that the plasma is in the ideal MHD

approximation and can interact with the GW released by
the coalescence of the stars. While the NSs orbit each other,
the system releases gravitational radiation that crosses the
magnetized medium surrounding the stars. The plasma is
frozen in the magnetic field lines extending up to the light
cylinder radius (∼10 times the orbital radius).
Plasma particles are forced by thehþ and h× amplitudes to

change their trajectories and as a result the plasma is excited
by the propagation of the GWs. As a direct consequence of
the interaction with the GWs, twowave modes are excited in
the plasma. Initially, the set of equations is written in the
comoving frame but we need to study the consequences of
the coupling in the laboratory frame.
Once all of our formalism was developed and presented,

we apply it to two different cases: (a) for the computational
simulations in full GRMHD of [64] and (b) for the detected
event GW170817 [104]. For the first case, we calculated
the energies associated with the AW and MSW modes and
considering θ ¼ π=4. It is important to emphasize that the
MSW mode remains in coherence with the GWs over a
wide range of θ values while the AW mode remains in
coherence only for θ ¼ 0.
If θ ¼ π=4, the Alfvén phase velocity is ∼0.7c and there

is no perfect GW-AW resonance. We denominate this as
“approximated condition of coherence” and it is permitted
to obtain an estimate of how the energy associated to
the AW mode behaves. For the MSW mode we also use
θ ¼ π=2 which provides the maximum amplitude for the
excitation of the electromagnetic energy.
Concerning the case (a), we calculate the perturbed

quantities for the BNS and compare the results with the

simulations of [64]. We follow the system evolution with
our modeling from 100 Hz until the ISCO frequency of the
system. Figures 8, 10, and 11 show the evolution of the
main physical quantities.
We calculate the electromagnetic energy transferred by

the MHDmodes for two angles (θ ¼ π=4 and θ ¼ π=2). As
discussed above, the magnetosonic mode remains in
coherence for both angles. However, the Alfvén mode is
only in coherence with the GWs when θ → 0.
Figure 12 shows the electromagnetic energy excited when

θ ¼ π=4. The Alfvén mode reachs ∼1035 J before merger,
while the magnetosonic mode reaches ∼1032 J at the ISCO
frequency. However, for θ ¼ π=2, we consider only the
MSWmode and the electromagnetic energy is∼4.5 × 1035 J
for frequencies very close to ISCO (see Fig. 13).
We compare these results with those obtained by [64]

and, in general, our results (e.g, electromagnetic energy
modes and magnetic fields) have similar evolution, spe-
cially in the last 2 ms for the merger.
The second case study is related to the source GW170817

detected by the LIGO-VIRGO collaboration [104]. The
main parameters are: 2.73 M⊙ for the total mass and
Mc ¼ 1.186 M⊙ for the chirp mass. On the other hand,
we consider for each starBð0Þ ¼108 T andR⋆¼1.36×104m
as typical parameters for, respectively, the magnetic field on
the star surfaces and for their radii [59,64]. Using our
formalism it is then possible to obtain fGWISCO

≃ 1610 Hz

which produces β ¼ 0.035f1=3GW.
We find that the total stored energy in the plasma resulting

from coupling with the GWs can reach maximum value
∼1033 J for theMSWand∼1035 J for theAWwhenθ ¼ π=4.
We show in Fig. 14 the behaviors of the energies of theMHD
modes with the frequency during the inspiral phase until the
ISCO frequency. For θ ¼ π=2 the MSW mode can store
∼1036 J instants before the merger as can be seen in Fig. 15.
The magnetosonic mode is more efficient, since its

perturbation is perpendicular to the background magnetic
field as a compressional wave. This is the same condition to
an efficient coupling between the GWs and the plasma

waves. The shear wave excites parallel oscillations to Bð0Þ��!
,

reducing the stored energy.
The stored magnetic energy evolves with the GW

frequency. Thus, lower frequencies also contribute to store
the energy although the most important contribution occurs
for instants immediately before the merger, as can be seen
in Figs. 12 and 14.
The MHD waves can propagate through in the magnet-

ized plasma. Nevertheless, we need to assess whether
these waves can flow out of the region in which they
are generated. The important parameter in this case is the
refractive index. We show that this parameter depends on
the mass density, pressure and magnetic field, Eq. (96). For
the BNSs, the magnetic field is strong, so the refractive
index can reach huge values.
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On the other hand, themediumsurrounding theplasmahas
refractive index ∼1. The difference from a more refringent
medium, that means the plasma around the BNS, to another
less refringent (the interstellar medium) is that the perturbed
electromagnetic radiation can not escape the system.
Uniform plane waves, ω, can only propagate in plasmas

with frequencies such as ω > ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nee2=ðϵ0meÞ

p
.

Considering the Goldreich-Julian density ≈1012 cm−3 for
the plasma surrounding the binaries [98], the MHD waves
would need to reach frequencies higher than 1GHz to be able
to cross the conducting layer of the plasma. Since the
perturbed MHD wave be in coherence with the GW fre-
quency, values≲1 kHz, it collides with the conducting layer
being totally reflected and remaining confined in the system.
We show in Eqs. (99) and (100) that the energy depends

strongly on the frequency and amplitude of the gravita-
tional perturbation. When a wave strikes a perfect absorber,
it transmits its momentum to the surface. Our calculations
show that the radiation pressure is P ∝ ðh2þ þ h2×Þω2.
During the coalescence, the frequency and amplitude

increase until they reach the highest values in the merger of
the system. Therefore, the radiation pressure also reaches
huge values. Theses characteristics are important to under-
stand the phenomenons that arise with BNSs, primarily, the
bursts and the high Lorentz Factor in the sGRBs.
Regarding the GRB 170817A, it was considered as

possibly being an sGRB due to its duration of ð2� 0.5Þ s.
However, the equivalent isotropic energy is ð5.35� 1.26Þ×
1039 J, which results in a value lower by three orders of
magnitude than the weakest sGRB known [105]. It is not
clear what the origin of this “weakness” is. However, some
authors have argued that the weak emission is consistent
with an off-axis viewing effect [110,111].
Our work shows that for θ ¼ π=2 the MSW mode could

reach energies ∼1036 J. As this MHD mode remains in
coherence with the GWs for a wide range of values of θ, the
resonance condition between the GW-MHD is preserved.
The energies inferred for the event GW170817 could be
reached in our model if B⋆ ∼ 2 × 109 T. Even greater
energies could be obtained by increasing the initial mag-
netic field on the surface of the stars.

Another point to consider is that our formulation, in its
current state, allows us to consistently follow the evolution
of the system during the inspiral phase until very close to
the ISCO. The subsequent phase in which the formation of
HMNS occurs and the final collapse to form a black hole,
as shown in [64], are not followed in our model.
In particular, [64] argue that the magnetorotational

instability could be generated about 5 ms after the for-
mation of the black hole. Thus, a significant amplification
of the poloidal and toroidal magnetic fields can occur. This
can contribute to increasing the energy of the MHD modes
leading to values much higher than 1039 J.
We show that GWs can coherently excite MHD waves

that, in turn, carry energy and momentum. Therefore, the
GW-MHD coupling mechanism could become an impor-
tant player for studying the engine associated to the
generation of sGRBs.
Our results have consistency with the evolution of the

physical parameters shown in the full GRMHD simulations
of [64] and with the polynomial expressions to relate
energy with frequency as discussed in [59]. This can be
seen through our Eqs. (85) and (86).
At last, the gravity participates as the fundamental force

to lead the coalescence of the stars in a binary system.
Furthermore, the GWs can be part of a more fundamental
mechanism to help produce the gamma-ray bursts and so to
accelerate the baryonic matter for high Lorentz factor.

ACKNOWLEDGMENTS

A. S. G. was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES)—Finance code 001. O. D.M. would like to thank
the Brazilian Agency CNPq for partial financial support
(Grant No. 303350/2015-6). We would also like to thank
the anonymous referee for his/her critical comments and
suggestions, which have helped to improve the manuscript.

APPENDIX: TERMS Ξ AND Π OF THE
PERTURBED MAGNETIC FIELD

Equation (75) presents the perturbed magnetic field by
MSWs. The terms Ξ and Π are, respectively,

Ξðk;ωÞ≡ Bð0Þ
x

1 − β
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and

Πðk;ωÞ≡ −
β

γ
Bð0Þ
z

ω

ð1 − βuAk Þ2
1 − u2A

ðuAk − βÞ2
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×

�
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phys. J. 596, 1080 (2003).

[59] C. Palenzuela, L. Lehner, S. L. Liebling, M. Ponce, M.
Anderson, D. Neilsen, and P. Motl, Linking electromag-
netic and gravitational radiation in coalescing binary
neutron stars, Phys. Rev. D 88, 043011 (2013).

[60] M. Lyutikov and E. G. Blackman, Gamma-ray bursts
from unstable poynting-dominated outflows, Mon. Not.
R. Astron. Soc. 321, 177 (2001).

[61] V. V. Usov, Millisecond pulsars with extremely strong
magnetic fields as a cosmological source of gamma-ray
bursts, Nature (London) 357, 472 (1992).

ADAM S. GONTIJO and OSWALDO D. MIRANDA PHYS. REV. D 102, 043004 (2020)

043004-26

https://doi.org/10.1088/0067-0049/211/1/13
https://doi.org/10.1088/0067-0049/211/1/13
https://doi.org/10.1051/0004-6361/201322341
https://doi.org/10.1051/0004-6361/201322341
https://doi.org/10.1038/423388a
https://doi.org/10.1103/RevModPhys.76.1143
https://doi.org/10.1103/RevModPhys.76.1143
https://doi.org/10.1086/172360
https://doi.org/10.1086/187446
https://doi.org/10.1086/187446
https://doi.org/10.1146/annurev.astro.40.060401.093821
https://doi.org/10.1146/annurev.astro.40.060401.093821
https://doi.org/10.1088/0034-4885/69/8/R01
https://doi.org/10.1088/0034-4885/69/8/R01
https://doi.org/10.1093/mnras/183.3.359
https://doi.org/10.1093/mnras/183.3.359
https://doi.org/10.1093/mnras/258.1.41P
https://doi.org/10.1093/mnras/258.1.41P
https://doi.org/10.1086/309835
https://doi.org/10.1086/309835
https://doi.org/10.1086/512791
https://doi.org/10.1086/512791
https://doi.org/10.1046/j.1365-8711.1998.01305.x
https://doi.org/10.1046/j.1365-8711.1998.01305.x
https://doi.org/10.1086/187523
https://doi.org/10.1086/303625
https://doi.org/10.1086/303625
https://doi.org/10.1086/187102
https://doi.org/10.1086/310542
https://doi.org/10.1086/310542
https://doi.org/10.1103/PhysRevLett.78.2292
https://doi.org/10.1103/PhysRevLett.78.2292
https://doi.org/10.1103/PhysRev.75.1169
https://doi.org/10.1103/PhysRev.75.1169
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
https://ui.adsabs.harvard.edu/abs/1977DoSSR.234.1306K/abstract
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
http://adsabs.harvard.edu/full/1977ICRC...11..132A
https://doi.org/10.1093/mnras/182.2.147
https://doi.org/10.1086/182658
https://doi.org/10.1093/mnras/235.3.997
https://doi.org/10.1093/mnras/235.3.997
https://doi.org/10.1103/PhysRevLett.80.3911
https://doi.org/10.1103/PhysRevLett.80.3911
https://doi.org/10.1046/j.1365-8711.1999.02566.x
https://doi.org/10.1046/j.1365-8711.1999.02566.x
https://doi.org/10.1086/309533
https://doi.org/10.1046/j.1365-8711.2001.04851.x
https://doi.org/10.1046/j.1365-8711.2001.04851.x
https://doi.org/10.1086/176448
https://doi.org/10.1086/375534
https://inspirehep.net/literature/613817
https://inspirehep.net/literature/613817
https://inspirehep.net/literature/613817
https://arXiv.org/abs/astro-ph/0312347
https://doi.org/10.1086/173728
https://doi.org/10.1086/173728
https://doi.org/10.1051/0004-6361:20020390
https://doi.org/10.1086/378226
https://doi.org/10.1086/378226
https://doi.org/10.1103/PhysRevD.88.043011
https://doi.org/10.1046/j.1365-8711.2001.04190.x
https://doi.org/10.1046/j.1365-8711.2001.04190.x
https://doi.org/10.1038/357472a0


[62] E. G. Blackman and I. Yi, On fueling gamma-ray bursts
and their afterglows with pulsars, Astrophys. J. Lett. 498,
L31 (1998).

[63] T. A. Thompson, Millisecond proto-magnetars and gamma
ray bursts, Nuovo Cimento C 28, 583 (2005).

[64] L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C.
Kouveliotou, and M. A. Aloy, The missing link: Merging
neutron stars naturally produce jet-like structures and can
power short gamma-ray bursts, Astrophys. J. Lett. 732, L6
(2011).

[65] J. Moortgat and J. Kuijpers, Gravitational wave interaction
with gamma-ray burst plasma, in Non Electromagnetic
Windows for Astrophysics, 25th meeting of the IAU (IAU
Joint Discussion, Sidney, 2003) p. 3, Vol. 1.

[66] E. N. Parker, Sweet’s mechanism for merging magnetic
fields in conducting fluids, J. Geophys. Res. 62, 509
(1957).

[67] T. Piran and A. Shemi, Fireballs in the galactic halo and
gamma-ray bursts, Astrophys. J. 403, L67 (1993).

[68] A. S. Gontijo and O. D. Miranda, Excitation magneto-
hydrodynamic wave by gravitational wave produced
by binary of neutron stars, in International Journal of
Modern Physics Conference Series, International Jour-
nal of Modern Physics Conference Series Vol. 45
(World Scientific Publishing Co Pte Ltd, Singapore,
2017), pp. 1760006–236, https://doi.org/10.1142/
S2010194517600060.

[69] M. E. Gertsenshtein, Wave resonance of light and gravi-
tational waves, J. Exp. Theor. Phys. 14, 84 (1962), http://
www.jetp.ac.ru/cgi-bin/e/index/e/14/1/p84?a=list.

[70] D. Boccaletti, V. Sabbata, P. Fortini, and C. Gualdi,
Conversion of photons into gravitons and vice versa in
a static electromagnetic field, Nuovo Cimento B 70, 129
(1970).

[71] Y. B. Zel’dovich, Electromagnetic and gravitational waves
in a stationary magnetic field, Sov. J. Exp. Theor. Phys. 38,
652 (1974), https://ui.adsabs.harvard.edu/abs/1974JETP..
.38..652Z/abstract.

[72] G. Brodin and M. Marklund, Parametric Excitation of
Plasma Waves by Gravitational Radiation, Phys. Rev. Lett.
82, 3012 (1999).

[73] P. G. Macedo and A. H. Nelson, Propagation of gravita-
tional waves in a magnetized plasma, Phys. Rev. D 28,
2382 (1983).

[74] D. Papadopoulos, N. Stergioulas, L. Vlahos, and J.
Kuijpers, Fast magnetosonic waves driven by gravitational
waves, Astron. Astrophys. 377, 701 (2001).

[75] M. Marklund, G. Brodin, and P. K. S. Dunsby, Radio wave
emissions due to gravitational radiation, Astrophys. J. 536,
875 (2000).

[76] J. Moortgat, General relativistic plasma dynamics, Ph. D.
thesis, Radboud Universiteit Nijmegen, The Netherlands,
2006.

[77] H. Isliker, I. Sandberg, and L. Vlahos, Interaction of
gravitational waves with strongly magnetized plasmas,
Phys. Rev. D 74, 104009 (2006).

[78] M. Servin and G. Brodin, Resonant interaction between
gravitational waves, electromagnetic waves, and plasma
flows, Phys. Rev. D 68, 044017 (2003).

[79] M. Servin, G. Brodin, M. Bradley, and M. Marklund,
Parametric excitation of alfvén waves by gravitational
radiation, Phys. Rev. E 62, 8493 (2000).

[80] P. Goldreich and W. H. Julian, Pulsar electrodynamics,
Astrophys. J. 157, 869 (1969).

[81] A. Einstein, Die feldgleichungen der gravitation,
Sitzungsber. K. Preuss. Akad. Wiss. 1, 844 (1915),
https://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/
permanent/echo/einstein/sitzungsberichte/6E3MAXK4/
index.meta&ww=0.7143&wh=0.7143&wx=0.2404.

[82] B. F. Schutz, Gravitational wave sources, Classical Quan-
tum Gravity 13, A219 (1996).

[83] K. S. Thorne, Multipole expansions of gravitational radi-
ation, Rev. Mod. Phys. 52, 299 (1980).

[84] B. F. Schutz and F. Ricci, Gravitational waves, sources,
and detectors, arXiv:1005.4735.

[85] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
(W. H. Freeman, San Francisco, 1973).

[86] S. W. Hawking and W. Israel, Three Hundred Years of
Gravitation (Cambridge University Press, Cambridge,
England, 1987).

[87] R. A. D’Inverno, Introducing Einstein’s Relativity (Oxford
University Press, New York, 1992).

[88] M. Maggiore, Gravitational Waves, Volume 1: Theory and
Experiments (Oxford University Press, New York, 2008),
ISBN: 978-0-19-857074-5.

[89] C. Cutler and K. S. Thorne, An overview of gravitational-
wave sources, arXiv:gr-qc/0204090.

[90] F. F. Chen, Introduction to Plasma Physics (Plenum Press,
New York, 1974).

[91] J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed.
(Springer-Verlag, New York, 2004), ISBN: 978-1-4757-
4030-1.

[92] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
USA, 1998), p. 832, ISBN: 978-0-471-30932-1.

[93] G. F. R. Ellis and H. van Elst, Cosmological models
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